|  | //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains some templates that are useful if you are working with the | 
|  | // STL at all. | 
|  | // | 
|  | // No library is required when using these functions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_ADT_STLEXTRAS_H | 
|  | #define LLVM_ADT_STLEXTRAS_H | 
|  |  | 
|  | #include <algorithm> // for std::all_of | 
|  | #include <cassert> | 
|  | #include <cstddef> // for std::size_t | 
|  | #include <cstdlib> // for qsort | 
|  | #include <functional> | 
|  | #include <iterator> | 
|  | #include <memory> | 
|  | #include <tuple> | 
|  | #include <utility> // for std::pair | 
|  |  | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/iterator.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | // Only used by compiler if both template types are the same.  Useful when | 
|  | // using SFINAE to test for the existence of member functions. | 
|  | template <typename T, T> struct SameType; | 
|  |  | 
|  | namespace detail { | 
|  |  | 
|  | template <typename RangeT> | 
|  | using IterOfRange = decltype(std::begin(std::declval<RangeT &>())); | 
|  |  | 
|  | } // End detail namespace | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //     Extra additions to <functional> | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | template<class Ty> | 
|  | struct identity : public std::unary_function<Ty, Ty> { | 
|  | Ty &operator()(Ty &self) const { | 
|  | return self; | 
|  | } | 
|  | const Ty &operator()(const Ty &self) const { | 
|  | return self; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<class Ty> | 
|  | struct less_ptr : public std::binary_function<Ty, Ty, bool> { | 
|  | bool operator()(const Ty* left, const Ty* right) const { | 
|  | return *left < *right; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<class Ty> | 
|  | struct greater_ptr : public std::binary_function<Ty, Ty, bool> { | 
|  | bool operator()(const Ty* left, const Ty* right) const { | 
|  | return *right < *left; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// An efficient, type-erasing, non-owning reference to a callable. This is | 
|  | /// intended for use as the type of a function parameter that is not used | 
|  | /// after the function in question returns. | 
|  | /// | 
|  | /// This class does not own the callable, so it is not in general safe to store | 
|  | /// a function_ref. | 
|  | template<typename Fn> class function_ref; | 
|  |  | 
|  | template<typename Ret, typename ...Params> | 
|  | class function_ref<Ret(Params...)> { | 
|  | Ret (*callback)(intptr_t callable, Params ...params); | 
|  | intptr_t callable; | 
|  |  | 
|  | template<typename Callable> | 
|  | static Ret callback_fn(intptr_t callable, Params ...params) { | 
|  | return (*reinterpret_cast<Callable*>(callable))( | 
|  | std::forward<Params>(params)...); | 
|  | } | 
|  |  | 
|  | public: | 
|  | template <typename Callable> | 
|  | function_ref(Callable &&callable, | 
|  | typename std::enable_if< | 
|  | !std::is_same<typename std::remove_reference<Callable>::type, | 
|  | function_ref>::value>::type * = nullptr) | 
|  | : callback(callback_fn<typename std::remove_reference<Callable>::type>), | 
|  | callable(reinterpret_cast<intptr_t>(&callable)) {} | 
|  | Ret operator()(Params ...params) const { | 
|  | return callback(callable, std::forward<Params>(params)...); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // deleter - Very very very simple method that is used to invoke operator | 
|  | // delete on something.  It is used like this: | 
|  | // | 
|  | //   for_each(V.begin(), B.end(), deleter<Interval>); | 
|  | // | 
|  | template <class T> | 
|  | inline void deleter(T *Ptr) { | 
|  | delete Ptr; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //     Extra additions to <iterator> | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // mapped_iterator - This is a simple iterator adapter that causes a function to | 
|  | // be dereferenced whenever operator* is invoked on the iterator. | 
