| //===- GVNSink.cpp - sink expressions into successors ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file GVNSink.cpp |
| /// This pass attempts to sink instructions into successors, reducing static |
| /// instruction count and enabling if-conversion. |
| /// |
| /// We use a variant of global value numbering to decide what can be sunk. |
| /// Consider: |
| /// |
| /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ] |
| /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ] |
| /// \ / |
| /// [ %e = phi i32 %a2, %c2 ] |
| /// [ add i32 %e, 4 ] |
| /// |
| /// |
| /// GVN would number %a1 and %c1 differently because they compute different |
| /// results - the VN of an instruction is a function of its opcode and the |
| /// transitive closure of its operands. This is the key property for hoisting |
| /// and CSE. |
| /// |
| /// What we want when sinking however is for a numbering that is a function of |
| /// the *uses* of an instruction, which allows us to answer the question "if I |
| /// replace %a1 with %c1, will it contribute in an equivalent way to all |
| /// successive instructions?". The PostValueTable class in GVN provides this |
| /// mapping. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/ArrayRecycler.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Scalar/GVN.h" |
| #include "llvm/Transforms/Scalar/GVNExpression.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "gvn-sink" |
| |
| STATISTIC(NumRemoved, "Number of instructions removed"); |
| |
| namespace llvm { |
| namespace GVNExpression { |
| |
| LLVM_DUMP_METHOD void Expression::dump() const { |
| print(dbgs()); |
| dbgs() << "\n"; |
| } |
| |
| } // end namespace GVNExpression |
| } // end namespace llvm |
| |
| namespace { |
| |
| static bool isMemoryInst(const Instruction *I) { |
| return isa<LoadInst>(I) || isa<StoreInst>(I) || |
| (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) || |
| (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory()); |
| } |
| |
| /// Iterates through instructions in a set of blocks in reverse order from the |
| /// first non-terminator. For example (assume all blocks have size n): |
| /// LockstepReverseIterator I([B1, B2, B3]); |
| /// *I-- = [B1[n], B2[n], B3[n]]; |
| /// *I-- = [B1[n-1], B2[n-1], B3[n-1]]; |
| /// *I-- = [B1[n-2], B2[n-2], B3[n-2]]; |
| /// ... |
| /// |
| /// It continues until all blocks have been exhausted. Use \c getActiveBlocks() |
| /// to |
| /// determine which blocks are still going and the order they appear in the |
| /// list returned by operator*. |
| class LockstepReverseIterator { |
| ArrayRef<BasicBlock *> Blocks; |
| SmallSetVector<BasicBlock *, 4> ActiveBlocks; |
| SmallVector<Instruction *, 4> Insts; |
| bool Fail; |
| |
| public: |
| LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) { |
| reset(); |
| } |
| |
| void reset() { |
| Fail = false; |
| ActiveBlocks.clear(); |
| for (BasicBlock *BB : Blocks) |
| ActiveBlocks.insert(BB); |
| Insts.clear(); |
| for (BasicBlock *BB : Blocks) { |
| if (BB->size() <= 1) { |
| // Block wasn't big enough - only contained a terminator. |
| ActiveBlocks.remove(BB); |
| continue; |
| } |
| Insts.push_back(BB->getTerminator()->getPrevNode()); |
| } |
| if (Insts.empty()) |
| Fail = true; |
| } |
| |
| bool isValid() const { return !Fail; } |
| ArrayRef<Instruction *> operator*() const { return Insts; } |
| |
| // Note: This needs to return a SmallSetVector as the elements of |
| // ActiveBlocks will be later copied to Blocks using std::copy. The |
| // resultant order of elements in Blocks needs to be deterministic. |
| // Using SmallPtrSet instead causes non-deterministic order while |
| // copying. And we cannot simply sort Blocks as they need to match the |
| // corresponding Values. |
| SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; } |
| |
| void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) { |
