| //===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_ARRAYREF_H |
| #define LLVM_ADT_ARRAYREF_H |
| |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include <array> |
| #include <vector> |
| |
| namespace llvm { |
| /// ArrayRef - Represent a constant reference to an array (0 or more elements |
| /// consecutively in memory), i.e. a start pointer and a length. It allows |
| /// various APIs to take consecutive elements easily and conveniently. |
| /// |
| /// This class does not own the underlying data, it is expected to be used in |
| /// situations where the data resides in some other buffer, whose lifetime |
| /// extends past that of the ArrayRef. For this reason, it is not in general |
| /// safe to store an ArrayRef. |
| /// |
| /// This is intended to be trivially copyable, so it should be passed by |
| /// value. |
| template<typename T> |
| class LLVM_NODISCARD ArrayRef { |
| public: |
| typedef const T *iterator; |
| typedef const T *const_iterator; |
| typedef size_t size_type; |
| |
| typedef std::reverse_iterator<iterator> reverse_iterator; |
| |
| private: |
| /// The start of the array, in an external buffer. |
| const T *Data; |
| |
| /// The number of elements. |
| size_type Length; |
| |
| public: |
| /// @name Constructors |
| /// @{ |
| |
| /// Construct an empty ArrayRef. |
| /*implicit*/ ArrayRef() : Data(nullptr), Length(0) {} |
| |
| /// Construct an empty ArrayRef from None. |
| /*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {} |
| |
| /// Construct an ArrayRef from a single element. |
| /*implicit*/ ArrayRef(const T &OneElt) |
| : Data(&OneElt), Length(1) {} |
| |
| /// Construct an ArrayRef from a pointer and length. |
| /*implicit*/ ArrayRef(const T *data, size_t length) |
| : Data(data), Length(length) {} |
| |
| /// Construct an ArrayRef from a range. |
| ArrayRef(const T *begin, const T *end) |
| : Data(begin), Length(end - begin) {} |
| |
| /// Construct an ArrayRef from a SmallVector. This is templated in order to |
| /// avoid instantiating SmallVectorTemplateCommon<T> whenever we |
| /// copy-construct an ArrayRef. |
| template<typename U> |
| /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec) |
| : Data(Vec.data()), Length(Vec.size()) { |
| } |
| |
| /// Construct an ArrayRef from a std::vector. |
| template<typename A> |
| /*implicit*/ ArrayRef(const std::vector<T, A> &Vec) |
| : Data(Vec.data()), Length(Vec.size()) {} |
| |
| /// Construct an ArrayRef from a std::array |
| template <size_t N> |
| /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr) |
| : Data(Arr.data()), Length(N) {} |
| |
| /// Construct an ArrayRef from a C array. |
| template <size_t N> |
| /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} |
| |
| /// Construct an ArrayRef from a std::initializer_list. |
| /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec) |
| : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()), |
| Length(Vec.size()) {} |
| |
| /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to |
| /// ensure that only ArrayRefs of pointers can be converted. |
| template <typename U> |
| ArrayRef( |
| const ArrayRef<U *> &A, |
| typename std::enable_if< |
| std::is_convertible<U *const *, T const *>::value>::type * = nullptr) |
| : Data(A.data()), Length(A.size()) {} |
| |
| /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is |
| /// templated in order to avoid instantiating SmallVectorTemplateCommon<T> |
| /// whenever we copy-construct an ArrayRef. |
| template<typename U, typename DummyT> |
| /*implicit*/ ArrayRef( |
| const SmallVectorTemplateCommon<U *, DummyT> &Vec, |
| typename std::enable_if< |
| std::is_convertible<U *const *, T const *>::value>::type * = nullptr) |
| : Data(Vec.data()), Length(Vec.size()) { |
| } |
| |
| /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE |
| /// to ensure that only vectors of pointers can be converted. |
| template<typename U, typename A> |
| ArrayRef(const std::vector<U *, A> &Vec, |
| typename std::enable_if< |
| std::is_convertible<U *const *, T const *>::value>::type* = 0) |
| : Data(Vec.data()), Length(Vec.size()) {} |
| |
| /// @} |
| /// @name Simple Operations |
| /// @{ |
| |
| iterator begin() const { return Data; } |
