|  | //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass builds a ModuleSummaryIndex object for the module, to be written | 
|  | // to bitcode or LLVM assembly. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/ModuleSummaryAnalysis.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/MapVector.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Analysis/BlockFrequencyInfo.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/ProfileSummaryInfo.h" | 
|  | #include "llvm/Analysis/TypeMetadataUtils.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/ModuleSummaryIndex.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Object/ModuleSymbolTable.h" | 
|  | #include "llvm/Object/SymbolicFile.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "module-summary-analysis" | 
|  |  | 
|  | // Option to force edges cold which will block importing when the | 
|  | // -import-cold-multiplier is set to 0. Useful for debugging. | 
|  | FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = | 
|  | FunctionSummary::FSHT_None; | 
|  | cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( | 
|  | "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), | 
|  | cl::desc("Force all edges in the function summary to cold"), | 
|  | cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), | 
|  | clEnumValN(FunctionSummary::FSHT_AllNonCritical, | 
|  | "all-non-critical", "All non-critical edges."), | 
|  | clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); | 
|  |  | 
|  | cl::opt<std::string> ModuleSummaryDotFile( | 
|  | "module-summary-dot-file", cl::init(""), cl::Hidden, | 
|  | cl::value_desc("filename"), | 
|  | cl::desc("File to emit dot graph of new summary into.")); | 
|  |  | 
|  | // Walk through the operands of a given User via worklist iteration and populate | 
|  | // the set of GlobalValue references encountered. Invoked either on an | 
|  | // Instruction or a GlobalVariable (which walks its initializer). | 
|  | // Return true if any of the operands contains blockaddress. This is important | 
|  | // to know when computing summary for global var, because if global variable | 
|  | // references basic block address we can't import it separately from function | 
|  | // containing that basic block. For simplicity we currently don't import such | 
|  | // global vars at all. When importing function we aren't interested if any | 
|  | // instruction in it takes an address of any basic block, because instruction | 
|  | // can only take an address of basic block located in the same function. | 
|  | static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, | 
|  | SetVector<ValueInfo> &RefEdges, | 
|  | SmallPtrSet<const User *, 8> &Visited) { | 
|  | bool HasBlockAddress = false; | 
|  | SmallVector<const User *, 32> Worklist; | 
|  | Worklist.push_back(CurUser); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | const User *U = Worklist.pop_back_val(); | 
|  |  | 
|  | if (!Visited.insert(U).second) | 
|  | continue; | 
|  |  | 
|  | ImmutableCallSite CS(U); | 
|  |  | 
|  | for (const auto &OI : U->operands()) { | 
|  | const User *Operand = dyn_cast<User>(OI); | 
|  | if (!Operand) | 
|  | continue; | 
|  | if (isa<BlockAddress>(Operand)) { | 
|  | HasBlockAddress = true; | 
|  | continue; | 
|  | } | 
|  | if (auto *GV = dyn_cast<GlobalValue>(Operand)) { | 
|  | // We have a reference to a global value. This should be added to | 
|  | // the reference set unless it is a callee. Callees are handled | 
|  | // specially by WriteFunction and are added to a separate list. | 
|  | if (!(CS && CS.isCallee(&OI))) | 
|  | RefEdges.insert(Index.getOrInsertValueInfo(GV)); | 
|  | continue; | 
|  | } | 
|  | Worklist.push_back(Operand); | 
|  | } | 
|  | } | 
|  | return HasBlockAddress; | 
|  | } | 
|  |  | 
|  | static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, | 
|  | ProfileSummaryInfo *PSI) { | 
|  | if (!PSI) | 
|  | return CalleeInfo::HotnessType::Unknown; | 
|  | if (PSI->isHotCount(ProfileCount)) | 
|  | return CalleeInfo::HotnessType::Hot; | 
|  | if (PSI->isColdCount(ProfileCount)) | 
|  | return CalleeInfo::HotnessType::Cold; | 
|  | return CalleeInfo::HotnessType::None; | 
|  | } | 
|  |  | 
|  | static bool isNonRenamableLocal(const GlobalValue &GV) { | 
|  | return GV.hasSection() && GV.hasLocalLinkage(); | 
|  | } | 
|  |  | 
|  | /// Determine whether this call has all constant integer arguments (excluding | 
|  | /// "this") and summarize it to VCalls or ConstVCalls as appropriate. | 