|  | // | 
|  | template <class RootIt, class UnaryFunc> | 
|  | class mapped_iterator { | 
|  | RootIt current; | 
|  | UnaryFunc Fn; | 
|  | public: | 
|  | typedef typename std::iterator_traits<RootIt>::iterator_category | 
|  | iterator_category; | 
|  | typedef typename std::iterator_traits<RootIt>::difference_type | 
|  | difference_type; | 
|  | typedef typename std::result_of< | 
|  | UnaryFunc(decltype(*std::declval<RootIt>()))> | 
|  | ::type value_type; | 
|  |  | 
|  | typedef void pointer; | 
|  | //typedef typename UnaryFunc::result_type *pointer; | 
|  | typedef void reference;        // Can't modify value returned by fn | 
|  |  | 
|  | typedef RootIt iterator_type; | 
|  |  | 
|  | inline const RootIt &getCurrent() const { return current; } | 
|  | inline const UnaryFunc &getFunc() const { return Fn; } | 
|  |  | 
|  | inline explicit mapped_iterator(const RootIt &I, UnaryFunc F) | 
|  | : current(I), Fn(F) {} | 
|  |  | 
|  | inline value_type operator*() const {   // All this work to do this | 
|  | return Fn(*current);         // little change | 
|  | } | 
|  |  | 
|  | mapped_iterator &operator++() { | 
|  | ++current; | 
|  | return *this; | 
|  | } | 
|  | mapped_iterator &operator--() { | 
|  | --current; | 
|  | return *this; | 
|  | } | 
|  | mapped_iterator operator++(int) { | 
|  | mapped_iterator __tmp = *this; | 
|  | ++current; | 
|  | return __tmp; | 
|  | } | 
|  | mapped_iterator operator--(int) { | 
|  | mapped_iterator __tmp = *this; | 
|  | --current; | 
|  | return __tmp; | 
|  | } | 
|  | mapped_iterator operator+(difference_type n) const { | 
|  | return mapped_iterator(current + n, Fn); | 
|  | } | 
|  | mapped_iterator &operator+=(difference_type n) { | 
|  | current += n; | 
|  | return *this; | 
|  | } | 
|  | mapped_iterator operator-(difference_type n) const { | 
|  | return mapped_iterator(current - n, Fn); | 
|  | } | 
|  | mapped_iterator &operator-=(difference_type n) { | 
|  | current -= n; | 
|  | return *this; | 
|  | } | 
|  | reference operator[](difference_type n) const { return *(*this + n); } | 
|  |  | 
|  | bool operator!=(const mapped_iterator &X) const { return !operator==(X); } | 
|  | bool operator==(const mapped_iterator &X) const { | 
|  | return current == X.current; | 
|  | } | 
|  | bool operator<(const mapped_iterator &X) const { return current < X.current; } | 
|  |  | 
|  | difference_type operator-(const mapped_iterator &X) const { | 
|  | return current - X.current; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <class Iterator, class Func> | 
|  | inline mapped_iterator<Iterator, Func> | 
|  | operator+(typename mapped_iterator<Iterator, Func>::difference_type N, | 
|  | const mapped_iterator<Iterator, Func> &X) { | 
|  | return mapped_iterator<Iterator, Func>(X.getCurrent() - N, X.getFunc()); | 
|  | } | 
|  |  | 
|  |  | 
|  | // map_iterator - Provide a convenient way to create mapped_iterators, just like | 
|  | // make_pair is useful for creating pairs... | 
|  | // | 
|  | template <class ItTy, class FuncTy> | 
|  | inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) { | 
|  | return mapped_iterator<ItTy, FuncTy>(I, F); | 
|  | } | 
|  |  | 
|  | /// Helper to determine if type T has a member called rbegin(). | 
|  | template <typename Ty> class has_rbegin_impl { | 
|  | typedef char yes[1]; | 
|  | typedef char no[2]; | 
|  |  | 
|  | template <typename Inner> | 
|  | static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); | 
|  |  | 
|  | template <typename> | 
|  | static no& test(...); | 
|  |  | 
|  | public: | 
|  | static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); | 
|  | }; | 
|  |  | 
|  | /// Metafunction to determine if T& or T has a member called rbegin(). | 
|  | template <typename Ty> | 
|  | struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> { | 
|  | }; | 
|  |  | 
|  | // Returns an iterator_range over the given container which iterates in reverse. | 
|  | // Note that the container must have rbegin()/rend() methods for this to work. | 
