|  | //===- ValueTracking.cpp - Walk computations to compute properties --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains routines that help analyze properties that chains of | 
|  | // computations have. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/GlobalAlias.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Operator.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/PatternMatch.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include <cstring> | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | const unsigned MaxDepth = 6; | 
|  |  | 
|  | /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if | 
|  | /// unknown returns 0).  For vector types, returns the element type's bitwidth. | 
|  | static unsigned getBitWidth(Type *Ty, const TargetData *TD) { | 
|  | if (unsigned BitWidth = Ty->getScalarSizeInBits()) | 
|  | return BitWidth; | 
|  | assert(isa<PointerType>(Ty) && "Expected a pointer type!"); | 
|  | return TD ? TD->getPointerSizeInBits() : 0; | 
|  | } | 
|  |  | 
|  | /// ComputeMaskedBits - Determine which of the bits specified in Mask are | 
|  | /// known to be either zero or one and return them in the KnownZero/KnownOne | 
|  | /// bit sets.  This code only analyzes bits in Mask, in order to short-circuit | 
|  | /// processing. | 
|  | /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that | 
|  | /// we cannot optimize based on the assumption that it is zero without changing | 
|  | /// it to be an explicit zero.  If we don't change it to zero, other code could | 
|  | /// optimized based on the contradictory assumption that it is non-zero. | 
|  | /// Because instcombine aggressively folds operations with undef args anyway, | 
|  | /// this won't lose us code quality. | 
|  | /// | 
|  | /// This function is defined on values with integer type, values with pointer | 
|  | /// type (but only if TD is non-null), and vectors of integers.  In the case | 
|  | /// where V is a vector, the mask, known zero, and known one values are the | 
|  | /// same width as the vector element, and the bit is set only if it is true | 
|  | /// for all of the elements in the vector. | 
|  | void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, | 
|  | APInt &KnownZero, APInt &KnownOne, | 
|  | const TargetData *TD, unsigned Depth) { | 
|  | assert(V && "No Value?"); | 
|  | assert(Depth <= MaxDepth && "Limit Search Depth"); | 
|  | unsigned BitWidth = Mask.getBitWidth(); | 
|  | assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy()) | 
|  | && "Not integer or pointer type!"); | 
|  | assert((!TD || | 
|  | TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && | 
|  | (!V->getType()->isIntOrIntVectorTy() || | 
|  | V->getType()->getScalarSizeInBits() == BitWidth) && | 
|  | KnownZero.getBitWidth() == BitWidth && | 
|  | KnownOne.getBitWidth() == BitWidth && | 
|  | "V, Mask, KnownOne and KnownZero should have same BitWidth"); | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | // We know all of the bits for a constant! | 
|  | KnownOne = CI->getValue() & Mask; | 
|  | KnownZero = ~KnownOne & Mask; | 
|  | return; | 
|  | } | 
|  | // Null and aggregate-zero are all-zeros. | 
|  | if (isa<ConstantPointerNull>(V) || | 
|  | isa<ConstantAggregateZero>(V)) { | 
|  | KnownOne.clearAllBits(); | 
|  | KnownZero = Mask; | 
|  | return; | 
|  | } | 
|  | // Handle a constant vector by taking the intersection of the known bits of | 
|  | // each element. | 
|  | if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { | 
|  | KnownZero.setAllBits(); KnownOne.setAllBits(); | 
|  | for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { | 
|  | APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); | 
|  | ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2, | 
|  | TD, Depth); | 
|  | KnownZero &= KnownZero2; | 
|  | KnownOne &= KnownOne2; | 
|  | } | 
|  | return; | 
|  | } | 
|  | // The address of an aligned GlobalValue has trailing zeros. | 
|  | if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | unsigned Align = GV->getAlignment(); | 
|  | if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) { | 
|  | Type *ObjectType = GV->getType()->getElementType(); | 
|  | // If the object is defined in the current Module, we'll be giving | 
|  | // it the preferred alignment. Otherwise, we have to assume that it | 
|  | // may only have the minimum ABI alignment. | 
|  | if (!GV->isDeclaration() && !GV->mayBeOverridden()) | 
|  | Align = TD->getPrefTypeAlignment(ObjectType); | 
|  | else | 
|  | Align = TD->getABITypeAlignment(ObjectType); | 
|  | } | 
|  | if (Align > 0) | 
|  | KnownZero = Mask & APInt::getLowBitsSet(BitWidth, | 
|  | CountTrailingZeros_32(Align)); | 
|  | else | 
|  | KnownZero.clearAllBits(); | 
|  | KnownOne.clearAllBits(); | 
|  | return; | 
|  | } | 
|  | // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has | 
|  | // the bits of its aliasee. | 
|  | if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { | 
|  | if (GA->mayBeOverridden()) { | 
|  | KnownZero.clearAllBits(); KnownOne.clearAllBits(); | 
|  | } else { | 
|  | ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, | 
|  | TD, Depth+1); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Argument *A = dyn_cast<Argument>(V)) { | 
|  | // Get alignment information off byval arguments if specified in the IR. | 
|  | if (A->hasByValAttr()) | 
|  | if (unsigned Align = A->getParamAlignment()) | 
|  | KnownZero = Mask & APInt::getLowBitsSet(BitWidth, | 
|  | CountTrailingZeros_32(Align)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Start out not knowing anything. | 
|  | KnownZero.clearAllBits(); KnownOne.clearAllBits(); | 
|  |  | 
|  | if (Depth == MaxDepth || Mask == 0) | 
|  | return;  // Limit search depth. | 
|  |  | 
|  | Operator *I = dyn_cast<Operator>(V); | 
|  | if (!I) return; | 
|  |  | 
|  | APInt KnownZero2(KnownZero), KnownOne2(KnownOne); | 
|  | switch (I->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::And: { | 
|  | // If either the LHS or the RHS are Zero, the result is zero. | 
|  | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); | 
|  | APInt Mask2(Mask & ~KnownZero); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, | 
|  | Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Output known-1 bits are only known if set in both the LHS & RHS. | 
|  | KnownOne &= KnownOne2; | 
|  | // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
|  | KnownZero |= KnownZero2; | 
|  | return; | 
|  | } | 
|  | case Instruction::Or: { | 
|  | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); | 
|  | APInt Mask2(Mask & ~KnownOne); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, | 
|  | Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Output known-0 bits are only known if clear in both the LHS & RHS. | 
|  | KnownZero &= KnownZero2; | 
|  | // Output known-1 are known to be set if set in either the LHS | RHS. | 
|  | KnownOne |= KnownOne2; | 
|  | return; | 
|  | } | 
|  | case Instruction::Xor: { | 
|  | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, | 
|  | Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); | 
|  | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); | 
|  | KnownZero = KnownZeroOut; | 
|  | return; | 
|  | } | 
|  | case Instruction::Mul: { | 
|  | APInt Mask2 = APInt::getAllOnesValue(BitWidth); | 
|  | ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, | 
|  | Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If low bits are zero in either operand, output low known-0 bits. | 
|  | // Also compute a conserative estimate for high known-0 bits. | 
|  | // More trickiness is possible, but this is sufficient for the | 
|  | // interesting case of alignment computation. | 
|  | KnownOne.clearAllBits(); | 
|  | unsigned TrailZ = KnownZero.countTrailingOnes() + | 
|  | KnownZero2.countTrailingOnes(); | 
|  | unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() + | 
|  | KnownZero2.countLeadingOnes(), | 
|  | BitWidth) - BitWidth; | 
|  |  | 
|  | TrailZ = std::min(TrailZ, BitWidth); | 
|  | LeadZ = std::min(LeadZ, BitWidth); | 
|  | KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | | 
|  | APInt::getHighBitsSet(BitWidth, LeadZ); | 
|  | KnownZero &= Mask; | 
|  | return; | 
|  | } | 
|  | case Instruction::UDiv: { | 
|  | // For the purposes of computing leading zeros we can conservatively | 
|  | // treat a udiv as a logical right shift by the power of 2 known to | 
|  | // be less than the denominator. | 
|  | APInt AllOnes = APInt::getAllOnesValue(BitWidth); | 
|  | ComputeMaskedBits(I->getOperand(0), | 
|  | AllOnes, KnownZero2, KnownOne2, TD, Depth+1); | 
|  | unsigned LeadZ = KnownZero2.countLeadingOnes(); | 
|  |  | 
|  | KnownOne2.clearAllBits(); | 
|  | KnownZero2.clearAllBits(); | 
|  | ComputeMaskedBits(I->getOperand(1), | 
|  | AllOnes, KnownZero2, KnownOne2, TD, Depth+1); | 
