| //===- InterleavedAccessPass.cpp ------------------------------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the Interleaved Access pass, which identifies | 
 | // interleaved memory accesses and transforms them into target specific | 
 | // intrinsics. | 
 | // | 
 | // An interleaved load reads data from memory into several vectors, with | 
 | // DE-interleaving the data on a factor. An interleaved store writes several | 
 | // vectors to memory with RE-interleaving the data on a factor. | 
 | // | 
 | // As interleaved accesses are difficult to identified in CodeGen (mainly | 
 | // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector | 
 | // IR), we identify and transform them to intrinsics in this pass so the | 
 | // intrinsics can be easily matched into target specific instructions later in | 
 | // CodeGen. | 
 | // | 
 | // E.g. An interleaved load (Factor = 2): | 
 | //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr | 
 | //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> | 
 | //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> | 
 | // | 
 | // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 | 
 | // intrinsic in ARM backend. | 
 | // | 
 | // In X86, this can be further optimized into a set of target | 
 | // specific loads followed by an optimized sequence of shuffles. | 
 | // | 
 | // E.g. An interleaved store (Factor = 3): | 
 | //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, | 
 | //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> | 
 | //        store <12 x i32> %i.vec, <12 x i32>* %ptr | 
 | // | 
 | // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 | 
 | // intrinsic in ARM backend. | 
 | // | 
 | // Similarly, a set of interleaved stores can be transformed into an optimized | 
 | // sequence of shuffles followed by a set of target specific stores for X86. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/CodeGen/TargetLowering.h" | 
 | #include "llvm/CodeGen/TargetPassConfig.h" | 
 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/Dominators.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/IRBuilder.h" | 
 | #include "llvm/IR/InstIterator.h" | 
 | #include "llvm/IR/Instruction.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include "llvm/InitializePasses.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include <cassert> | 
 | #include <utility> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "interleaved-access" | 
 |  | 
 | static cl::opt<bool> LowerInterleavedAccesses( | 
 |     "lower-interleaved-accesses", | 
 |     cl::desc("Enable lowering interleaved accesses to intrinsics"), | 
 |     cl::init(true), cl::Hidden); | 
 |  | 
 | namespace { | 
 |  | 
 | class InterleavedAccess : public FunctionPass { | 
 | public: | 
 |   static char ID; | 
 |  | 
 |   InterleavedAccess() : FunctionPass(ID) { | 
 |     initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); | 
 |   } | 
 |  | 
 |   StringRef getPassName() const override { return "Interleaved Access Pass"; } | 
 |  | 
 |   bool runOnFunction(Function &F) override; | 
 |  | 
 |   void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |     AU.addRequired<DominatorTreeWrapperPass>(); | 
 |     AU.addPreserved<DominatorTreeWrapperPass>(); | 
 |   } | 
 |  | 
 | private: | 
 |   DominatorTree *DT = nullptr; | 
 |   const TargetLowering *TLI = nullptr; | 
 |  | 
 |   /// The maximum supported interleave factor. | 
 |   unsigned MaxFactor; | 
 |  | 
 |   /// Transform an interleaved load into target specific intrinsics. | 
 |   bool lowerInterleavedLoad(LoadInst *LI, | 
 |                             SmallVector<Instruction *, 32> &DeadInsts); | 
 |  | 
 |   /// Transform an interleaved store into target specific intrinsics. | 
 |   bool lowerInterleavedStore(StoreInst *SI, | 
 |                              SmallVector<Instruction *, 32> &DeadInsts); | 
 |  | 
 |   /// Returns true if the uses of an interleaved load by the | 
 |   /// extractelement instructions in \p Extracts can be replaced by uses of the | 
 |   /// shufflevector instructions in \p Shuffles instead. If so, the necessary | 
 |   /// replacements are also performed. | 
 |   bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, | 
 |                           ArrayRef<ShuffleVectorInst *> Shuffles); | 
 | }; | 
 |  | 
 | } // end anonymous namespace. | 
 |  | 
 | char InterleavedAccess::ID = 0; | 
 |  | 
 | INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, | 
 |     "Lower interleaved memory accesses to target specific intrinsics", false, | 
