| //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines an instruction selector for the SystemZ target. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SystemZTargetMachine.h" |
| #include "SystemZISelLowering.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "systemz-isel" |
| |
| namespace { |
| // Used to build addressing modes. |
| struct SystemZAddressingMode { |
| // The shape of the address. |
| enum AddrForm { |
| // base+displacement |
| FormBD, |
| |
| // base+displacement+index for load and store operands |
| FormBDXNormal, |
| |
| // base+displacement+index for load address operands |
| FormBDXLA, |
| |
| // base+displacement+index+ADJDYNALLOC |
| FormBDXDynAlloc |
| }; |
| AddrForm Form; |
| |
| // The type of displacement. The enum names here correspond directly |
| // to the definitions in SystemZOperand.td. We could split them into |
| // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it. |
| enum DispRange { |
| Disp12Only, |
| Disp12Pair, |
| Disp20Only, |
| Disp20Only128, |
| Disp20Pair |
| }; |
| DispRange DR; |
| |
| // The parts of the address. The address is equivalent to: |
| // |
| // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0) |
| SDValue Base; |
| int64_t Disp; |
| SDValue Index; |
| bool IncludesDynAlloc; |
| |
| SystemZAddressingMode(AddrForm form, DispRange dr) |
| : Form(form), DR(dr), Base(), Disp(0), Index(), |
| IncludesDynAlloc(false) {} |
| |
| // True if the address can have an index register. |
| bool hasIndexField() { return Form != FormBD; } |
| |
| // True if the address can (and must) include ADJDYNALLOC. |
| bool isDynAlloc() { return Form == FormBDXDynAlloc; } |
| |
| void dump(const llvm::SelectionDAG *DAG) { |
| errs() << "SystemZAddressingMode " << this << '\n'; |
| |
| errs() << " Base "; |
| if (Base.getNode()) |
| Base.getNode()->dump(DAG); |
| else |
| errs() << "null\n"; |
| |
| if (hasIndexField()) { |
| errs() << " Index "; |
| if (Index.getNode()) |
| Index.getNode()->dump(DAG); |
| else |
| errs() << "null\n"; |
| } |
| |
| errs() << " Disp " << Disp; |
| if (IncludesDynAlloc) |
| errs() << " + ADJDYNALLOC"; |
| errs() << '\n'; |
| } |
| }; |
| |
| // Return a mask with Count low bits set. |
| static uint64_t allOnes(unsigned int Count) { |
| assert(Count <= 64); |
| if (Count > 63) |
| return UINT64_MAX; |
| return (uint64_t(1) << Count) - 1; |
| } |
| |
| // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation |
| // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and |
| // Rotate (I5). The combined operand value is effectively: |
| // |
| // (or (rotl Input, Rotate), ~Mask) |
| // |
| // for RNSBG and: |
| // |
| // (and (rotl Input, Rotate), Mask) |
| // |
| // otherwise. The output value has BitSize bits, although Input may be |
| // narrower (in which case the upper bits are don't care), or wider (in which |
| // case the result will be truncated as part of the operation). |
| struct RxSBGOperands { |
| RxSBGOperands(unsigned Op, SDValue N) |
| : Opcode(Op), BitSize(N.getValueSizeInBits()), |
| Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63), |
| Rotate(0) {} |
| |
| unsigned Opcode; |
| unsigned BitSize; |
| uint64_t Mask; |
| SDValue Input; |
| unsigned Start; |
| unsigned End; |
| unsigned Rotate; |
| }; |
| |
| class SystemZDAGToDAGISel : public SelectionDAGISel { |
| const SystemZSubtarget *Subtarget; |
| |
| // Used by SystemZOperands.td to create integer constants. |
| inline SDValue getImm(const SDNode *Node, uint64_t Imm) const { |
| return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0)); |
| } |
| |
| const SystemZTargetMachine &getTargetMachine() const { |
| return static_cast<const SystemZTargetMachine &>(TM); |
| } |
| |
| const SystemZInstrInfo *getInstrInfo() const { |
| return Subtarget->getInstrInfo(); |
| } |
| |
| // Try to fold more of the base or index of AM into AM, where IsBase |
| // selects between the base and index. |
| bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const; |
| |
| // Try to describe N in AM, returning true on success. |
| bool selectAddress(SDValue N, SystemZAddressingMode &AM) const; |
| |
| // Extract individual target operands from matched address AM. |