|  | unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); | 
|  | if (RHSUnknownLeadingOnes != BitWidth) | 
|  | LeadZ = std::min(BitWidth, | 
|  | LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); | 
|  |  | 
|  | KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; | 
|  | return; | 
|  | } | 
|  | case Instruction::Select: | 
|  | ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); | 
|  | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, | 
|  | Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Only known if known in both the LHS and RHS. | 
|  | KnownOne &= KnownOne2; | 
|  | KnownZero &= KnownZero2; | 
|  | return; | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::UIToFP: | 
|  | return; // Can't work with floating point. | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | // We can't handle these if we don't know the pointer size. | 
|  | if (!TD) return; | 
|  | // FALL THROUGH and handle them the same as zext/trunc. | 
|  | case Instruction::ZExt: | 
|  | case Instruction::Trunc: { | 
|  | Type *SrcTy = I->getOperand(0)->getType(); | 
|  |  | 
|  | unsigned SrcBitWidth; | 
|  | // Note that we handle pointer operands here because of inttoptr/ptrtoint | 
|  | // which fall through here. | 
|  | if (SrcTy->isPointerTy()) | 
|  | SrcBitWidth = TD->getTypeSizeInBits(SrcTy); | 
|  | else | 
|  | SrcBitWidth = SrcTy->getScalarSizeInBits(); | 
|  |  | 
|  | APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth); | 
|  | KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); | 
|  | KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); | 
|  | ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, | 
|  | Depth+1); | 
|  | KnownZero = KnownZero.zextOrTrunc(BitWidth); | 
|  | KnownOne = KnownOne.zextOrTrunc(BitWidth); | 
|  | // Any top bits are known to be zero. | 
|  | if (BitWidth > SrcBitWidth) | 
|  | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); | 
|  | return; | 
|  | } | 
|  | case Instruction::BitCast: { | 
|  | Type *SrcTy = I->getOperand(0)->getType(); | 
|  | if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && | 
|  | // TODO: For now, not handling conversions like: | 
|  | // (bitcast i64 %x to <2 x i32>) | 
|  | !I->getType()->isVectorTy()) { | 
|  | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, | 
|  | Depth+1); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::SExt: { | 
|  | // Compute the bits in the result that are not present in the input. | 
|  | unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | APInt MaskIn = Mask.trunc(SrcBitWidth); | 
|  | KnownZero = KnownZero.trunc(SrcBitWidth); | 
|  | KnownOne = KnownOne.trunc(SrcBitWidth); | 
|  | ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, | 
|  | Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero = KnownZero.zext(BitWidth); | 
|  | KnownOne = KnownOne.zext(BitWidth); | 
|  |  | 
|  | // If the sign bit of the input is known set or clear, then we know the | 
|  | // top bits of the result. | 
|  | if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero | 
|  | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); | 
|  | else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set | 
|  | KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); | 
|  | return; | 
|  | } | 
|  | case Instruction::Shl: | 
|  | // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0 | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); | 
|  | APInt Mask2(Mask.lshr(ShiftAmt)); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, | 
|  | Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero <<= ShiftAmt; | 
|  | KnownOne  <<= ShiftAmt; | 
|  | KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0 | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | // Compute the new bits that are at the top now. | 
|  | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); | 
|  |  | 
|  | // Unsigned shift right. | 
|  | APInt Mask2(Mask.shl(ShiftAmt)); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, | 
|  | Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); | 
|  | KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt); | 
|  | // high bits known zero. | 
|  | KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0 | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | // Compute the new bits that are at the top now. | 
|  | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); | 
|  |  | 
|  | // Signed shift right. | 
|  | APInt Mask2(Mask.shl(ShiftAmt)); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, | 
|  | Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); | 
|  | KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt); | 
|  |  | 
|  | APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); | 
|  | if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero. | 
|  | KnownZero |= HighBits; | 
|  | else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one. | 
|  | KnownOne |= HighBits; | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case Instruction::Sub: { | 
|  | if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { | 
|  | // We know that the top bits of C-X are clear if X contains less bits | 
|  | // than C (i.e. no wrap-around can happen).  For example, 20-X is | 
|  | // positive if we can prove that X is >= 0 and < 16. | 
|  | if (!CLHS->getValue().isNegative()) { | 
|  | unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); | 
|  | // NLZ can't be BitWidth with no sign bit | 
|  | APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); | 
|  | ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, | 
|  | TD, Depth+1); | 
|  |  | 
|  | // If all of the MaskV bits are known to be zero, then we know the | 
|  | // output top bits are zero, because we now know that the output is | 
|  | // from [0-C]. | 
|  | if ((KnownZero2 & MaskV) == MaskV) { | 
|  | unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); | 
|  | // Top bits known zero. | 
|  | KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // fall through | 
|  | case Instruction::Add: { | 
|  | // If one of the operands has trailing zeros, then the bits that the | 
|  | // other operand has in those bit positions will be preserved in the | 
|  | // result. For an add, this works with either operand. For a subtract, | 
|  | // this only works if the known zeros are in the right operand. | 
|  | APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); | 
|  | APInt Mask2 = APInt::getLowBitsSet(BitWidth, | 
|  | BitWidth - Mask.countLeadingZeros()); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, | 
|  | Depth+1); | 
|  | assert((LHSKnownZero & LHSKnownOne) == 0 && | 
|  | "Bits known to be one AND zero?"); | 
|  | unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); | 
|  |  | 
|  | ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, | 
|  | Depth+1); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  | unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); | 
|  |  | 
|  | // Determine which operand has more trailing zeros, and use that | 
|  | // many bits from the other operand. | 
|  | if (LHSKnownZeroOut > RHSKnownZeroOut) { | 
|  | if (I->getOpcode() == Instruction::Add) { | 
|  | APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); | 
|  | KnownZero |= KnownZero2 & Mask; | 
|  | KnownOne  |= KnownOne2 & Mask; | 
|  | } else { | 
|  | // If the known zeros are in the left operand for a subtract, | 
|  | // fall back to the minimum known zeros in both operands. | 
|  | KnownZero |= APInt::getLowBitsSet(BitWidth, | 
|  | std::min(LHSKnownZeroOut, | 
|  | RHSKnownZeroOut)); | 
|  | } | 
|  | } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { | 
|  | APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); | 
|  | KnownZero |= LHSKnownZero & Mask; | 
|  | KnownOne  |= LHSKnownOne & Mask; | 
|  | } | 
|  |  | 
|  | // Are we still trying to solve for the sign bit? | 
|  | if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){ | 
|  | OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I); | 
|  | if (OBO->hasNoSignedWrap()) { | 
|  | if (I->getOpcode() == Instruction::Add) { | 
|  | // Adding two positive numbers can't wrap into negative | 
|  | if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) | 
|  | KnownZero |= APInt::getSignBit(BitWidth); | 
|  | // and adding two negative numbers can't wrap into positive. | 
|  | else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) | 
|  | KnownOne |= APInt::getSignBit(BitWidth); | 
|  | } else { | 
|  | // Subtracting a negative number from a positive one can't wrap | 
|  | if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) | 
|  | KnownZero |= APInt::getSignBit(BitWidth); | 
|  | // neither can subtracting a positive number from a negative one. | 
|  | else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) | 