|  | template <typename ContainerTy> | 
|  | auto reverse(ContainerTy &&C, | 
|  | typename std::enable_if<has_rbegin<ContainerTy>::value>::type * = | 
|  | nullptr) -> decltype(make_range(C.rbegin(), C.rend())) { | 
|  | return make_range(C.rbegin(), C.rend()); | 
|  | } | 
|  |  | 
|  | // Returns a std::reverse_iterator wrapped around the given iterator. | 
|  | template <typename IteratorTy> | 
|  | std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) { | 
|  | return std::reverse_iterator<IteratorTy>(It); | 
|  | } | 
|  |  | 
|  | // Returns an iterator_range over the given container which iterates in reverse. | 
|  | // Note that the container must have begin()/end() methods which return | 
|  | // bidirectional iterators for this to work. | 
|  | template <typename ContainerTy> | 
|  | auto reverse( | 
|  | ContainerTy &&C, | 
|  | typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr) | 
|  | -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)), | 
|  | llvm::make_reverse_iterator(std::begin(C)))) { | 
|  | return make_range(llvm::make_reverse_iterator(std::end(C)), | 
|  | llvm::make_reverse_iterator(std::begin(C))); | 
|  | } | 
|  |  | 
|  | /// An iterator adaptor that filters the elements of given inner iterators. | 
|  | /// | 
|  | /// The predicate parameter should be a callable object that accepts the wrapped | 
|  | /// iterator's reference type and returns a bool. When incrementing or | 
|  | /// decrementing the iterator, it will call the predicate on each element and | 
|  | /// skip any where it returns false. | 
|  | /// | 
|  | /// \code | 
|  | ///   int A[] = { 1, 2, 3, 4 }; | 
|  | ///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); | 
|  | ///   // R contains { 1, 3 }. | 
|  | /// \endcode | 
|  | template <typename WrappedIteratorT, typename PredicateT> | 
|  | class filter_iterator | 
|  | : public iterator_adaptor_base< | 
|  | filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT, | 
|  | typename std::common_type< | 
|  | std::forward_iterator_tag, | 
|  | typename std::iterator_traits< | 
|  | WrappedIteratorT>::iterator_category>::type> { | 
|  | using BaseT = iterator_adaptor_base< | 
|  | filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT, | 
|  | typename std::common_type< | 
|  | std::forward_iterator_tag, | 
|  | typename std::iterator_traits<WrappedIteratorT>::iterator_category>:: | 
|  | type>; | 
|  |  | 
|  | struct PayloadType { | 
|  | WrappedIteratorT End; | 
|  | PredicateT Pred; | 
|  | }; | 
|  |  | 
|  | Optional<PayloadType> Payload; | 
|  |  | 
|  | void findNextValid() { | 
|  | assert(Payload && "Payload should be engaged when findNextValid is called"); | 
|  | while (this->I != Payload->End && !Payload->Pred(*this->I)) | 
|  | BaseT::operator++(); | 
|  | } | 
|  |  | 
|  | // Construct the begin iterator. The begin iterator requires to know where end | 
|  | // is, so that it can properly stop when it hits end. | 
|  | filter_iterator(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) | 
|  | : BaseT(std::move(Begin)), | 
|  | Payload(PayloadType{std::move(End), std::move(Pred)}) { | 
|  | findNextValid(); | 
|  | } | 
|  |  | 
|  | // Construct the end iterator. It's not incrementable, so Payload doesn't | 
|  | // have to be engaged. | 
|  | filter_iterator(WrappedIteratorT End) : BaseT(End) {} | 
|  |  | 
|  | public: | 
|  | using BaseT::operator++; | 
|  |  | 
|  | filter_iterator &operator++() { | 
|  | BaseT::operator++(); | 
|  | findNextValid(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename RT, typename PT> | 
|  | friend iterator_range<filter_iterator<detail::IterOfRange<RT>, PT>> | 
|  | make_filter_range(RT &&, PT); | 
|  | }; | 
|  |  | 
|  | /// Convenience function that takes a range of elements and a predicate, | 
|  | /// and return a new filter_iterator range. | 
|  | /// | 
|  | /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the | 