|  | static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid, | 
|  | SetVector<FunctionSummary::VFuncId> &VCalls, | 
|  | SetVector<FunctionSummary::ConstVCall> &ConstVCalls) { | 
|  | std::vector<uint64_t> Args; | 
|  | // Start from the second argument to skip the "this" pointer. | 
|  | for (auto &Arg : make_range(Call.CS.arg_begin() + 1, Call.CS.arg_end())) { | 
|  | auto *CI = dyn_cast<ConstantInt>(Arg); | 
|  | if (!CI || CI->getBitWidth() > 64) { | 
|  | VCalls.insert({Guid, Call.Offset}); | 
|  | return; | 
|  | } | 
|  | Args.push_back(CI->getZExtValue()); | 
|  | } | 
|  | ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); | 
|  | } | 
|  |  | 
|  | /// If this intrinsic call requires that we add information to the function | 
|  | /// summary, do so via the non-constant reference arguments. | 
|  | static void addIntrinsicToSummary( | 
|  | const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests, | 
|  | SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls, | 
|  | SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls, | 
|  | SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls, | 
|  | SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls, | 
|  | DominatorTree &DT) { | 
|  | switch (CI->getCalledFunction()->getIntrinsicID()) { | 
|  | case Intrinsic::type_test: { | 
|  | auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); | 
|  | auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); | 
|  | if (!TypeId) | 
|  | break; | 
|  | GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); | 
|  |  | 
|  | // Produce a summary from type.test intrinsics. We only summarize type.test | 
|  | // intrinsics that are used other than by an llvm.assume intrinsic. | 
|  | // Intrinsics that are assumed are relevant only to the devirtualization | 
|  | // pass, not the type test lowering pass. | 
|  | bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { | 
|  | auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser()); | 
|  | if (!AssumeCI) | 
|  | return true; | 
|  | Function *F = AssumeCI->getCalledFunction(); | 
|  | return !F || F->getIntrinsicID() != Intrinsic::assume; | 
|  | }); | 
|  | if (HasNonAssumeUses) | 
|  | TypeTests.insert(Guid); | 
|  |  | 
|  | SmallVector<DevirtCallSite, 4> DevirtCalls; | 
|  | SmallVector<CallInst *, 4> Assumes; | 
|  | findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); | 
|  | for (auto &Call : DevirtCalls) | 
|  | addVCallToSet(Call, Guid, TypeTestAssumeVCalls, | 
|  | TypeTestAssumeConstVCalls); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::type_checked_load: { | 
|  | auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); | 
|  | auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); | 
|  | if (!TypeId) | 
|  | break; | 
|  | GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); | 
|  |  | 
|  | SmallVector<DevirtCallSite, 4> DevirtCalls; | 
|  | SmallVector<Instruction *, 4> LoadedPtrs; | 
|  | SmallVector<Instruction *, 4> Preds; | 
|  | bool HasNonCallUses = false; | 
|  | findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, | 
|  | HasNonCallUses, CI, DT); | 
|  | // Any non-call uses of the result of llvm.type.checked.load will | 
|  | // prevent us from optimizing away the llvm.type.test. | 
|  | if (HasNonCallUses) | 
|  | TypeTests.insert(Guid); | 
|  | for (auto &Call : DevirtCalls) | 
|  | addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, | 
|  | TypeCheckedLoadConstVCalls); | 
|  |  | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isNonVolatileLoad(const Instruction *I) { | 
|  | if (const auto *LI = dyn_cast<LoadInst>(I)) | 
|  | return !LI->isVolatile(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isNonVolatileStore(const Instruction *I) { | 
|  | if (const auto *SI = dyn_cast<StoreInst>(I)) | 
|  | return !SI->isVolatile(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M, | 
|  | const Function &F, BlockFrequencyInfo *BFI, | 
|  | ProfileSummaryInfo *PSI, DominatorTree &DT, | 
|  | bool HasLocalsInUsedOrAsm, | 
|  | DenseSet<GlobalValue::GUID> &CantBePromoted, | 
|  | bool IsThinLTO) { | 
|  | // Summary not currently supported for anonymous functions, they should | 
|  | // have been named. | 
|  | assert(F.hasName()); | 
|  |  | 
|  | unsigned NumInsts = 0; | 
|  | // Map from callee ValueId to profile count. Used to accumulate profile | 
|  | // counts for all static calls to a given callee. | 
|  | MapVector<ValueInfo, CalleeInfo> CallGraphEdges; | 