| void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, |
| SDValue &Base, SDValue &Disp) const; |
| void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, |
| SDValue &Base, SDValue &Disp, SDValue &Index) const; |
| |
| // Try to match Addr as a FormBD address with displacement type DR. |
| // Return true on success, storing the base and displacement in |
| // Base and Disp respectively. |
| bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, |
| SDValue &Base, SDValue &Disp) const; |
| |
| // Try to match Addr as a FormBDX address with displacement type DR. |
| // Return true on success and if the result had no index. Store the |
| // base and displacement in Base and Disp respectively. |
| bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, |
| SDValue &Base, SDValue &Disp) const; |
| |
| // Try to match Addr as a FormBDX* address of form Form with |
| // displacement type DR. Return true on success, storing the base, |
| // displacement and index in Base, Disp and Index respectively. |
| bool selectBDXAddr(SystemZAddressingMode::AddrForm Form, |
| SystemZAddressingMode::DispRange DR, SDValue Addr, |
| SDValue &Base, SDValue &Disp, SDValue &Index) const; |
| |
| // PC-relative address matching routines used by SystemZOperands.td. |
| bool selectPCRelAddress(SDValue Addr, SDValue &Target) const { |
| if (SystemZISD::isPCREL(Addr.getOpcode())) { |
| Target = Addr.getOperand(0); |
| return true; |
| } |
| return false; |
| } |
| |
| // BD matching routines used by SystemZOperands.td. |
| bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp); |
| } |
| bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); |
| } |
| bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp); |
| } |
| bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); |
| } |
| |
| // MVI matching routines used by SystemZOperands.td. |
| bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); |
| } |
| bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); |
| } |
| |
| // BDX matching routines used by SystemZOperands.td. |
| bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, |
| SystemZAddressingMode::Disp12Only, |
| Addr, Base, Disp, Index); |
| } |
| bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, |
| SystemZAddressingMode::Disp12Pair, |
| Addr, Base, Disp, Index); |
| } |
| bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc, |
| SystemZAddressingMode::Disp12Only, |
| Addr, Base, Disp, Index); |
| } |
| bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, |
| SystemZAddressingMode::Disp20Only, |
| Addr, Base, Disp, Index); |
| } |
| bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, |
| SystemZAddressingMode::Disp20Only128, |
| Addr, Base, Disp, Index); |
| } |
| bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, |
| SystemZAddressingMode::Disp20Pair, |
| Addr, Base, Disp, Index); |
| } |
| bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXLA, |
| SystemZAddressingMode::Disp12Pair, |
| Addr, Base, Disp, Index); |
| } |
| bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXLA, |
| SystemZAddressingMode::Disp20Pair, |
| Addr, Base, Disp, Index); |
| } |
| |
| // Try to match Addr as an address with a base, 12-bit displacement |
| // and index, where the index is element Elem of a vector. |
| // Return true on success, storing the base, displacement and vector |
| // in Base, Disp and Index respectively. |
| bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base, |
| SDValue &Disp, SDValue &Index) const; |
| |
| // Check whether (or Op (and X InsertMask)) is effectively an insertion |
| // of X into bits InsertMask of some Y != Op. Return true if so and |
| // set Op to that Y. |
| bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const; |
| |
| // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used. |
| // Return true on success. |
| bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const; |
| |
| // Try to fold some of RxSBG.Input into other fields of RxSBG. |
| // Return true on success. |
| bool expandRxSBG(RxSBGOperands &RxSBG) const; |
| |
| // Return an undefined value of type VT. |
| SDValue getUNDEF(const SDLoc &DL, EVT VT) const; |
| |