|  | KnownOne |= APInt::getSignBit(BitWidth); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  | case Instruction::SRem: | 
|  | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | APInt RA = Rem->getValue().abs(); | 
|  | if (RA.isPowerOf2()) { | 
|  | APInt LowBits = RA - 1; | 
|  | APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, | 
|  | Depth+1); | 
|  |  | 
|  | // The low bits of the first operand are unchanged by the srem. | 
|  | KnownZero = KnownZero2 & LowBits; | 
|  | KnownOne = KnownOne2 & LowBits; | 
|  |  | 
|  | // If the first operand is non-negative or has all low bits zero, then | 
|  | // the upper bits are all zero. | 
|  | if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) | 
|  | KnownZero |= ~LowBits; | 
|  |  | 
|  | // If the first operand is negative and not all low bits are zero, then | 
|  | // the upper bits are all one. | 
|  | if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) | 
|  | KnownOne |= ~LowBits; | 
|  |  | 
|  | KnownZero &= Mask; | 
|  | KnownOne &= Mask; | 
|  |  | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The sign bit is the LHS's sign bit, except when the result of the | 
|  | // remainder is zero. | 
|  | if (Mask.isNegative() && KnownZero.isNonNegative()) { | 
|  | APInt Mask2 = APInt::getSignBit(BitWidth); | 
|  | APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); | 
|  | ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, | 
|  | Depth+1); | 
|  | // If it's known zero, our sign bit is also zero. | 
|  | if (LHSKnownZero.isNegative()) | 
|  | KnownZero |= LHSKnownZero; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case Instruction::URem: { | 
|  | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | APInt RA = Rem->getValue(); | 
|  | if (RA.isPowerOf2()) { | 
|  | APInt LowBits = (RA - 1); | 
|  | APInt Mask2 = LowBits & Mask; | 
|  | KnownZero |= ~LowBits & Mask; | 
|  | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, | 
|  | Depth+1); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since the result is less than or equal to either operand, any leading | 
|  | // zero bits in either operand must also exist in the result. | 
|  | APInt AllOnes = APInt::getAllOnesValue(BitWidth); | 
|  | ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, | 
|  | TD, Depth+1); | 
|  | ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, | 
|  | TD, Depth+1); | 
|  |  | 
|  | unsigned Leaders = std::max(KnownZero.countLeadingOnes(), | 
|  | KnownZero2.countLeadingOnes()); | 
|  | KnownOne.clearAllBits(); | 
|  | KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Alloca: { | 
|  | AllocaInst *AI = cast<AllocaInst>(V); | 
|  | unsigned Align = AI->getAlignment(); | 
|  | if (Align == 0 && TD) | 
|  | Align = TD->getABITypeAlignment(AI->getType()->getElementType()); | 
|  |  | 
|  | if (Align > 0) | 
|  | KnownZero = Mask & APInt::getLowBitsSet(BitWidth, | 
|  | CountTrailingZeros_32(Align)); | 
|  | break; | 
|  | } | 
|  | case Instruction::GetElementPtr: { | 
|  | // Analyze all of the subscripts of this getelementptr instruction | 
|  | // to determine if we can prove known low zero bits. | 
|  | APInt LocalMask = APInt::getAllOnesValue(BitWidth); | 
|  | APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); | 
|  | ComputeMaskedBits(I->getOperand(0), LocalMask, | 
|  | LocalKnownZero, LocalKnownOne, TD, Depth+1); | 
|  | unsigned TrailZ = LocalKnownZero.countTrailingOnes(); | 
|  |  | 
|  | gep_type_iterator GTI = gep_type_begin(I); | 
|  | for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { | 
|  | Value *Index = I->getOperand(i); | 
|  | if (StructType *STy = dyn_cast<StructType>(*GTI)) { | 
|  | // Handle struct member offset arithmetic. | 
|  | if (!TD) return; | 
|  | const StructLayout *SL = TD->getStructLayout(STy); | 
|  | unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); | 
|  | uint64_t Offset = SL->getElementOffset(Idx); | 
|  | TrailZ = std::min(TrailZ, | 
|  | CountTrailingZeros_64(Offset)); | 
|  | } else { | 
|  | // Handle array index arithmetic. | 
|  | Type *IndexedTy = GTI.getIndexedType(); | 
|  | if (!IndexedTy->isSized()) return; | 
|  | unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); | 
|  | uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; | 
|  | LocalMask = APInt::getAllOnesValue(GEPOpiBits); | 
|  | LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); | 
|  | ComputeMaskedBits(Index, LocalMask, | 
|  | LocalKnownZero, LocalKnownOne, TD, Depth+1); | 
|  | TrailZ = std::min(TrailZ, | 
|  | unsigned(CountTrailingZeros_64(TypeSize) + | 
|  | LocalKnownZero.countTrailingOnes())); | 
|  | } | 
|  | } | 
|  |  | 
|  | KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; | 
|  | break; | 
|  | } | 
|  | case Instruction::PHI: { | 
|  | PHINode *P = cast<PHINode>(I); | 
|  | // Handle the case of a simple two-predecessor recurrence PHI. | 
|  | // There's a lot more that could theoretically be done here, but | 
|  | // this is sufficient to catch some interesting cases. | 
|  | if (P->getNumIncomingValues() == 2) { | 
|  | for (unsigned i = 0; i != 2; ++i) { | 
|  | Value *L = P->getIncomingValue(i); | 
|  | Value *R = P->getIncomingValue(!i); | 
|  | Operator *LU = dyn_cast<Operator>(L); | 
|  | if (!LU) | 
|  | continue; | 
|  | unsigned Opcode = LU->getOpcode(); | 
|  | // Check for operations that have the property that if | 
|  | // both their operands have low zero bits, the result | 
|  | // will have low zero bits. | 
|  | if (Opcode == Instruction::Add || | 
|  | Opcode == Instruction::Sub || | 
|  | Opcode == Instruction::And || | 
|  | Opcode == Instruction::Or || | 
|  | Opcode == Instruction::Mul) { | 
|  | Value *LL = LU->getOperand(0); | 
|  | Value *LR = LU->getOperand(1); | 
|  | // Find a recurrence. | 
|  | if (LL == I) | 
|  | L = LR; | 
|  | else if (LR == I) | 
|  | L = LL; | 
|  | else | 
|  | break; | 
|  | // Ok, we have a PHI of the form L op= R. Check for low | 
|  | // zero bits. | 
|  | APInt Mask2 = APInt::getAllOnesValue(BitWidth); | 
|  | ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); | 
|  | Mask2 = APInt::getLowBitsSet(BitWidth, | 
|  | KnownZero2.countTrailingOnes()); | 
|  |  | 
|  | // We need to take the minimum number of known bits | 
|  | APInt KnownZero3(KnownZero), KnownOne3(KnownOne); | 
|  | ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); | 
|  |  | 
|  | KnownZero = Mask & | 
|  | APInt::getLowBitsSet(BitWidth, | 
|  | std::min(KnownZero2.countTrailingOnes(), | 
|  | KnownZero3.countTrailingOnes())); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Unreachable blocks may have zero-operand PHI nodes. | 
|  | if (P->getNumIncomingValues() == 0) | 
|  | return; | 
|  |  | 
|  | // Otherwise take the unions of the known bit sets of the operands, | 
|  | // taking conservative care to avoid excessive recursion. | 
|  | if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { | 
|  | // Skip if every incoming value references to ourself. | 
|  | if (P->hasConstantValue() == P) | 
|  | break; | 
|  |  | 
|  | KnownZero = APInt::getAllOnesValue(BitWidth); | 
|  | KnownOne = APInt::getAllOnesValue(BitWidth); | 
|  | for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { | 
|  | // Skip direct self references. | 
|  | if (P->getIncomingValue(i) == P) continue; | 
|  |  | 
|  | KnownZero2 = APInt(BitWidth, 0); | 
|  | KnownOne2 = APInt(BitWidth, 0); | 
|  | // Recurse, but cap the recursion to one level, because we don't | 
|  | // want to waste time spinning around in loops. | 
|  | ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, | 
|  | KnownZero2, KnownOne2, TD, MaxDepth-1); | 
|  | KnownZero &= KnownZero2; | 
|  | KnownOne &= KnownOne2; | 
|  | // If all bits have been ruled out, there's no need to check | 
|  | // more operands. | 
|  | if (!KnownZero && !KnownOne) | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Call: | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::ctpop: | 
|  | case Intrinsic::ctlz: | 
|  | case Intrinsic::cttz: { | 
|  | unsigned LowBits = Log2_32(BitWidth)+1; | 
|  | KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::x86_sse42_crc32_64_8: | 
|  | case Intrinsic::x86_sse42_crc32_64_64: | 
|  | KnownZero = APInt::getHighBitsSet(64, 32); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ComputeSignBit - Determine whether the sign bit is known to be zero or | 
|  | /// one.  Convenience wrapper around ComputeMaskedBits. | 
|  | void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, | 
|  | const TargetData *TD, unsigned Depth) { | 
|  | unsigned BitWidth = getBitWidth(V->getType(), TD); | 
|  | if (!BitWidth) { | 
|  | KnownZero = false; | 
|  | KnownOne = false; | 
|  | return; | 
|  | } | 
|  | APInt ZeroBits(BitWidth, 0); | 
|  | APInt OneBits(BitWidth, 0); | 
|  | ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD, | 
|  | Depth); | 
