| //==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Class definitions. |
| //===----------------------------------------------------------------------===// |
| |
| class SystemZReg<string n> : Register<n> { |
| let Namespace = "SystemZ"; |
| } |
| |
| class SystemZRegWithSubregs<string n, list<Register> subregs> |
| : RegisterWithSubRegs<n, subregs> { |
| let Namespace = "SystemZ"; |
| } |
| |
| let Namespace = "SystemZ" in { |
| def subreg_l32 : SubRegIndex<32, 0>; // Also acts as subreg_ll32. |
| def subreg_h32 : SubRegIndex<32, 32>; // Also acts as subreg_lh32. |
| def subreg_l64 : SubRegIndex<64, 0>; |
| def subreg_h64 : SubRegIndex<64, 64>; |
| def subreg_hh32 : ComposedSubRegIndex<subreg_h64, subreg_h32>; |
| def subreg_hl32 : ComposedSubRegIndex<subreg_h64, subreg_l32>; |
| } |
| |
| // Define a register class that contains values of types TYPES and an |
| // associated operand called NAME. SIZE is the size and alignment |
| // of the registers and REGLIST is the list of individual registers. |
| multiclass SystemZRegClass<string name, list<ValueType> types, int size, |
| dag regList, bit allocatable = 1> { |
| def AsmOperand : AsmOperandClass { |
| let Name = name; |
| let ParserMethod = "parse"##name; |
| let RenderMethod = "addRegOperands"; |
| } |
| let isAllocatable = allocatable in |
| def Bit : RegisterClass<"SystemZ", types, size, regList> { |
| let Size = size; |
| } |
| def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> { |
| let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand"); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // General-purpose registers |
| //===----------------------------------------------------------------------===// |
| |
| // Lower 32 bits of one of the 16 64-bit general-purpose registers |
| class GPR32<bits<16> num, string n> : SystemZReg<n> { |
| let HWEncoding = num; |
| } |
| |
| // One of the 16 64-bit general-purpose registers. |
| class GPR64<bits<16> num, string n, GPR32 low, GPR32 high> |
| : SystemZRegWithSubregs<n, [low, high]> { |
| let HWEncoding = num; |
| let SubRegIndices = [subreg_l32, subreg_h32]; |
| let CoveredBySubRegs = 1; |
| } |
| |
| // 8 even-odd pairs of GPR64s. |
| class GPR128<bits<16> num, string n, GPR64 low, GPR64 high> |
| : SystemZRegWithSubregs<n, [low, high]> { |
| let HWEncoding = num; |
| let SubRegIndices = [subreg_l64, subreg_h64]; |
| let CoveredBySubRegs = 1; |
| } |
| |
| // General-purpose registers |
| foreach I = 0-15 in { |
| def R#I#L : GPR32<I, "r"#I>; |
| def R#I#H : GPR32<I, "r"#I>; |
| def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>, |
| DwarfRegNum<[I]>; |
| } |
| |
| foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in { |
| def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"), |
| !cast<GPR64>("R"#I#"D")>; |
| } |
| |
| /// Allocate the callee-saved R6-R13 backwards. That way they can be saved |
| /// together with R14 and R15 in one prolog instruction. |
| defm GR32 : SystemZRegClass<"GR32", [i32], 32, |
| (add (sequence "R%uL", 0, 5), |
| (sequence "R%uL", 15, 6))>; |
| defm GRH32 : SystemZRegClass<"GRH32", [i32], 32, |
| (add (sequence "R%uH", 0, 5), |
| (sequence "R%uH", 15, 6))>; |
| defm GR64 : SystemZRegClass<"GR64", [i64], 64, |
| (add (sequence "R%uD", 0, 5), |
| (sequence "R%uD", 15, 6))>; |
| |
| // Combine the low and high GR32s into a single class. This can only be |
| // used for virtual registers if the high-word facility is available. |
| defm GRX32 : SystemZRegClass<"GRX32", [i32], 32, |
| (add (sequence "R%uL", 0, 5), |
| (sequence "R%uH", 0, 5), |
| R15L, R15H, R14L, R14H, R13L, R13H, |
| R12L, R12H, R11L, R11H, R10L, R10H, |
| R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>; |
| |
| // The architecture doesn't really have any i128 support, so model the |
| // register pairs as untyped instead. |
| defm GR128 : SystemZRegClass<"GR128", [untyped], 128, |