|  | SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges; | 
|  | SetVector<GlobalValue::GUID> TypeTests; | 
|  | SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls, | 
|  | TypeCheckedLoadVCalls; | 
|  | SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls, | 
|  | TypeCheckedLoadConstVCalls; | 
|  | ICallPromotionAnalysis ICallAnalysis; | 
|  | SmallPtrSet<const User *, 8> Visited; | 
|  |  | 
|  | // Add personality function, prefix data and prologue data to function's ref | 
|  | // list. | 
|  | findRefEdges(Index, &F, RefEdges, Visited); | 
|  | std::vector<const Instruction *> NonVolatileLoads; | 
|  | std::vector<const Instruction *> NonVolatileStores; | 
|  |  | 
|  | bool HasInlineAsmMaybeReferencingInternal = false; | 
|  | for (const BasicBlock &BB : F) | 
|  | for (const Instruction &I : BB) { | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | continue; | 
|  | ++NumInsts; | 
|  | // Regular LTO module doesn't participate in ThinLTO import, | 
|  | // so no reference from it can be read/writeonly, since this | 
|  | // would require importing variable as local copy | 
|  | if (IsThinLTO) { | 
|  | if (isNonVolatileLoad(&I)) { | 
|  | // Postpone processing of non-volatile load instructions | 
|  | // See comments below | 
|  | Visited.insert(&I); | 
|  | NonVolatileLoads.push_back(&I); | 
|  | continue; | 
|  | } else if (isNonVolatileStore(&I)) { | 
|  | Visited.insert(&I); | 
|  | NonVolatileStores.push_back(&I); | 
|  | // All references from second operand of store (destination address) | 
|  | // can be considered write-only if they're not referenced by any | 
|  | // non-store instruction. References from first operand of store | 
|  | // (stored value) can't be treated either as read- or as write-only | 
|  | // so we add them to RefEdges as we do with all other instructions | 
|  | // except non-volatile load. | 
|  | Value *Stored = I.getOperand(0); | 
|  | if (auto *GV = dyn_cast<GlobalValue>(Stored)) | 
|  | // findRefEdges will try to examine GV operands, so instead | 
|  | // of calling it we should add GV to RefEdges directly. | 
|  | RefEdges.insert(Index.getOrInsertValueInfo(GV)); | 
|  | else if (auto *U = dyn_cast<User>(Stored)) | 
|  | findRefEdges(Index, U, RefEdges, Visited); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | findRefEdges(Index, &I, RefEdges, Visited); | 
|  | auto CS = ImmutableCallSite(&I); | 
|  | if (!CS) | 
|  | continue; | 
|  |  | 
|  | const auto *CI = dyn_cast<CallInst>(&I); | 
|  | // Since we don't know exactly which local values are referenced in inline | 
|  | // assembly, conservatively mark the function as possibly referencing | 
|  | // a local value from inline assembly to ensure we don't export a | 
|  | // reference (which would require renaming and promotion of the | 
|  | // referenced value). | 
|  | if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) | 
|  | HasInlineAsmMaybeReferencingInternal = true; | 
|  |  | 
|  | auto *CalledValue = CS.getCalledValue(); | 
|  | auto *CalledFunction = CS.getCalledFunction(); | 
|  | if (CalledValue && !CalledFunction) { | 
|  | CalledValue = CalledValue->stripPointerCasts(); | 
|  | // Stripping pointer casts can reveal a called function. | 
|  | CalledFunction = dyn_cast<Function>(CalledValue); | 
|  | } | 
|  | // Check if this is an alias to a function. If so, get the | 
|  | // called aliasee for the checks below. | 
|  | if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { | 
|  | assert(!CalledFunction && "Expected null called function in callsite for alias"); | 
|  | CalledFunction = dyn_cast<Function>(GA->getBaseObject()); | 
|  | } | 
|  | // Check if this is a direct call to a known function or a known | 
|  | // intrinsic, or an indirect call with profile data. | 
|  | if (CalledFunction) { | 
|  | if (CI && CalledFunction->isIntrinsic()) { | 
|  | addIntrinsicToSummary( | 
|  | CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, | 
|  | TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); | 
|  | continue; | 
|  | } | 
|  | // We should have named any anonymous globals | 
|  | assert(CalledFunction->hasName()); | 
|  | auto ScaledCount = PSI->getProfileCount(&I, BFI); | 
|  | auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI) | 
|  | : CalleeInfo::HotnessType::Unknown; | 
|  | if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) | 
|  | Hotness = CalleeInfo::HotnessType::Cold; | 
|  |  | 