| iterator end() const { return Data + Length; } |
| |
| reverse_iterator rbegin() const { return reverse_iterator(end()); } |
| reverse_iterator rend() const { return reverse_iterator(begin()); } |
| |
| /// empty - Check if the array is empty. |
| bool empty() const { return Length == 0; } |
| |
| const T *data() const { return Data; } |
| |
| /// size - Get the array size. |
| size_t size() const { return Length; } |
| |
| /// front - Get the first element. |
| const T &front() const { |
| assert(!empty()); |
| return Data[0]; |
| } |
| |
| /// back - Get the last element. |
| const T &back() const { |
| assert(!empty()); |
| return Data[Length-1]; |
| } |
| |
| // copy - Allocate copy in Allocator and return ArrayRef<T> to it. |
| template <typename Allocator> ArrayRef<T> copy(Allocator &A) { |
| T *Buff = A.template Allocate<T>(Length); |
| std::uninitialized_copy(begin(), end(), Buff); |
| return ArrayRef<T>(Buff, Length); |
| } |
| |
| /// equals - Check for element-wise equality. |
| bool equals(ArrayRef RHS) const { |
| if (Length != RHS.Length) |
| return false; |
| return std::equal(begin(), end(), RHS.begin()); |
| } |
| |
| /// slice(n, m) - Chop off the first N elements of the array, and keep M |
| /// elements in the array. |
| ArrayRef<T> slice(size_t N, size_t M) const { |
| assert(N+M <= size() && "Invalid specifier"); |
| return ArrayRef<T>(data()+N, M); |
| } |
| |
| /// slice(n) - Chop off the first N elements of the array. |
| ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); } |
| |
| /// \brief Drop the first \p N elements of the array. |
| ArrayRef<T> drop_front(size_t N = 1) const { |
| assert(size() >= N && "Dropping more elements than exist"); |
| return slice(N, size() - N); |
| } |
| |
| /// \brief Drop the last \p N elements of the array. |
| ArrayRef<T> drop_back(size_t N = 1) const { |
| assert(size() >= N && "Dropping more elements than exist"); |
| return slice(0, size() - N); |
| } |
| |
| /// \brief Return a copy of *this with the first N elements satisfying the |
| /// given predicate removed. |
| template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const { |
| return ArrayRef<T>(find_if_not(*this, Pred), end()); |
| } |
| |
| /// \brief Return a copy of *this with the first N elements not satisfying |
| /// the given predicate removed. |
| template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const { |
| return ArrayRef<T>(find_if(*this, Pred), end()); |
| } |
| |
| /// \brief Return a copy of *this with only the first \p N elements. |
| ArrayRef<T> take_front(size_t N = 1) const { |
| if (N >= size()) |
| return *this; |
| return drop_back(size() - N); |
| } |
| |
| /// \brief Return a copy of *this with only the last \p N elements. |
| ArrayRef<T> take_back(size_t N = 1) const { |
| if (N >= size()) |
| return *this; |
| return drop_front(size() - N); |
| } |
| |
| /// \brief Return the first N elements of this Array that satisfy the given |
| /// predicate. |
| template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const { |
| return ArrayRef<T>(begin(), find_if_not(*this, Pred)); |
| } |
| |
| /// \brief Return the first N elements of this Array that don't satisfy the |
| /// given predicate. |
| template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const { |
| return ArrayRef<T>(begin(), find_if(*this, Pred)); |
| } |
| |
| /// @} |
| /// @name Operator Overloads |
| /// @{ |
| const T &operator[](size_t Index) const { |
| assert(Index < Length && "Invalid index!"); |
| return Data[Index]; |
| } |
| |
| /// Disallow accidental assignment from a temporary. |
| /// |
| /// The declaration here is extra complicated so that "arrayRef = {}" |
| /// continues to select the move assignment operator. |
| template <typename U> |
| typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & |
| operator=(U &&Temporary) = delete; |
| |
| /// Disallow accidental assignment from a temporary. |
| /// |
| /// The declaration here is extra complicated so that "arrayRef = {}" |
| /// continues to select the move assignment operator. |
| template <typename U> |
| typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & |
| operator=(std::initializer_list<U>) = delete; |
| |
| /// @} |
| /// @name Expensive Operations |
| /// @{ |