|  | KnownOne = OneBits[BitWidth - 1]; | 
|  | KnownZero = ZeroBits[BitWidth - 1]; | 
|  | } | 
|  |  | 
|  | /// isPowerOfTwo - Return true if the given value is known to have exactly one | 
|  | /// bit set when defined. For vectors return true if every element is known to | 
|  | /// be a power of two when defined.  Supports values with integer or pointer | 
|  | /// types and vectors of integers. | 
|  | bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) | 
|  | return CI->getValue().isPowerOf2(); | 
|  | // TODO: Handle vector constants. | 
|  |  | 
|  | // 1 << X is clearly a power of two if the one is not shifted off the end.  If | 
|  | // it is shifted off the end then the result is undefined. | 
|  | if (match(V, m_Shl(m_One(), m_Value()))) | 
|  | return true; | 
|  |  | 
|  | // (signbit) >>l X is clearly a power of two if the one is not shifted off the | 
|  | // bottom.  If it is shifted off the bottom then the result is undefined. | 
|  | if (match(V, m_LShr(m_SignBit(), m_Value()))) | 
|  | return true; | 
|  |  | 
|  | // The remaining tests are all recursive, so bail out if we hit the limit. | 
|  | if (Depth++ == MaxDepth) | 
|  | return false; | 
|  |  | 
|  | if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) | 
|  | return isPowerOfTwo(ZI->getOperand(0), TD, Depth); | 
|  |  | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(V)) | 
|  | return isPowerOfTwo(SI->getTrueValue(), TD, Depth) && | 
|  | isPowerOfTwo(SI->getFalseValue(), TD, Depth); | 
|  |  | 
|  | // An exact divide or right shift can only shift off zero bits, so the result | 
|  | // is a power of two only if the first operand is a power of two and not | 
|  | // copying a sign bit (sdiv int_min, 2). | 
|  | if (match(V, m_LShr(m_Value(), m_Value())) || | 
|  | match(V, m_UDiv(m_Value(), m_Value()))) { | 
|  | PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V); | 
|  | if (PEO->isExact()) | 
|  | return isPowerOfTwo(PEO->getOperand(0), TD, Depth); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isKnownNonZero - Return true if the given value is known to be non-zero | 
|  | /// when defined.  For vectors return true if every element is known to be | 
|  | /// non-zero when defined.  Supports values with integer or pointer type and | 
|  | /// vectors of integers. | 
|  | bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | if (C->isNullValue()) | 
|  | return false; | 
|  | if (isa<ConstantInt>(C)) | 
|  | // Must be non-zero due to null test above. | 
|  | return true; | 
|  | // TODO: Handle vectors | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The remaining tests are all recursive, so bail out if we hit the limit. | 
|  | if (Depth++ == MaxDepth) | 
|  | return false; | 
|  |  | 
|  | unsigned BitWidth = getBitWidth(V->getType(), TD); | 
|  |  | 
|  | // X | Y != 0 if X != 0 or Y != 0. | 
|  | Value *X = 0, *Y = 0; | 
|  | if (match(V, m_Or(m_Value(X), m_Value(Y)))) | 
|  | return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); | 
|  |  | 
|  | // ext X != 0 if X != 0. | 
|  | if (isa<SExtInst>(V) || isa<ZExtInst>(V)) | 
|  | return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); | 
|  |  | 
|  | // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined | 
|  | // if the lowest bit is shifted off the end. | 
|  | if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { | 
|  | // shl nuw can't remove any non-zero bits. | 
|  | BinaryOperator *BO = cast<BinaryOperator>(V); | 
|  | if (BO->hasNoUnsignedWrap()) | 
|  | return isKnownNonZero(X, TD, Depth); | 
|  |  | 
|  | APInt KnownZero(BitWidth, 0); | 
|  | APInt KnownOne(BitWidth, 0); | 
|  | ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth); | 
|  | if (KnownOne[0]) | 
|  | return true; | 
|  | } | 
|  | // shr X, Y != 0 if X is negative.  Note that the value of the shift is not | 
|  | // defined if the sign bit is shifted off the end. | 
|  | else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { | 
|  | // shr exact can only shift out zero bits. | 
|  | BinaryOperator *BO = cast<BinaryOperator>(V); | 
|  | if (BO->isExact()) | 
|  | return isKnownNonZero(X, TD, Depth); | 
|  |  | 
|  | bool XKnownNonNegative, XKnownNegative; | 
|  | ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); | 
|  | if (XKnownNegative) | 
|  | return true; | 
|  | } | 
|  | // div exact can only produce a zero if the dividend is zero. | 
|  | else if (match(V, m_IDiv(m_Value(X), m_Value()))) { | 
|  | BinaryOperator *BO = cast<BinaryOperator>(V); | 
|  | if (BO->isExact()) | 
|  | return isKnownNonZero(X, TD, Depth); | 
|  | } | 
|  | // X + Y. | 
|  | else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { | 
|  | bool XKnownNonNegative, XKnownNegative; | 
|  | bool YKnownNonNegative, YKnownNegative; | 
|  | ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); | 
|  | ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); | 
|  |  | 
|  | // If X and Y are both non-negative (as signed values) then their sum is not | 
|  | // zero unless both X and Y are zero. | 
|  | if (XKnownNonNegative && YKnownNonNegative) | 
|  | if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) | 
|  | return true; | 
|  |  | 
|  | // If X and Y are both negative (as signed values) then their sum is not | 
|  | // zero unless both X and Y equal INT_MIN. | 
|  | if (BitWidth && XKnownNegative && YKnownNegative) { | 
|  | APInt KnownZero(BitWidth, 0); | 
|  | APInt KnownOne(BitWidth, 0); | 
|  | APInt Mask = APInt::getSignedMaxValue(BitWidth); | 
|  | // The sign bit of X is set.  If some other bit is set then X is not equal | 
|  | // to INT_MIN. | 
|  | ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth); | 
|  | if ((KnownOne & Mask) != 0) | 
|  | return true; | 
|  | // The sign bit of Y is set.  If some other bit is set then Y is not equal | 
|  | // to INT_MIN. | 
|  | ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth); | 
|  | if ((KnownOne & Mask) != 0) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The sum of a non-negative number and a power of two is not zero. | 
|  | if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth)) | 
|  | return true; | 
|  | if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth)) | 
|  | return true; | 
|  | } | 
|  | // (C ? X : Y) != 0 if X != 0 and Y != 0. | 
|  | else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { | 
|  | if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && | 
|  | isKnownNonZero(SI->getFalseValue(), TD, Depth)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!BitWidth) return false; | 
|  | APInt KnownZero(BitWidth, 0); | 
|  | APInt KnownOne(BitWidth, 0); | 
|  | ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne, | 
|  | TD, Depth); | 
|  | return KnownOne != 0; | 
|  | } | 
|  |  | 
|  | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use | 
|  | /// this predicate to simplify operations downstream.  Mask is known to be zero | 
|  | /// for bits that V cannot have. | 
|  | /// | 
|  | /// This function is defined on values with integer type, values with pointer | 
|  | /// type (but only if TD is non-null), and vectors of integers.  In the case | 
|  | /// where V is a vector, the mask, known zero, and known one values are the | 
|  | /// same width as the vector element, and the bit is set only if it is true | 
|  | /// for all of the elements in the vector. | 
|  | bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, | 
|  | const TargetData *TD, unsigned Depth) { | 
|  | APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); | 
|  | ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | return (KnownZero & Mask) == Mask; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// ComputeNumSignBits - Return the number of times the sign bit of the | 
|  | /// register is replicated into the other bits.  We know that at least 1 bit | 
|  | /// is always equal to the sign bit (itself), but other cases can give us | 
|  | /// information.  For example, immediately after an "ashr X, 2", we know that | 
|  | /// the top 3 bits are all equal to each other, so we return 3. | 
|  | /// | 
|  | /// 'Op' must have a scalar integer type. | 
|  | /// | 
|  | unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, | 
|  | unsigned Depth) { | 
|  | assert((TD || V->getType()->isIntOrIntVectorTy()) && | 
|  | "ComputeNumSignBits requires a TargetData object to operate " | 
|  | "on non-integer values!"); | 
|  | Type *Ty = V->getType(); | 
|  | unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : | 
|  | Ty->getScalarSizeInBits(); | 
|  | unsigned Tmp, Tmp2; | 
|  | unsigned FirstAnswer = 1; | 
|  |  | 
|  | // Note that ConstantInt is handled by the general ComputeMaskedBits case | 
|  | // below. | 
|  |  | 
|  | if (Depth == 6) | 
|  | return 1;  // Limit search depth. | 
|  |  | 
|  | Operator *U = dyn_cast<Operator>(V); | 
