| //===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Define several functions to decode x86 specific shuffle semantics into a |
| // generic vector mask. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86ShuffleDecode.h" |
| #include "llvm/ADT/ArrayRef.h" |
| |
| //===----------------------------------------------------------------------===// |
| // Vector Mask Decoding |
| //===----------------------------------------------------------------------===// |
| |
| namespace llvm { |
| |
| void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { |
| // Defaults the copying the dest value. |
| ShuffleMask.push_back(0); |
| ShuffleMask.push_back(1); |
| ShuffleMask.push_back(2); |
| ShuffleMask.push_back(3); |
| |
| // Decode the immediate. |
| unsigned ZMask = Imm & 15; |
| unsigned CountD = (Imm >> 4) & 3; |
| unsigned CountS = (Imm >> 6) & 3; |
| |
| // CountS selects which input element to use. |
| unsigned InVal = 4 + CountS; |
| // CountD specifies which element of destination to update. |
| ShuffleMask[CountD] = InVal; |
| // ZMask zaps values, potentially overriding the CountD elt. |
| if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero; |
| if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero; |
| if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero; |
| if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero; |
| } |
| |
| void DecodeInsertElementMask(unsigned NumElts, unsigned Idx, unsigned Len, |
| SmallVectorImpl<int> &ShuffleMask) { |
| assert((Idx + Len) <= NumElts && "Insertion out of range"); |
| |
| for (unsigned i = 0; i != NumElts; ++i) |
| ShuffleMask.push_back(i); |
| for (unsigned i = 0; i != Len; ++i) |
| ShuffleMask[Idx + i] = NumElts + i; |
| } |
| |
| // <3,1> or <6,7,2,3> |
| void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { |
| for (unsigned i = NElts / 2; i != NElts; ++i) |
| ShuffleMask.push_back(NElts + i); |
| |
| for (unsigned i = NElts / 2; i != NElts; ++i) |
| ShuffleMask.push_back(i); |
| } |
| |
| // <0,2> or <0,1,4,5> |
| void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { |
| for (unsigned i = 0; i != NElts / 2; ++i) |
| ShuffleMask.push_back(i); |
| |
| for (unsigned i = 0; i != NElts / 2; ++i) |
| ShuffleMask.push_back(NElts + i); |
| } |
| |
| void DecodeMOVSLDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) { |
| for (int i = 0, e = NumElts / 2; i < e; ++i) { |
| ShuffleMask.push_back(2 * i); |
| ShuffleMask.push_back(2 * i); |
| } |
| } |
| |
| void DecodeMOVSHDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) { |
| for (int i = 0, e = NumElts / 2; i < e; ++i) { |
| ShuffleMask.push_back(2 * i + 1); |
| ShuffleMask.push_back(2 * i + 1); |
| } |
| } |
| |
| void DecodeMOVDDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) { |
| const unsigned NumLaneElts = 2; |
| |
| for (unsigned l = 0; l < NumElts; l += NumLaneElts) |
| for (unsigned i = 0; i < NumLaneElts; ++i) |
| ShuffleMask.push_back(l); |
| } |
| |
| void DecodePSLLDQMask(unsigned NumElts, unsigned Imm, |
| SmallVectorImpl<int> &ShuffleMask) { |
| const unsigned NumLaneElts = 16; |
| |
| for (unsigned l = 0; l < NumElts; l += NumLaneElts) |
| for (unsigned i = 0; i < NumLaneElts; ++i) { |
| int M = SM_SentinelZero; |
| if (i >= Imm) M = i - Imm + l; |
| ShuffleMask.push_back(M); |
