|  | //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the BasicBlock class for the VMCore library. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/BasicBlock.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Type.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Support/LeakDetector.h" | 
|  | #include "SymbolTableListTraitsImpl.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | ValueSymbolTable *BasicBlock::getValueSymbolTable() { | 
|  | if (Function *F = getParent()) | 
|  | return &F->getValueSymbolTable(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | LLVMContext &BasicBlock::getContext() const { | 
|  | return getType()->getContext(); | 
|  | } | 
|  |  | 
|  | // Explicit instantiation of SymbolTableListTraits since some of the methods | 
|  | // are not in the public header file... | 
|  | template class llvm::SymbolTableListTraits<Instruction, BasicBlock>; | 
|  |  | 
|  |  | 
|  | BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, | 
|  | BasicBlock *InsertBefore) | 
|  | : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(0) { | 
|  |  | 
|  | // Make sure that we get added to a function | 
|  | LeakDetector::addGarbageObject(this); | 
|  |  | 
|  | if (InsertBefore) { | 
|  | assert(NewParent && | 
|  | "Cannot insert block before another block with no function!"); | 
|  | NewParent->getBasicBlockList().insert(InsertBefore, this); | 
|  | } else if (NewParent) { | 
|  | NewParent->getBasicBlockList().push_back(this); | 
|  | } | 
|  |  | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  |  | 
|  | BasicBlock::~BasicBlock() { | 
|  | // If the address of the block is taken and it is being deleted (e.g. because | 
|  | // it is dead), this means that there is either a dangling constant expr | 
|  | // hanging off the block, or an undefined use of the block (source code | 
|  | // expecting the address of a label to keep the block alive even though there | 
|  | // is no indirect branch).  Handle these cases by zapping the BlockAddress | 
|  | // nodes.  There are no other possible uses at this point. | 
|  | if (hasAddressTaken()) { | 
|  | assert(!use_empty() && "There should be at least one blockaddress!"); | 
|  | Constant *Replacement = | 
|  | ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); | 
|  | while (!use_empty()) { | 
|  | BlockAddress *BA = cast<BlockAddress>(use_back()); | 
|  | BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, | 
|  | BA->getType())); | 
|  | BA->destroyConstant(); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(getParent() == 0 && "BasicBlock still linked into the program!"); | 
|  | dropAllReferences(); | 
|  | InstList.clear(); | 
|  | } | 
|  |  | 
|  | void BasicBlock::setParent(Function *parent) { | 
|  | if (getParent()) | 
|  | LeakDetector::addGarbageObject(this); | 
|  |  | 
|  | // Set Parent=parent, updating instruction symtab entries as appropriate. | 
|  | InstList.setSymTabObject(&Parent, parent); | 
|  |  | 
|  | if (getParent()) | 
|  | LeakDetector::removeGarbageObject(this); | 
|  | } | 
|  |  | 
|  | void BasicBlock::removeFromParent() { | 
|  | getParent()->getBasicBlockList().remove(this); | 
|  | } | 
|  |  | 
|  | void BasicBlock::eraseFromParent() { | 
|  | getParent()->getBasicBlockList().erase(this); | 
|  | } | 
|  |  | 
|  | /// moveBefore - Unlink this basic block from its current function and | 
|  | /// insert it into the function that MovePos lives in, right before MovePos. | 
|  | void BasicBlock::moveBefore(BasicBlock *MovePos) { | 
|  | MovePos->getParent()->getBasicBlockList().splice(MovePos, | 
|  | getParent()->getBasicBlockList(), this); | 
|  | } | 
|  |  | 