| for (auto II = Insts.begin(); II != Insts.end();) { |
| if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) == |
| Blocks.end()) { |
| ActiveBlocks.remove((*II)->getParent()); |
| II = Insts.erase(II); |
| } else { |
| ++II; |
| } |
| } |
| } |
| |
| void operator--() { |
| if (Fail) |
| return; |
| SmallVector<Instruction *, 4> NewInsts; |
| for (auto *Inst : Insts) { |
| if (Inst == &Inst->getParent()->front()) |
| ActiveBlocks.remove(Inst->getParent()); |
| else |
| NewInsts.push_back(Inst->getPrevNode()); |
| } |
| if (NewInsts.empty()) { |
| Fail = true; |
| return; |
| } |
| Insts = NewInsts; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| |
| /// Candidate solution for sinking. There may be different ways to |
| /// sink instructions, differing in the number of instructions sunk, |
| /// the number of predecessors sunk from and the number of PHIs |
| /// required. |
| struct SinkingInstructionCandidate { |
| unsigned NumBlocks; |
| unsigned NumInstructions; |
| unsigned NumPHIs; |
| unsigned NumMemoryInsts; |
| int Cost = -1; |
| SmallVector<BasicBlock *, 4> Blocks; |
| |
| void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) { |
| unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs; |
| unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0; |
| Cost = (NumInstructions * (NumBlocks - 1)) - |
| (NumExtraPHIs * |
| NumExtraPHIs) // PHIs are expensive, so make sure they're worth it. |
| - SplitEdgeCost; |
| } |
| |
| bool operator>(const SinkingInstructionCandidate &Other) const { |
| return Cost > Other.Cost; |
| } |
| }; |
| |
| #ifndef NDEBUG |
| raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) { |
| OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks |
| << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">"; |
| return OS; |
| } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| |
| /// Describes a PHI node that may or may not exist. These track the PHIs |
| /// that must be created if we sunk a sequence of instructions. It provides |
| /// a hash function for efficient equality comparisons. |
| class ModelledPHI { |
| SmallVector<Value *, 4> Values; |
| SmallVector<BasicBlock *, 4> Blocks; |
| |
| public: |
| ModelledPHI() = default; |
| |
| ModelledPHI(const PHINode *PN) { |
| // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order. |
| SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops; |
| for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) |
| Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)}); |
| llvm::sort(Ops); |
| for (auto &P : Ops) { |
| Blocks.push_back(P.first); |
| Values.push_back(P.second); |
| } |
| } |
| |
| /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI |
| /// without the same ID. |
| /// \note This is specifically for DenseMapInfo - do not use this! |
| static ModelledPHI createDummy(size_t ID) { |
| ModelledPHI M; |
| M.Values.push_back(reinterpret_cast<Value*>(ID)); |
| return M; |
| } |
| |
| /// Create a PHI from an array of incoming values and incoming blocks. |
| template <typename VArray, typename BArray> |
| ModelledPHI(const VArray &V, const BArray &B) { |
| llvm::copy(V, std::back_inserter(Values)); |
| llvm::copy(B, std::back_inserter(Blocks)); |
| } |
| |
| /// Create a PHI from [I[OpNum] for I in Insts]. |
| template <typename BArray> |
| ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) { |
| llvm::copy(B, std::back_inserter(Blocks)); |
| for (auto *I : Insts) |
| Values.push_back(I->getOperand(OpNum)); |
| } |
| |
| /// Restrict the PHI's contents down to only \c NewBlocks. |
| /// \c NewBlocks must be a subset of \c this->Blocks. |
| void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) { |
| auto BI = Blocks.begin(); |
| auto VI = Values.begin(); |
| while (BI != Blocks.end()) { |
| assert(VI != Values.end()); |
| if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) == |