| std::vector<T> vec() const { |
| return std::vector<T>(Data, Data+Length); |
| } |
| |
| /// @} |
| /// @name Conversion operators |
| /// @{ |
| operator std::vector<T>() const { |
| return std::vector<T>(Data, Data+Length); |
| } |
| |
| /// @} |
| }; |
| |
| /// MutableArrayRef - Represent a mutable reference to an array (0 or more |
| /// elements consecutively in memory), i.e. a start pointer and a length. It |
| /// allows various APIs to take and modify consecutive elements easily and |
| /// conveniently. |
| /// |
| /// This class does not own the underlying data, it is expected to be used in |
| /// situations where the data resides in some other buffer, whose lifetime |
| /// extends past that of the MutableArrayRef. For this reason, it is not in |
| /// general safe to store a MutableArrayRef. |
| /// |
| /// This is intended to be trivially copyable, so it should be passed by |
| /// value. |
| template<typename T> |
| class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> { |
| public: |
| typedef T *iterator; |
| |
| typedef std::reverse_iterator<iterator> reverse_iterator; |
| |
| /// Construct an empty MutableArrayRef. |
| /*implicit*/ MutableArrayRef() : ArrayRef<T>() {} |
| |
| /// Construct an empty MutableArrayRef from None. |
| /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {} |
| |
| /// Construct an MutableArrayRef from a single element. |
| /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} |
| |
| /// Construct an MutableArrayRef from a pointer and length. |
| /*implicit*/ MutableArrayRef(T *data, size_t length) |
| : ArrayRef<T>(data, length) {} |
| |
| /// Construct an MutableArrayRef from a range. |
| MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} |
| |
| /// Construct an MutableArrayRef from a SmallVector. |
| /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) |
| : ArrayRef<T>(Vec) {} |
| |
| /// Construct a MutableArrayRef from a std::vector. |
| /*implicit*/ MutableArrayRef(std::vector<T> &Vec) |
| : ArrayRef<T>(Vec) {} |
| |
| /// Construct an ArrayRef from a std::array |
| template <size_t N> |
| /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr) |
| : ArrayRef<T>(Arr) {} |
| |
| /// Construct an MutableArrayRef from a C array. |
| template <size_t N> |
| /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {} |
| |
| T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } |
| |
| iterator begin() const { return data(); } |
| iterator end() const { return data() + this->size(); } |
| |
| reverse_iterator rbegin() const { return reverse_iterator(end()); } |
| reverse_iterator rend() const { return reverse_iterator(begin()); } |
| |
| /// front - Get the first element. |
| T &front() const { |
| assert(!this->empty()); |
| return data()[0]; |
| } |
| |
| /// back - Get the last element. |
| T &back() const { |
| assert(!this->empty()); |
| return data()[this->size()-1]; |
| } |
| |
| /// slice(n, m) - Chop off the first N elements of the array, and keep M |
| /// elements in the array. |
| MutableArrayRef<T> slice(size_t N, size_t M) const { |
| assert(N + M <= this->size() && "Invalid specifier"); |
| return MutableArrayRef<T>(this->data() + N, M); |
| } |
| |
| /// slice(n) - Chop off the first N elements of the array. |
| MutableArrayRef<T> slice(size_t N) const { |
| return slice(N, this->size() - N); |
| } |
| |
| /// \brief Drop the first \p N elements of the array. |
| MutableArrayRef<T> drop_front(size_t N = 1) const { |
| assert(this->size() >= N && "Dropping more elements than exist"); |
| return slice(N, this->size() - N); |
| } |
| |
| MutableArrayRef<T> drop_back(size_t N = 1) const { |
| assert(this->size() >= N && "Dropping more elements than exist"); |
| return slice(0, this->size() - N); |
| } |
| |
| /// \brief Return a copy of *this with the first N elements satisfying the |
| /// given predicate removed. |
| template <class PredicateT> |
| MutableArrayRef<T> drop_while(PredicateT Pred) const { |
| return MutableArrayRef<T>(find_if_not(*this, Pred), end()); |
| } |
| |
| /// \brief Return a copy of *this with the first N elements not satisfying |
| /// the given predicate removed. |
| template <class PredicateT> |
| MutableArrayRef<T> drop_until(PredicateT Pred) const { |