|  | /// lifetime of that temporary is not kept by the returned range object, and the | 
|  | /// temporary is going to be dropped on the floor after the make_iterator_range | 
|  | /// full expression that contains this function call. | 
|  | template <typename RangeT, typename PredicateT> | 
|  | iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> | 
|  | make_filter_range(RangeT &&Range, PredicateT Pred) { | 
|  | using FilterIteratorT = | 
|  | filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; | 
|  | return make_range(FilterIteratorT(std::begin(std::forward<RangeT>(Range)), | 
|  | std::end(std::forward<RangeT>(Range)), | 
|  | std::move(Pred)), | 
|  | FilterIteratorT(std::end(std::forward<RangeT>(Range)))); | 
|  | } | 
|  |  | 
|  | // forward declarations required by zip_shortest/zip_first | 
|  | template <typename R, typename UnaryPredicate> | 
|  | bool all_of(R &&range, UnaryPredicate P); | 
|  |  | 
|  | template <size_t... I> struct index_sequence; | 
|  |  | 
|  | template <class... Ts> struct index_sequence_for; | 
|  |  | 
|  | namespace detail { | 
|  | template <typename... Iters> class zip_first { | 
|  | public: | 
|  | typedef std::input_iterator_tag iterator_category; | 
|  | typedef std::tuple<decltype(*std::declval<Iters>())...> value_type; | 
|  | std::tuple<Iters...> iterators; | 
|  |  | 
|  | private: | 
|  | template <size_t... Ns> value_type deres(index_sequence<Ns...>) { | 
|  | return value_type(*std::get<Ns>(iterators)...); | 
|  | } | 
|  |  | 
|  | template <size_t... Ns> decltype(iterators) tup_inc(index_sequence<Ns...>) { | 
|  | return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...); | 
|  | } | 
|  |  | 
|  | public: | 
|  | value_type operator*() { return deres(index_sequence_for<Iters...>{}); } | 
|  |  | 
|  | void operator++() { iterators = tup_inc(index_sequence_for<Iters...>{}); } | 
|  |  | 
|  | bool operator!=(const zip_first<Iters...> &other) const { | 
|  | return std::get<0>(iterators) != std::get<0>(other.iterators); | 
|  | } | 
|  | zip_first(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} | 
|  | }; | 
|  |  | 
|  | template <typename... Iters> class zip_shortest : public zip_first<Iters...> { | 
|  | template <size_t... Ns> | 
|  | bool test(const zip_first<Iters...> &other, index_sequence<Ns...>) const { | 
|  | return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) != | 
|  | std::get<Ns>(other.iterators)...}, | 
|  | identity<bool>{}); | 
|  | } | 
|  |  | 
|  | public: | 
|  | bool operator!=(const zip_first<Iters...> &other) const { | 
|  | return test(other, index_sequence_for<Iters...>{}); | 
|  | } | 
|  | zip_shortest(Iters &&... ts) | 
|  | : zip_first<Iters...>(std::forward<Iters>(ts)...) {} | 
|  | }; | 
|  |  | 
|  | template <template <typename...> class ItType, typename... Args> class zippy { | 
|  | public: | 
|  | typedef ItType<decltype(std::begin(std::declval<Args>()))...> iterator; | 
|  |  | 
|  | private: | 
|  | std::tuple<Args...> ts; | 
|  |  | 
|  | template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) { | 
|  | return iterator(std::begin(std::get<Ns>(ts))...); | 
|  | } | 
|  | template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) { | 
|  | return iterator(std::end(std::get<Ns>(ts))...); | 
|  | } | 
|  |  | 
|  | public: | 
|  | iterator begin() { return begin_impl(index_sequence_for<Args...>{}); } | 
|  | iterator end() { return end_impl(index_sequence_for<Args...>{}); } | 
|  | zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} | 
|  | }; | 
|  | } // End detail namespace | 
|  |  | 
|  | /// zip iterator for two or more iteratable types. | 
|  | template <typename T, typename U, typename... Args> | 
|  | detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, | 
|  | Args &&... args) { | 
|  | return detail::zippy<detail::zip_shortest, T, U, Args...>( | 
|  | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); | 
|  | } | 
|  |  | 
|  | /// zip iterator that, for the sake of efficiency, assumes the first iteratee to | 