| (add R0Q, R2Q, R4Q, R12Q, R10Q, R8Q, R6Q, R14Q)>; |
| |
| // Base and index registers. Everything except R0, which in an address |
| // context evaluates as 0. |
| defm ADDR32 : SystemZRegClass<"ADDR32", [i32], 32, (sub GR32Bit, R0L)>; |
| defm ADDR64 : SystemZRegClass<"ADDR64", [i64], 64, (sub GR64Bit, R0D)>; |
| |
| // Not used directly, but needs to exist for ADDR32 and ADDR64 subregs |
| // of a GR128. |
| defm ADDR128 : SystemZRegClass<"ADDR128", [untyped], 128, (sub GR128Bit, R0Q)>; |
| |
| // Any type register. Used for .insn directives when we don't know what the |
| // register types could be. |
| defm AnyReg : SystemZRegClass<"AnyReg", |
| [i64, f64, v8i8, v4i16, v2i32, v2f32], 64, |
| (add (sequence "R%uD", 0, 15), |
| (sequence "F%uD", 0, 15), |
| (sequence "V%u", 0, 15)), 0/*allocatable*/>; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating-point registers |
| //===----------------------------------------------------------------------===// |
| |
| // Maps FPR register numbers to their DWARF encoding. |
| class DwarfMapping<int id> { int Id = id; } |
| |
| def F0Dwarf : DwarfMapping<16>; |
| def F2Dwarf : DwarfMapping<17>; |
| def F4Dwarf : DwarfMapping<18>; |
| def F6Dwarf : DwarfMapping<19>; |
| |
| def F1Dwarf : DwarfMapping<20>; |
| def F3Dwarf : DwarfMapping<21>; |
| def F5Dwarf : DwarfMapping<22>; |
| def F7Dwarf : DwarfMapping<23>; |
| |
| def F8Dwarf : DwarfMapping<24>; |
| def F10Dwarf : DwarfMapping<25>; |
| def F12Dwarf : DwarfMapping<26>; |
| def F14Dwarf : DwarfMapping<27>; |
| |
| def F9Dwarf : DwarfMapping<28>; |
| def F11Dwarf : DwarfMapping<29>; |
| def F13Dwarf : DwarfMapping<30>; |
| def F15Dwarf : DwarfMapping<31>; |
| |
| def F16Dwarf : DwarfMapping<68>; |
| def F18Dwarf : DwarfMapping<69>; |
| def F20Dwarf : DwarfMapping<70>; |
| def F22Dwarf : DwarfMapping<71>; |
| |
| def F17Dwarf : DwarfMapping<72>; |
| def F19Dwarf : DwarfMapping<73>; |
| def F21Dwarf : DwarfMapping<74>; |
| def F23Dwarf : DwarfMapping<75>; |
| |
| def F24Dwarf : DwarfMapping<76>; |
| def F26Dwarf : DwarfMapping<77>; |
| def F28Dwarf : DwarfMapping<78>; |
| def F30Dwarf : DwarfMapping<79>; |
| |
| def F25Dwarf : DwarfMapping<80>; |
| def F27Dwarf : DwarfMapping<81>; |
| def F29Dwarf : DwarfMapping<82>; |
| def F31Dwarf : DwarfMapping<83>; |
| |
| // Upper 32 bits of one of the floating-point registers |
| class FPR32<bits<16> num, string n> : SystemZReg<n> { |
| let HWEncoding = num; |
| } |
| |
| // One of the floating-point registers. |
| class FPR64<bits<16> num, string n, FPR32 high> |
| : SystemZRegWithSubregs<n, [high]> { |
| let HWEncoding = num; |
| let SubRegIndices = [subreg_h32]; |
| } |
| |
| // 8 pairs of FPR64s, with a one-register gap inbetween. |
| class FPR128<bits<16> num, string n, FPR64 low, FPR64 high> |
| : SystemZRegWithSubregs<n, [low, high]> { |
| let HWEncoding = num; |
| let SubRegIndices = [subreg_l64, subreg_h64]; |
| let CoveredBySubRegs = 1; |
| } |
| |
| // Floating-point registers. Registers 16-31 require the vector facility. |
| foreach I = 0-15 in { |
| def F#I#S : FPR32<I, "f"#I>; |
| def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>, |
| DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; |
| } |
| foreach I = 16-31 in { |
| def F#I#S : FPR32<I, "v"#I>; |
| def F#I#D : FPR64<I, "v"#I, !cast<FPR32>("F"#I#"S")>, |
| DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; |
| } |
| |
| foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in { |
| def F#I#Q : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"), |
| !cast<FPR64>("F"#I#"D")>; |
| } |
| |
| // There's no store-multiple instruction for FPRs, so we're not fussy |
| // about the order in which call-saved registers are allocated. |
| defm FP32 : SystemZRegClass<"FP32", [f32], 32, (sequence "F%uS", 0, 15)>; |
| defm FP64 : SystemZRegClass<"FP64", [f64], 64, (sequence "F%uD", 0, 15)>; |
| defm FP128 : SystemZRegClass<"FP128", [f128], 128, |