 |     false) | 
 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
 | INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, | 
 |     "Lower interleaved memory accesses to target specific intrinsics", false, | 
 |     false) | 
 |  | 
 | FunctionPass *llvm::createInterleavedAccessPass() { | 
 |   return new InterleavedAccess(); | 
 | } | 
 |  | 
 | /// Check if the mask is a DE-interleave mask of the given factor | 
 | /// \p Factor like: | 
 | ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> | 
 | static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, | 
 |                                        unsigned &Index) { | 
 |   // Check all potential start indices from 0 to (Factor - 1). | 
 |   for (Index = 0; Index < Factor; Index++) { | 
 |     unsigned i = 0; | 
 |  | 
 |     // Check that elements are in ascending order by Factor. Ignore undef | 
 |     // elements. | 
 |     for (; i < Mask.size(); i++) | 
 |       if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) | 
 |         break; | 
 |  | 
 |     if (i == Mask.size()) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Check if the mask is a DE-interleave mask for an interleaved load. | 
 | /// | 
 | /// E.g. DE-interleave masks (Factor = 2) could be: | 
 | ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements) | 
 | ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements) | 
 | static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, | 
 |                                unsigned &Index, unsigned MaxFactor, | 
 |                                unsigned NumLoadElements) { | 
 |   if (Mask.size() < 2) | 
 |     return false; | 
 |  | 
 |   // Check potential Factors. | 
 |   for (Factor = 2; Factor <= MaxFactor; Factor++) { | 
 |     // Make sure we don't produce a load wider than the input load. | 
 |     if (Mask.size() * Factor > NumLoadElements) | 
 |       return false; | 
 |     if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Check if the mask can be used in an interleaved store. | 
 | // | 
 | /// It checks for a more general pattern than the RE-interleave mask. | 
 | /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> | 
 | /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> | 
 | /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> | 
 | /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> | 
 | /// | 
 | /// The particular case of an RE-interleave mask is: | 
 | /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> | 
 | /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> | 
 | static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, | 
 |                                unsigned MaxFactor, unsigned OpNumElts) { | 
 |   unsigned NumElts = Mask.size(); | 
 |   if (NumElts < 4) | 
 |     return false; | 
 |  | 
 |   // Check potential Factors. | 
 |   for (Factor = 2; Factor <= MaxFactor; Factor++) { | 
 |     if (NumElts % Factor) | 
 |       continue; | 
 |  | 
 |     unsigned LaneLen = NumElts / Factor; | 
 |     if (!isPowerOf2_32(LaneLen)) | 
 |       continue; | 
 |  | 
 |     // Check whether each element matches the general interleaved rule. | 
 |     // Ignore undef elements, as long as the defined elements match the rule. | 
 |     // Outer loop processes all factors (x, y, z in the above example) | 
 |     unsigned I = 0, J; | 
 |     for (; I < Factor; I++) { | 
 |       unsigned SavedLaneValue; | 
 |       unsigned SavedNoUndefs = 0; | 
 |  | 
 |       // Inner loop processes consecutive accesses (x, x+1... in the example) | 
 |       for (J = 0; J < LaneLen - 1; J++) { | 
 |         // Lane computes x's position in the Mask | 
 |         unsigned Lane = J * Factor + I; | 
 |         unsigned NextLane = Lane + Factor; | 
 |         int LaneValue = Mask[Lane]; | 
 |         int NextLaneValue = Mask[NextLane]; | 
 |  | 
 |         // If both are defined, values must be sequential | 
 |         if (LaneValue >= 0 && NextLaneValue >= 0 && | 
 |             LaneValue + 1 != NextLaneValue) | 
 |           break; | 
 |  | 
 |         // If the next value is undef, save the current one as reference | 
 |         if (LaneValue >= 0 && NextLaneValue < 0) { | 
 |           SavedLaneValue = LaneValue; | 
 |           SavedNoUndefs = 1; | 
 |         } | 
 |  | 
 |         // Undefs are allowed, but defined elements must still be consecutive: | 
 |         // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, .... | 
 |         // Verify this by storing the last non-undef followed by an undef | 