| } |
| } |
| |
| void DecodePSRLDQMask(unsigned NumElts, unsigned Imm, |
| SmallVectorImpl<int> &ShuffleMask) { |
| const unsigned NumLaneElts = 16; |
| |
| for (unsigned l = 0; l < NumElts; l += NumLaneElts) |
| for (unsigned i = 0; i < NumLaneElts; ++i) { |
| unsigned Base = i + Imm; |
| int M = Base + l; |
| if (Base >= NumLaneElts) M = SM_SentinelZero; |
| ShuffleMask.push_back(M); |
| } |
| } |
| |
| void DecodePALIGNRMask(unsigned NumElts, unsigned Imm, |
| SmallVectorImpl<int> &ShuffleMask) { |
| const unsigned NumLaneElts = 16; |
| |
| for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| for (unsigned i = 0; i != NumLaneElts; ++i) { |
| unsigned Base = i + Imm; |
| // if i+imm is out of this lane then we actually need the other source |
| if (Base >= NumLaneElts) Base += NumElts - NumLaneElts; |
| ShuffleMask.push_back(Base + l); |
| } |
| } |
| } |
| |
| void DecodeVALIGNMask(unsigned NumElts, unsigned Imm, |
| SmallVectorImpl<int> &ShuffleMask) { |
| // Not all bits of the immediate are used so mask it. |
| assert(isPowerOf2_32(NumElts) && "NumElts should be power of 2"); |
| Imm = Imm & (NumElts - 1); |
| for (unsigned i = 0; i != NumElts; ++i) |
| ShuffleMask.push_back(i + Imm); |
| } |
| |
| /// DecodePSHUFMask - This decodes the shuffle masks for pshufw, pshufd, and vpermilp*. |
| /// VT indicates the type of the vector allowing it to handle different |
| /// datatypes and vector widths. |
| void DecodePSHUFMask(unsigned NumElts, unsigned ScalarBits, unsigned Imm, |
| SmallVectorImpl<int> &ShuffleMask) { |
| unsigned Size = NumElts * ScalarBits; |
| unsigned NumLanes = Size / 128; |
| if (NumLanes == 0) NumLanes = 1; // Handle MMX |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| uint32_t SplatImm = (Imm & 0xff) * 0x01010101; |
| for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| for (unsigned i = 0; i != NumLaneElts; ++i) { |
| ShuffleMask.push_back(SplatImm % NumLaneElts + l); |
| SplatImm /= NumLaneElts; |
| } |
| } |
| } |
| |
| void DecodePSHUFHWMask(unsigned NumElts, unsigned Imm, |
| SmallVectorImpl<int> &ShuffleMask) { |
| for (unsigned l = 0; l != NumElts; l += 8) { |
| unsigned NewImm = Imm; |
| for (unsigned i = 0, e = 4; i != e; ++i) { |
| ShuffleMask.push_back(l + i); |
| } |
| for (unsigned i = 4, e = 8; i != e; ++i) { |
| ShuffleMask.push_back(l + 4 + (NewImm & 3)); |
| NewImm >>= 2; |
| } |
| } |
| } |
| |
| void DecodePSHUFLWMask(unsigned NumElts, unsigned Imm, |
| SmallVectorImpl<int> &ShuffleMask) { |
| for (unsigned l = 0; l != NumElts; l += 8) { |
| unsigned NewImm = Imm; |
| for (unsigned i = 0, e = 4; i != e; ++i) { |
| ShuffleMask.push_back(l + (NewImm & 3)); |
| NewImm >>= 2; |
| } |
| for (unsigned i = 4, e = 8; i != e; ++i) { |
| ShuffleMask.push_back(l + i); |
| } |
| } |
| } |
| |
| void DecodePSWAPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) { |
| unsigned NumHalfElts = NumElts / 2; |
| |
| for (unsigned l = 0; l != NumHalfElts; ++l) |
| ShuffleMask.push_back(l + NumHalfElts); |
| for (unsigned h = 0; h != NumHalfElts; ++h) |
| ShuffleMask.push_back(h); |
| } |
| |
| /// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates |
| /// the type of the vector allowing it to handle different datatypes and vector |
| /// widths. |