| NewBlocks.end()) { |
| BI = Blocks.erase(BI); |
| VI = Values.erase(VI); |
| } else { |
| ++BI; |
| ++VI; |
| } |
| } |
| assert(Blocks.size() == NewBlocks.size()); |
| } |
| |
| ArrayRef<Value *> getValues() const { return Values; } |
| |
| bool areAllIncomingValuesSame() const { |
| return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; }); |
| } |
| |
| bool areAllIncomingValuesSameType() const { |
| return llvm::all_of( |
| Values, [&](Value *V) { return V->getType() == Values[0]->getType(); }); |
| } |
| |
| bool areAnyIncomingValuesConstant() const { |
| return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); }); |
| } |
| |
| // Hash functor |
| unsigned hash() const { |
| return (unsigned)hash_combine_range(Values.begin(), Values.end()); |
| } |
| |
| bool operator==(const ModelledPHI &Other) const { |
| return Values == Other.Values && Blocks == Other.Blocks; |
| } |
| }; |
| |
| template <typename ModelledPHI> struct DenseMapInfo { |
| static inline ModelledPHI &getEmptyKey() { |
| static ModelledPHI Dummy = ModelledPHI::createDummy(0); |
| return Dummy; |
| } |
| |
| static inline ModelledPHI &getTombstoneKey() { |
| static ModelledPHI Dummy = ModelledPHI::createDummy(1); |
| return Dummy; |
| } |
| |
| static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); } |
| |
| static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| |
| using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>; |
| |
| //===----------------------------------------------------------------------===// |
| // ValueTable |
| //===----------------------------------------------------------------------===// |
| // This is a value number table where the value number is a function of the |
| // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know |
| // that the program would be equivalent if we replaced A with PHI(A, B). |
| //===----------------------------------------------------------------------===// |
| |
| /// A GVN expression describing how an instruction is used. The operands |
| /// field of BasicExpression is used to store uses, not operands. |
| /// |
| /// This class also contains fields for discriminators used when determining |
| /// equivalence of instructions with sideeffects. |
| class InstructionUseExpr : public GVNExpression::BasicExpression { |
| unsigned MemoryUseOrder = -1; |
| bool Volatile = false; |
| |
| public: |
| InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R, |
| BumpPtrAllocator &A) |
| : GVNExpression::BasicExpression(I->getNumUses()) { |
| allocateOperands(R, A); |
| setOpcode(I->getOpcode()); |
| setType(I->getType()); |
| |
| for (auto &U : I->uses()) |
| op_push_back(U.getUser()); |
| llvm::sort(op_begin(), op_end()); |
| } |
| |
| void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; } |
| void setVolatile(bool V) { Volatile = V; } |
| |
| hash_code getHashValue() const override { |
| return hash_combine(GVNExpression::BasicExpression::getHashValue(), |
| MemoryUseOrder, Volatile); |
| } |
| |
| template <typename Function> hash_code getHashValue(Function MapFn) { |
| hash_code H = |
| hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile); |
| for (auto *V : operands()) |
| H = hash_combine(H, MapFn(V)); |
| return H; |
| } |
| }; |
| |
| class ValueTable { |
| DenseMap<Value *, uint32_t> ValueNumbering; |
| DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering; |
| DenseMap<size_t, uint32_t> HashNumbering; |
| BumpPtrAllocator Allocator; |
| ArrayRecycler<Value *> Recycler; |
| uint32_t nextValueNumber = 1; |
| |
| /// Create an expression for I based on its opcode and its uses. If I |
| /// touches or reads memory, the expression is also based upon its memory |
| /// order - see \c getMemoryUseOrder(). |
| InstructionUseExpr *createExpr(Instruction *I) { |
| InstructionUseExpr *E = |
| new (Allocator) InstructionUseExpr(I, Recycler, Allocator); |
