|  | //===-- RegAllocBasic.cpp - basic register allocator ----------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the RABasic function pass, which provides a minimal | 
|  | // implementation of the basic register allocator. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "regalloc" | 
|  | #include "RegAllocBase.h" | 
|  | #include "LiveDebugVariables.h" | 
|  | #include "LiveIntervalUnion.h" | 
|  | #include "LiveRangeEdit.h" | 
|  | #include "RenderMachineFunction.h" | 
|  | #include "Spiller.h" | 
|  | #include "VirtRegMap.h" | 
|  | #include "llvm/ADT/OwningPtr.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/PassAnalysisSupport.h" | 
|  | #include "llvm/CodeGen/CalcSpillWeights.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/LiveStackAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/RegAllocRegistry.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #ifndef NDEBUG | 
|  | #include "llvm/ADT/SparseBitVector.h" | 
|  | #endif | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Support/Timer.h" | 
|  |  | 
|  | #include <cstdlib> | 
|  | #include <queue> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumAssigned     , "Number of registers assigned"); | 
|  | STATISTIC(NumUnassigned   , "Number of registers unassigned"); | 
|  | STATISTIC(NumNewQueued    , "Number of new live ranges queued"); | 
|  |  | 
|  | static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", | 
|  | createBasicRegisterAllocator); | 
|  |  | 
|  | // Temporary verification option until we can put verification inside | 
|  | // MachineVerifier. | 
|  | static cl::opt<bool, true> | 
|  | VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled), | 
|  | cl::desc("Verify during register allocation")); | 
|  |  | 
|  | const char *RegAllocBase::TimerGroupName = "Register Allocation"; | 
|  | bool RegAllocBase::VerifyEnabled = false; | 
|  |  | 
|  | namespace { | 
|  | struct CompSpillWeight { | 
|  | bool operator()(LiveInterval *A, LiveInterval *B) const { | 
|  | return A->weight < B->weight; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// RABasic provides a minimal implementation of the basic register allocation | 
|  | /// algorithm. It prioritizes live virtual registers by spill weight and spills | 
|  | /// whenever a register is unavailable. This is not practical in production but | 
|  | /// provides a useful baseline both for measuring other allocators and comparing | 
|  | /// the speed of the basic algorithm against other styles of allocators. | 
|  | class RABasic : public MachineFunctionPass, public RegAllocBase | 
|  | { | 
|  | // context | 
|  | MachineFunction *MF; | 
|  |  | 
|  | // analyses | 
|  | LiveStacks *LS; | 
|  | RenderMachineFunction *RMF; | 
|  |  | 
|  | // state | 
|  | std::auto_ptr<Spiller> SpillerInstance; | 
|  | std::priority_queue<LiveInterval*, std::vector<LiveInterval*>, | 
|  | CompSpillWeight> Queue; | 
|  | public: | 
|  | RABasic(); | 
|  |  | 
|  | /// Return the pass name. | 
|  | virtual const char* getPassName() const { | 
|  | return "Basic Register Allocator"; | 
|  | } | 
|  |  | 
|  | /// RABasic analysis usage. | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const; | 
|  |  | 
|  | virtual void releaseMemory(); | 
|  |  | 
|  | virtual Spiller &spiller() { return *SpillerInstance; } | 
|  |  | 
|  | virtual float getPriority(LiveInterval *LI) { return LI->weight; } | 
|  |  | 
|  | virtual void enqueue(LiveInterval *LI) { | 
|  | Queue.push(LI); | 
|  | } | 
|  |  | 
|  | virtual LiveInterval *dequeue() { | 
|  | if (Queue.empty()) | 
|  | return 0; | 
|  | LiveInterval *LI = Queue.top(); | 
|  | Queue.pop(); | 
|  | return LI; | 
|  | } | 
|  |  | 
|  | virtual unsigned selectOrSplit(LiveInterval &VirtReg, | 
|  | SmallVectorImpl<LiveInterval*> &SplitVRegs); | 
|  |  | 
|  | /// Perform register allocation. | 
|  | virtual bool runOnMachineFunction(MachineFunction &mf); | 
|  |  | 
|  | static char ID; | 
|  | }; | 
|  |  | 
|  | char RABasic::ID = 0; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | RABasic::RABasic(): MachineFunctionPass(ID) { | 
|  | initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); | 
|  | initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); | 
|  | initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); | 
|  | initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); | 
|  | initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); | 
|  | initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); | 
|  | initializeLiveStacksPass(*PassRegistry::getPassRegistry()); | 