 |         // Check that following non-undef masks are incremented with the | 
 |         // corresponding distance. | 
 |         if (SavedNoUndefs > 0 && LaneValue < 0) { | 
 |           SavedNoUndefs++; | 
 |           if (NextLaneValue >= 0 && | 
 |               SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue) | 
 |             break; | 
 |         } | 
 |       } | 
 |  | 
 |       if (J < LaneLen - 1) | 
 |         break; | 
 |  | 
 |       int StartMask = 0; | 
 |       if (Mask[I] >= 0) { | 
 |         // Check that the start of the I range (J=0) is greater than 0 | 
 |         StartMask = Mask[I]; | 
 |       } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) { | 
 |         // StartMask defined by the last value in lane | 
 |         StartMask = Mask[(LaneLen - 1) * Factor + I] - J; | 
 |       } else if (SavedNoUndefs > 0) { | 
 |         // StartMask defined by some non-zero value in the j loop | 
 |         StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs); | 
 |       } | 
 |       // else StartMask remains set to 0, i.e. all elements are undefs | 
 |  | 
 |       if (StartMask < 0) | 
 |         break; | 
 |       // We must stay within the vectors; This case can happen with undefs. | 
 |       if (StartMask + LaneLen > OpNumElts*2) | 
 |         break; | 
 |     } | 
 |  | 
 |     // Found an interleaved mask of current factor. | 
 |     if (I == Factor) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool InterleavedAccess::lowerInterleavedLoad( | 
 |     LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { | 
 |   if (!LI->isSimple()) | 
 |     return false; | 
 |  | 
 |   SmallVector<ShuffleVectorInst *, 4> Shuffles; | 
 |   SmallVector<ExtractElementInst *, 4> Extracts; | 
 |  | 
 |   // Check if all users of this load are shufflevectors. If we encounter any | 
 |   // users that are extractelement instructions, we save them to later check if | 
 |   // they can be modifed to extract from one of the shufflevectors instead of | 
 |   // the load. | 
 |   for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) { | 
 |     auto *Extract = dyn_cast<ExtractElementInst>(*UI); | 
 |     if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { | 
 |       Extracts.push_back(Extract); | 
 |       continue; | 
 |     } | 
 |     ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI); | 
 |     if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) | 
 |       return false; | 
 |  | 
 |     Shuffles.push_back(SVI); | 
 |   } | 
 |  | 
 |   if (Shuffles.empty()) | 
 |     return false; | 
 |  | 
 |   unsigned Factor, Index; | 
 |  | 
 |   unsigned NumLoadElements = LI->getType()->getVectorNumElements(); | 
 |   // Check if the first shufflevector is DE-interleave shuffle. | 
 |   if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index, | 
 |                           MaxFactor, NumLoadElements)) | 
 |     return false; | 
 |  | 
 |   // Holds the corresponding index for each DE-interleave shuffle. | 
 |   SmallVector<unsigned, 4> Indices; | 
 |   Indices.push_back(Index); | 
 |  | 
 |   Type *VecTy = Shuffles[0]->getType(); | 
 |  | 
 |   // Check if other shufflevectors are also DE-interleaved of the same type | 
 |   // and factor as the first shufflevector. | 
 |   for (unsigned i = 1; i < Shuffles.size(); i++) { | 
 |     if (Shuffles[i]->getType() != VecTy) | 
 |       return false; | 
 |  | 
 |     if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor, | 
 |                                     Index)) | 
 |       return false; | 
 |  | 
 |     Indices.push_back(Index); | 
 |   } | 
 |  | 
 |   // Try and modify users of the load that are extractelement instructions to | 
 |   // use the shufflevector instructions instead of the load. | 
 |   if (!tryReplaceExtracts(Extracts, Shuffles)) | 
 |     return false; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); | 
 |  | 
 |   // Try to create target specific intrinsics to replace the load and shuffles. | 
 |   if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) | 
 |     return false; | 
 |  | 
 |   for (auto SVI : Shuffles) | 
 |     DeadInsts.push_back(SVI); | 
 |  | 
 |   DeadInsts.push_back(LI); | 
 |   return true; | 
 | } | 
 |  | 
 | bool InterleavedAccess::tryReplaceExtracts( | 
 |     ArrayRef<ExtractElementInst *> Extracts, | 
 |     ArrayRef<ShuffleVectorInst *> Shuffles) { | 
 |   // If there aren't any extractelement instructions to modify, there's nothing | 
 |   // to do. | 
 |   if (Extracts.empty()) | 
 |     return true; | 