| if (isMemoryInst(I)) |
| E->setMemoryUseOrder(getMemoryUseOrder(I)); |
| |
| if (CmpInst *C = dyn_cast<CmpInst>(I)) { |
| CmpInst::Predicate Predicate = C->getPredicate(); |
| E->setOpcode((C->getOpcode() << 8) | Predicate); |
| } |
| return E; |
| } |
| |
| /// Helper to compute the value number for a memory instruction |
| /// (LoadInst/StoreInst), including checking the memory ordering and |
| /// volatility. |
| template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) { |
| if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic()) |
| return nullptr; |
| InstructionUseExpr *E = createExpr(I); |
| E->setVolatile(I->isVolatile()); |
| return E; |
| } |
| |
| public: |
| ValueTable() = default; |
| |
| /// Returns the value number for the specified value, assigning |
| /// it a new number if it did not have one before. |
| uint32_t lookupOrAdd(Value *V) { |
| auto VI = ValueNumbering.find(V); |
| if (VI != ValueNumbering.end()) |
| return VI->second; |
| |
| if (!isa<Instruction>(V)) { |
| ValueNumbering[V] = nextValueNumber; |
| return nextValueNumber++; |
| } |
| |
| Instruction *I = cast<Instruction>(V); |
| InstructionUseExpr *exp = nullptr; |
| switch (I->getOpcode()) { |
| case Instruction::Load: |
| exp = createMemoryExpr(cast<LoadInst>(I)); |
| break; |
| case Instruction::Store: |
| exp = createMemoryExpr(cast<StoreInst>(I)); |
| break; |
| case Instruction::Call: |
| case Instruction::Invoke: |
| case Instruction::FNeg: |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::BitCast: |
| case Instruction::Select: |
| case Instruction::ExtractElement: |
| case Instruction::InsertElement: |
| case Instruction::ShuffleVector: |
| case Instruction::InsertValue: |
| case Instruction::GetElementPtr: |
| exp = createExpr(I); |
| break; |
| default: |
| break; |
| } |
| |
| if (!exp) { |
| ValueNumbering[V] = nextValueNumber; |
| return nextValueNumber++; |
| } |
| |
| uint32_t e = ExpressionNumbering[exp]; |
| if (!e) { |
| hash_code H = exp->getHashValue([this](Value *V) { return lookupOrAdd(V); }); |
| auto I = HashNumbering.find(H); |
| if (I != HashNumbering.end()) { |
| e = I->second; |
| } else { |
| e = nextValueNumber++; |
| HashNumbering[H] = e; |
| ExpressionNumbering[exp] = e; |
| } |
| } |
| ValueNumbering[V] = e; |
| return e; |
| } |
| |
| /// Returns the value number of the specified value. Fails if the value has |
| /// not yet been numbered. |
| uint32_t lookup(Value *V) const { |
| auto VI = ValueNumbering.find(V); |
| assert(VI != ValueNumbering.end() && "Value not numbered?"); |
| return VI->second; |
| } |
| |
| /// Removes all value numberings and resets the value table. |
| void clear() { |
| ValueNumbering.clear(); |
| ExpressionNumbering.clear(); |
| HashNumbering.clear(); |
| Recycler.clear(Allocator); |
| nextValueNumber = 1; |
| } |
| |
| /// \c Inst uses or touches memory. Return an ID describing the memory state |
| /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2), |
| /// the exact same memory operations happen after I1 and I2. |
| /// |
| /// This is a very hard problem in general, so we use domain-specific |
| /// knowledge that we only ever check for equivalence between blocks sharing a |
| /// single immediate successor that is common, and when determining if I1 == |
| /// I2 we will have already determined that next(I1) == next(I2). This |
| /// inductive property allows us to simply return the value number of the next |
| /// instruction that defines memory. |
| uint32_t getMemoryUseOrder(Instruction *Inst) { |
| auto *BB = Inst->getParent(); |
| for (auto I = std::next(Inst->getIterator()), E = BB->end(); |
| I != E && !I->isTerminator(); ++I) { |
| if (!isMemoryInst(&*I)) |
| continue; |
| if (isa<LoadInst>(&*I)) |
| continue; |
| CallInst *CI = dyn_cast<CallInst>(&*I); |
| if (CI && CI->onlyReadsMemory()) |
| continue; |