|  | switch (Operator::getOpcode(V)) { | 
|  | default: break; | 
|  | case Instruction::SExt: | 
|  | Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  | return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; | 
|  |  | 
|  | case Instruction::AShr: | 
|  | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); | 
|  | // ashr X, C   -> adds C sign bits. | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { | 
|  | Tmp += C->getZExtValue(); | 
|  | if (Tmp > TyBits) Tmp = TyBits; | 
|  | } | 
|  | // vector ashr X, <C, C, C, C>  -> adds C sign bits | 
|  | if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) { | 
|  | if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { | 
|  | Tmp += CI->getZExtValue(); | 
|  | if (Tmp > TyBits) Tmp = TyBits; | 
|  | } | 
|  | } | 
|  | return Tmp; | 
|  | case Instruction::Shl: | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { | 
|  | // shl destroys sign bits. | 
|  | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); | 
|  | if (C->getZExtValue() >= TyBits ||      // Bad shift. | 
|  | C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out. | 
|  | return Tmp - C->getZExtValue(); | 
|  | } | 
|  | break; | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor:    // NOT is handled here. | 
|  | // Logical binary ops preserve the number of sign bits at the worst. | 
|  | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); | 
|  | if (Tmp != 1) { | 
|  | Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); | 
|  | FirstAnswer = std::min(Tmp, Tmp2); | 
|  | // We computed what we know about the sign bits as our first | 
|  | // answer. Now proceed to the generic code that uses | 
|  | // ComputeMaskedBits, and pick whichever answer is better. | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Select: | 
|  | Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); | 
|  | if (Tmp == 1) return 1;  // Early out. | 
|  | Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); | 
|  | return std::min(Tmp, Tmp2); | 
|  |  | 
|  | case Instruction::Add: | 
|  | // Add can have at most one carry bit.  Thus we know that the output | 
|  | // is, at worst, one more bit than the inputs. | 
|  | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); | 
|  | if (Tmp == 1) return 1;  // Early out. | 
|  |  | 
|  | // Special case decrementing a value (ADD X, -1): | 
|  | if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) | 
|  | if (CRHS->isAllOnesValue()) { | 
|  | APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); | 
|  | APInt Mask = APInt::getAllOnesValue(TyBits); | 
|  | ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, | 
|  | Depth+1); | 
|  |  | 
|  | // If the input is known to be 0 or 1, the output is 0/-1, which is all | 
|  | // sign bits set. | 
|  | if ((KnownZero | APInt(TyBits, 1)) == Mask) | 
|  | return TyBits; | 
|  |  | 
|  | // If we are subtracting one from a positive number, there is no carry | 
|  | // out of the result. | 
|  | if (KnownZero.isNegative()) | 
|  | return Tmp; | 
|  | } | 
|  |  | 
|  | Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); | 
|  | if (Tmp2 == 1) return 1; | 
|  | return std::min(Tmp, Tmp2)-1; | 
|  |  | 
|  | case Instruction::Sub: | 
|  | Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); | 
|  | if (Tmp2 == 1) return 1; | 
|  |  | 
|  | // Handle NEG. | 
|  | if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) | 
|  | if (CLHS->isNullValue()) { | 
|  | APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); | 
|  | APInt Mask = APInt::getAllOnesValue(TyBits); | 
|  | ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, | 
|  | TD, Depth+1); | 
|  | // If the input is known to be 0 or 1, the output is 0/-1, which is all | 
|  | // sign bits set. | 
|  | if ((KnownZero | APInt(TyBits, 1)) == Mask) | 
|  | return TyBits; | 
|  |  | 
|  | // If the input is known to be positive (the sign bit is known clear), | 
|  | // the output of the NEG has the same number of sign bits as the input. | 
|  | if (KnownZero.isNegative()) | 
|  | return Tmp2; | 
|  |  | 
|  | // Otherwise, we treat this like a SUB. | 
|  | } | 
|  |  | 
|  | // Sub can have at most one carry bit.  Thus we know that the output | 
|  | // is, at worst, one more bit than the inputs. | 
|  | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); | 
|  | if (Tmp == 1) return 1;  // Early out. | 
|  | return std::min(Tmp, Tmp2)-1; | 
|  |  | 
|  | case Instruction::PHI: { | 
|  | PHINode *PN = cast<PHINode>(U); | 
|  | // Don't analyze large in-degree PHIs. | 
|  | if (PN->getNumIncomingValues() > 4) break; | 
|  |  | 
|  | // Take the minimum of all incoming values.  This can't infinitely loop | 
|  | // because of our depth threshold. | 
|  | Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); | 
|  | for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | if (Tmp == 1) return Tmp; | 
|  | Tmp = std::min(Tmp, | 
|  | ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); | 
|  | } | 
|  | return Tmp; | 
|  | } | 
|  |  | 
|  | case Instruction::Trunc: | 
|  | // FIXME: it's tricky to do anything useful for this, but it is an important | 
|  | // case for targets like X86. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Finally, if we can prove that the top bits of the result are 0's or 1's, | 
|  | // use this information. | 
|  | APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); | 
|  | APInt Mask = APInt::getAllOnesValue(TyBits); | 
|  | ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); | 
|  |  | 
|  | if (KnownZero.isNegative()) {        // sign bit is 0 | 
|  | Mask = KnownZero; | 
|  | } else if (KnownOne.isNegative()) {  // sign bit is 1; | 
|  | Mask = KnownOne; | 
|  | } else { | 
|  | // Nothing known. | 
|  | return FirstAnswer; | 
|  | } | 
|  |  | 
|  | // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine | 
|  | // the number of identical bits in the top of the input value. | 
|  | Mask = ~Mask; | 
|  | Mask <<= Mask.getBitWidth()-TyBits; | 
|  | // Return # leading zeros.  We use 'min' here in case Val was zero before | 
|  | // shifting.  We don't want to return '64' as for an i32 "0". | 
|  | return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); | 
|  | } | 
|  |  | 
|  | /// ComputeMultiple - This function computes the integer multiple of Base that | 
|  | /// equals V.  If successful, it returns true and returns the multiple in | 
|  | /// Multiple.  If unsuccessful, it returns false. It looks | 
|  | /// through SExt instructions only if LookThroughSExt is true. | 
|  | bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, | 
|  | bool LookThroughSExt, unsigned Depth) { | 
|  | const unsigned MaxDepth = 6; | 
|  |  | 
|  | assert(V && "No Value?"); | 
|  | assert(Depth <= MaxDepth && "Limit Search Depth"); | 
|  | assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); | 
|  |  | 
|  | Type *T = V->getType(); | 
|  |  | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(V); | 
|  |  | 
|  | if (Base == 0) | 
|  | return false; | 
|  |  | 
|  | if (Base == 1) { | 
|  | Multiple = V; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ConstantExpr *CO = dyn_cast<ConstantExpr>(V); | 
|  | Constant *BaseVal = ConstantInt::get(T, Base); | 
|  | if (CO && CO == BaseVal) { | 
|  | // Multiple is 1. | 
|  | Multiple = ConstantInt::get(T, 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (CI && CI->getZExtValue() % Base == 0) { | 
|  | Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Depth == MaxDepth) return false;  // Limit search depth. | 
|  |  | 
|  | Operator *I = dyn_cast<Operator>(V); | 
|  | if (!I) return false; | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::SExt: | 
|  | if (!LookThroughSExt) return false; | 
|  | // otherwise fall through to ZExt | 
|  | case Instruction::ZExt: | 
|  | return ComputeMultiple(I->getOperand(0), Base, Multiple, | 
|  | LookThroughSExt, Depth+1); | 
|  | case Instruction::Shl: | 
|  | case Instruction::Mul: { | 
|  | Value *Op0 = I->getOperand(0); | 
|  | Value *Op1 = I->getOperand(1); | 
|  |  | 
|  | if (I->getOpcode() == Instruction::Shl) { | 
|  | ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); | 
|  | if (!Op1CI) return false; | 
|  | // Turn Op0 << Op1 into Op0 * 2^Op1 | 
|  | APInt Op1Int = Op1CI->getValue(); | 
|  | uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); | 
|  | APInt API(Op1Int.getBitWidth(), 0); | 
|  | API.setBit(BitToSet); | 
|  | Op1 = ConstantInt::get(V->getContext(), API); | 
|  | } | 
|  |  | 
|  | Value *Mul0 = NULL; | 
|  | if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { | 
|  | if (Constant *Op1C = dyn_cast<Constant>(Op1)) | 
|  | if (Constant *MulC = dyn_cast<Constant>(Mul0)) { | 
|  | if (Op1C->getType()->getPrimitiveSizeInBits() < | 
|  | MulC->getType()->getPrimitiveSizeInBits()) | 
|  | Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); | 