 |  | 
 |   // Maps extractelement instructions to vector-index pairs. The extractlement | 
 |   // instructions will be modified to use the new vector and index operands. | 
 |   DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; | 
 |  | 
 |   for (auto *Extract : Extracts) { | 
 |     // The vector index that is extracted. | 
 |     auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); | 
 |     auto Index = IndexOperand->getSExtValue(); | 
 |  | 
 |     // Look for a suitable shufflevector instruction. The goal is to modify the | 
 |     // extractelement instruction (which uses an interleaved load) to use one | 
 |     // of the shufflevector instructions instead of the load. | 
 |     for (auto *Shuffle : Shuffles) { | 
 |       // If the shufflevector instruction doesn't dominate the extract, we | 
 |       // can't create a use of it. | 
 |       if (!DT->dominates(Shuffle, Extract)) | 
 |         continue; | 
 |  | 
 |       // Inspect the indices of the shufflevector instruction. If the shuffle | 
 |       // selects the same index that is extracted, we can modify the | 
 |       // extractelement instruction. | 
 |       SmallVector<int, 4> Indices; | 
 |       Shuffle->getShuffleMask(Indices); | 
 |       for (unsigned I = 0; I < Indices.size(); ++I) | 
 |         if (Indices[I] == Index) { | 
 |           assert(Extract->getOperand(0) == Shuffle->getOperand(0) && | 
 |                  "Vector operations do not match"); | 
 |           ReplacementMap[Extract] = std::make_pair(Shuffle, I); | 
 |           break; | 
 |         } | 
 |  | 
 |       // If we found a suitable shufflevector instruction, stop looking. | 
 |       if (ReplacementMap.count(Extract)) | 
 |         break; | 
 |     } | 
 |  | 
 |     // If we did not find a suitable shufflevector instruction, the | 
 |     // extractelement instruction cannot be modified, so we must give up. | 
 |     if (!ReplacementMap.count(Extract)) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Finally, perform the replacements. | 
 |   IRBuilder<> Builder(Extracts[0]->getContext()); | 
 |   for (auto &Replacement : ReplacementMap) { | 
 |     auto *Extract = Replacement.first; | 
 |     auto *Vector = Replacement.second.first; | 
 |     auto Index = Replacement.second.second; | 
 |     Builder.SetInsertPoint(Extract); | 
 |     Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); | 
 |     Extract->eraseFromParent(); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool InterleavedAccess::lowerInterleavedStore( | 
 |     StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { | 
 |   if (!SI->isSimple()) | 
 |     return false; | 
 |  | 
 |   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); | 
 |   if (!SVI || !SVI->hasOneUse()) | 
 |     return false; | 
 |  | 
 |   // Check if the shufflevector is RE-interleave shuffle. | 
 |   unsigned Factor; | 
 |   unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements(); | 
 |   if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts)) | 
 |     return false; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); | 
 |  | 
 |   // Try to create target specific intrinsics to replace the store and shuffle. | 
 |   if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) | 
 |     return false; | 
 |  | 
 |   // Already have a new target specific interleaved store. Erase the old store. | 
 |   DeadInsts.push_back(SI); | 
 |   DeadInsts.push_back(SVI); | 
 |   return true; | 
 | } | 
 |  | 
 | bool InterleavedAccess::runOnFunction(Function &F) { | 
 |   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); | 
 |   if (!TPC || !LowerInterleavedAccesses) | 
 |     return false; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); | 
 |  | 
 |   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
 |   auto &TM = TPC->getTM<TargetMachine>(); | 
 |   TLI = TM.getSubtargetImpl(F)->getTargetLowering(); | 
 |   MaxFactor = TLI->getMaxSupportedInterleaveFactor(); | 
 |  | 
 |   // Holds dead instructions that will be erased later. | 
 |   SmallVector<Instruction *, 32> DeadInsts; | 
 |   bool Changed = false; | 
 |  | 
 |   for (auto &I : instructions(F)) { | 
 |     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) | 
 |       Changed |= lowerInterleavedLoad(LI, DeadInsts); | 
 |  | 
 |     if (StoreInst *SI = dyn_cast<StoreInst>(&I)) | 
 |       Changed |= lowerInterleavedStore(SI, DeadInsts); | 
 |   } | 
 |  | 
 |   for (auto I : DeadInsts) | 
 |     I->eraseFromParent(); | 
 |  | 
 |   return Changed; | 
 | } |