| //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the X86 specific subclass of TargetSubtargetInfo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "subtarget" |
| #include "X86Subtarget.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/GlobalValue.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/Host.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/ADT/SmallVector.h" |
| |
| #define GET_SUBTARGETINFO_TARGET_DESC |
| #define GET_SUBTARGETINFO_CTOR |
| #include "X86GenSubtargetInfo.inc" |
| |
| using namespace llvm; |
| |
| #if defined(_MSC_VER) |
| #include <intrin.h> |
| #endif |
| |
| /// ClassifyBlockAddressReference - Classify a blockaddress reference for the |
| /// current subtarget according to how we should reference it in a non-pcrel |
| /// context. |
| unsigned char X86Subtarget:: |
| ClassifyBlockAddressReference() const { |
| if (isPICStyleGOT()) // 32-bit ELF targets. |
| return X86II::MO_GOTOFF; |
| |
| if (isPICStyleStubPIC()) // Darwin/32 in PIC mode. |
| return X86II::MO_PIC_BASE_OFFSET; |
| |
| // Direct static reference to label. |
| return X86II::MO_NO_FLAG; |
| } |
| |
| /// ClassifyGlobalReference - Classify a global variable reference for the |
| /// current subtarget according to how we should reference it in a non-pcrel |
| /// context. |
| unsigned char X86Subtarget:: |
| ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const { |
| // DLLImport only exists on windows, it is implemented as a load from a |
| // DLLIMPORT stub. |
| if (GV->hasDLLImportLinkage()) |
| return X86II::MO_DLLIMPORT; |
| |
| // Determine whether this is a reference to a definition or a declaration. |
| // Materializable GVs (in JIT lazy compilation mode) do not require an extra |
| // load from stub. |
| bool isDecl = GV->hasAvailableExternallyLinkage(); |
| if (GV->isDeclaration() && !GV->isMaterializable()) |
| isDecl = true; |
| |
| // X86-64 in PIC mode. |
| if (isPICStyleRIPRel()) { |
| // Large model never uses stubs. |
| if (TM.getCodeModel() == CodeModel::Large) |
| return X86II::MO_NO_FLAG; |
| |
| if (isTargetDarwin()) { |
| // If symbol visibility is hidden, the extra load is not needed if |
| // target is x86-64 or the symbol is definitely defined in the current |
| // translation unit. |
| if (GV->hasDefaultVisibility() && |
| (isDecl || GV->isWeakForLinker())) |
| return X86II::MO_GOTPCREL; |
| } else if (!isTargetWin64()) { |
| assert(isTargetELF() && "Unknown rip-relative target"); |
| |
| // Extra load is needed for all externally visible. |
| if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility()) |
| return X86II::MO_GOTPCREL; |
| } |
| |
| return X86II::MO_NO_FLAG; |
| } |
| |
| if (isPICStyleGOT()) { // 32-bit ELF targets. |
| // Extra load is needed for all externally visible. |
| if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) |
| return X86II::MO_GOTOFF; |
| return X86II::MO_GOT; |
| } |
| |
| if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode. |
| // Determine whether we have a stub reference and/or whether the reference |
| // is relative to the PIC base or not. |
| |
| // If this is a strong reference to a definition, it is definitely not |
| // through a stub. |
| if (!isDecl && !GV->isWeakForLinker()) |
| return X86II::MO_PIC_BASE_OFFSET; |
| |
| // Unless we have a symbol with hidden visibility, we have to go through a |
| // normal $non_lazy_ptr stub because this symbol might be resolved late. |
| if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. |
| return X86II::MO_DARWIN_NONLAZY_PIC_BASE; |
| |
| // If symbol visibility is hidden, we have a stub for common symbol |
| // references and external declarations. |
| if (isDecl || GV->hasCommonLinkage()) { |
| // Hidden $non_lazy_ptr reference. |
| return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE; |
| } |
| |
| // Otherwise, no stub. |
| return X86II::MO_PIC_BASE_OFFSET; |
| } |
| |
| if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode. |
| // Determine whether we have a stub reference. |