|  | /// moveAfter - Unlink this basic block from its current function and | 
|  | /// insert it into the function that MovePos lives in, right after MovePos. | 
|  | void BasicBlock::moveAfter(BasicBlock *MovePos) { | 
|  | Function::iterator I = MovePos; | 
|  | MovePos->getParent()->getBasicBlockList().splice(++I, | 
|  | getParent()->getBasicBlockList(), this); | 
|  | } | 
|  |  | 
|  |  | 
|  | TerminatorInst *BasicBlock::getTerminator() { | 
|  | if (InstList.empty()) return 0; | 
|  | return dyn_cast<TerminatorInst>(&InstList.back()); | 
|  | } | 
|  |  | 
|  | const TerminatorInst *BasicBlock::getTerminator() const { | 
|  | if (InstList.empty()) return 0; | 
|  | return dyn_cast<TerminatorInst>(&InstList.back()); | 
|  | } | 
|  |  | 
|  | Instruction* BasicBlock::getFirstNonPHI() { | 
|  | BasicBlock::iterator i = begin(); | 
|  | // All valid basic blocks should have a terminator, | 
|  | // which is not a PHINode. If we have an invalid basic | 
|  | // block we'll get an assertion failure when dereferencing | 
|  | // a past-the-end iterator. | 
|  | while (isa<PHINode>(i)) ++i; | 
|  | return &*i; | 
|  | } | 
|  |  | 
|  | Instruction* BasicBlock::getFirstNonPHIOrDbg() { | 
|  | BasicBlock::iterator i = begin(); | 
|  | // All valid basic blocks should have a terminator, | 
|  | // which is not a PHINode. If we have an invalid basic | 
|  | // block we'll get an assertion failure when dereferencing | 
|  | // a past-the-end iterator. | 
|  | while (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) ++i; | 
|  | return &*i; | 
|  | } | 
|  |  | 
|  | Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() { | 
|  | // All valid basic blocks should have a terminator, | 
|  | // which is not a PHINode. If we have an invalid basic | 
|  | // block we'll get an assertion failure when dereferencing | 
|  | // a past-the-end iterator. | 
|  | BasicBlock::iterator i = begin(); | 
|  | for (;; ++i) { | 
|  | if (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) | 
|  | continue; | 
|  |  | 
|  | const IntrinsicInst *II = dyn_cast<IntrinsicInst>(i); | 
|  | if (!II) | 
|  | break; | 
|  | if (II->getIntrinsicID() != Intrinsic::lifetime_start && | 
|  | II->getIntrinsicID() != Intrinsic::lifetime_end) | 
|  | break; | 
|  | } | 
|  | return &*i; | 
|  | } | 
|  |  | 
|  | BasicBlock::iterator BasicBlock::getFirstInsertionPt() { | 
|  | iterator InsertPt = getFirstNonPHI(); | 
|  | if (isa<LandingPadInst>(InsertPt)) ++InsertPt; | 
|  | return InsertPt; | 
|  | } | 
|  |  | 
|  | void BasicBlock::dropAllReferences() { | 
|  | for(iterator I = begin(), E = end(); I != E; ++I) | 
|  | I->dropAllReferences(); | 
|  | } | 
|  |  | 
|  | /// getSinglePredecessor - If this basic block has a single predecessor block, | 
|  | /// return the block, otherwise return a null pointer. | 
|  | BasicBlock *BasicBlock::getSinglePredecessor() { | 
|  | pred_iterator PI = pred_begin(this), E = pred_end(this); | 
|  | if (PI == E) return 0;         // No preds. | 
|  | BasicBlock *ThePred = *PI; | 
|  | ++PI; | 
|  | return (PI == E) ? ThePred : 0 /*multiple preds*/; | 
|  | } | 
|  |  | 
|  | /// getUniquePredecessor - If this basic block has a unique predecessor block, | 
|  | /// return the block, otherwise return a null pointer. | 
|  | /// Note that unique predecessor doesn't mean single edge, there can be | 
|  | /// multiple edges from the unique predecessor to this block (for example | 
|  | /// a switch statement with multiple cases having the same destination). | 
|  | BasicBlock *BasicBlock::getUniquePredecessor() { | 
|  | pred_iterator PI = pred_begin(this), E = pred_end(this); | 
|  | if (PI == E) return 0; // No preds. | 