|  | // Use the original CalledValue, in case it was an alias. We want | 
|  | // to record the call edge to the alias in that case. Eventually | 
|  | // an alias summary will be created to associate the alias and | 
|  | // aliasee. | 
|  | auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( | 
|  | cast<GlobalValue>(CalledValue))]; | 
|  | ValueInfo.updateHotness(Hotness); | 
|  | // Add the relative block frequency to CalleeInfo if there is no profile | 
|  | // information. | 
|  | if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { | 
|  | uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); | 
|  | uint64_t EntryFreq = BFI->getEntryFreq(); | 
|  | ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); | 
|  | } | 
|  | } else { | 
|  | // Skip inline assembly calls. | 
|  | if (CI && CI->isInlineAsm()) | 
|  | continue; | 
|  | // Skip direct calls. | 
|  | if (!CalledValue || isa<Constant>(CalledValue)) | 
|  | continue; | 
|  |  | 
|  | // Check if the instruction has a callees metadata. If so, add callees | 
|  | // to CallGraphEdges to reflect the references from the metadata, and | 
|  | // to enable importing for subsequent indirect call promotion and | 
|  | // inlining. | 
|  | if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { | 
|  | for (auto &Op : MD->operands()) { | 
|  | Function *Callee = mdconst::extract_or_null<Function>(Op); | 
|  | if (Callee) | 
|  | CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t NumVals, NumCandidates; | 
|  | uint64_t TotalCount; | 
|  | auto CandidateProfileData = | 
|  | ICallAnalysis.getPromotionCandidatesForInstruction( | 
|  | &I, NumVals, TotalCount, NumCandidates); | 
|  | for (auto &Candidate : CandidateProfileData) | 
|  | CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] | 
|  | .updateHotness(getHotness(Candidate.Count, PSI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<ValueInfo> Refs; | 
|  | if (IsThinLTO) { | 
|  | auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, | 
|  | SetVector<ValueInfo> &Edges, | 
|  | SmallPtrSet<const User *, 8> &Cache) { | 
|  | for (const auto *I : Instrs) { | 
|  | Cache.erase(I); | 
|  | findRefEdges(Index, I, Edges, Cache); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // By now we processed all instructions in a function, except | 
|  | // non-volatile loads and non-volatile value stores. Let's find | 
|  | // ref edges for both of instruction sets | 
|  | AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); | 
|  | // We can add some values to the Visited set when processing load | 
|  | // instructions which are also used by stores in NonVolatileStores. | 
|  | // For example this can happen if we have following code: | 
|  | // | 
|  | // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) | 
|  | // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) | 
|  | // | 
|  | // After processing loads we'll add bitcast to the Visited set, and if | 
|  | // we use the same set while processing stores, we'll never see store | 
|  | // to @bar and @bar will be mistakenly treated as readonly. | 
|  | SmallPtrSet<const llvm::User *, 8> StoreCache; | 
|  | AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); | 
|  |  | 
|  | // If both load and store instruction reference the same variable | 
|  | // we won't be able to optimize it. Add all such reference edges | 
|  | // to RefEdges set. | 
|  | for (auto &VI : StoreRefEdges) | 
|  | if (LoadRefEdges.remove(VI)) | 
|  | RefEdges.insert(VI); | 
|  |  | 
|  | unsigned RefCnt = RefEdges.size(); | 
|  | // All new reference edges inserted in two loops below are either | 
|  | // read or write only. They will be grouped in the end of RefEdges | 
|  | // vector, so we can use a single integer value to identify them. | 
|  | for (auto &VI : LoadRefEdges) | 
|  | RefEdges.insert(VI); | 
|  |  | 
|  | unsigned FirstWORef = RefEdges.size(); | 
|  | for (auto &VI : StoreRefEdges) | 
|  | RefEdges.insert(VI); | 
|  |  | 
|  | Refs = RefEdges.takeVector(); | 
|  | for (; RefCnt < FirstWORef; ++RefCnt) | 
|  | Refs[RefCnt].setReadOnly(); | 
|  |  | 
|  | for (; RefCnt < Refs.size(); ++RefCnt) | 
|  | Refs[RefCnt].setWriteOnly(); | 
|  | } else { | 
|  | Refs = RefEdges.takeVector(); | 
|  | } | 
|  | // Explicit add hot edges to enforce importing for designated GUIDs for | 
|  | // sample PGO, to enable the same inlines as the profiled optimized binary. | 
|  | for (auto &I : F.getImportGUIDs()) | 
|  | CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( | 