|  | initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); | 
|  | initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); | 
|  | initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); | 
|  | initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void RABasic::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<AliasAnalysis>(); | 
|  | AU.addPreserved<AliasAnalysis>(); | 
|  | AU.addRequired<LiveIntervals>(); | 
|  | AU.addPreserved<SlotIndexes>(); | 
|  | AU.addRequired<LiveDebugVariables>(); | 
|  | AU.addPreserved<LiveDebugVariables>(); | 
|  | if (StrongPHIElim) | 
|  | AU.addRequiredID(StrongPHIEliminationID); | 
|  | AU.addRequiredTransitiveID(RegisterCoalescerPassID); | 
|  | AU.addRequired<CalculateSpillWeights>(); | 
|  | AU.addRequired<LiveStacks>(); | 
|  | AU.addPreserved<LiveStacks>(); | 
|  | AU.addRequiredID(MachineDominatorsID); | 
|  | AU.addPreservedID(MachineDominatorsID); | 
|  | AU.addRequired<MachineLoopInfo>(); | 
|  | AU.addPreserved<MachineLoopInfo>(); | 
|  | AU.addRequired<VirtRegMap>(); | 
|  | AU.addPreserved<VirtRegMap>(); | 
|  | DEBUG(AU.addRequired<RenderMachineFunction>()); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | void RABasic::releaseMemory() { | 
|  | SpillerInstance.reset(0); | 
|  | RegAllocBase::releaseMemory(); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Verify each LiveIntervalUnion. | 
|  | void RegAllocBase::verify() { | 
|  | LiveVirtRegBitSet VisitedVRegs; | 
|  | OwningArrayPtr<LiveVirtRegBitSet> | 
|  | unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]); | 
|  |  | 
|  | // Verify disjoint unions. | 
|  | for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { | 
|  | DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI)); | 
|  | LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg]; | 
|  | PhysReg2LiveUnion[PhysReg].verify(VRegs); | 
|  | // Union + intersection test could be done efficiently in one pass, but | 
|  | // don't add a method to SparseBitVector unless we really need it. | 
|  | assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions"); | 
|  | VisitedVRegs |= VRegs; | 
|  | } | 
|  |  | 
|  | // Verify vreg coverage. | 
|  | for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end(); | 
|  | liItr != liEnd; ++liItr) { | 
|  | unsigned reg = liItr->first; | 
|  | if (TargetRegisterInfo::isPhysicalRegister(reg)) continue; | 
|  | if (!VRM->hasPhys(reg)) continue; // spilled? | 
|  | unsigned PhysReg = VRM->getPhys(reg); | 
|  | if (!unionVRegs[PhysReg].test(reg)) { | 
|  | dbgs() << "LiveVirtReg " << reg << " not in union " << | 
|  | TRI->getName(PhysReg) << "\n"; | 
|  | llvm_unreachable("unallocated live vreg"); | 
|  | } | 
|  | } | 
|  | // FIXME: I'm not sure how to verify spilled intervals. | 
|  | } | 
|  | #endif //!NDEBUG | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         RegAllocBase Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Instantiate a LiveIntervalUnion for each physical register. | 
|  | void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator, | 
|  | unsigned NRegs) { | 
|  | NumRegs = NRegs; | 
|  | Array = | 
|  | static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs)); | 
|  | for (unsigned r = 0; r != NRegs; ++r) | 
|  | new(Array + r) LiveIntervalUnion(r, allocator); | 
|  | } | 
|  |  | 
|  | void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) { | 
|  | NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled); | 
|  | TRI = &vrm.getTargetRegInfo(); | 
|  | MRI = &vrm.getRegInfo(); | 
|  | VRM = &vrm; | 
|  | LIS = &lis; | 
|  | RegClassInfo.runOnMachineFunction(vrm.getMachineFunction()); | 
|  |  | 
|  | const unsigned NumRegs = TRI->getNumRegs(); | 
|  | if (NumRegs != PhysReg2LiveUnion.numRegs()) { | 
|  | PhysReg2LiveUnion.init(UnionAllocator, NumRegs); | 
|  | // Cache an interferece query for each physical reg | 
|  | Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RegAllocBase::LiveUnionArray::clear() { | 
|  | if (!Array) | 
|  | return; | 
|  | for (unsigned r = 0; r != NumRegs; ++r) | 
|  | Array[r].~LiveIntervalUnion(); | 
|  | free(Array); | 
|  | NumRegs =  0; | 
|  | Array = 0; | 
|  | } | 
|  |  | 
|  | void RegAllocBase::releaseMemory() { | 
|  | for (unsigned r = 0, e = PhysReg2LiveUnion.numRegs(); r != e; ++r) | 
|  | PhysReg2LiveUnion[r].clear(); | 
|  | } | 
|  |  | 
|  | // Visit all the live registers. If they are already assigned to a physical | 
|  | // register, unify them with the corresponding LiveIntervalUnion, otherwise push | 