|  | /// be the shortest. | 
|  | template <typename T, typename U, typename... Args> | 
|  | detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, | 
|  | Args &&... args) { | 
|  | return detail::zippy<detail::zip_first, T, U, Args...>( | 
|  | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //     Extra additions to <utility> | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// \brief Function object to check whether the first component of a std::pair | 
|  | /// compares less than the first component of another std::pair. | 
|  | struct less_first { | 
|  | template <typename T> bool operator()(const T &lhs, const T &rhs) const { | 
|  | return lhs.first < rhs.first; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Function object to check whether the second component of a std::pair | 
|  | /// compares less than the second component of another std::pair. | 
|  | struct less_second { | 
|  | template <typename T> bool operator()(const T &lhs, const T &rhs) const { | 
|  | return lhs.second < rhs.second; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // A subset of N3658. More stuff can be added as-needed. | 
|  |  | 
|  | /// \brief Represents a compile-time sequence of integers. | 
|  | template <class T, T... I> struct integer_sequence { | 
|  | typedef T value_type; | 
|  |  | 
|  | static constexpr size_t size() { return sizeof...(I); } | 
|  | }; | 
|  |  | 
|  | /// \brief Alias for the common case of a sequence of size_ts. | 
|  | template <size_t... I> | 
|  | struct index_sequence : integer_sequence<std::size_t, I...> {}; | 
|  |  | 
|  | template <std::size_t N, std::size_t... I> | 
|  | struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {}; | 
|  | template <std::size_t... I> | 
|  | struct build_index_impl<0, I...> : index_sequence<I...> {}; | 
|  |  | 
|  | /// \brief Creates a compile-time integer sequence for a parameter pack. | 
|  | template <class... Ts> | 
|  | struct index_sequence_for : build_index_impl<sizeof...(Ts)> {}; | 
|  |  | 
|  | /// Utility type to build an inheritance chain that makes it easy to rank | 
|  | /// overload candidates. | 
|  | template <int N> struct rank : rank<N - 1> {}; | 
|  | template <> struct rank<0> {}; | 
|  |  | 
|  | /// \brief traits class for checking whether type T is one of any of the given | 
|  | /// types in the variadic list. | 
|  | template <typename T, typename... Ts> struct is_one_of { | 
|  | static const bool value = false; | 
|  | }; | 
|  |  | 
|  | template <typename T, typename U, typename... Ts> | 
|  | struct is_one_of<T, U, Ts...> { | 
|  | static const bool value = | 
|  | std::is_same<T, U>::value || is_one_of<T, Ts...>::value; | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //     Extra additions for arrays | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Find the length of an array. | 
|  | template <class T, std::size_t N> | 
|  | constexpr inline size_t array_lengthof(T (&)[N]) { | 
|  | return N; | 
|  | } | 
|  |  | 
|  | /// Adapt std::less<T> for array_pod_sort. | 
|  | template<typename T> | 
|  | inline int array_pod_sort_comparator(const void *P1, const void *P2) { | 
|  | if (std::less<T>()(*reinterpret_cast<const T*>(P1), | 
|  | *reinterpret_cast<const T*>(P2))) | 
|  | return -1; | 
|  | if (std::less<T>()(*reinterpret_cast<const T*>(P2), | 
|  | *reinterpret_cast<const T*>(P1))) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// get_array_pod_sort_comparator - This is an internal helper function used to | 
|  | /// get type deduction of T right. | 
|  | template<typename T> | 
|  | inline int (*get_array_pod_sort_comparator(const T &)) | 
|  | (const void*, const void*) { | 
|  | return array_pod_sort_comparator<T>; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// array_pod_sort - This sorts an array with the specified start and end | 
|  | /// extent.  This is just like std::sort, except that it calls qsort instead of | 
|  | /// using an inlined template.  qsort is slightly slower than std::sort, but | 