| void DecodeSHUFPMask(unsigned NumElts, unsigned ScalarBits, |
| unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { |
| unsigned NumLaneElts = 128 / ScalarBits; |
| |
| unsigned NewImm = Imm; |
| for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| // each half of a lane comes from different source |
| for (unsigned s = 0; s != NumElts * 2; s += NumElts) { |
| for (unsigned i = 0; i != NumLaneElts / 2; ++i) { |
| ShuffleMask.push_back(NewImm % NumLaneElts + s + l); |
| NewImm /= NumLaneElts; |
| } |
| } |
| if (NumLaneElts == 4) NewImm = Imm; // reload imm |
| } |
| } |
| |
| /// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd |
| /// and punpckh*. VT indicates the type of the vector allowing it to handle |
| /// different datatypes and vector widths. |
| void DecodeUNPCKHMask(unsigned NumElts, unsigned ScalarBits, |
| SmallVectorImpl<int> &ShuffleMask) { |
| // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate |
| // independently on 128-bit lanes. |
| unsigned NumLanes = (NumElts * ScalarBits) / 128; |
| if (NumLanes == 0) NumLanes = 1; // Handle MMX |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) { |
| ShuffleMask.push_back(i); // Reads from dest/src1 |
| ShuffleMask.push_back(i + NumElts); // Reads from src/src2 |
| } |
| } |
| } |
| |
| /// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd |
| /// and punpckl*. VT indicates the type of the vector allowing it to handle |
| /// different datatypes and vector widths. |
| void DecodeUNPCKLMask(unsigned NumElts, unsigned ScalarBits, |
| SmallVectorImpl<int> &ShuffleMask) { |
| // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate |
| // independently on 128-bit lanes. |
| unsigned NumLanes = (NumElts * ScalarBits) / 128; |
| if (NumLanes == 0 ) NumLanes = 1; // Handle MMX |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) { |
| ShuffleMask.push_back(i); // Reads from dest/src1 |
| ShuffleMask.push_back(i + NumElts); // Reads from src/src2 |
| } |
| } |
| } |
| |
| /// Decodes a broadcast of the first element of a vector. |
| void DecodeVectorBroadcast(unsigned NumElts, |
| SmallVectorImpl<int> &ShuffleMask) { |
| ShuffleMask.append(NumElts, 0); |
| } |
| |
| /// Decodes a broadcast of a subvector to a larger vector type. |
| void DecodeSubVectorBroadcast(unsigned DstNumElts, unsigned SrcNumElts, |
| SmallVectorImpl<int> &ShuffleMask) { |
| unsigned Scale = DstNumElts / SrcNumElts; |
| |
| for (unsigned i = 0; i != Scale; ++i) |
| for (unsigned j = 0; j != SrcNumElts; ++j) |
| ShuffleMask.push_back(j); |
| } |
| |
| /// Decode a shuffle packed values at 128-bit granularity |
| /// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2) |
| /// immediate mask into a shuffle mask. |
| void decodeVSHUF64x2FamilyMask(unsigned NumElts, unsigned ScalarSize, |
| unsigned Imm, |
| SmallVectorImpl<int> &ShuffleMask) { |
| unsigned NumElementsInLane = 128 / ScalarSize; |
| unsigned NumLanes = NumElts / NumElementsInLane; |
| |
| for (unsigned l = 0; l != NumElts; l += NumElementsInLane) { |
| unsigned Index = (Imm % NumLanes) * NumElementsInLane; |
| Imm /= NumLanes; // Discard the bits we just used. |
| // We actually need the other source. |
| if (l >= (NumElts / 2)) |
| Index += NumElts; |
| for (unsigned i = 0; i != NumElementsInLane; ++i) |
| ShuffleMask.push_back(Index + i); |