| InvokeInst *II = dyn_cast<InvokeInst>(&*I); |
| if (II && II->onlyReadsMemory()) |
| continue; |
| return lookupOrAdd(&*I); |
| } |
| return 0; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| |
| class GVNSink { |
| public: |
| GVNSink() = default; |
| |
| bool run(Function &F) { |
| LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName() |
| << "\n"); |
| |
| unsigned NumSunk = 0; |
| ReversePostOrderTraversal<Function*> RPOT(&F); |
| for (auto *N : RPOT) |
| NumSunk += sinkBB(N); |
| |
| return NumSunk > 0; |
| } |
| |
| private: |
| ValueTable VN; |
| |
| bool isInstructionBlacklisted(Instruction *I) { |
| // These instructions may change or break semantics if moved. |
| if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || |
| I->getType()->isTokenTy()) |
| return true; |
| return false; |
| } |
| |
| /// The main heuristic function. Analyze the set of instructions pointed to by |
| /// LRI and return a candidate solution if these instructions can be sunk, or |
| /// None otherwise. |
| Optional<SinkingInstructionCandidate> analyzeInstructionForSinking( |
| LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, |
| ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents); |
| |
| /// Create a ModelledPHI for each PHI in BB, adding to PHIs. |
| void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs, |
| SmallPtrSetImpl<Value *> &PHIContents) { |
| for (PHINode &PN : BB->phis()) { |
| auto MPHI = ModelledPHI(&PN); |
| PHIs.insert(MPHI); |
| for (auto *V : MPHI.getValues()) |
| PHIContents.insert(V); |
| } |
| } |
| |
| /// The main instruction sinking driver. Set up state and try and sink |
| /// instructions into BBEnd from its predecessors. |
| unsigned sinkBB(BasicBlock *BBEnd); |
| |
| /// Perform the actual mechanics of sinking an instruction from Blocks into |
| /// BBEnd, which is their only successor. |
| void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd); |
| |
| /// Remove PHIs that all have the same incoming value. |
| void foldPointlessPHINodes(BasicBlock *BB) { |
| auto I = BB->begin(); |
| while (PHINode *PN = dyn_cast<PHINode>(I++)) { |
| if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) { |
| return V == PN->getIncomingValue(0); |
| })) |
| continue; |
| if (PN->getIncomingValue(0) != PN) |
| PN->replaceAllUsesWith(PN->getIncomingValue(0)); |
| else |
| PN->replaceAllUsesWith(UndefValue::get(PN->getType())); |
| PN->eraseFromParent(); |
| } |
| } |
| }; |
| |
| Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking( |
| LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, |
| ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) { |
| auto Insts = *LRI; |
| LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I |
| : Insts) { |
| I->dump(); |
| } dbgs() << " ]\n";); |
| |
| DenseMap<uint32_t, unsigned> VNums; |
| for (auto *I : Insts) { |
| uint32_t N = VN.lookupOrAdd(I); |
| LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n"); |
| if (N == ~0U) |
| return None; |
| VNums[N]++; |
| } |
| unsigned VNumToSink = |
| std::max_element(VNums.begin(), VNums.end(), |
| [](const std::pair<uint32_t, unsigned> &I, |
| const std::pair<uint32_t, unsigned> &J) { |
| return I.second < J.second; |
| }) |
| ->first; |
| |
| if (VNums[VNumToSink] == 1) |
| // Can't sink anything! |
| return None; |
| |
| // Now restrict the number of incoming blocks down to only those with |
| // VNumToSink. |
| auto &ActivePreds = LRI.getActiveBlocks(); |
| unsigned InitialActivePredSize = ActivePreds.size(); |
| SmallVector<Instruction *, 4> NewInsts; |
| for (auto *I : Insts) { |
| if (VN.lookup(I) != VNumToSink) |
| ActivePreds.remove(I->getParent()); |
| else |
| NewInsts.push_back(I); |
| } |
| for (auto *I : NewInsts) |
| if (isInstructionBlacklisted(I)) |
| return None; |
| |
| // If we've restricted the incoming blocks, restrict all needed PHIs also |
| // to that set. |