|  | /// most sorts are not performance critical in LLVM and std::sort has to be | 
|  | /// template instantiated for each type, leading to significant measured code | 
|  | /// bloat.  This function should generally be used instead of std::sort where | 
|  | /// possible. | 
|  | /// | 
|  | /// This function assumes that you have simple POD-like types that can be | 
|  | /// compared with std::less and can be moved with memcpy.  If this isn't true, | 
|  | /// you should use std::sort. | 
|  | /// | 
|  | /// NOTE: If qsort_r were portable, we could allow a custom comparator and | 
|  | /// default to std::less. | 
|  | template<class IteratorTy> | 
|  | inline void array_pod_sort(IteratorTy Start, IteratorTy End) { | 
|  | // Don't inefficiently call qsort with one element or trigger undefined | 
|  | // behavior with an empty sequence. | 
|  | auto NElts = End - Start; | 
|  | if (NElts <= 1) return; | 
|  | qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); | 
|  | } | 
|  |  | 
|  | template <class IteratorTy> | 
|  | inline void array_pod_sort( | 
|  | IteratorTy Start, IteratorTy End, | 
|  | int (*Compare)( | 
|  | const typename std::iterator_traits<IteratorTy>::value_type *, | 
|  | const typename std::iterator_traits<IteratorTy>::value_type *)) { | 
|  | // Don't inefficiently call qsort with one element or trigger undefined | 
|  | // behavior with an empty sequence. | 
|  | auto NElts = End - Start; | 
|  | if (NElts <= 1) return; | 
|  | qsort(&*Start, NElts, sizeof(*Start), | 
|  | reinterpret_cast<int (*)(const void *, const void *)>(Compare)); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //     Extra additions to <algorithm> | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// For a container of pointers, deletes the pointers and then clears the | 
|  | /// container. | 
|  | template<typename Container> | 
|  | void DeleteContainerPointers(Container &C) { | 
|  | for (auto V : C) | 
|  | delete V; | 
|  | C.clear(); | 
|  | } | 
|  |  | 
|  | /// In a container of pairs (usually a map) whose second element is a pointer, | 
|  | /// deletes the second elements and then clears the container. | 
|  | template<typename Container> | 
|  | void DeleteContainerSeconds(Container &C) { | 
|  | for (auto &V : C) | 
|  | delete V.second; | 
|  | C.clear(); | 
|  | } | 
|  |  | 
|  | /// Provide wrappers to std::all_of which take ranges instead of having to pass | 
|  | /// begin/end explicitly. | 
|  | template <typename R, typename UnaryPredicate> | 
|  | bool all_of(R &&Range, UnaryPredicate P) { | 
|  | return std::all_of(std::begin(Range), std::end(Range), P); | 
|  | } | 
|  |  | 
|  | /// Provide wrappers to std::any_of which take ranges instead of having to pass | 
|  | /// begin/end explicitly. | 
|  | template <typename R, typename UnaryPredicate> | 
|  | bool any_of(R &&Range, UnaryPredicate P) { | 
|  | return std::any_of(std::begin(Range), std::end(Range), P); | 
|  | } | 
|  |  | 
|  | /// Provide wrappers to std::none_of which take ranges instead of having to pass | 
|  | /// begin/end explicitly. | 
|  | template <typename R, typename UnaryPredicate> | 
|  | bool none_of(R &&Range, UnaryPredicate P) { | 
|  | return std::none_of(std::begin(Range), std::end(Range), P); | 
|  | } | 
|  |  | 
|  | /// Provide wrappers to std::find which take ranges instead of having to pass | 
|  | /// begin/end explicitly. | 
|  | template <typename R, typename T> | 
|  | auto find(R &&Range, const T &Val) -> decltype(std::begin(Range)) { | 
|  | return std::find(std::begin(Range), std::end(Range), Val); | 
|  | } | 
|  |  | 
|  | /// Provide wrappers to std::find_if which take ranges instead of having to pass | 
|  | /// begin/end explicitly. | 
|  | template <typename R, typename UnaryPredicate> | 
|  | auto find_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) { | 
|  | return std::find_if(std::begin(Range), std::end(Range), P); | 
|  | } | 
|  |  | 
|  | template <typename R, typename UnaryPredicate> | 