|  | // them on the priority queue for later assignment. | 
|  | void RegAllocBase::seedLiveRegs() { | 
|  | NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled); | 
|  | for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) { | 
|  | unsigned RegNum = I->first; | 
|  | LiveInterval &VirtReg = *I->second; | 
|  | if (TargetRegisterInfo::isPhysicalRegister(RegNum)) | 
|  | PhysReg2LiveUnion[RegNum].unify(VirtReg); | 
|  | else | 
|  | enqueue(&VirtReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) { | 
|  | DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI) | 
|  | << " to " << PrintReg(PhysReg, TRI) << '\n'); | 
|  | assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment"); | 
|  | VRM->assignVirt2Phys(VirtReg.reg, PhysReg); | 
|  | MRI->setPhysRegUsed(PhysReg); | 
|  | PhysReg2LiveUnion[PhysReg].unify(VirtReg); | 
|  | ++NumAssigned; | 
|  | } | 
|  |  | 
|  | void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) { | 
|  | DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI) | 
|  | << " from " << PrintReg(PhysReg, TRI) << '\n'); | 
|  | assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign"); | 
|  | PhysReg2LiveUnion[PhysReg].extract(VirtReg); | 
|  | VRM->clearVirt(VirtReg.reg); | 
|  | ++NumUnassigned; | 
|  | } | 
|  |  | 
|  | // Top-level driver to manage the queue of unassigned VirtRegs and call the | 
|  | // selectOrSplit implementation. | 
|  | void RegAllocBase::allocatePhysRegs() { | 
|  | seedLiveRegs(); | 
|  |  | 
|  | // Continue assigning vregs one at a time to available physical registers. | 
|  | while (LiveInterval *VirtReg = dequeue()) { | 
|  | assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned"); | 
|  |  | 
|  | // Unused registers can appear when the spiller coalesces snippets. | 
|  | if (MRI->reg_nodbg_empty(VirtReg->reg)) { | 
|  | DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n'); | 
|  | LIS->removeInterval(VirtReg->reg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Invalidate all interference queries, live ranges could have changed. | 
|  | invalidateVirtRegs(); | 
|  |  | 
|  | // selectOrSplit requests the allocator to return an available physical | 
|  | // register if possible and populate a list of new live intervals that | 
|  | // result from splitting. | 
|  | DEBUG(dbgs() << "\nselectOrSplit " | 
|  | << MRI->getRegClass(VirtReg->reg)->getName() | 
|  | << ':' << *VirtReg << '\n'); | 
|  | typedef SmallVector<LiveInterval*, 4> VirtRegVec; | 
|  | VirtRegVec SplitVRegs; | 
|  | unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs); | 
|  |  | 
|  | if (AvailablePhysReg == ~0u) { | 
|  | // selectOrSplit failed to find a register! | 
|  | const char *Msg = "ran out of registers during register allocation"; | 
|  | // Probably caused by an inline asm. | 
|  | MachineInstr *MI; | 
|  | for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg); | 
|  | (MI = I.skipInstruction());) | 
|  | if (MI->isInlineAsm()) | 
|  | break; | 
|  | if (MI) | 
|  | MI->emitError(Msg); | 
|  | else | 
|  | report_fatal_error(Msg); | 
|  | // Keep going after reporting the error. | 
|  | VRM->assignVirt2Phys(VirtReg->reg, | 
|  | RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (AvailablePhysReg) | 
|  | assign(*VirtReg, AvailablePhysReg); | 
|  |  | 
|  | for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end(); | 
|  | I != E; ++I) { | 
|  | LiveInterval *SplitVirtReg = *I; | 
|  | assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned"); | 
|  | if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) { | 
|  | DEBUG(dbgs() << "not queueing unused  " << *SplitVirtReg << '\n'); | 
|  | LIS->removeInterval(SplitVirtReg->reg); | 
|  | continue; | 
|  | } | 
|  | DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n"); | 
|  | assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) && | 
|  | "expect split value in virtual register"); | 
|  | enqueue(SplitVirtReg); | 
|  | ++NumNewQueued; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if this live virtual register interferes with a physical register. If | 
|  | // not, then check for interference on each register that aliases with the | 
|  | // physical register. Return the interfering register. | 
|  | unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg, | 
|  | unsigned PhysReg) { | 
|  | for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) | 
|  | if (query(VirtReg, *AliasI).checkInterference()) | 
|  | return *AliasI; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Helper for spillInteferences() that spills all interfering vregs currently | 