|  | if (Op1C->getType()->getPrimitiveSizeInBits() > | 
|  | MulC->getType()->getPrimitiveSizeInBits()) | 
|  | MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); | 
|  |  | 
|  | // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) | 
|  | Multiple = ConstantExpr::getMul(MulC, Op1C); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) | 
|  | if (Mul0CI->getValue() == 1) { | 
|  | // V == Base * Op1, so return Op1 | 
|  | Multiple = Op1; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *Mul1 = NULL; | 
|  | if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { | 
|  | if (Constant *Op0C = dyn_cast<Constant>(Op0)) | 
|  | if (Constant *MulC = dyn_cast<Constant>(Mul1)) { | 
|  | if (Op0C->getType()->getPrimitiveSizeInBits() < | 
|  | MulC->getType()->getPrimitiveSizeInBits()) | 
|  | Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); | 
|  | if (Op0C->getType()->getPrimitiveSizeInBits() > | 
|  | MulC->getType()->getPrimitiveSizeInBits()) | 
|  | MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); | 
|  |  | 
|  | // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) | 
|  | Multiple = ConstantExpr::getMul(MulC, Op0C); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) | 
|  | if (Mul1CI->getValue() == 1) { | 
|  | // V == Base * Op0, so return Op0 | 
|  | Multiple = Op0; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We could not determine if V is a multiple of Base. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CannotBeNegativeZero - Return true if we can prove that the specified FP | 
|  | /// value is never equal to -0.0. | 
|  | /// | 
|  | /// NOTE: this function will need to be revisited when we support non-default | 
|  | /// rounding modes! | 
|  | /// | 
|  | bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) | 
|  | return !CFP->getValueAPF().isNegZero(); | 
|  |  | 
|  | if (Depth == 6) | 
|  | return 1;  // Limit search depth. | 
|  |  | 
|  | const Operator *I = dyn_cast<Operator>(V); | 
|  | if (I == 0) return false; | 
|  |  | 
|  | // (add x, 0.0) is guaranteed to return +0.0, not -0.0. | 
|  | if (I->getOpcode() == Instruction::FAdd && | 
|  | isa<ConstantFP>(I->getOperand(1)) && | 
|  | cast<ConstantFP>(I->getOperand(1))->isNullValue()) | 
|  | return true; | 
|  |  | 
|  | // sitofp and uitofp turn into +0.0 for zero. | 
|  | if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) | 
|  | return true; | 
|  |  | 
|  | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) | 
|  | // sqrt(-0.0) = -0.0, no other negative results are possible. | 
|  | if (II->getIntrinsicID() == Intrinsic::sqrt) | 
|  | return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); | 
|  |  | 
|  | if (const CallInst *CI = dyn_cast<CallInst>(I)) | 
|  | if (const Function *F = CI->getCalledFunction()) { | 
|  | if (F->isDeclaration()) { | 
|  | // abs(x) != -0.0 | 
|  | if (F->getName() == "abs") return true; | 
|  | // fabs[lf](x) != -0.0 | 
|  | if (F->getName() == "fabs") return true; | 
|  | if (F->getName() == "fabsf") return true; | 
|  | if (F->getName() == "fabsl") return true; | 
|  | if (F->getName() == "sqrt" || F->getName() == "sqrtf" || | 
|  | F->getName() == "sqrtl") | 
|  | return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isBytewiseValue - If the specified value can be set by repeating the same | 
|  | /// byte in memory, return the i8 value that it is represented with.  This is | 
|  | /// true for all i8 values obviously, but is also true for i32 0, i32 -1, | 
|  | /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated | 
|  | /// byte store (e.g. i16 0x1234), return null. | 
|  | Value *llvm::isBytewiseValue(Value *V) { | 
|  | // All byte-wide stores are splatable, even of arbitrary variables. | 
|  | if (V->getType()->isIntegerTy(8)) return V; | 
|  |  | 
|  | // Handle 'null' ConstantArrayZero etc. | 
|  | if (Constant *C = dyn_cast<Constant>(V)) | 
|  | if (C->isNullValue()) | 
|  | return Constant::getNullValue(Type::getInt8Ty(V->getContext())); | 
|  |  | 
|  | // Constant float and double values can be handled as integer values if the | 
|  | // corresponding integer value is "byteable".  An important case is 0.0. | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { | 
|  | if (CFP->getType()->isFloatTy()) | 
|  | V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); | 
|  | if (CFP->getType()->isDoubleTy()) | 
|  | V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); | 
|  | // Don't handle long double formats, which have strange constraints. | 
|  | } | 
|  |  | 
|  | // We can handle constant integers that are power of two in size and a | 
|  | // multiple of 8 bits. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | unsigned Width = CI->getBitWidth(); | 
|  | if (isPowerOf2_32(Width) && Width > 8) { | 
|  | // We can handle this value if the recursive binary decomposition is the | 
|  | // same at all levels. | 
|  | APInt Val = CI->getValue(); | 
|  | APInt Val2; | 
|  | while (Val.getBitWidth() != 8) { | 
|  | unsigned NextWidth = Val.getBitWidth()/2; | 
|  | Val2  = Val.lshr(NextWidth); | 
|  | Val2 = Val2.trunc(Val.getBitWidth()/2); | 
|  | Val = Val.trunc(Val.getBitWidth()/2); | 
|  |  | 
|  | // If the top/bottom halves aren't the same, reject it. | 
|  | if (Val != Val2) | 
|  | return 0; | 
|  | } | 
|  | return ConstantInt::get(V->getContext(), Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | // A ConstantArray is splatable if all its members are equal and also | 
|  | // splatable. | 
|  | if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) { | 
|  | if (CA->getNumOperands() == 0) | 
|  | return 0; | 
|  |  | 
|  | Value *Val = isBytewiseValue(CA->getOperand(0)); | 
|  | if (!Val) | 
|  | return 0; | 
|  |  | 
|  | for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I) | 
|  | if (CA->getOperand(I-1) != CA->getOperand(I)) | 
|  | return 0; | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | // Conceptually, we could handle things like: | 
|  | //   %a = zext i8 %X to i16 | 
|  | //   %b = shl i16 %a, 8 | 
|  | //   %c = or i16 %a, %b | 
|  | // but until there is an example that actually needs this, it doesn't seem | 
|  | // worth worrying about. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // This is the recursive version of BuildSubAggregate. It takes a few different | 
|  | // arguments. Idxs is the index within the nested struct From that we are | 
|  | // looking at now (which is of type IndexedType). IdxSkip is the number of | 
|  | // indices from Idxs that should be left out when inserting into the resulting | 
|  | // struct. To is the result struct built so far, new insertvalue instructions | 
|  | // build on that. | 
|  | static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, | 
|  | SmallVector<unsigned, 10> &Idxs, | 
|  | unsigned IdxSkip, | 
|  | Instruction *InsertBefore) { | 
|  | llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); | 
|  | if (STy) { | 
|  | // Save the original To argument so we can modify it | 
|  | Value *OrigTo = To; | 
|  | // General case, the type indexed by Idxs is a struct | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | // Process each struct element recursively | 
|  | Idxs.push_back(i); | 
|  | Value *PrevTo = To; | 
|  | To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, | 
|  | InsertBefore); | 
|  | Idxs.pop_back(); | 
|  | if (!To) { | 
|  | // Couldn't find any inserted value for this index? Cleanup | 
|  | while (PrevTo != OrigTo) { | 
|  | InsertValueInst* Del = cast<InsertValueInst>(PrevTo); | 
|  | PrevTo = Del->getAggregateOperand(); | 
|  | Del->eraseFromParent(); | 
|  | } | 
|  | // Stop processing elements | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If we successfully found a value for each of our subaggregates | 
|  | if (To) | 
|  | return To; | 
|  | } | 
|  | // Base case, the type indexed by SourceIdxs is not a struct, or not all of | 
|  | // the struct's elements had a value that was inserted directly. In the latter | 
|  | // case, perhaps we can't determine each of the subelements individually, but | 
|  | // we might be able to find the complete struct somewhere. | 
|  |  | 
|  | // Find the value that is at that particular spot | 
|  | Value *V = FindInsertedValue(From, Idxs); | 
|  |  | 
|  | if (!V) | 
|  | return NULL; | 
|  |  | 
|  | // Insert the value in the new (sub) aggregrate | 
|  | return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), | 
|  | "tmp", InsertBefore); | 
|  | } | 
|  |  | 
|  | // This helper takes a nested struct and extracts a part of it (which is again a | 
|  | // struct) into a new value. For example, given the struct: | 
|  | // { a, { b, { c, d }, e } } | 
|  | // and the indices "1, 1" this returns | 
|  | // { c, d }. | 
|  | // | 
|  | // It does this by inserting an insertvalue for each element in the resulting | 