| bool RecomputePHIContents = false; |
| if (ActivePreds.size() != InitialActivePredSize) { |
| ModelledPHISet NewNeededPHIs; |
| for (auto P : NeededPHIs) { |
| P.restrictToBlocks(ActivePreds); |
| NewNeededPHIs.insert(P); |
| } |
| NeededPHIs = NewNeededPHIs; |
| LRI.restrictToBlocks(ActivePreds); |
| RecomputePHIContents = true; |
| } |
| |
| // The sunk instruction's results. |
| ModelledPHI NewPHI(NewInsts, ActivePreds); |
| |
| // Does sinking this instruction render previous PHIs redundant? |
| if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) { |
| NeededPHIs.erase(NewPHI); |
| RecomputePHIContents = true; |
| } |
| |
| if (RecomputePHIContents) { |
| // The needed PHIs have changed, so recompute the set of all needed |
| // values. |
| PHIContents.clear(); |
| for (auto &PHI : NeededPHIs) |
| PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); |
| } |
| |
| // Is this instruction required by a later PHI that doesn't match this PHI? |
| // if so, we can't sink this instruction. |
| for (auto *V : NewPHI.getValues()) |
| if (PHIContents.count(V)) |
| // V exists in this PHI, but the whole PHI is different to NewPHI |
| // (else it would have been removed earlier). We cannot continue |
| // because this isn't representable. |
| return None; |
| |
| // Which operands need PHIs? |
| // FIXME: If any of these fail, we should partition up the candidates to |
| // try and continue making progress. |
| Instruction *I0 = NewInsts[0]; |
| |
| // If all instructions that are going to participate don't have the same |
| // number of operands, we can't do any useful PHI analysis for all operands. |
| auto hasDifferentNumOperands = [&I0](Instruction *I) { |
| return I->getNumOperands() != I0->getNumOperands(); |
| }; |
| if (any_of(NewInsts, hasDifferentNumOperands)) |
| return None; |
| |
| for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) { |
| ModelledPHI PHI(NewInsts, OpNum, ActivePreds); |
| if (PHI.areAllIncomingValuesSame()) |
| continue; |
| if (!canReplaceOperandWithVariable(I0, OpNum)) |
| // We can 't create a PHI from this instruction! |
| return None; |
| if (NeededPHIs.count(PHI)) |
| continue; |
| if (!PHI.areAllIncomingValuesSameType()) |
| return None; |
| // Don't create indirect calls! The called value is the final operand. |
| if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 && |
| PHI.areAnyIncomingValuesConstant()) |
| return None; |
| |
| NeededPHIs.reserve(NeededPHIs.size()); |
| NeededPHIs.insert(PHI); |
| PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); |
| } |
| |
| if (isMemoryInst(NewInsts[0])) |
| ++MemoryInstNum; |
| |
| SinkingInstructionCandidate Cand; |
| Cand.NumInstructions = ++InstNum; |
| Cand.NumMemoryInsts = MemoryInstNum; |
| Cand.NumBlocks = ActivePreds.size(); |
| Cand.NumPHIs = NeededPHIs.size(); |
| for (auto *C : ActivePreds) |
| Cand.Blocks.push_back(C); |
| |
| return Cand; |
| } |
| |
| unsigned GVNSink::sinkBB(BasicBlock *BBEnd) { |
| LLVM_DEBUG(dbgs() << "GVNSink: running on basic block "; |
| BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); |
| SmallVector<BasicBlock *, 4> Preds; |
| for (auto *B : predecessors(BBEnd)) { |
| auto *T = B->getTerminator(); |
| if (isa<BranchInst>(T) || isa<SwitchInst>(T)) |
| Preds.push_back(B); |
| else |
| return 0; |
| } |
| if (Preds.size() < 2) |
| return 0; |
| llvm::sort(Preds); |
| |
| unsigned NumOrigPreds = Preds.size(); |
| // We can only sink instructions through unconditional branches. |
| for (auto I = Preds.begin(); I != Preds.end();) { |
| if ((*I)->getTerminator()->getNumSuccessors() != 1) |
| I = Preds.erase(I); |
| else |
| ++I; |
| } |
| |
| LockstepReverseIterator LRI(Preds); |
| SmallVector<SinkingInstructionCandidate, 4> Candidates; |
| unsigned InstNum = 0, MemoryInstNum = 0; |
| ModelledPHISet NeededPHIs; |
| SmallPtrSet<Value *, 4> PHIContents; |
| analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents); |