|  | // assigned to this physical register. | 
|  | void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg, | 
|  | SmallVectorImpl<LiveInterval*> &SplitVRegs) { | 
|  | LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg); | 
|  | assert(Q.seenAllInterferences() && "need collectInterferences()"); | 
|  | const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs(); | 
|  |  | 
|  | for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(), | 
|  | E = PendingSpills.end(); I != E; ++I) { | 
|  | LiveInterval &SpilledVReg = **I; | 
|  | DEBUG(dbgs() << "extracting from " << | 
|  | TRI->getName(PhysReg) << " " << SpilledVReg << '\n'); | 
|  |  | 
|  | // Deallocate the interfering vreg by removing it from the union. | 
|  | // A LiveInterval instance may not be in a union during modification! | 
|  | unassign(SpilledVReg, PhysReg); | 
|  |  | 
|  | // Spill the extracted interval. | 
|  | LiveRangeEdit LRE(SpilledVReg, SplitVRegs, 0, &PendingSpills); | 
|  | spiller().spill(LRE); | 
|  | } | 
|  | // After extracting segments, the query's results are invalid. But keep the | 
|  | // contents valid until we're done accessing pendingSpills. | 
|  | Q.clear(); | 
|  | } | 
|  |  | 
|  | // Spill or split all live virtual registers currently unified under PhysReg | 
|  | // that interfere with VirtReg. The newly spilled or split live intervals are | 
|  | // returned by appending them to SplitVRegs. | 
|  | bool | 
|  | RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, | 
|  | SmallVectorImpl<LiveInterval*> &SplitVRegs) { | 
|  | // Record each interference and determine if all are spillable before mutating | 
|  | // either the union or live intervals. | 
|  | unsigned NumInterferences = 0; | 
|  | // Collect interferences assigned to any alias of the physical register. | 
|  | for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) { | 
|  | LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI); | 
|  | NumInterferences += QAlias.collectInterferingVRegs(); | 
|  | if (QAlias.seenUnspillableVReg()) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) << | 
|  | " interferences with " << VirtReg << "\n"); | 
|  | assert(NumInterferences > 0 && "expect interference"); | 
|  |  | 
|  | // Spill each interfering vreg allocated to PhysReg or an alias. | 
|  | for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) | 
|  | spillReg(VirtReg, *AliasI, SplitVRegs); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Add newly allocated physical registers to the MBB live in sets. | 
|  | void RegAllocBase::addMBBLiveIns(MachineFunction *MF) { | 
|  | NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled); | 
|  | SlotIndexes *Indexes = LIS->getSlotIndexes(); | 
|  | if (MF->size() <= 1) | 
|  | return; | 
|  |  | 
|  | LiveIntervalUnion::SegmentIter SI; | 
|  | for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { | 
|  | LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg]; | 
|  | if (LiveUnion.empty()) | 
|  | continue; | 
|  | DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " live-in:"); | 
|  | MachineFunction::iterator MBB = llvm::next(MF->begin()); | 
|  | MachineFunction::iterator MFE = MF->end(); | 
|  | SlotIndex Start, Stop; | 
|  | tie(Start, Stop) = Indexes->getMBBRange(MBB); | 
|  | SI.setMap(LiveUnion.getMap()); | 
|  | SI.find(Start); | 
|  | while (SI.valid()) { | 
|  | if (SI.start() <= Start) { | 
|  | if (!MBB->isLiveIn(PhysReg)) | 
|  | MBB->addLiveIn(PhysReg); | 
|  | DEBUG(dbgs() << "\tBB#" << MBB->getNumber() << ':' | 
|  | << PrintReg(SI.value()->reg, TRI)); | 
|  | } else if (SI.start() > Stop) | 
|  | MBB = Indexes->getMBBFromIndex(SI.start().getPrevIndex()); | 
|  | if (++MBB == MFE) | 
|  | break; | 
|  | tie(Start, Stop) = Indexes->getMBBRange(MBB); | 
|  | SI.advanceTo(Start); | 
|  | } | 
|  | DEBUG(dbgs() << '\n'); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         RABasic Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Driver for the register assignment and splitting heuristics. | 
|  | // Manages iteration over the LiveIntervalUnions. | 
|  | // | 
|  | // This is a minimal implementation of register assignment and splitting that | 
|  | // spills whenever we run out of registers. | 
|  | // | 
|  | // selectOrSplit can only be called once per live virtual register. We then do a | 
|  | // single interference test for each register the correct class until we find an | 
|  | // available register. So, the number of interference tests in the worst case is | 