|  | // struct, as opposed to just inserting a single struct. This will only work if | 
|  | // each of the elements of the substruct are known (ie, inserted into From by an | 
|  | // insertvalue instruction somewhere). | 
|  | // | 
|  | // All inserted insertvalue instructions are inserted before InsertBefore | 
|  | static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, | 
|  | Instruction *InsertBefore) { | 
|  | assert(InsertBefore && "Must have someplace to insert!"); | 
|  | Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), | 
|  | idx_range); | 
|  | Value *To = UndefValue::get(IndexedType); | 
|  | SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); | 
|  | unsigned IdxSkip = Idxs.size(); | 
|  |  | 
|  | return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); | 
|  | } | 
|  |  | 
|  | /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if | 
|  | /// the scalar value indexed is already around as a register, for example if it | 
|  | /// were inserted directly into the aggregrate. | 
|  | /// | 
|  | /// If InsertBefore is not null, this function will duplicate (modified) | 
|  | /// insertvalues when a part of a nested struct is extracted. | 
|  | Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, | 
|  | Instruction *InsertBefore) { | 
|  | // Nothing to index? Just return V then (this is useful at the end of our | 
|  | // recursion) | 
|  | if (idx_range.empty()) | 
|  | return V; | 
|  | // We have indices, so V should have an indexable type | 
|  | assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) | 
|  | && "Not looking at a struct or array?"); | 
|  | assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) | 
|  | && "Invalid indices for type?"); | 
|  | CompositeType *PTy = cast<CompositeType>(V->getType()); | 
|  |  | 
|  | if (isa<UndefValue>(V)) | 
|  | return UndefValue::get(ExtractValueInst::getIndexedType(PTy, | 
|  | idx_range)); | 
|  | else if (isa<ConstantAggregateZero>(V)) | 
|  | return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy, | 
|  | idx_range)); | 
|  | else if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) | 
|  | // Recursively process this constant | 
|  | return FindInsertedValue(C->getOperand(idx_range[0]), idx_range.slice(1), | 
|  | InsertBefore); | 
|  | } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { | 
|  | // Loop the indices for the insertvalue instruction in parallel with the | 
|  | // requested indices | 
|  | const unsigned *req_idx = idx_range.begin(); | 
|  | for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); | 
|  | i != e; ++i, ++req_idx) { | 
|  | if (req_idx == idx_range.end()) { | 
|  | if (InsertBefore) | 
|  | // The requested index identifies a part of a nested aggregate. Handle | 
|  | // this specially. For example, | 
|  | // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 | 
|  | // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 | 
|  | // %C = extractvalue {i32, { i32, i32 } } %B, 1 | 
|  | // This can be changed into | 
|  | // %A = insertvalue {i32, i32 } undef, i32 10, 0 | 
|  | // %C = insertvalue {i32, i32 } %A, i32 11, 1 | 
|  | // which allows the unused 0,0 element from the nested struct to be | 
|  | // removed. | 
|  | return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), | 
|  | InsertBefore); | 
|  | else | 
|  | // We can't handle this without inserting insertvalues | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This insert value inserts something else than what we are looking for. | 
|  | // See if the (aggregrate) value inserted into has the value we are | 
|  | // looking for, then. | 
|  | if (*req_idx != *i) | 
|  | return FindInsertedValue(I->getAggregateOperand(), idx_range, | 
|  | InsertBefore); | 
|  | } | 
|  | // If we end up here, the indices of the insertvalue match with those | 
|  | // requested (though possibly only partially). Now we recursively look at | 
|  | // the inserted value, passing any remaining indices. | 
|  | return FindInsertedValue(I->getInsertedValueOperand(), | 
|  | makeArrayRef(req_idx, idx_range.end()), | 
|  | InsertBefore); | 
|  | } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { | 
|  | // If we're extracting a value from an aggregrate that was extracted from | 
|  | // something else, we can extract from that something else directly instead. | 
|  | // However, we will need to chain I's indices with the requested indices. | 
|  |  | 
|  | // Calculate the number of indices required | 
|  | unsigned size = I->getNumIndices() + idx_range.size(); | 
|  | // Allocate some space to put the new indices in | 
|  | SmallVector<unsigned, 5> Idxs; | 
|  | Idxs.reserve(size); | 
|  | // Add indices from the extract value instruction | 
|  | Idxs.append(I->idx_begin(), I->idx_end()); | 
|  |  | 
|  | // Add requested indices | 
|  | Idxs.append(idx_range.begin(), idx_range.end()); | 
|  |  | 
|  | assert(Idxs.size() == size | 
|  | && "Number of indices added not correct?"); | 
|  |  | 
|  | return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); | 
|  | } | 
|  | // Otherwise, we don't know (such as, extracting from a function return value | 
|  | // or load instruction) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if | 
|  | /// it can be expressed as a base pointer plus a constant offset.  Return the | 
|  | /// base and offset to the caller. | 
|  | Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, | 
|  | const TargetData &TD) { | 
|  | Operator *PtrOp = dyn_cast<Operator>(Ptr); | 
|  | if (PtrOp == 0) return Ptr; | 
|  |  | 
|  | // Just look through bitcasts. | 
|  | if (PtrOp->getOpcode() == Instruction::BitCast) | 
|  | return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); | 
|  |  | 
|  | // If this is a GEP with constant indices, we can look through it. | 
|  | GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); | 
|  | if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; | 
|  |  | 
|  | gep_type_iterator GTI = gep_type_begin(GEP); | 
|  | for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; | 
|  | ++I, ++GTI) { | 
|  | ConstantInt *OpC = cast<ConstantInt>(*I); | 
|  | if (OpC->isZero()) continue; | 
|  |  | 
|  | // Handle a struct and array indices which add their offset to the pointer. | 
|  | if (StructType *STy = dyn_cast<StructType>(*GTI)) { | 
|  | Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); | 
|  | } else { | 
|  | uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); | 
|  | Offset += OpC->getSExtValue()*Size; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Re-sign extend from the pointer size if needed to get overflow edge cases | 
|  | // right. | 
|  | unsigned PtrSize = TD.getPointerSizeInBits(); | 
|  | if (PtrSize < 64) | 
|  | Offset = (Offset << (64-PtrSize)) >> (64-PtrSize); | 
|  |  | 
|  | return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// GetConstantStringInfo - This function computes the length of a | 
|  | /// null-terminated C string pointed to by V.  If successful, it returns true | 
|  | /// and returns the string in Str.  If unsuccessful, it returns false. | 
|  | bool llvm::GetConstantStringInfo(const Value *V, std::string &Str, | 
|  | uint64_t Offset, | 
|  | bool StopAtNul) { | 
|  | // If V is NULL then return false; | 
|  | if (V == NULL) return false; | 
|  |  | 
|  | // Look through bitcast instructions. | 
|  | if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) | 
|  | return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul); | 
|  |  | 
|  | // If the value is not a GEP instruction nor a constant expression with a | 
|  | // GEP instruction, then return false because ConstantArray can't occur | 
|  | // any other way | 
|  | const User *GEP = 0; | 
|  | if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { | 
|  | GEP = GEPI; | 
|  | } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | if (CE->getOpcode() == Instruction::BitCast) | 
|  | return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul); | 
|  | if (CE->getOpcode() != Instruction::GetElementPtr) | 
|  | return false; | 
|  | GEP = CE; | 
|  | } | 
|  |  | 
|  | if (GEP) { | 
|  | // Make sure the GEP has exactly three arguments. | 
|  | if (GEP->getNumOperands() != 3) | 
|  | return false; | 
|  |  | 
|  | // Make sure the index-ee is a pointer to array of i8. | 
|  | PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); | 
|  | ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); | 
|  | if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) | 
|  | return false; | 
|  |  | 
|  | // Check to make sure that the first operand of the GEP is an integer and | 
|  | // has value 0 so that we are sure we're indexing into the initializer. | 
|  | const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); | 
|  | if (FirstIdx == 0 || !FirstIdx->isZero()) | 