|  | ForceSummaryEdgesCold == FunctionSummary::FSHT_All | 
|  | ? CalleeInfo::HotnessType::Cold | 
|  | : CalleeInfo::HotnessType::Critical); | 
|  |  | 
|  | bool NonRenamableLocal = isNonRenamableLocal(F); | 
|  | bool NotEligibleForImport = | 
|  | NonRenamableLocal || HasInlineAsmMaybeReferencingInternal; | 
|  | GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport, | 
|  | /* Live = */ false, F.isDSOLocal(), | 
|  | F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr()); | 
|  | FunctionSummary::FFlags FunFlags{ | 
|  | F.hasFnAttribute(Attribute::ReadNone), | 
|  | F.hasFnAttribute(Attribute::ReadOnly), | 
|  | F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), | 
|  | // FIXME: refactor this to use the same code that inliner is using. | 
|  | // Don't try to import functions with noinline attribute. | 
|  | F.getAttributes().hasFnAttribute(Attribute::NoInline), | 
|  | F.hasFnAttribute(Attribute::AlwaysInline)}; | 
|  | auto FuncSummary = std::make_unique<FunctionSummary>( | 
|  | Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), | 
|  | CallGraphEdges.takeVector(), TypeTests.takeVector(), | 
|  | TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), | 
|  | TypeTestAssumeConstVCalls.takeVector(), | 
|  | TypeCheckedLoadConstVCalls.takeVector()); | 
|  | if (NonRenamableLocal) | 
|  | CantBePromoted.insert(F.getGUID()); | 
|  | Index.addGlobalValueSummary(F, std::move(FuncSummary)); | 
|  | } | 
|  |  | 
|  | /// Find function pointers referenced within the given vtable initializer | 
|  | /// (or subset of an initializer) \p I. The starting offset of \p I within | 
|  | /// the vtable initializer is \p StartingOffset. Any discovered function | 
|  | /// pointers are added to \p VTableFuncs along with their cumulative offset | 
|  | /// within the initializer. | 
|  | static void findFuncPointers(const Constant *I, uint64_t StartingOffset, | 
|  | const Module &M, ModuleSummaryIndex &Index, | 
|  | VTableFuncList &VTableFuncs) { | 
|  | // First check if this is a function pointer. | 
|  | if (I->getType()->isPointerTy()) { | 
|  | auto Fn = dyn_cast<Function>(I->stripPointerCasts()); | 
|  | // We can disregard __cxa_pure_virtual as a possible call target, as | 
|  | // calls to pure virtuals are UB. | 
|  | if (Fn && Fn->getName() != "__cxa_pure_virtual") | 
|  | VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset}); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Walk through the elements in the constant struct or array and recursively | 
|  | // look for virtual function pointers. | 
|  | const DataLayout &DL = M.getDataLayout(); | 
|  | if (auto *C = dyn_cast<ConstantStruct>(I)) { | 
|  | StructType *STy = dyn_cast<StructType>(C->getType()); | 
|  | assert(STy); | 
|  | const StructLayout *SL = DL.getStructLayout(C->getType()); | 
|  |  | 
|  | for (StructType::element_iterator EB = STy->element_begin(), EI = EB, | 
|  | EE = STy->element_end(); | 
|  | EI != EE; ++EI) { | 
|  | auto Offset = SL->getElementOffset(EI - EB); | 
|  | unsigned Op = SL->getElementContainingOffset(Offset); | 
|  | findFuncPointers(cast<Constant>(I->getOperand(Op)), | 
|  | StartingOffset + Offset, M, Index, VTableFuncs); | 
|  | } | 
|  | } else if (auto *C = dyn_cast<ConstantArray>(I)) { | 
|  | ArrayType *ATy = C->getType(); | 
|  | Type *EltTy = ATy->getElementType(); | 
|  | uint64_t EltSize = DL.getTypeAllocSize(EltTy); | 
|  | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { | 
|  | findFuncPointers(cast<Constant>(I->getOperand(i)), | 
|  | StartingOffset + i * EltSize, M, Index, VTableFuncs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Identify the function pointers referenced by vtable definition \p V. | 
|  | static void computeVTableFuncs(ModuleSummaryIndex &Index, | 
|  | const GlobalVariable &V, const Module &M, | 
|  | VTableFuncList &VTableFuncs) { | 
|  | if (!V.isConstant()) | 
|  | return; | 
|  |  | 
|  | findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, | 
|  | VTableFuncs); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Validate that the VTableFuncs list is ordered by offset. | 
|  | uint64_t PrevOffset = 0; | 
|  | for (auto &P : VTableFuncs) { | 
|  | // The findVFuncPointers traversal should have encountered the | 
|  | // functions in offset order. We need to use ">=" since PrevOffset | 
|  | // starts at 0. | 
|  | assert(P.VTableOffset >= PrevOffset); | 