|  | auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) { | 
|  | return std::find_if_not(std::begin(Range), std::end(Range), P); | 
|  | } | 
|  |  | 
|  | /// Provide wrappers to std::remove_if which take ranges instead of having to | 
|  | /// pass begin/end explicitly. | 
|  | template <typename R, typename UnaryPredicate> | 
|  | auto remove_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) { | 
|  | return std::remove_if(std::begin(Range), std::end(Range), P); | 
|  | } | 
|  |  | 
|  | /// Wrapper function around std::find to detect if an element exists | 
|  | /// in a container. | 
|  | template <typename R, typename E> | 
|  | bool is_contained(R &&Range, const E &Element) { | 
|  | return std::find(std::begin(Range), std::end(Range), Element) != | 
|  | std::end(Range); | 
|  | } | 
|  |  | 
|  | /// Wrapper function around std::count to count the number of times an element | 
|  | /// \p Element occurs in the given range \p Range. | 
|  | template <typename R, typename E> | 
|  | auto count(R &&Range, const E &Element) -> typename std::iterator_traits< | 
|  | decltype(std::begin(Range))>::difference_type { | 
|  | return std::count(std::begin(Range), std::end(Range), Element); | 
|  | } | 
|  |  | 
|  | /// Wrapper function around std::count_if to count the number of times an | 
|  | /// element satisfying a given predicate occurs in a range. | 
|  | template <typename R, typename UnaryPredicate> | 
|  | auto count_if(R &&Range, UnaryPredicate P) -> typename std::iterator_traits< | 
|  | decltype(std::begin(Range))>::difference_type { | 
|  | return std::count_if(std::begin(Range), std::end(Range), P); | 
|  | } | 
|  |  | 
|  | /// Wrapper function around std::transform to apply a function to a range and | 
|  | /// store the result elsewhere. | 
|  | template <typename R, typename OutputIt, typename UnaryPredicate> | 
|  | OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) { | 
|  | return std::transform(std::begin(Range), std::end(Range), d_first, P); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //     Extra additions to <memory> | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Implement make_unique according to N3656. | 
|  |  | 
|  | /// \brief Constructs a `new T()` with the given args and returns a | 
|  | ///        `unique_ptr<T>` which owns the object. | 
|  | /// | 
|  | /// Example: | 
|  | /// | 
|  | ///     auto p = make_unique<int>(); | 
|  | ///     auto p = make_unique<std::tuple<int, int>>(0, 1); | 
|  | template <class T, class... Args> | 
|  | typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type | 
|  | make_unique(Args &&... args) { | 
|  | return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); | 
|  | } | 
|  |  | 
|  | /// \brief Constructs a `new T[n]` with the given args and returns a | 
|  | ///        `unique_ptr<T[]>` which owns the object. | 
|  | /// | 
|  | /// \param n size of the new array. | 
|  | /// | 
|  | /// Example: | 
|  | /// | 
|  | ///     auto p = make_unique<int[]>(2); // value-initializes the array with 0's. | 
|  | template <class T> | 
|  | typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0, | 
|  | std::unique_ptr<T>>::type | 
|  | make_unique(size_t n) { | 
|  | return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]()); | 
|  | } | 
|  |  | 
|  | /// This function isn't used and is only here to provide better compile errors. | 
|  | template <class T, class... Args> | 
|  | typename std::enable_if<std::extent<T>::value != 0>::type | 
|  | make_unique(Args &&...) = delete; | 
|  |  | 
|  | struct FreeDeleter { | 
|  | void operator()(void* v) { | 
|  | ::free(v); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename First, typename Second> | 
|  | struct pair_hash { | 
|  | size_t operator()(const std::pair<First, Second> &P) const { | 
|  | return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// A functor like C++14's std::less<void> in its absence. | 
|  | struct less { | 
|  | template <typename A, typename B> bool operator()(A &&a, B &&b) const { | 