|  | // |vregs| * |machineregs|. And since the number of interference tests is | 
|  | // minimal, there is no value in caching them outside the scope of | 
|  | // selectOrSplit(). | 
|  | unsigned RABasic::selectOrSplit(LiveInterval &VirtReg, | 
|  | SmallVectorImpl<LiveInterval*> &SplitVRegs) { | 
|  | // Populate a list of physical register spill candidates. | 
|  | SmallVector<unsigned, 8> PhysRegSpillCands; | 
|  |  | 
|  | // Check for an available register in this class. | 
|  | ArrayRef<unsigned> Order = | 
|  | RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg)); | 
|  | for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E; | 
|  | ++I) { | 
|  | unsigned PhysReg = *I; | 
|  |  | 
|  | // Check interference and as a side effect, intialize queries for this | 
|  | // VirtReg and its aliases. | 
|  | unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg); | 
|  | if (interfReg == 0) { | 
|  | // Found an available register. | 
|  | return PhysReg; | 
|  | } | 
|  | Queries[interfReg].collectInterferingVRegs(1); | 
|  | LiveInterval *interferingVirtReg = | 
|  | Queries[interfReg].interferingVRegs().front(); | 
|  |  | 
|  | // The current VirtReg must either be spillable, or one of its interferences | 
|  | // must have less spill weight. | 
|  | if (interferingVirtReg->weight < VirtReg.weight ) { | 
|  | PhysRegSpillCands.push_back(PhysReg); | 
|  | } | 
|  | } | 
|  | // Try to spill another interfering reg with less spill weight. | 
|  | for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(), | 
|  | PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { | 
|  |  | 
|  | if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue; | 
|  |  | 
|  | assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 && | 
|  | "Interference after spill."); | 
|  | // Tell the caller to allocate to this newly freed physical register. | 
|  | return *PhysRegI; | 
|  | } | 
|  |  | 
|  | // No other spill candidates were found, so spill the current VirtReg. | 
|  | DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); | 
|  | if (!VirtReg.isSpillable()) | 
|  | return ~0u; | 
|  | LiveRangeEdit LRE(VirtReg, SplitVRegs); | 
|  | spiller().spill(LRE); | 
|  |  | 
|  | // The live virtual register requesting allocation was spilled, so tell | 
|  | // the caller not to allocate anything during this round. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool RABasic::runOnMachineFunction(MachineFunction &mf) { | 
|  | DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" | 
|  | << "********** Function: " | 
|  | << ((Value*)mf.getFunction())->getName() << '\n'); | 
|  |  | 
|  | MF = &mf; | 
|  | DEBUG(RMF = &getAnalysis<RenderMachineFunction>()); | 
|  |  | 
|  | RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); | 
|  | SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); | 
|  |  | 
|  | allocatePhysRegs(); | 
|  |  | 
|  | addMBBLiveIns(MF); | 
|  |  | 
|  | // Diagnostic output before rewriting | 
|  | DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n"); | 
|  |  | 
|  | // optional HTML output | 
|  | DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM)); | 
|  |  | 
|  | // FIXME: Verification currently must run before VirtRegRewriter. We should | 
|  | // make the rewriter a separate pass and override verifyAnalysis instead. When | 
|  | // that happens, verification naturally falls under VerifyMachineCode. | 
|  | #ifndef NDEBUG | 
|  | if (VerifyEnabled) { | 
|  | // Verify accuracy of LiveIntervals. The standard machine code verifier | 
|  | // ensures that each LiveIntervals covers all uses of the virtual reg. | 
|  |  | 
|  | // FIXME: MachineVerifier is badly broken when using the standard | 
|  | // spiller. Always use -spiller=inline with -verify-regalloc. Even with the | 
|  | // inline spiller, some tests fail to verify because the coalescer does not | 
|  | // always generate verifiable code. | 
|  | MF->verify(this, "In RABasic::verify"); | 
|  |  | 
|  | // Verify that LiveIntervals are partitioned into unions and disjoint within | 
|  | // the unions. | 
|  | verify(); | 
|  | } | 
|  | #endif // !NDEBUG | 
|  |  | 
|  | // Run rewriter | 
|  | VRM->rewrite(LIS->getSlotIndexes()); | 
|  |  | 
|  | // Write out new DBG_VALUE instructions. | 
|  | getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); | 
|  |  | 
|  | // The pass output is in VirtRegMap. Release all the transient data. | 
|  | releaseMemory(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FunctionPass* llvm::createBasicRegisterAllocator() | 
|  | { | 
|  | return new RABasic(); | 
|  | } |