|  | PrevOffset = P.VTableOffset; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// Record vtable definition \p V for each type metadata it references. | 
|  | static void | 
|  | recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, | 
|  | const GlobalVariable &V, | 
|  | SmallVectorImpl<MDNode *> &Types) { | 
|  | for (MDNode *Type : Types) { | 
|  | auto TypeID = Type->getOperand(1).get(); | 
|  |  | 
|  | uint64_t Offset = | 
|  | cast<ConstantInt>( | 
|  | cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) | 
|  | ->getZExtValue(); | 
|  |  | 
|  | if (auto *TypeId = dyn_cast<MDString>(TypeID)) | 
|  | Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) | 
|  | .push_back({Offset, Index.getOrInsertValueInfo(&V)}); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void computeVariableSummary(ModuleSummaryIndex &Index, | 
|  | const GlobalVariable &V, | 
|  | DenseSet<GlobalValue::GUID> &CantBePromoted, | 
|  | const Module &M, | 
|  | SmallVectorImpl<MDNode *> &Types) { | 
|  | SetVector<ValueInfo> RefEdges; | 
|  | SmallPtrSet<const User *, 8> Visited; | 
|  | bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited); | 
|  | bool NonRenamableLocal = isNonRenamableLocal(V); | 
|  | GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal, | 
|  | /* Live = */ false, V.isDSOLocal(), | 
|  | V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr()); | 
|  |  | 
|  | VTableFuncList VTableFuncs; | 
|  | // If splitting is not enabled, then we compute the summary information | 
|  | // necessary for index-based whole program devirtualization. | 
|  | if (!Index.enableSplitLTOUnit()) { | 
|  | Types.clear(); | 
|  | V.getMetadata(LLVMContext::MD_type, Types); | 
|  | if (!Types.empty()) { | 
|  | // Identify the function pointers referenced by this vtable definition. | 
|  | computeVTableFuncs(Index, V, M, VTableFuncs); | 
|  |  | 
|  | // Record this vtable definition for each type metadata it references. | 
|  | recordTypeIdCompatibleVtableReferences(Index, V, Types); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't mark variables we won't be able to internalize as read/write-only. | 
|  | bool CanBeInternalized = | 
|  | !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && | 
|  | !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); | 
|  | GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, CanBeInternalized); | 
|  | auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, | 
|  | RefEdges.takeVector()); | 
|  | if (NonRenamableLocal) | 
|  | CantBePromoted.insert(V.getGUID()); | 
|  | if (HasBlockAddress) | 
|  | GVarSummary->setNotEligibleToImport(); | 
|  | if (!VTableFuncs.empty()) | 
|  | GVarSummary->setVTableFuncs(VTableFuncs); | 
|  | Index.addGlobalValueSummary(V, std::move(GVarSummary)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, | 
|  | DenseSet<GlobalValue::GUID> &CantBePromoted) { | 
|  | bool NonRenamableLocal = isNonRenamableLocal(A); | 
|  | GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal, | 
|  | /* Live = */ false, A.isDSOLocal(), | 
|  | A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr()); | 
|  | auto AS = std::make_unique<AliasSummary>(Flags); | 
|  | auto *Aliasee = A.getBaseObject(); | 
|  | auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); | 
|  | assert(AliaseeVI && "Alias expects aliasee summary to be available"); | 
|  | assert(AliaseeVI.getSummaryList().size() == 1 && | 
|  | "Expected a single entry per aliasee in per-module index"); | 
|  | AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); | 
|  | if (NonRenamableLocal) | 
|  | CantBePromoted.insert(A.getGUID()); | 
|  | Index.addGlobalValueSummary(A, std::move(AS)); | 
|  | } | 
|  |  | 
|  | // Set LiveRoot flag on entries matching the given value name. | 
|  | static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { | 
|  | if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) | 
|  | for (auto &Summary : VI.getSummaryList()) | 
|  | Summary->setLive(true); | 
|  | } | 
|  |  | 
|  | ModuleSummaryIndex llvm::buildModuleSummaryIndex( | 
|  | const Module &M, | 
|  | std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, | 
|  | ProfileSummaryInfo *PSI) { | 
|  | assert(PSI); | 
|  | bool EnableSplitLTOUnit = false; | 
|  | if (auto *MD = mdconst::extract_or_null<ConstantInt>( | 
|  | M.getModuleFlag("EnableSplitLTOUnit"))) | 
|  | EnableSplitLTOUnit = MD->getZExtValue(); | 
|  | ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit); | 
|  |  | 
|  | // Identify the local values in the llvm.used and llvm.compiler.used sets, | 