| } |
| } |
| |
| void DecodeVPERM2X128Mask(unsigned NumElts, unsigned Imm, |
| SmallVectorImpl<int> &ShuffleMask) { |
| unsigned HalfSize = NumElts / 2; |
| |
| for (unsigned l = 0; l != 2; ++l) { |
| unsigned HalfMask = Imm >> (l * 4); |
| unsigned HalfBegin = (HalfMask & 0x3) * HalfSize; |
| for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i) |
| ShuffleMask.push_back((HalfMask & 8) ? SM_SentinelZero : (int)i); |
| } |
| } |
| |
| void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts, |
| SmallVectorImpl<int> &ShuffleMask) { |
| for (int i = 0, e = RawMask.size(); i < e; ++i) { |
| uint64_t M = RawMask[i]; |
| if (UndefElts[i]) { |
| ShuffleMask.push_back(SM_SentinelUndef); |
| continue; |
| } |
| // For 256/512-bit vectors the base of the shuffle is the 128-bit |
| // subvector we're inside. |
| int Base = (i / 16) * 16; |
| // If the high bit (7) of the byte is set, the element is zeroed. |
| if (M & (1 << 7)) |
| ShuffleMask.push_back(SM_SentinelZero); |
| else { |
| // Only the least significant 4 bits of the byte are used. |
| int Index = Base + (M & 0xf); |
| ShuffleMask.push_back(Index); |
| } |
| } |
| } |
| |
| void DecodeBLENDMask(unsigned NumElts, unsigned Imm, |
| SmallVectorImpl<int> &ShuffleMask) { |
| for (unsigned i = 0; i < NumElts; ++i) { |
| // If there are more than 8 elements in the vector, then any immediate blend |
| // mask wraps around. |
| unsigned Bit = i % 8; |
| ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElts + i : i); |
| } |
| } |
| |
| void DecodeVPPERMMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts, |
| SmallVectorImpl<int> &ShuffleMask) { |
| assert(RawMask.size() == 16 && "Illegal VPPERM shuffle mask size"); |
| |
| // VPPERM Operation |
| // Bits[4:0] - Byte Index (0 - 31) |
| // Bits[7:5] - Permute Operation |
| // |
| // Permute Operation: |
| // 0 - Source byte (no logical operation). |
| // 1 - Invert source byte. |
| // 2 - Bit reverse of source byte. |
| // 3 - Bit reverse of inverted source byte. |
| // 4 - 00h (zero - fill). |
| // 5 - FFh (ones - fill). |
| // 6 - Most significant bit of source byte replicated in all bit positions. |
| // 7 - Invert most significant bit of source byte and replicate in all bit positions. |
| for (int i = 0, e = RawMask.size(); i < e; ++i) { |
| if (UndefElts[i]) { |
| ShuffleMask.push_back(SM_SentinelUndef); |
| continue; |
| } |
| |
| uint64_t M = RawMask[i]; |
| uint64_t PermuteOp = (M >> 5) & 0x7; |
| if (PermuteOp == 4) { |
| ShuffleMask.push_back(SM_SentinelZero); |
| continue; |
| } |
| if (PermuteOp != 0) { |
| ShuffleMask.clear(); |
| return; |
| } |
| |
| uint64_t Index = M & 0x1F; |
| ShuffleMask.push_back((int)Index); |
| } |
| } |
| |
| /// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD. |
| void DecodeVPERMMask(unsigned NumElts, unsigned Imm, |
| SmallVectorImpl<int> &ShuffleMask) { |
| for (unsigned l = 0; l != NumElts; l += 4) |
| for (unsigned i = 0; i != 4; ++i) |
| ShuffleMask.push_back(l + ((Imm >> (2 * i)) & 3)); |
| } |
| |
| void DecodeZeroExtendMask(unsigned SrcScalarBits, unsigned DstScalarBits, |
| unsigned NumDstElts, bool IsAnyExtend, |
| SmallVectorImpl<int> &Mask) { |
| unsigned Scale = DstScalarBits / SrcScalarBits; |
| assert(SrcScalarBits < DstScalarBits && |