|  | return std::forward<A>(a) < std::forward<B>(b); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// A functor like C++14's std::equal<void> in its absence. | 
|  | struct equal { | 
|  | template <typename A, typename B> bool operator()(A &&a, B &&b) const { | 
|  | return std::forward<A>(a) == std::forward<B>(b); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Binary functor that adapts to any other binary functor after dereferencing | 
|  | /// operands. | 
|  | template <typename T> struct deref { | 
|  | T func; | 
|  | // Could be further improved to cope with non-derivable functors and | 
|  | // non-binary functors (should be a variadic template member function | 
|  | // operator()). | 
|  | template <typename A, typename B> | 
|  | auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) { | 
|  | assert(lhs); | 
|  | assert(rhs); | 
|  | return func(*lhs, *rhs); | 
|  | } | 
|  | }; | 
|  |  | 
|  | namespace detail { | 
|  | template <typename R> class enumerator_impl { | 
|  | public: | 
|  | template <typename X> struct result_pair { | 
|  | result_pair(std::size_t Index, X Value) : Index(Index), Value(Value) {} | 
|  |  | 
|  | const std::size_t Index; | 
|  | X Value; | 
|  | }; | 
|  |  | 
|  | class iterator { | 
|  | typedef | 
|  | typename std::iterator_traits<IterOfRange<R>>::reference iter_reference; | 
|  | typedef result_pair<iter_reference> result_type; | 
|  |  | 
|  | public: | 
|  | iterator(IterOfRange<R> &&Iter, std::size_t Index) | 
|  | : Iter(Iter), Index(Index) {} | 
|  |  | 
|  | result_type operator*() const { return result_type(Index, *Iter); } | 
|  |  | 
|  | iterator &operator++() { | 
|  | ++Iter; | 
|  | ++Index; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | bool operator!=(const iterator &RHS) const { return Iter != RHS.Iter; } | 
|  |  | 
|  | private: | 
|  | IterOfRange<R> Iter; | 
|  | std::size_t Index; | 
|  | }; | 
|  |  | 
|  | public: | 
|  | explicit enumerator_impl(R &&Range) : Range(std::forward<R>(Range)) {} | 
|  |  | 
|  | iterator begin() { return iterator(std::begin(Range), 0); } | 
|  | iterator end() { return iterator(std::end(Range), std::size_t(-1)); } | 
|  |  | 
|  | private: | 
|  | R Range; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Given an input range, returns a new range whose values are are pair (A,B) | 
|  | /// such that A is the 0-based index of the item in the sequence, and B is | 
|  | /// the value from the original sequence.  Example: | 
|  | /// | 
|  | /// std::vector<char> Items = {'A', 'B', 'C', 'D'}; | 
|  | /// for (auto X : enumerate(Items)) { | 
|  | ///   printf("Item %d - %c\n", X.Index, X.Value); | 
|  | /// } | 
|  | /// | 
|  | /// Output: | 
|  | ///   Item 0 - A | 
|  | ///   Item 1 - B | 
|  | ///   Item 2 - C | 
|  | ///   Item 3 - D | 
|  | /// | 
|  | template <typename R> detail::enumerator_impl<R> enumerate(R &&Range) { | 
|  | return detail::enumerator_impl<R>(std::forward<R>(Range)); | 
|  | } | 
|  |  | 
|  | namespace detail { | 
|  | template <typename F, typename Tuple, std::size_t... I> | 
|  | auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>) | 
|  | -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) { | 
|  | return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Given an input tuple (a1, a2, ..., an), pass the arguments of the | 
|  | /// tuple variadically to f as if by calling f(a1, a2, ..., an) and | 
|  | /// return the result. | 
|  | template <typename F, typename Tuple> | 
|  | auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl( | 
|  | std::forward<F>(f), std::forward<Tuple>(t), | 
|  | build_index_impl< | 
|  | std::tuple_size<typename std::decay<Tuple>::type>::value>{})) { | 
|  | using Indices = build_index_impl< | 
|  | std::tuple_size<typename std::decay<Tuple>::type>::value>; | 
|  |  | 
|  | return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t), | 
|  | Indices{}); | 
|  | } | 
|  | } // End llvm namespace | 
|  |  | 
|  | #endif |