| // Convert N to VT, if it isn't already. |
| SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const; |
| |
| // Try to implement AND or shift node N using RISBG with the zero flag set. |
| // Return the selected node on success, otherwise return null. |
| bool tryRISBGZero(SDNode *N); |
| |
| // Try to use RISBG or Opcode to implement OR or XOR node N. |
| // Return the selected node on success, otherwise return null. |
| bool tryRxSBG(SDNode *N, unsigned Opcode); |
| |
| // If Op0 is null, then Node is a constant that can be loaded using: |
| // |
| // (Opcode UpperVal LowerVal) |
| // |
| // If Op0 is nonnull, then Node can be implemented using: |
| // |
| // (Opcode (Opcode Op0 UpperVal) LowerVal) |
| void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0, |
| uint64_t UpperVal, uint64_t LowerVal); |
| |
| void loadVectorConstant(const SystemZVectorConstantInfo &VCI, |
| SDNode *Node); |
| |
| // Try to use gather instruction Opcode to implement vector insertion N. |
| bool tryGather(SDNode *N, unsigned Opcode); |
| |
| // Try to use scatter instruction Opcode to implement store Store. |
| bool tryScatter(StoreSDNode *Store, unsigned Opcode); |
| |
| // Change a chain of {load; op; store} of the same value into a simple op |
| // through memory of that value, if the uses of the modified value and its |
| // address are suitable. |
| bool tryFoldLoadStoreIntoMemOperand(SDNode *Node); |
| |
| // Return true if Load and Store are loads and stores of the same size |
| // and are guaranteed not to overlap. Such operations can be implemented |
| // using block (SS-format) instructions. |
| // |
| // Partial overlap would lead to incorrect code, since the block operations |
| // are logically bytewise, even though they have a fast path for the |
| // non-overlapping case. We also need to avoid full overlap (i.e. two |
| // addresses that might be equal at run time) because although that case |
| // would be handled correctly, it might be implemented by millicode. |
| bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const; |
| |
| // N is a (store (load Y), X) pattern. Return true if it can use an MVC |
| // from Y to X. |
| bool storeLoadCanUseMVC(SDNode *N) const; |
| |
| // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true |
| // if A[1 - I] == X and if N can use a block operation like NC from A[I] |
| // to X. |
| bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const; |
| |
| // Try to expand a boolean SELECT_CCMASK using an IPM sequence. |
| SDValue expandSelectBoolean(SDNode *Node); |
| |
| public: |
| SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel) |
| : SelectionDAGISel(TM, OptLevel) {} |
| |
| bool runOnMachineFunction(MachineFunction &MF) override { |
| const Function &F = MF.getFunction(); |
| if (F.getFnAttribute("fentry-call").getValueAsString() != "true") { |
| if (F.hasFnAttribute("mnop-mcount")) |
| report_fatal_error("mnop-mcount only supported with fentry-call"); |
| if (F.hasFnAttribute("mrecord-mcount")) |
| report_fatal_error("mrecord-mcount only supported with fentry-call"); |
| } |
| |
| Subtarget = &MF.getSubtarget<SystemZSubtarget>(); |
| return SelectionDAGISel::runOnMachineFunction(MF); |
| } |
| |
| // Override MachineFunctionPass. |
| StringRef getPassName() const override { |
| return "SystemZ DAG->DAG Pattern Instruction Selection"; |
| } |
| |
| // Override SelectionDAGISel. |
| void Select(SDNode *Node) override; |
| bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, |
| std::vector<SDValue> &OutOps) override; |
| bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override; |
| void PreprocessISelDAG() override; |
| |
| // Include the pieces autogenerated from the target description. |
| #include "SystemZGenDAGISel.inc" |
| }; |
| } // end anonymous namespace |
| |
| FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM, |
| CodeGenOpt::Level OptLevel) { |
| return new SystemZDAGToDAGISel(TM, OptLevel); |
| } |
| |
| // Return true if Val should be selected as a displacement for an address |
| // with range DR. Here we're interested in the range of both the instruction |
| // described by DR and of any pairing instruction. |
| static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { |
| switch (DR) { |
| case SystemZAddressingMode::Disp12Only: |
| return isUInt<12>(Val); |
| |
| case SystemZAddressingMode::Disp12Pair: |
| case SystemZAddressingMode::Disp20Only: |
| case SystemZAddressingMode::Disp20Pair: |
| return isInt<20>(Val); |
| |
| case SystemZAddressingMode::Disp20Only128: |
| return isInt<20>(Val) && isInt<20>(Val + 8); |
| } |
| llvm_unreachable("Unhandled displacement range"); |
| } |
| |
| // Change the base or index in AM to Value, where IsBase selects |
| // between the base and index. |
| static void changeComponent(SystemZAddressingMode &AM, bool IsBase, |
| SDValue Value) { |
| if (IsBase) |
| AM.Base = Value; |
| else |
| AM.Index = Value; |
| } |
| |
| // The base or index of AM is equivalent to Value + ADJDYNALLOC, |
| // where IsBase selects between the base and index. Try to fold the |
| // ADJDYNALLOC into AM. |
| static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase, |
| SDValue Value) { |
| if (AM.isDynAlloc() && !AM.IncludesDynAlloc) { |
| changeComponent(AM, IsBase, Value); |
| AM.IncludesDynAlloc = true; |
| return true; |
| } |
| return false; |
| } |
| |
| // The base of AM is equivalent to Base + Index. Try to use Index as |
| // the index register. |
| static bool expandIndex(SystemZAddressingMode &AM, SDValue Base, |
| SDValue Index) { |
| if (AM.hasIndexField() && !AM.Index.getNode()) { |
| AM.Base = Base; |
| AM.Index = Index; |
| return true; |
| } |
| return false; |
| } |
| |
| // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects |
| // between the base and index. Try to fold Op1 into AM's displacement. |
| static bool expandDisp(SystemZAddressingMode &AM, bool IsBase, |
| SDValue Op0, uint64_t Op1) { |
| // First try adjusting the displacement. |
| int64_t TestDisp = AM.Disp + Op1; |
| if (selectDisp(AM.DR, TestDisp)) { |
| changeComponent(AM, IsBase, Op0); |
| AM.Disp = TestDisp; |
| return true; |
| } |
| |
| // We could consider forcing the displacement into a register and |
| // using it as an index, but it would need to be carefully tuned. |
| return false; |
| } |
| |
| bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM, |
| bool IsBase) const { |
| SDValue N = IsBase ? AM.Base : AM.Index; |
| unsigned Opcode = N.getOpcode(); |
| if (Opcode == ISD::TRUNCATE) { |
| N = N.getOperand(0); |
| Opcode = N.getOpcode(); |
| } |
| if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) { |
| SDValue Op0 = N.getOperand(0); |
| SDValue Op1 = N.getOperand(1); |
| |
| unsigned Op0Code = Op0->getOpcode(); |
| unsigned Op1Code = Op1->getOpcode(); |
| |
| if (Op0Code == SystemZISD::ADJDYNALLOC) |
| return expandAdjDynAlloc(AM, IsBase, Op1); |
| if (Op1Code == SystemZISD::ADJDYNALLOC) |
| return expandAdjDynAlloc(AM, IsBase, Op0); |
| |
| if (Op0Code == ISD::Constant) |
| return expandDisp(AM, IsBase, Op1, |
| cast<ConstantSDNode>(Op0)->getSExtValue()); |
| if (Op1Code == ISD::Constant) |
| return expandDisp(AM, IsBase, Op0, |
| cast<ConstantSDNode>(Op1)->getSExtValue()); |
| |
| if (IsBase && expandIndex(AM, Op0, Op1)) |
| return true; |
| } |
| if (Opcode == SystemZISD::PCREL_OFFSET) { |
| SDValue Full = N.getOperand(0); |
| SDValue Base = N.getOperand(1); |
| SDValue Anchor = Base.getOperand(0); |
| uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() - |
| cast<GlobalAddressSDNode>(Anchor)->getOffset()); |
| return expandDisp(AM, IsBase, Base, Offset); |
| } |
| return false; |
| } |
| |
| // Return true if an instruction with displacement range DR should be |
| // used for displacement value Val. selectDisp(DR, Val) must already hold. |
| static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { |
| assert(selectDisp(DR, Val) && "Invalid displacement"); |
| switch (DR) { |
| case SystemZAddressingMode::Disp12Only: |
| case SystemZAddressingMode::Disp20Only: |
| case SystemZAddressingMode::Disp20Only128: |
| return true; |
| |
| case SystemZAddressingMode::Disp12Pair: |
| // Use the other instruction if the displacement is too large. |
| return isUInt<12>(Val); |
| |
| case SystemZAddressingMode::Disp20Pair: |
| // Use the other instruction if the displacement is small enough. |
| return !isUInt<12>(Val); |
| } |
| llvm_unreachable("Unhandled displacement range"); |
| } |
| |
| // Return true if Base + Disp + Index should be performed by LA(Y). |
| static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) { |
| // Don't use LA(Y) for constants. |
| if (!Base) |
| return false; |
| |
| // Always use LA(Y) for frame addresses, since we know that the destination |
| // register is almost always (perhaps always) going to be different from |
| // the frame register. |
| if (Base->getOpcode() == ISD::FrameIndex) |
| return true; |
| |
| if (Disp) { |
| // Always use LA(Y) if there is a base, displacement and index. |
| if (Index) |
| return true; |
| |
| // Always use LA if the displacement is small enough. It should always |
| // be no worse than AGHI (and better if it avoids a move). |
| if (isUInt<12>(Disp)) |
| return true; |
| |
| // For similar reasons, always use LAY if the constant is too big for AGHI. |
| // LAY should be no worse than AGFI. |
| if (!isInt<16>(Disp)) |
| return true; |
| } else { |
| // Don't use LA for plain registers. |
| if (!Index) |
| return false; |
| |
| // Don't use LA for plain addition if the index operand is only used |
| // once. It should be a natural two-operand addition in that case. |
| if (Index->hasOneUse()) |
| return false; |
| |
| // Prefer addition if the second operation is sign-extended, in the |
| // hope of using AGF. |
| unsigned IndexOpcode = Index->getOpcode(); |
| if (IndexOpcode == ISD::SIGN_EXTEND || |
| IndexOpcode == ISD::SIGN_EXTEND_INREG) |
| return false; |
| } |
| |
| // Don't use LA for two-operand addition if either operand is only |
| // used once. The addition instructions are better in that case. |
| if (Base->hasOneUse()) |
| return false; |
| |
| return true; |
| } |
| |
| // Return true if Addr is suitable for AM, updating AM if so. |
| bool SystemZDAGToDAGISel::selectAddress(SDValue Addr, |
| SystemZAddressingMode &AM) const { |
| // Start out assuming that the address will need to be loaded separately, |
| // then try to extend it as much as we can. |
| AM.Base = Addr; |
| |
| // First try treating the address as a constant. |
| if (Addr.getOpcode() == ISD::Constant && |
| expandDisp(AM, true, SDValue(), |
| cast<ConstantSDNode>(Addr)->getSExtValue())) |
| ; |
| // Also see if it's a bare ADJDYNALLOC. |
| else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC && |
| expandAdjDynAlloc(AM, true, SDValue())) |
| ; |
| else |
| // Otherwise try expanding each component. |
| while (expandAddress(AM, true) || |
| (AM.Index.getNode() && expandAddress(AM, false))) |
| continue; |
| |
| // Reject cases where it isn't profitable to use LA(Y). |
| if (AM.Form == SystemZAddressingMode::FormBDXLA && |
| !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode())) |
| return false; |
| |
| // Reject cases where the other instruction in a pair should be used. |
| if (!isValidDisp(AM.DR, AM.Disp)) |
| return false; |
| |
| // Make sure that ADJDYNALLOC is included where necessary. |
| if (AM.isDynAlloc() && !AM.IncludesDynAlloc) |
| return false; |
| |
| LLVM_DEBUG(AM.dump(CurDAG)); |
| return true; |
| } |
| |
| // Insert a node into the DAG at least before Pos. This will reposition |
| // the node as needed, and will assign it a node ID that is <= Pos's ID. |
| // Note that this does *not* preserve the uniqueness of node IDs! |
| // The selection DAG must no longer depend on their uniqueness when this |
| // function is used. |
| static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) { |
| if (N->getNodeId() == -1 || |
| (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) > |
| SelectionDAGISel::getUninvalidatedNodeId(Pos))) { |
| DAG->RepositionNode(Pos->getIterator(), N.getNode()); |
| // Mark Node as invalid for pruning as after this it may be a successor to a |
| // selected node but otherwise be in the same position of Pos. |
| // Conservatively mark it with the same -abs(Id) to assure node id |
| // invariant is preserved. |
| N->setNodeId(Pos->getNodeId()); |
| SelectionDAGISel::InvalidateNodeId(N.getNode()); |
| } |
| } |
| |
| void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, |
| EVT VT, SDValue &Base, |
| SDValue &Disp) const { |