| "Expected zero extension mask to increase scalar size"); |
| |
| for (unsigned i = 0; i != NumDstElts; i++) { |
| Mask.push_back(i); |
| for (unsigned j = 1; j != Scale; j++) |
| Mask.push_back(IsAnyExtend ? SM_SentinelUndef : SM_SentinelZero); |
| } |
| } |
| |
| void DecodeZeroMoveLowMask(unsigned NumElts, |
| SmallVectorImpl<int> &ShuffleMask) { |
| ShuffleMask.push_back(0); |
| for (unsigned i = 1; i < NumElts; i++) |
| ShuffleMask.push_back(SM_SentinelZero); |
| } |
| |
| void DecodeScalarMoveMask(unsigned NumElts, bool IsLoad, |
| SmallVectorImpl<int> &Mask) { |
| // First element comes from the first element of second source. |
| // Remaining elements: Load zero extends / Move copies from first source. |
| Mask.push_back(NumElts); |
| for (unsigned i = 1; i < NumElts; i++) |
| Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i); |
| } |
| |
| void DecodeEXTRQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx, |
| SmallVectorImpl<int> &ShuffleMask) { |
| unsigned HalfElts = NumElts / 2; |
| |
| // Only the bottom 6 bits are valid for each immediate. |
| Len &= 0x3F; |
| Idx &= 0x3F; |
| |
| // We can only decode this bit extraction instruction as a shuffle if both the |
| // length and index work with whole elements. |
| if (0 != (Len % EltSize) || 0 != (Idx % EltSize)) |
| return; |
| |
| // A length of zero is equivalent to a bit length of 64. |
| if (Len == 0) |
| Len = 64; |
| |
| // If the length + index exceeds the bottom 64 bits the result is undefined. |
| if ((Len + Idx) > 64) { |
| ShuffleMask.append(NumElts, SM_SentinelUndef); |
| return; |
| } |
| |
| // Convert index and index to work with elements. |
| Len /= EltSize; |
| Idx /= EltSize; |
| |
| // EXTRQ: Extract Len elements starting from Idx. Zero pad the remaining |
| // elements of the lower 64-bits. The upper 64-bits are undefined. |
| for (int i = 0; i != Len; ++i) |
| ShuffleMask.push_back(i + Idx); |
| for (int i = Len; i != (int)HalfElts; ++i) |
| ShuffleMask.push_back(SM_SentinelZero); |
| for (int i = HalfElts; i != (int)NumElts; ++i) |
| ShuffleMask.push_back(SM_SentinelUndef); |
| } |
| |
| void DecodeINSERTQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx, |
| SmallVectorImpl<int> &ShuffleMask) { |
| unsigned HalfElts = NumElts / 2; |
| |
| // Only the bottom 6 bits are valid for each immediate. |
| Len &= 0x3F; |
| Idx &= 0x3F; |
| |
| // We can only decode this bit insertion instruction as a shuffle if both the |
| // length and index work with whole elements. |
| if (0 != (Len % EltSize) || 0 != (Idx % EltSize)) |
| return; |
| |
| // A length of zero is equivalent to a bit length of 64. |
| if (Len == 0) |
| Len = 64; |
| |
| // If the length + index exceeds the bottom 64 bits the result is undefined. |
| if ((Len + Idx) > 64) { |
| ShuffleMask.append(NumElts, SM_SentinelUndef); |
| return; |
| } |
| |
| // Convert index and index to work with elements. |
| Len /= EltSize; |
| Idx /= EltSize; |
| |
| // INSERTQ: Extract lowest Len elements from lower half of second source and |
| // insert over first source starting at Idx element. The upper 64-bits are |
| // undefined. |
| for (int i = 0; i != Idx; ++i) |
| ShuffleMask.push_back(i); |
| for (int i = 0; i != Len; ++i) |
| ShuffleMask.push_back(i + NumElts); |
| for (int i = Idx + Len; i != (int)HalfElts; ++i) |