| unsigned NumOrigPHIs = NeededPHIs.size(); |
| |
| while (LRI.isValid()) { |
| auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum, |
| NeededPHIs, PHIContents); |
| if (!Cand) |
| break; |
| Cand->calculateCost(NumOrigPHIs, Preds.size()); |
| Candidates.emplace_back(*Cand); |
| --LRI; |
| } |
| |
| llvm::stable_sort(Candidates, std::greater<SinkingInstructionCandidate>()); |
| LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C |
| : Candidates) dbgs() |
| << " " << C << "\n";); |
| |
| // Pick the top candidate, as long it is positive! |
| if (Candidates.empty() || Candidates.front().Cost <= 0) |
| return 0; |
| auto C = Candidates.front(); |
| |
| LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n"); |
| BasicBlock *InsertBB = BBEnd; |
| if (C.Blocks.size() < NumOrigPreds) { |
| LLVM_DEBUG(dbgs() << " -- Splitting edge to "; |
| BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); |
| InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split"); |
| if (!InsertBB) { |
| LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n"); |
| // Edge couldn't be split. |
| return 0; |
| } |
| } |
| |
| for (unsigned I = 0; I < C.NumInstructions; ++I) |
| sinkLastInstruction(C.Blocks, InsertBB); |
| |
| return C.NumInstructions; |
| } |
| |
| void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, |
| BasicBlock *BBEnd) { |
| SmallVector<Instruction *, 4> Insts; |
| for (BasicBlock *BB : Blocks) |
| Insts.push_back(BB->getTerminator()->getPrevNode()); |
| Instruction *I0 = Insts.front(); |
| |
| SmallVector<Value *, 4> NewOperands; |
| for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { |
| bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) { |
| return I->getOperand(O) != I0->getOperand(O); |
| }); |
| if (!NeedPHI) { |
| NewOperands.push_back(I0->getOperand(O)); |
| continue; |
| } |
| |
| // Create a new PHI in the successor block and populate it. |
| auto *Op = I0->getOperand(O); |
| assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); |
| auto *PN = PHINode::Create(Op->getType(), Insts.size(), |
| Op->getName() + ".sink", &BBEnd->front()); |
| for (auto *I : Insts) |
| PN->addIncoming(I->getOperand(O), I->getParent()); |
| NewOperands.push_back(PN); |
| } |
| |
| // Arbitrarily use I0 as the new "common" instruction; remap its operands |
| // and move it to the start of the successor block. |
| for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) |
| I0->getOperandUse(O).set(NewOperands[O]); |
| I0->moveBefore(&*BBEnd->getFirstInsertionPt()); |
| |
| // Update metadata and IR flags. |
| for (auto *I : Insts) |
| if (I != I0) { |
| combineMetadataForCSE(I0, I, true); |
| I0->andIRFlags(I); |
| } |
| |
| for (auto *I : Insts) |
| if (I != I0) |
| I->replaceAllUsesWith(I0); |
| foldPointlessPHINodes(BBEnd); |
| |
| // Finally nuke all instructions apart from the common instruction. |
| for (auto *I : Insts) |
| if (I != I0) |
| I->eraseFromParent(); |
| |
| NumRemoved += Insts.size() - 1; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Pass machinery / boilerplate |
| |
| class GVNSinkLegacyPass : public FunctionPass { |
| public: |
| static char ID; |
| |
| GVNSinkLegacyPass() : FunctionPass(ID) { |
| initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override { |
| if (skipFunction(F)) |
| return false; |
| GVNSink G; |
| return G.run(F); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) { |
| GVNSink G; |
| if (!G.run(F)) |
| return PreservedAnalyses::all(); |
| |
| PreservedAnalyses PA; |
| PA.preserve<GlobalsAA>(); |
| return PA; |
| } |
| |
| char GVNSinkLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink", |
| "Early GVN sinking of Expressions", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink", |
| "Early GVN sinking of Expressions", false, false) |
| |
| FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); } |