|  | // which should not be exported as they would then require renaming and | 
|  | // promotion, but we may have opaque uses e.g. in inline asm. We collect them | 
|  | // here because we use this information to mark functions containing inline | 
|  | // assembly calls as not importable. | 
|  | SmallPtrSet<GlobalValue *, 8> LocalsUsed; | 
|  | SmallPtrSet<GlobalValue *, 8> Used; | 
|  | // First collect those in the llvm.used set. | 
|  | collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false); | 
|  | // Next collect those in the llvm.compiler.used set. | 
|  | collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true); | 
|  | DenseSet<GlobalValue::GUID> CantBePromoted; | 
|  | for (auto *V : Used) { | 
|  | if (V->hasLocalLinkage()) { | 
|  | LocalsUsed.insert(V); | 
|  | CantBePromoted.insert(V->getGUID()); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HasLocalInlineAsmSymbol = false; | 
|  | if (!M.getModuleInlineAsm().empty()) { | 
|  | // Collect the local values defined by module level asm, and set up | 
|  | // summaries for these symbols so that they can be marked as NoRename, | 
|  | // to prevent export of any use of them in regular IR that would require | 
|  | // renaming within the module level asm. Note we don't need to create a | 
|  | // summary for weak or global defs, as they don't need to be flagged as | 
|  | // NoRename, and defs in module level asm can't be imported anyway. | 
|  | // Also, any values used but not defined within module level asm should | 
|  | // be listed on the llvm.used or llvm.compiler.used global and marked as | 
|  | // referenced from there. | 
|  | ModuleSymbolTable::CollectAsmSymbols( | 
|  | M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { | 
|  | // Symbols not marked as Weak or Global are local definitions. | 
|  | if (Flags & (object::BasicSymbolRef::SF_Weak | | 
|  | object::BasicSymbolRef::SF_Global)) | 
|  | return; | 
|  | HasLocalInlineAsmSymbol = true; | 
|  | GlobalValue *GV = M.getNamedValue(Name); | 
|  | if (!GV) | 
|  | return; | 
|  | assert(GV->isDeclaration() && "Def in module asm already has definition"); | 
|  | GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage, | 
|  | /* NotEligibleToImport = */ true, | 
|  | /* Live = */ true, | 
|  | /* Local */ GV->isDSOLocal(), | 
|  | GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr()); | 
|  | CantBePromoted.insert(GV->getGUID()); | 
|  | // Create the appropriate summary type. | 
|  | if (Function *F = dyn_cast<Function>(GV)) { | 
|  | std::unique_ptr<FunctionSummary> Summary = | 
|  | std::make_unique<FunctionSummary>( | 
|  | GVFlags, /*InstCount=*/0, | 
|  | FunctionSummary::FFlags{ | 
|  | F->hasFnAttribute(Attribute::ReadNone), | 
|  | F->hasFnAttribute(Attribute::ReadOnly), | 
|  | F->hasFnAttribute(Attribute::NoRecurse), | 
|  | F->returnDoesNotAlias(), | 
|  | /* NoInline = */ false, | 
|  | F->hasFnAttribute(Attribute::AlwaysInline)}, | 
|  | /*EntryCount=*/0, ArrayRef<ValueInfo>{}, | 
|  | ArrayRef<FunctionSummary::EdgeTy>{}, | 
|  | ArrayRef<GlobalValue::GUID>{}, | 
|  | ArrayRef<FunctionSummary::VFuncId>{}, | 
|  | ArrayRef<FunctionSummary::VFuncId>{}, | 
|  | ArrayRef<FunctionSummary::ConstVCall>{}, | 
|  | ArrayRef<FunctionSummary::ConstVCall>{}); | 
|  | Index.addGlobalValueSummary(*GV, std::move(Summary)); | 
|  | } else { | 
|  | std::unique_ptr<GlobalVarSummary> Summary = | 
|  | std::make_unique<GlobalVarSummary>( | 
|  | GVFlags, GlobalVarSummary::GVarFlags(false, false), | 
|  | ArrayRef<ValueInfo>{}); | 
|  | Index.addGlobalValueSummary(*GV, std::move(Summary)); | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool IsThinLTO = true; | 
|  | if (auto *MD = | 
|  | mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) | 
|  | IsThinLTO = MD->getZExtValue(); | 
|  |  | 
|  | // Compute summaries for all functions defined in module, and save in the | 
|  | // index. | 
|  | for (auto &F : M) { | 
|  | if (F.isDeclaration()) | 
|  | continue; | 
|  |  | 
|  | DominatorTree DT(const_cast<Function &>(F)); | 
|  | BlockFrequencyInfo *BFI = nullptr; | 
|  | std::unique_ptr<BlockFrequencyInfo> BFIPtr; | 
|  | if (GetBFICallback) | 
|  | BFI = GetBFICallback(F); | 
|  | else if (F.hasProfileData()) { | 
|  | LoopInfo LI{DT}; | 
|  | BranchProbabilityInfo BPI{F, LI}; | 
|  | BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); | 
|  | BFI = BFIPtr.get(); | 
|  | } | 
|  |  | 
|  | computeFunctionSummary(Index, M, F, BFI, PSI, DT, | 
|  | !LocalsUsed.empty() || HasLocalInlineAsmSymbol, | 
|  | CantBePromoted, IsThinLTO); | 
|  | } | 
|  |  | 
|  | // Compute summaries for all variables defined in module, and save in the | 
|  | // index. | 
|  | SmallVector<MDNode *, 2> Types; | 
|  | for (const GlobalVariable &G : M.globals()) { | 
|  | if (G.isDeclaration()) | 
|  | continue; | 
|  | computeVariableSummary(Index, G, CantBePromoted, M, Types); | 
|  | } | 
|  |  | 
|  | // Compute summaries for all aliases defined in module, and save in the | 
|  | // index. | 
|  | for (const GlobalAlias &A : M.aliases()) | 
|  | computeAliasSummary(Index, A, CantBePromoted); | 
|  |  | 
|  | for (auto *V : LocalsUsed) { | 
|  | auto *Summary = Index.getGlobalValueSummary(*V); | 
|  | assert(Summary && "Missing summary for global value"); | 
|  | Summary->setNotEligibleToImport(); | 
|  | } | 
|  |  | 
|  | // The linker doesn't know about these LLVM produced values, so we need | 
|  | // to flag them as live in the index to ensure index-based dead value | 
|  | // analysis treats them as live roots of the analysis. | 
|  | setLiveRoot(Index, "llvm.used"); | 
|  | setLiveRoot(Index, "llvm.compiler.used"); | 
|  | setLiveRoot(Index, "llvm.global_ctors"); | 
|  | setLiveRoot(Index, "llvm.global_dtors"); | 
|  | setLiveRoot(Index, "llvm.global.annotations"); | 
|  |  | 
|  | for (auto &GlobalList : Index) { | 
|  | // Ignore entries for references that are undefined in the current module. | 
|  | if (GlobalList.second.SummaryList.empty()) | 
|  | continue; | 
|  |  | 
|  | assert(GlobalList.second.SummaryList.size() == 1 && | 
|  | "Expected module's index to have one summary per GUID"); | 
|  | auto &Summary = GlobalList.second.SummaryList[0]; | 
|  | if (!IsThinLTO) { | 
|  | Summary->setNotEligibleToImport(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bool AllRefsCanBeExternallyReferenced = | 
|  | llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { | 
|  | return !CantBePromoted.count(VI.getGUID()); | 
|  | }); | 
|  | if (!AllRefsCanBeExternallyReferenced) { | 
|  | Summary->setNotEligibleToImport(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { | 
|  | bool AllCallsCanBeExternallyReferenced = llvm::all_of( | 
|  | FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { | 
|  | return !CantBePromoted.count(Edge.first.getGUID()); | 
|  | }); | 
|  | if (!AllCallsCanBeExternallyReferenced) | 
|  | Summary->setNotEligibleToImport(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ModuleSummaryDotFile.empty()) { | 
|  | std::error_code EC; | 
|  | raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None); | 
|  | if (EC) | 
|  | report_fatal_error(Twine("Failed to open dot file ") + | 
|  | ModuleSummaryDotFile + ": " + EC.message() + "\n"); | 
|  | Index.exportToDot(OSDot, {}); | 
|  | } | 
|  |  | 
|  | return Index; | 
|  | } | 
|  |  | 
|  | AnalysisKey ModuleSummaryIndexAnalysis::Key; | 
|  |  | 
|  | ModuleSummaryIndex | 
|  | ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { | 
|  | ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); | 
|  | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); | 
|  | return buildModuleSummaryIndex( | 
|  | M, | 
|  | [&FAM](const Function &F) { | 
|  | return &FAM.getResult<BlockFrequencyAnalysis>( | 
|  | *const_cast<Function *>(&F)); | 
|  | }, | 
|  | &PSI); | 
|  | } | 
|  |  | 
|  | char ModuleSummaryIndexWrapperPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", | 
|  | "Module Summary Analysis", false, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", | 
|  | "Module Summary Analysis", false, true) | 
|  |  | 
|  | ModulePass *llvm::createModuleSummaryIndexWrapperPass() { | 
|  | return new ModuleSummaryIndexWrapperPass(); | 
|  | } | 
|  |  | 
|  | ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() | 
|  | : ModulePass(ID) { | 
|  | initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { | 
|  | auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); | 
|  | Index.emplace(buildModuleSummaryIndex( | 
|  | M, | 
|  | [this](const Function &F) { | 
|  | return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( | 
|  | *const_cast<Function *>(&F)) | 
|  | .getBFI()); | 
|  | }, | 
|  | PSI)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { | 
|  | Index.reset(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequired<BlockFrequencyInfoWrapperPass>(); | 
|  | AU.addRequired<ProfileSummaryInfoWrapperPass>(); | 
|  | } |