| (add F0Q, F1Q, F4Q, F5Q, F8Q, F9Q, F12Q, F13Q)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Vector registers |
| //===----------------------------------------------------------------------===// |
| |
| // A full 128-bit vector register, with an FPR64 as its high part. |
| class VR128<bits<16> num, string n, FPR64 high> |
| : SystemZRegWithSubregs<n, [high]> { |
| let HWEncoding = num; |
| let SubRegIndices = [subreg_h64]; |
| } |
| |
| // Full vector registers. |
| foreach I = 0-31 in { |
| def V#I : VR128<I, "v"#I, !cast<FPR64>("F"#I#"D")>, |
| DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; |
| } |
| |
| // Class used to store 32-bit values in the first element of a vector |
| // register. f32 scalars are used for the WLEDB and WLDEB instructions. |
| defm VR32 : SystemZRegClass<"VR32", [f32, v4i8, v2i16], 32, |
| (add (sequence "F%uS", 0, 7), |
| (sequence "F%uS", 16, 31), |
| (sequence "F%uS", 8, 15))>; |
| |
| // Class used to store 64-bit values in the upper half of a vector register. |
| // The vector facility also includes scalar f64 instructions that operate |
| // on the full vector register set. |
| defm VR64 : SystemZRegClass<"VR64", [f64, v8i8, v4i16, v2i32, v2f32], 64, |
| (add (sequence "F%uD", 0, 7), |
| (sequence "F%uD", 16, 31), |
| (sequence "F%uD", 8, 15))>; |
| |
| // The subset of vector registers that can be used for floating-point |
| // operations too. |
| defm VF128 : SystemZRegClass<"VF128", |
| [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, |
| (sequence "V%u", 0, 15)>; |
| |
| // All vector registers. |
| defm VR128 : SystemZRegClass<"VR128", |
| [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, f128], |
| 128, (add (sequence "V%u", 0, 7), |
| (sequence "V%u", 16, 31), |
| (sequence "V%u", 8, 15))>; |
| |
| // Attaches a ValueType to a register operand, to make the instruction |
| // definitions easier. |
| class TypedReg<ValueType vtin, RegisterOperand opin> { |
| ValueType vt = vtin; |
| RegisterOperand op = opin; |
| } |
| |
| def v32f : TypedReg<i32, VR32>; |
| def v32sb : TypedReg<f32, VR32>; |
| def v64g : TypedReg<i64, VR64>; |
| def v64db : TypedReg<f64, VR64>; |
| def v128b : TypedReg<v16i8, VR128>; |
| def v128h : TypedReg<v8i16, VR128>; |
| def v128f : TypedReg<v4i32, VR128>; |
| def v128g : TypedReg<v2i64, VR128>; |
| def v128q : TypedReg<v16i8, VR128>; |
| def v128sb : TypedReg<v4f32, VR128>; |
| def v128db : TypedReg<v2f64, VR128>; |
| def v128xb : TypedReg<f128, VR128>; |
| def v128any : TypedReg<untyped, VR128>; |
| |
| //===----------------------------------------------------------------------===// |
| // Other registers |
| //===----------------------------------------------------------------------===// |
| |
| // The 2-bit condition code field of the PSW. Every register named in an |
| // inline asm needs a class associated with it. |
| def CC : SystemZReg<"cc">; |
| let isAllocatable = 0, CopyCost = -1 in |
| def CCR : RegisterClass<"SystemZ", [i32], 32, (add CC)>; |
| |
| // The floating-point control register. |
| // Note: We only model the current rounding modes and the IEEE masks. |
| // IEEE flags and DXC are not modeled here. |
| def FPC : SystemZReg<"fpc">; |
| let isAllocatable = 0 in |
| def FPCRegs : RegisterClass<"SystemZ", [i32], 32, (add FPC)>; |
| |
| // Access registers. |
| class ACR32<bits<16> num, string n> : SystemZReg<n> { |
| let HWEncoding = num; |
| } |
| foreach I = 0-15 in { |
| def A#I : ACR32<I, "a"#I>, DwarfRegNum<[!add(I, 48)]>; |
| } |
| defm AR32 : SystemZRegClass<"AR32", [i32], 32, |
| (add (sequence "A%u", 0, 15)), 0>; |
| |
| // Control registers. |
| class CREG64<bits<16> num, string n> : SystemZReg<n> { |
| let HWEncoding = num; |
| } |
| foreach I = 0-15 in { |
| def C#I : CREG64<I, "c"#I>, DwarfRegNum<[!add(I, 32)]>; |
| } |
| defm CR64 : SystemZRegClass<"CR64", [i64], 64, |
| (add (sequence "C%u", 0, 15)), 0>; |
| |