| |
| // If this is a strong reference to a definition, it is definitely not |
| // through a stub. |
| if (!isDecl && !GV->isWeakForLinker()) |
| return X86II::MO_NO_FLAG; |
| |
| // Unless we have a symbol with hidden visibility, we have to go through a |
| // normal $non_lazy_ptr stub because this symbol might be resolved late. |
| if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. |
| return X86II::MO_DARWIN_NONLAZY; |
| |
| // Otherwise, no stub. |
| return X86II::MO_NO_FLAG; |
| } |
| |
| // Direct static reference to global. |
| return X86II::MO_NO_FLAG; |
| } |
| |
| |
| /// getBZeroEntry - This function returns the name of a function which has an |
| /// interface like the non-standard bzero function, if such a function exists on |
| /// the current subtarget and it is considered prefereable over memset with zero |
| /// passed as the second argument. Otherwise it returns null. |
| const char *X86Subtarget::getBZeroEntry() const { |
| // Darwin 10 has a __bzero entry point for this purpose. |
| if (getTargetTriple().isMacOSX() && |
| !getTargetTriple().isMacOSXVersionLT(10, 6)) |
| return "__bzero"; |
| |
| return 0; |
| } |
| |
| /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls |
| /// to immediate address. |
| bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const { |
| if (In64BitMode) |
| return false; |
| return isTargetELF() || TM.getRelocationModel() == Reloc::Static; |
| } |
| |
| /// getSpecialAddressLatency - For targets where it is beneficial to |
| /// backschedule instructions that compute addresses, return a value |
| /// indicating the number of scheduling cycles of backscheduling that |
| /// should be attempted. |
| unsigned X86Subtarget::getSpecialAddressLatency() const { |
| // For x86 out-of-order targets, back-schedule address computations so |
| // that loads and stores aren't blocked. |
| // This value was chosen arbitrarily. |
| return 200; |
| } |
| |
| void X86Subtarget::AutoDetectSubtargetFeatures() { |
| unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; |
| union { |
| unsigned u[3]; |
| char c[12]; |
| } text; |
| |
| if (X86_MC::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1)) |
| return; |
| |
| X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); |
| |
| if ((EDX >> 15) & 1) { HasCMov = true; ToggleFeature(X86::FeatureCMOV); } |
| if ((EDX >> 23) & 1) { X86SSELevel = MMX; ToggleFeature(X86::FeatureMMX); } |
| if ((EDX >> 25) & 1) { X86SSELevel = SSE1; ToggleFeature(X86::FeatureSSE1); } |
| if ((EDX >> 26) & 1) { X86SSELevel = SSE2; ToggleFeature(X86::FeatureSSE2); } |
| if (ECX & 0x1) { X86SSELevel = SSE3; ToggleFeature(X86::FeatureSSE3); } |
| if ((ECX >> 9) & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);} |
| if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);} |
| if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);} |
| // FIXME: AVX codegen support is not ready. |
| //if ((ECX >> 28) & 1) { HasAVX = true; ToggleFeature(X86::FeatureAVX); } |
| |
| bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0; |
| bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0; |
| |
| if (IsIntel && ((ECX >> 1) & 0x1)) { |
| HasCLMUL = true; |
| ToggleFeature(X86::FeatureCLMUL); |
| } |
| if (IsIntel && ((ECX >> 12) & 0x1)) { |
| HasFMA3 = true; |
| ToggleFeature(X86::FeatureFMA3); |
| } |
| if (IsIntel && ((ECX >> 22) & 0x1)) { |
| HasMOVBE = true; |
| ToggleFeature(X86::FeatureMOVBE); |
| } |
| if (IsIntel && ((ECX >> 23) & 0x1)) { |
| HasPOPCNT = true; |
| ToggleFeature(X86::FeaturePOPCNT); |
| } |
| if (IsIntel && ((ECX >> 25) & 0x1)) { |
| HasAES = true; |
| ToggleFeature(X86::FeatureAES); |
| } |
| if (IsIntel && ((ECX >> 29) & 0x1)) { |
| HasF16C = true; |
| ToggleFeature(X86::FeatureF16C); |
| } |
| if (IsIntel && ((ECX >> 30) & 0x1)) { |
| HasRDRAND = true; |
| ToggleFeature(X86::FeatureRDRAND); |
| } |
| |
| if ((ECX >> 13) & 0x1) { |
| HasCmpxchg16b = true; |
| ToggleFeature(X86::FeatureCMPXCHG16B); |
| } |
| |
| if (IsIntel || IsAMD) { |