|  | return false; | 
|  |  | 
|  | // If the second index isn't a ConstantInt, then this is a variable index | 
|  | // into the array.  If this occurs, we can't say anything meaningful about | 
|  | // the string. | 
|  | uint64_t StartIdx = 0; | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) | 
|  | StartIdx = CI->getZExtValue(); | 
|  | else | 
|  | return false; | 
|  | return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset, | 
|  | StopAtNul); | 
|  | } | 
|  |  | 
|  | // The GEP instruction, constant or instruction, must reference a global | 
|  | // variable that is a constant and is initialized. The referenced constant | 
|  | // initializer is the array that we'll use for optimization. | 
|  | const GlobalVariable* GV = dyn_cast<GlobalVariable>(V); | 
|  | if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) | 
|  | return false; | 
|  | const Constant *GlobalInit = GV->getInitializer(); | 
|  |  | 
|  | // Handle the ConstantAggregateZero case | 
|  | if (isa<ConstantAggregateZero>(GlobalInit)) { | 
|  | // This is a degenerate case. The initializer is constant zero so the | 
|  | // length of the string must be zero. | 
|  | Str.clear(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Must be a Constant Array | 
|  | const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); | 
|  | if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8)) | 
|  | return false; | 
|  |  | 
|  | // Get the number of elements in the array | 
|  | uint64_t NumElts = Array->getType()->getNumElements(); | 
|  |  | 
|  | if (Offset > NumElts) | 
|  | return false; | 
|  |  | 
|  | // Traverse the constant array from 'Offset' which is the place the GEP refers | 
|  | // to in the array. | 
|  | Str.reserve(NumElts-Offset); | 
|  | for (unsigned i = Offset; i != NumElts; ++i) { | 
|  | const Constant *Elt = Array->getOperand(i); | 
|  | const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); | 
|  | if (!CI) // This array isn't suitable, non-int initializer. | 
|  | return false; | 
|  | if (StopAtNul && CI->isZero()) | 
|  | return true; // we found end of string, success! | 
|  | Str += (char)CI->getZExtValue(); | 
|  | } | 
|  |  | 
|  | // The array isn't null terminated, but maybe this is a memcpy, not a strcpy. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // These next two are very similar to the above, but also look through PHI | 
|  | // nodes. | 
|  | // TODO: See if we can integrate these two together. | 
|  |  | 
|  | /// GetStringLengthH - If we can compute the length of the string pointed to by | 
|  | /// the specified pointer, return 'len+1'.  If we can't, return 0. | 
|  | static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { | 
|  | // Look through noop bitcast instructions. | 
|  | if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) | 
|  | return GetStringLengthH(BCI->getOperand(0), PHIs); | 
|  |  | 
|  | // If this is a PHI node, there are two cases: either we have already seen it | 
|  | // or we haven't. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(V)) { | 
|  | if (!PHIs.insert(PN)) | 
|  | return ~0ULL;  // already in the set. | 
|  |  | 
|  | // If it was new, see if all the input strings are the same length. | 
|  | uint64_t LenSoFar = ~0ULL; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); | 
|  | if (Len == 0) return 0; // Unknown length -> unknown. | 
|  |  | 
|  | if (Len == ~0ULL) continue; | 
|  |  | 
|  | if (Len != LenSoFar && LenSoFar != ~0ULL) | 
|  | return 0;    // Disagree -> unknown. | 
|  | LenSoFar = Len; | 
|  | } | 
|  |  | 
|  | // Success, all agree. | 
|  | return LenSoFar; | 
|  | } | 
|  |  | 
|  | // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(V)) { | 
|  | uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); | 
|  | if (Len1 == 0) return 0; | 
|  | uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); | 
|  | if (Len2 == 0) return 0; | 
|  | if (Len1 == ~0ULL) return Len2; | 
|  | if (Len2 == ~0ULL) return Len1; | 
|  | if (Len1 != Len2) return 0; | 
|  | return Len1; | 
|  | } | 
|  |  | 
|  | // If the value is not a GEP instruction nor a constant expression with a | 
|  | // GEP instruction, then return unknown. | 
|  | User *GEP = 0; | 
|  | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { | 
|  | GEP = GEPI; | 
|  | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | if (CE->getOpcode() != Instruction::GetElementPtr) | 
|  | return 0; | 
|  | GEP = CE; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Make sure the GEP has exactly three arguments. | 
|  | if (GEP->getNumOperands() != 3) | 
|  | return 0; | 
|  |  | 
|  | // Check to make sure that the first operand of the GEP is an integer and | 
|  | // has value 0 so that we are sure we're indexing into the initializer. | 
|  | if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) { | 
|  | if (!Idx->isZero()) | 
|  | return 0; | 
|  | } else | 
|  | return 0; | 
|  |  | 
|  | // If the second index isn't a ConstantInt, then this is a variable index | 
|  | // into the array.  If this occurs, we can't say anything meaningful about | 
|  | // the string. | 
|  | uint64_t StartIdx = 0; | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) | 
|  | StartIdx = CI->getZExtValue(); | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | // The GEP instruction, constant or instruction, must reference a global | 
|  | // variable that is a constant and is initialized. The referenced constant | 
|  | // initializer is the array that we'll use for optimization. | 
|  | GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); | 
|  | if (!GV || !GV->isConstant() || !GV->hasInitializer() || | 
|  | GV->mayBeOverridden()) | 
|  | return 0; | 
|  | Constant *GlobalInit = GV->getInitializer(); | 
|  |  | 
|  | // Handle the ConstantAggregateZero case, which is a degenerate case. The | 
|  | // initializer is constant zero so the length of the string must be zero. | 
|  | if (isa<ConstantAggregateZero>(GlobalInit)) | 
|  | return 1;  // Len = 0 offset by 1. | 
|  |  | 
|  | // Must be a Constant Array | 
|  | ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); | 
|  | if (!Array || !Array->getType()->getElementType()->isIntegerTy(8)) | 
|  | return false; | 
|  |  | 
|  | // Get the number of elements in the array | 
|  | uint64_t NumElts = Array->getType()->getNumElements(); | 
|  |  | 
|  | // Traverse the constant array from StartIdx (derived above) which is | 
|  | // the place the GEP refers to in the array. | 
|  | for (unsigned i = StartIdx; i != NumElts; ++i) { | 
|  | Constant *Elt = Array->getOperand(i); | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(Elt); | 
|  | if (!CI) // This array isn't suitable, non-int initializer. | 
|  | return 0; | 
|  | if (CI->isZero()) | 
|  | return i-StartIdx+1; // We found end of string, success! | 
|  | } | 
|  |  | 
|  | return 0; // The array isn't null terminated, conservatively return 'unknown'. | 
|  | } | 
|  |  | 
|  | /// GetStringLength - If we can compute the length of the string pointed to by | 
|  | /// the specified pointer, return 'len+1'.  If we can't, return 0. | 
|  | uint64_t llvm::GetStringLength(Value *V) { | 
|  | if (!V->getType()->isPointerTy()) return 0; | 
|  |  | 
|  | SmallPtrSet<PHINode*, 32> PHIs; | 
|  | uint64_t Len = GetStringLengthH(V, PHIs); | 
|  | // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return | 
|  | // an empty string as a length. | 
|  | return Len == ~0ULL ? 1 : Len; | 
|  | } | 
|  |  | 
|  | Value * | 
|  | llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) { | 
|  | if (!V->getType()->isPointerTy()) | 
|  | return V; | 
|  | for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | 
|  | V = GEP->getPointerOperand(); | 
|  | } else if (Operator::getOpcode(V) == Instruction::BitCast) { | 
|  | V = cast<Operator>(V)->getOperand(0); | 
|  | } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { | 
|  | if (GA->mayBeOverridden()) | 
|  | return V; | 
|  | V = GA->getAliasee(); | 
|  | } else { | 
|  | // See if InstructionSimplify knows any relevant tricks. | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | // TODO: Acquire a DominatorTree and use it. | 
|  | if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { | 
|  | V = Simplified; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  | assert(V->getType()->isPointerTy() && "Unexpected operand type!"); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer | 
|  | /// are lifetime markers. | 
|  | /// | 
|  | bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { | 
|  | for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI); | 
|  | if (!II) return false; | 
|  |  | 
|  | if (II->getIntrinsicID() != Intrinsic::lifetime_start && | 
|  | II->getIntrinsicID() != Intrinsic::lifetime_end) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } |