| //===- subzero/src/IceCfg.h - Control flow graph ----------------*- C++ -*-===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// \brief Declares the Cfg class, which represents the control flow graph and |
| /// the overall per-function compilation context. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SUBZERO_SRC_ICECFG_H |
| #define SUBZERO_SRC_ICECFG_H |
| |
| #include "IceAssembler.h" |
| #include "IceClFlags.h" |
| #include "IceDefs.h" |
| #include "IceGlobalContext.h" |
| #include "IceLoopAnalyzer.h" |
| #include "IceStringPool.h" |
| #include "IceTypes.h" |
| |
| namespace Ice { |
| |
| class Cfg { |
| Cfg() = delete; |
| Cfg(const Cfg &) = delete; |
| Cfg &operator=(const Cfg &) = delete; |
| |
| std::unique_ptr<ArenaAllocator> Allocator; |
| |
| public: |
| ~Cfg(); |
| |
| static std::unique_ptr<Cfg> create(GlobalContext *Ctx, |
| uint32_t SequenceNumber) { |
| return std::unique_ptr<Cfg>(new Cfg(Ctx, SequenceNumber)); |
| } |
| |
| GlobalContext *getContext() const { return Ctx; } |
| uint32_t getSequenceNumber() const { return SequenceNumber; } |
| OptLevel getOptLevel() const { return OptimizationLevel; } |
| |
| static constexpr VerboseMask defaultVerboseMask() { |
| return (IceV_NO_PER_PASS_DUMP_BEYOND << 1) - 1; |
| } |
| /// Returns true if any of the specified options in the verbose mask are set. |
| /// If the argument is omitted, it checks if any verbose options at all are |
| /// set. |
| bool isVerbose(VerboseMask Mask = defaultVerboseMask()) const { |
| return VMask & Mask; |
| } |
| void setVerbose(VerboseMask Mask) { VMask = Mask; } |
| |
| /// \name Manage the name and return type of the function being translated. |
| /// @{ |
| void setFunctionName(GlobalString Name) { FunctionName = Name; } |
| GlobalString getFunctionName() const { return FunctionName; } |
| std::string getFunctionNameAndSize() const; |
| void setReturnType(Type Ty) { ReturnType = Ty; } |
| Type getReturnType() const { return ReturnType; } |
| /// @} |
| |
| /// \name Manage the "internal" attribute of the function. |
| /// @{ |
| void setInternal(bool Internal) { IsInternalLinkage = Internal; } |
| bool getInternal() const { return IsInternalLinkage; } |
| /// @} |
| |
| /// \name Manage errors. |
| /// @{ |
| |
| /// Translation error flagging. If support for some construct is known to be |
| /// missing, instead of an assertion failure, setError() should be called and |
| /// the error should be propagated back up. This way, we can gracefully fail |
| /// to translate and let a fallback translator handle the function. |
| void setError(const std::string &Message); |
| bool hasError() const { return HasError; } |
| std::string getError() const { return ErrorMessage; } |
| /// @} |
| |
| /// \name Manage nodes (a.k.a. basic blocks, CfgNodes). |
| /// @{ |
| void setEntryNode(CfgNode *EntryNode) { Entry = EntryNode; } |
| CfgNode *getEntryNode() const { return Entry; } |
| /// Create a node and append it to the end of the linearized list. The loop |
| /// nest depth of the new node may not be valid if it is created after |
| /// computeLoopNestDepth. |
| CfgNode *makeNode(); |
| SizeT getNumNodes() const { return Nodes.size(); } |
| const NodeList &getNodes() const { return Nodes; } |
| /// Swap nodes of Cfg with given list of nodes. The number of nodes must |
| /// remain unchanged. |
| void swapNodes(NodeList &NewNodes); |
| /// @} |
| |
| /// String pool for CfgNode::Name values. |
| StringPool *getNodeStrings() const { return NodeStrings.get(); } |
| /// String pool for Variable::Name values. |
| StringPool *getVarStrings() const { return VarStrings.get(); } |
| |
| /// \name Manage instruction numbering. |
| /// @{ |
| InstNumberT newInstNumber() { return NextInstNumber++; } |
| InstNumberT getNextInstNumber() const { return NextInstNumber; } |
| /// @} |
| |
| /// \name Manage Variables. |
| /// @{ |
| |
| /// Create a new Variable with a particular type and an optional name. The |
| /// Node argument is the node where the variable is defined. |
| // TODO(jpp): untemplate this with separate methods: makeVariable and |
| // makeStackVariable. |
| template <typename T = Variable> T *makeVariable(Type Ty) { |
| SizeT Index = Variables.size(); |
| auto *Var = T::create(this, Ty, Index); |
| Variables.push_back(Var); |
| return Var; |
| } |
| SizeT getNumVariables() const { return Variables.size(); } |
| const VarList &getVariables() const { return Variables; } |
| /// @} |
| |
| /// \name Manage arguments to the function. |
| /// @{ |
| void addArg(Variable *Arg); |
| const VarList &getArgs() const { return Args; } |
| VarList &getArgs() { return Args; } |
| void addImplicitArg(Variable *Arg); |
| const VarList &getImplicitArgs() const { return ImplicitArgs; } |
| /// @} |
| |
| /// \name Manage the jump tables. |
| /// @{ |
| void addJumpTable(InstJumpTable *JumpTable) { |
| JumpTables.emplace_back(JumpTable); |
| } |
| /// @} |
| |
| /// \name Manage the Globals used by this function. |
| /// @{ |
| std::unique_ptr<VariableDeclarationList> getGlobalInits() { |
| return std::move(GlobalInits); |
| } |
| void addGlobal(VariableDeclaration *Global) { |
| if (GlobalInits == nullptr) { |
| GlobalInits.reset(new VariableDeclarationList); |
| } |
| GlobalInits->push_back(Global); |
| } |
| VariableDeclarationList *getGlobalPool() { |
| if (GlobalInits == nullptr) { |
| GlobalInits.reset(new VariableDeclarationList); |
| } |
| return GlobalInits.get(); |
| } |
| /// @} |
| |
| /// \name Miscellaneous accessors. |
| /// @{ |
| TargetLowering *getTarget() const { return Target.get(); } |
| VariablesMetadata *getVMetadata() const { return VMetadata.get(); } |
| Liveness *getLiveness() const { return Live.get(); } |
| template <typename T = Assembler> T *getAssembler() const { |
| return llvm::dyn_cast<T>(TargetAssembler.get()); |
| } |
| std::unique_ptr<Assembler> releaseAssembler() { |
| return std::move(TargetAssembler); |
| } |
| bool hasComputedFrame() const; |
| bool getFocusedTiming() const { return FocusedTiming; } |
| void setFocusedTiming() { FocusedTiming = true; } |
| uint32_t getConstantBlindingCookie() const { return ConstantBlindingCookie; } |
| /// @} |
| |
| /// Passes over the CFG. |
| void translate(); |
| /// After the CFG is fully constructed, iterate over the nodes and compute the |
| /// predecessor and successor edges, in the form of CfgNode::InEdges[] and |
| /// CfgNode::OutEdges[]. |
| void computeInOutEdges(); |
| /// Renumber the non-deleted instructions in the Cfg. This needs to be done |
| /// in preparation for live range analysis. The instruction numbers in a |
| /// block must be monotonically increasing. The range of instruction numbers |
| /// in a block, from lowest to highest, must not overlap with the range of any |
| /// other block. |
| /// |
| /// Also, if the configuration specifies to do so, remove/unlink all deleted |
| /// instructions from the Cfg, to speed up later passes over the instructions. |
| void renumberInstructions(); |
| void placePhiLoads(); |
| void placePhiStores(); |
| void deletePhis(); |
| void advancedPhiLowering(); |
| void reorderNodes(); |
| void shuffleNodes(); |
| void localCSE(bool AssumeSSA); |
| void floatConstantCSE(); |
| void shortCircuitJumps(); |
| void loopInvariantCodeMotion(); |
| |
| /// Scan allocas to determine whether we need to use a frame pointer. |
| /// If SortAndCombine == true, merge all the fixed-size allocas in the |
| /// entry block and emit stack or frame pointer-relative addressing. |
| void processAllocas(bool SortAndCombine); |
| void doAddressOpt(); |
| /// Find clusters of insertelement/extractelement instructions that can be |
| /// replaced by a shufflevector instruction. |
| void materializeVectorShuffles(); |
| void doArgLowering(); |
| void doNopInsertion(); |
| void genCode(); |
| void genFrame(); |
| void generateLoopInfo(); |
| void livenessLightweight(); |
| void liveness(LivenessMode Mode); |
| bool validateLiveness() const; |
| void contractEmptyNodes(); |
| void doBranchOpt(); |
| void markNodesForSandboxing(); |
| |
| /// \name Manage the CurrentNode field. |
| /// CurrentNode is used for validating the Variable::DefNode field during |
| /// dumping/emitting. |
| /// @{ |
| void setCurrentNode(const CfgNode *Node) { CurrentNode = Node; } |
| void resetCurrentNode() { setCurrentNode(nullptr); } |
| const CfgNode *getCurrentNode() const { return CurrentNode; } |
| /// @} |
| |
| /// Get the total amount of memory held by the per-Cfg allocator. |
| size_t getTotalMemoryMB() const; |
| |
| /// Get the current memory usage due to liveness data structures. |
| size_t getLivenessMemoryMB() const; |
| |
| void emit(); |
| void emitIAS(); |
| static void emitTextHeader(GlobalString Name, GlobalContext *Ctx, |
| const Assembler *Asm); |
| void dump(const char *Message = ""); |
| |
| /// Allocate data of type T using the per-Cfg allocator. |
| template <typename T> T *allocate() { return Allocator->Allocate<T>(); } |
| |
| /// Allocate an array of data of type T using the per-Cfg allocator. |
| template <typename T> T *allocateArrayOf(size_t NumElems) { |
| return Allocator->Allocate<T>(NumElems); |
| } |
| |
| /// Deallocate data that was allocated via allocate<T>(). |
| template <typename T> void deallocate(T *Object) { |
| Allocator->Deallocate(Object); |
| } |
| |
| /// Deallocate data that was allocated via allocateArrayOf<T>(). |
| template <typename T> void deallocateArrayOf(T *Array) { |
| Allocator->Deallocate(Array); |
| } |
| |
| /// Update Phi labels with InEdges. |
| /// |
| /// The WASM translator cannot always determine the right incoming edge for a |
| /// value due to the CFG being built incrementally. The fixPhiNodes pass fills |
| /// in the correct information once everything is known. |
| void fixPhiNodes(); |
| |
| void setStackSizeLimit(uint32_t Limit) { StackSizeLimit = Limit; } |
| uint32_t getStackSizeLimit() const { return StackSizeLimit; } |
| |
| private: |
| friend class CfgAllocatorTraits; // for Allocator access. |
| |
| Cfg(GlobalContext *Ctx, uint32_t SequenceNumber); |
| |
| void createNodeNameDeclaration(const std::string &NodeAsmName); |
| void |
| createBlockProfilingInfoDeclaration(const std::string &NodeAsmName, |
| VariableDeclaration *NodeNameDeclaration); |
| |
| /// Iterate through the registered jump tables and emit them. |
| void emitJumpTables(); |
| |
| enum AllocaBaseVariableType { |
| BVT_StackPointer, |
| BVT_FramePointer, |
| BVT_UserPointer |
| }; |
| void sortAndCombineAllocas(CfgVector<InstAlloca *> &Allocas, |
| uint32_t CombinedAlignment, InstList &Insts, |
| AllocaBaseVariableType BaseVariableType); |
| void findRematerializable(); |
| CfgVector<Inst *> |
| findLoopInvariantInstructions(const CfgUnorderedSet<SizeT> &Body); |
| |
| static ArenaAllocator *createAllocator(); |
| |
| GlobalContext *Ctx; |
| uint32_t SequenceNumber; /// output order for emission |
| OptLevel OptimizationLevel = Opt_m1; |
| uint32_t ConstantBlindingCookie = 0; /// cookie for constant blinding |
| VerboseMask VMask; |
| GlobalString FunctionName; |
| Type ReturnType = IceType_void; |
| bool IsInternalLinkage = false; |
| bool HasError = false; |
| bool FocusedTiming = false; |
| std::string ErrorMessage = ""; |
| CfgNode *Entry = nullptr; /// entry basic block |
| NodeList Nodes; /// linearized node list; Entry should be first |
| InstNumberT NextInstNumber; |
| VarList Variables; |
| VarList Args; /// subset of Variables, in argument order |
| VarList ImplicitArgs; /// subset of Variables |
| // Separate string pools for CfgNode and Variable names, due to a combination |
| // of the uniqueness requirement, and assumptions in lit tests. |
| std::unique_ptr<StringPool> NodeStrings; |
| std::unique_ptr<StringPool> VarStrings; |
| std::unique_ptr<Liveness> Live; |
| std::unique_ptr<TargetLowering> Target; |
| std::unique_ptr<VariablesMetadata> VMetadata; |
| std::unique_ptr<Assembler> TargetAssembler; |
| /// Globals required by this CFG. |
| std::unique_ptr<VariableDeclarationList> GlobalInits; |
| CfgVector<InstJumpTable *> JumpTables; |
| /// CurrentNode is maintained during dumping/emitting just for validating |
| /// Variable::DefNode. Normally, a traversal over CfgNodes maintains this, but |
| /// before global operations like register allocation, resetCurrentNode() |
| /// should be called to avoid spurious validation failures. |
| const CfgNode *CurrentNode = nullptr; |
| CfgVector<Loop> LoopInfo; |
| uint32_t StackSizeLimit = 1 * 1024 * 1024; // 1 MiB |
| |
| public: |
| static void TlsInit() { CfgAllocatorTraits::init(); } |
| }; |
| |
| template <> Variable *Cfg::makeVariable<Variable>(Type Ty); |
| |
| struct NodeStringPoolTraits { |
| using OwnerType = Cfg; |
| static StringPool *getStrings(const OwnerType *PoolOwner) { |
| return PoolOwner->getNodeStrings(); |
| } |
| }; |
| using NodeString = StringID<NodeStringPoolTraits>; |
| |
| struct VariableStringPoolTraits { |
| using OwnerType = Cfg; |
| static StringPool *getStrings(const OwnerType *PoolOwner) { |
| return PoolOwner->getVarStrings(); |
| } |
| }; |
| using VariableString = StringID<VariableStringPoolTraits>; |
| |
| } // end of namespace Ice |
| |
| #endif // SUBZERO_SRC_ICECFG_H |