| ShuffleMask.push_back(i); |
| for (int i = HalfElts; i != (int)NumElts; ++i) |
| ShuffleMask.push_back(SM_SentinelUndef); |
| } |
| |
| void DecodeVPERMILPMask(unsigned NumElts, unsigned ScalarBits, |
| ArrayRef<uint64_t> RawMask, const APInt &UndefElts, |
| SmallVectorImpl<int> &ShuffleMask) { |
| unsigned VecSize = NumElts * ScalarBits; |
| unsigned NumLanes = VecSize / 128; |
| unsigned NumEltsPerLane = NumElts / NumLanes; |
| assert((VecSize == 128 || VecSize == 256 || VecSize == 512) && |
| "Unexpected vector size"); |
| assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size"); |
| |
| for (unsigned i = 0, e = RawMask.size(); i < e; ++i) { |
| if (UndefElts[i]) { |
| ShuffleMask.push_back(SM_SentinelUndef); |
| continue; |
| } |
| uint64_t M = RawMask[i]; |
| M = (ScalarBits == 64 ? ((M >> 1) & 0x1) : (M & 0x3)); |
| unsigned LaneOffset = i & ~(NumEltsPerLane - 1); |
| ShuffleMask.push_back((int)(LaneOffset + M)); |
| } |
| } |
| |
| void DecodeVPERMIL2PMask(unsigned NumElts, unsigned ScalarBits, unsigned M2Z, |
| ArrayRef<uint64_t> RawMask, const APInt &UndefElts, |
| SmallVectorImpl<int> &ShuffleMask) { |
| unsigned VecSize = NumElts * ScalarBits; |
| unsigned NumLanes = VecSize / 128; |
| unsigned NumEltsPerLane = NumElts / NumLanes; |
| assert((VecSize == 128 || VecSize == 256) && "Unexpected vector size"); |
| assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size"); |
| assert((NumElts == RawMask.size()) && "Unexpected mask size"); |
| |
| for (unsigned i = 0, e = RawMask.size(); i < e; ++i) { |
| if (UndefElts[i]) { |
| ShuffleMask.push_back(SM_SentinelUndef); |
| continue; |
| } |
| |
| // VPERMIL2 Operation. |
| // Bits[3] - Match Bit. |
| // Bits[2:1] - (Per Lane) PD Shuffle Mask. |
| // Bits[2:0] - (Per Lane) PS Shuffle Mask. |
| uint64_t Selector = RawMask[i]; |
| unsigned MatchBit = (Selector >> 3) & 0x1; |
| |
| // M2Z[0:1] MatchBit |
| // 0Xb X Source selected by Selector index. |
| // 10b 0 Source selected by Selector index. |
| // 10b 1 Zero. |
| // 11b 0 Zero. |
| // 11b 1 Source selected by Selector index. |
| if ((M2Z & 0x2) != 0 && MatchBit != (M2Z & 0x1)) { |
| ShuffleMask.push_back(SM_SentinelZero); |
| continue; |
| } |
| |
| int Index = i & ~(NumEltsPerLane - 1); |
| if (ScalarBits == 64) |
| Index += (Selector >> 1) & 0x1; |
| else |
| Index += Selector & 0x3; |
| |
| int Src = (Selector >> 2) & 0x1; |
| Index += Src * NumElts; |
| ShuffleMask.push_back(Index); |
| } |
| } |
| |
| void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts, |
| SmallVectorImpl<int> &ShuffleMask) { |
| uint64_t EltMaskSize = RawMask.size() - 1; |
| for (int i = 0, e = RawMask.size(); i != e; ++i) { |
| if (UndefElts[i]) { |
| ShuffleMask.push_back(SM_SentinelUndef); |
| continue; |
| } |
| uint64_t M = RawMask[i]; |
| M &= EltMaskSize; |
| ShuffleMask.push_back((int)M); |
| } |
| } |
| |
| void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts, |
| SmallVectorImpl<int> &ShuffleMask) { |
| uint64_t EltMaskSize = (RawMask.size() * 2) - 1; |
| for (int i = 0, e = RawMask.size(); i != e; ++i) { |
| if (UndefElts[i]) { |
| ShuffleMask.push_back(SM_SentinelUndef); |
| continue; |
| } |
| uint64_t M = RawMask[i]; |
| M &= EltMaskSize; |
| ShuffleMask.push_back((int)M); |
| } |
| } |
| |
| } // llvm namespace |