| Base = AM.Base; |
| if (!Base.getNode()) |
| // Register 0 means "no base". This is mostly useful for shifts. |
| Base = CurDAG->getRegister(0, VT); |
| else if (Base.getOpcode() == ISD::FrameIndex) { |
| // Lower a FrameIndex to a TargetFrameIndex. |
| int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FrameIndex, VT); |
| } else if (Base.getValueType() != VT) { |
| // Truncate values from i64 to i32, for shifts. |
| assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 && |
| "Unexpected truncation"); |
| SDLoc DL(Base); |
| SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base); |
| insertDAGNode(CurDAG, Base.getNode(), Trunc); |
| Base = Trunc; |
| } |
| |
| // Lower the displacement to a TargetConstant. |
| Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT); |
| } |
| |
| void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, |
| EVT VT, SDValue &Base, |
| SDValue &Disp, |
| SDValue &Index) const { |
| getAddressOperands(AM, VT, Base, Disp); |
| |
| Index = AM.Index; |
| if (!Index.getNode()) |
| // Register 0 means "no index". |
| Index = CurDAG->getRegister(0, VT); |
| } |
| |
| bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR, |
| SDValue Addr, SDValue &Base, |
| SDValue &Disp) const { |
| SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR); |
| if (!selectAddress(Addr, AM)) |
| return false; |
| |
| getAddressOperands(AM, Addr.getValueType(), Base, Disp); |
| return true; |
| } |
| |
| bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR, |
| SDValue Addr, SDValue &Base, |
| SDValue &Disp) const { |
| SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR); |
| if (!selectAddress(Addr, AM) || AM.Index.getNode()) |
| return false; |
| |
| getAddressOperands(AM, Addr.getValueType(), Base, Disp); |
| return true; |
| } |
| |
| bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form, |
| SystemZAddressingMode::DispRange DR, |
| SDValue Addr, SDValue &Base, |
| SDValue &Disp, SDValue &Index) const { |
| SystemZAddressingMode AM(Form, DR); |
| if (!selectAddress(Addr, AM)) |
| return false; |
| |
| getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index); |
| return true; |
| } |
| |
| bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem, |
| SDValue &Base, |
| SDValue &Disp, |
| SDValue &Index) const { |
| SDValue Regs[2]; |
| if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) && |
| Regs[0].getNode() && Regs[1].getNode()) { |
| for (unsigned int I = 0; I < 2; ++I) { |
| Base = Regs[I]; |
| Index = Regs[1 - I]; |
| // We can't tell here whether the index vector has the right type |
| // for the access; the caller needs to do that instead. |
| if (Index.getOpcode() == ISD::ZERO_EXTEND) |
| Index = Index.getOperand(0); |
| if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| Index.getOperand(1) == Elem) { |
| Index = Index.getOperand(0); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op, |
| uint64_t InsertMask) const { |
| // We're only interested in cases where the insertion is into some operand |
| // of Op, rather than into Op itself. The only useful case is an AND. |
| if (Op.getOpcode() != ISD::AND) |
| return false; |
| |
| // We need a constant mask. |
| auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode()); |
| if (!MaskNode) |
| return false; |
| |
| // It's not an insertion of Op.getOperand(0) if the two masks overlap. |
| uint64_t AndMask = MaskNode->getZExtValue(); |
| if (InsertMask & AndMask) |
| return false; |
| |
| // It's only an insertion if all bits are covered or are known to be zero. |
| // The inner check covers all cases but is more expensive. |
| uint64_t Used = allOnes(Op.getValueSizeInBits()); |
| if (Used != (AndMask | InsertMask)) { |
| KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0)); |
| if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue())) |
| return false; |
| } |
| |
| Op = Op.getOperand(0); |
| return true; |
| } |
| |
| bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG, |
| uint64_t Mask) const { |
| const SystemZInstrInfo *TII = getInstrInfo(); |
| if (RxSBG.Rotate != 0) |
| Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)); |
| Mask &= RxSBG.Mask; |
| if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) { |