| return MutableArrayRef<T>(find_if(*this, Pred), end()); |
| } |
| |
| /// \brief Return a copy of *this with only the first \p N elements. |
| MutableArrayRef<T> take_front(size_t N = 1) const { |
| if (N >= this->size()) |
| return *this; |
| return drop_back(this->size() - N); |
| } |
| |
| /// \brief Return a copy of *this with only the last \p N elements. |
| MutableArrayRef<T> take_back(size_t N = 1) const { |
| if (N >= this->size()) |
| return *this; |
| return drop_front(this->size() - N); |
| } |
| |
| /// \brief Return the first N elements of this Array that satisfy the given |
| /// predicate. |
| template <class PredicateT> |
| MutableArrayRef<T> take_while(PredicateT Pred) const { |
| return MutableArrayRef<T>(begin(), find_if_not(*this, Pred)); |
| } |
| |
| /// \brief Return the first N elements of this Array that don't satisfy the |
| /// given predicate. |
| template <class PredicateT> |
| MutableArrayRef<T> take_until(PredicateT Pred) const { |
| return MutableArrayRef<T>(begin(), find_if(*this, Pred)); |
| } |
| |
| /// @} |
| /// @name Operator Overloads |
| /// @{ |
| T &operator[](size_t Index) const { |
| assert(Index < this->size() && "Invalid index!"); |
| return data()[Index]; |
| } |
| }; |
| |
| /// This is a MutableArrayRef that owns its array. |
| template <typename T> class OwningArrayRef : public MutableArrayRef<T> { |
| public: |
| OwningArrayRef() {} |
| OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {} |
| OwningArrayRef(ArrayRef<T> Data) |
| : MutableArrayRef<T>(new T[Data.size()], Data.size()) { |
| std::copy(Data.begin(), Data.end(), this->begin()); |
| } |
| OwningArrayRef(OwningArrayRef &&Other) { *this = Other; } |
| OwningArrayRef &operator=(OwningArrayRef &&Other) { |
| delete[] this->data(); |
| this->MutableArrayRef<T>::operator=(Other); |
| Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>()); |
| return *this; |
| } |
| ~OwningArrayRef() { delete[] this->data(); } |
| }; |
| |
| /// @name ArrayRef Convenience constructors |
| /// @{ |
| |
| /// Construct an ArrayRef from a single element. |
| template<typename T> |
| ArrayRef<T> makeArrayRef(const T &OneElt) { |
| return OneElt; |
| } |
| |
| /// Construct an ArrayRef from a pointer and length. |
| template<typename T> |
| ArrayRef<T> makeArrayRef(const T *data, size_t length) { |
| return ArrayRef<T>(data, length); |
| } |
| |
| /// Construct an ArrayRef from a range. |
| template<typename T> |
| ArrayRef<T> makeArrayRef(const T *begin, const T *end) { |
| return ArrayRef<T>(begin, end); |
| } |
| |
| /// Construct an ArrayRef from a SmallVector. |
| template <typename T> |
| ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { |
| return Vec; |
| } |
| |
| /// Construct an ArrayRef from a SmallVector. |
| template <typename T, unsigned N> |
| ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { |
| return Vec; |
| } |
| |
| /// Construct an ArrayRef from a std::vector. |
| template<typename T> |
| ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { |
| return Vec; |
| } |
| |
| /// Construct an ArrayRef from an ArrayRef (no-op) (const) |
| template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) { |
| return Vec; |
| } |
| |
| /// Construct an ArrayRef from an ArrayRef (no-op) |
| template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) { |
| return Vec; |
| } |
| |
| /// Construct an ArrayRef from a C array. |
| template<typename T, size_t N> |
| ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { |
| return ArrayRef<T>(Arr); |
| } |
| |
| /// @} |
| /// @name ArrayRef Comparison Operators |
| /// @{ |
| |
| template<typename T> |
| inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { |
| return LHS.equals(RHS); |
| } |
| |
| template<typename T> |
| inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { |
| return !(LHS == RHS); |
| } |
| |
| /// @} |
| |
| // ArrayRefs can be treated like a POD type. |
| template <typename T> struct isPodLike; |
| template <typename T> struct isPodLike<ArrayRef<T> > { |
| static const bool value = true; |
| }; |
| |
| template <typename T> hash_code hash_value(ArrayRef<T> S) { |
| return hash_combine_range(S.begin(), S.end()); |
| } |
| } // end namespace llvm |
| |
| #endif // LLVM_ADT_ARRAYREF_H |