|  | BasicBlock *PredBB = *PI; | 
|  | ++PI; | 
|  | for (;PI != E; ++PI) { | 
|  | if (*PI != PredBB) | 
|  | return 0; | 
|  | // The same predecessor appears multiple times in the predecessor list. | 
|  | // This is OK. | 
|  | } | 
|  | return PredBB; | 
|  | } | 
|  |  | 
|  | /// removePredecessor - This method is used to notify a BasicBlock that the | 
|  | /// specified Predecessor of the block is no longer able to reach it.  This is | 
|  | /// actually not used to update the Predecessor list, but is actually used to | 
|  | /// update the PHI nodes that reside in the block.  Note that this should be | 
|  | /// called while the predecessor still refers to this block. | 
|  | /// | 
|  | void BasicBlock::removePredecessor(BasicBlock *Pred, | 
|  | bool DontDeleteUselessPHIs) { | 
|  | assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. | 
|  | find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && | 
|  | "removePredecessor: BB is not a predecessor!"); | 
|  |  | 
|  | if (InstList.empty()) return; | 
|  | PHINode *APN = dyn_cast<PHINode>(&front()); | 
|  | if (!APN) return;   // Quick exit. | 
|  |  | 
|  | // If there are exactly two predecessors, then we want to nuke the PHI nodes | 
|  | // altogether.  However, we cannot do this, if this in this case: | 
|  | // | 
|  | //  Loop: | 
|  | //    %x = phi [X, Loop] | 
|  | //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1 | 
|  | //    br Loop                 ;; %x2 does not dominate all uses | 
|  | // | 
|  | // This is because the PHI node input is actually taken from the predecessor | 
|  | // basic block.  The only case this can happen is with a self loop, so we | 
|  | // check for this case explicitly now. | 
|  | // | 
|  | unsigned max_idx = APN->getNumIncomingValues(); | 
|  | assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); | 
|  | if (max_idx == 2) { | 
|  | BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); | 
|  |  | 
|  | // Disable PHI elimination! | 
|  | if (this == Other) max_idx = 3; | 
|  | } | 
|  |  | 
|  | // <= Two predecessors BEFORE I remove one? | 
|  | if (max_idx <= 2 && !DontDeleteUselessPHIs) { | 
|  | // Yup, loop through and nuke the PHI nodes | 
|  | while (PHINode *PN = dyn_cast<PHINode>(&front())) { | 
|  | // Remove the predecessor first. | 
|  | PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs); | 
|  |  | 
|  | // If the PHI _HAD_ two uses, replace PHI node with its now *single* value | 
|  | if (max_idx == 2) { | 
|  | if (PN->getIncomingValue(0) != PN) | 
|  | PN->replaceAllUsesWith(PN->getIncomingValue(0)); | 
|  | else | 
|  | // We are left with an infinite loop with no entries: kill the PHI. | 
|  | PN->replaceAllUsesWith(UndefValue::get(PN->getType())); | 
|  | getInstList().pop_front();    // Remove the PHI node | 
|  | } | 
|  |  | 
|  | // If the PHI node already only had one entry, it got deleted by | 
|  | // removeIncomingValue. | 
|  | } | 
|  | } else { | 
|  | // Okay, now we know that we need to remove predecessor #pred_idx from all | 
|  | // PHI nodes.  Iterate over each PHI node fixing them up | 
|  | PHINode *PN; | 
|  | for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { | 
|  | ++II; | 
|  | PN->removeIncomingValue(Pred, false); | 
|  | // If all incoming values to the Phi are the same, we can replace the Phi | 
|  | // with that value. | 
|  | Value* PNV = 0; | 
|  | if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) | 
|  | if (PNV != PN) { | 
|  | PN->replaceAllUsesWith(PNV); | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// splitBasicBlock - This splits a basic block into two at the specified | 