| // Determine if bit test memory instructions are slow. |
| unsigned Family = 0; |
| unsigned Model = 0; |
| X86_MC::DetectFamilyModel(EAX, Family, Model); |
| if (IsAMD || (Family == 6 && Model >= 13)) { |
| IsBTMemSlow = true; |
| ToggleFeature(X86::FeatureSlowBTMem); |
| } |
| // If it's Nehalem, unaligned memory access is fast. |
| if (Family == 15 && Model == 26) { |
| IsUAMemFast = true; |
| ToggleFeature(X86::FeatureFastUAMem); |
| } |
| |
| X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); |
| if ((EDX >> 29) & 0x1) { |
| HasX86_64 = true; |
| ToggleFeature(X86::Feature64Bit); |
| } |
| if ((ECX >> 5) & 0x1) { |
| HasLZCNT = true; |
| ToggleFeature(X86::FeatureLZCNT); |
| } |
| if (IsAMD && ((ECX >> 6) & 0x1)) { |
| HasSSE4A = true; |
| ToggleFeature(X86::FeatureSSE4A); |
| } |
| if (IsAMD && ((ECX >> 16) & 0x1)) { |
| HasFMA4 = true; |
| ToggleFeature(X86::FeatureFMA4); |
| } |
| } |
| } |
| |
| X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU, |
| const std::string &FS, |
| unsigned StackAlignOverride, bool is64Bit) |
| : X86GenSubtargetInfo(TT, CPU, FS) |
| , PICStyle(PICStyles::None) |
| , X86SSELevel(NoMMXSSE) |
| , X863DNowLevel(NoThreeDNow) |
| , HasCMov(false) |
| , HasX86_64(false) |
| , HasPOPCNT(false) |
| , HasSSE4A(false) |
| , HasAVX(false) |
| , HasAES(false) |
| , HasCLMUL(false) |
| , HasFMA3(false) |
| , HasFMA4(false) |
| , HasMOVBE(false) |
| , HasRDRAND(false) |
| , HasF16C(false) |
| , HasLZCNT(false) |
| , HasBMI(false) |
| , IsBTMemSlow(false) |
| , IsUAMemFast(false) |
| , HasVectorUAMem(false) |
| , HasCmpxchg16b(false) |
| , stackAlignment(8) |
| // FIXME: this is a known good value for Yonah. How about others? |
| , MaxInlineSizeThreshold(128) |
| , TargetTriple(TT) |
| , In64BitMode(is64Bit) |
| , InNaClMode(false) { |
| // Determine default and user specified characteristics |
| if (!FS.empty() || !CPU.empty()) { |
| std::string CPUName = CPU; |
| if (CPUName.empty()) { |
| #if defined (__x86_64__) || defined(__i386__) |
| CPUName = sys::getHostCPUName(); |
| #else |
| CPUName = "generic"; |
| #endif |
| } |
| |
| // Make sure 64-bit features are available in 64-bit mode. (But make sure |
| // SSE2 can be turned off explicitly.) |
| std::string FullFS = FS; |
| if (In64BitMode) { |
| if (!FullFS.empty()) |
| FullFS = "+64bit,+sse2," + FullFS; |
| else |
| FullFS = "+64bit,+sse2"; |
| } |
| |
| // If feature string is not empty, parse features string. |
| ParseSubtargetFeatures(CPUName, FullFS); |
| } else { |
| // Otherwise, use CPUID to auto-detect feature set. |
| AutoDetectSubtargetFeatures(); |
| |
| // Make sure 64-bit features are available in 64-bit mode. |
| if (In64BitMode) { |
| HasX86_64 = true; ToggleFeature(X86::Feature64Bit); |
| HasCMov = true; ToggleFeature(X86::FeatureCMOV); |
| |
| if (!HasAVX && X86SSELevel < SSE2) { |
| X86SSELevel = SSE2; |
| ToggleFeature(X86::FeatureSSE1); |
| ToggleFeature(X86::FeatureSSE2); |
| } |
| } |
| } |
| |
| // It's important to keep the MCSubtargetInfo feature bits in sync with |
| // target data structure which is shared with MC code emitter, etc. |
| if (In64BitMode) |
| ToggleFeature(X86::Mode64Bit); |
| |
| if (isTargetNaCl()) { |
| InNaClMode = true; |
| ToggleFeature(X86::ModeNaCl); |
| } |
| |
| if (HasAVX) |
| X86SSELevel = NoMMXSSE; |
| |
| DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel |
| << ", 3DNowLevel " << X863DNowLevel |
| << ", 64bit " << HasX86_64 << "\n"); |
| assert((!In64BitMode || HasX86_64) && |
| "64-bit code requested on a subtarget that doesn't support it!"); |
| |
| if(EnableSegmentedStacks && !isTargetELF()) |
| report_fatal_error("Segmented stacks are only implemented on ELF."); |
| |
| // Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both |
| // 32 and 64 bit) and for all 64-bit targets. |
| if (StackAlignOverride) |
| stackAlignment = StackAlignOverride; |
| else if (isTargetDarwin() || isTargetFreeBSD() || isTargetLinux() || |
| isTargetSolaris() || In64BitMode) |
| stackAlignment = 16; |
| } |