|  | /// instruction.  Note that all instructions BEFORE the specified iterator stay | 
|  | /// as part of the original basic block, an unconditional branch is added to | 
|  | /// the new BB, and the rest of the instructions in the BB are moved to the new | 
|  | /// BB, including the old terminator.  This invalidates the iterator. | 
|  | /// | 
|  | /// Note that this only works on well formed basic blocks (must have a | 
|  | /// terminator), and 'I' must not be the end of instruction list (which would | 
|  | /// cause a degenerate basic block to be formed, having a terminator inside of | 
|  | /// the basic block). | 
|  | /// | 
|  | BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { | 
|  | assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); | 
|  | assert(I != InstList.end() && | 
|  | "Trying to get me to create degenerate basic block!"); | 
|  |  | 
|  | BasicBlock *InsertBefore = llvm::next(Function::iterator(this)) | 
|  | .getNodePtrUnchecked(); | 
|  | BasicBlock *New = BasicBlock::Create(getContext(), BBName, | 
|  | getParent(), InsertBefore); | 
|  |  | 
|  | // Move all of the specified instructions from the original basic block into | 
|  | // the new basic block. | 
|  | New->getInstList().splice(New->end(), this->getInstList(), I, end()); | 
|  |  | 
|  | // Add a branch instruction to the newly formed basic block. | 
|  | BranchInst::Create(New, this); | 
|  |  | 
|  | // Now we must loop through all of the successors of the New block (which | 
|  | // _were_ the successors of the 'this' block), and update any PHI nodes in | 
|  | // successors.  If there were PHI nodes in the successors, then they need to | 
|  | // know that incoming branches will be from New, not from Old. | 
|  | // | 
|  | for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) { | 
|  | // Loop over any phi nodes in the basic block, updating the BB field of | 
|  | // incoming values... | 
|  | BasicBlock *Successor = *I; | 
|  | PHINode *PN; | 
|  | for (BasicBlock::iterator II = Successor->begin(); | 
|  | (PN = dyn_cast<PHINode>(II)); ++II) { | 
|  | int IDX = PN->getBasicBlockIndex(this); | 
|  | while (IDX != -1) { | 
|  | PN->setIncomingBlock((unsigned)IDX, New); | 
|  | IDX = PN->getBasicBlockIndex(this); | 
|  | } | 
|  | } | 
|  | } | 
|  | return New; | 
|  | } | 
|  |  | 
|  | void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { | 
|  | TerminatorInst *TI = getTerminator(); | 
|  | if (!TI) | 
|  | // Cope with being called on a BasicBlock that doesn't have a terminator | 
|  | // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. | 
|  | return; | 
|  | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { | 
|  | BasicBlock *Succ = TI->getSuccessor(i); | 
|  | // N.B. Succ might not be a complete BasicBlock, so don't assume | 
|  | // that it ends with a non-phi instruction. | 
|  | for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) { | 
|  | PHINode *PN = dyn_cast<PHINode>(II); | 
|  | if (!PN) | 
|  | break; | 
|  | int i; | 
|  | while ((i = PN->getBasicBlockIndex(this)) >= 0) | 
|  | PN->setIncomingBlock(i, New); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isLandingPad - Return true if this basic block is a landing pad. I.e., it's | 
|  | /// the destination of the 'unwind' edge of an invoke instruction. | 
|  | bool BasicBlock::isLandingPad() const { | 
|  | return isa<LandingPadInst>(getFirstNonPHI()); | 
|  | } | 
|  |  | 
|  | /// getLandingPadInst() - Return the landingpad instruction associated with | 
|  | /// the landing pad. | 
|  | LandingPadInst *BasicBlock::getLandingPadInst() { | 
|  | return dyn_cast<LandingPadInst>(getFirstNonPHI()); | 
|  | } |