| RxSBG.Mask = Mask; |
| return true; |
| } |
| return false; |
| } |
| |
| // Return true if any bits of (RxSBG.Input & Mask) are significant. |
| static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) { |
| // Rotate the mask in the same way as RxSBG.Input is rotated. |
| if (RxSBG.Rotate != 0) |
| Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate))); |
| return (Mask & RxSBG.Mask) != 0; |
| } |
| |
| bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const { |
| SDValue N = RxSBG.Input; |
| unsigned Opcode = N.getOpcode(); |
| switch (Opcode) { |
| case ISD::TRUNCATE: { |
| if (RxSBG.Opcode == SystemZ::RNSBG) |
| return false; |
| uint64_t BitSize = N.getValueSizeInBits(); |
| uint64_t Mask = allOnes(BitSize); |
| if (!refineRxSBGMask(RxSBG, Mask)) |
| return false; |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| } |
| case ISD::AND: { |
| if (RxSBG.Opcode == SystemZ::RNSBG) |
| return false; |
| |
| auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); |
| if (!MaskNode) |
| return false; |
| |
| SDValue Input = N.getOperand(0); |
| uint64_t Mask = MaskNode->getZExtValue(); |
| if (!refineRxSBGMask(RxSBG, Mask)) { |
| // If some bits of Input are already known zeros, those bits will have |
| // been removed from the mask. See if adding them back in makes the |
| // mask suitable. |
| KnownBits Known = CurDAG->computeKnownBits(Input); |
| Mask |= Known.Zero.getZExtValue(); |
| if (!refineRxSBGMask(RxSBG, Mask)) |
| return false; |
| } |
| RxSBG.Input = Input; |
| return true; |
| } |
| |
| case ISD::OR: { |
| if (RxSBG.Opcode != SystemZ::RNSBG) |
| return false; |
| |
| auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); |
| if (!MaskNode) |
| return false; |
| |
| SDValue Input = N.getOperand(0); |
| uint64_t Mask = ~MaskNode->getZExtValue(); |
| if (!refineRxSBGMask(RxSBG, Mask)) { |
| // If some bits of Input are already known ones, those bits will have |
| // been removed from the mask. See if adding them back in makes the |
| // mask suitable. |
| KnownBits Known = CurDAG->computeKnownBits(Input); |
| Mask &= ~Known.One.getZExtValue(); |
| if (!refineRxSBGMask(RxSBG, Mask)) |
| return false; |
| } |
| RxSBG.Input = Input; |
| return true; |
| } |
| |
| case ISD::ROTL: { |
| // Any 64-bit rotate left can be merged into the RxSBG. |
| if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64) |
| return false; |
| auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); |
| if (!CountNode) |
| return false; |
| |
| RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63; |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| } |
| |
| case ISD::ANY_EXTEND: |
| // Bits above the extended operand are don't-care. |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| |
| case ISD::ZERO_EXTEND: |
| if (RxSBG.Opcode != SystemZ::RNSBG) { |
| // Restrict the mask to the extended operand. |
| unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits(); |
| if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize))) |
| return false; |
| |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| } |
| LLVM_FALLTHROUGH; |
| |
| case ISD::SIGN_EXTEND: { |
| // Check that the extension bits are don't-care (i.e. are masked out |
| // by the final mask). |
| unsigned BitSize = N.getValueSizeInBits(); |
| unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits(); |
| if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) { |
| // In the case where only the sign bit is active, increase Rotate with |
| // the extension width. |
| if (RxSBG.Mask == 1 && RxSBG.Rotate == 1) |
| RxSBG.Rotate += (BitSize - InnerBitSize); |
| else |
| return false; |
| } |
| |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| } |
| |
| case ISD::SHL: { |
| auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); |
| if (!CountNode) |
| return false; |
| |
| uint64_t Count = CountNode->getZExtValue(); |
| unsigned BitSize = N.getValueSizeInBits(); |
| if (Count < 1 || Count >= BitSize) |
| return false; |
| |
| if (RxSBG.Opcode == SystemZ::RNSBG) { |
| // Treat (shl X, count) as (rotl X, size-count) as long as the bottom |
| // count bits from RxSBG.Input are ignored. |
| if (maskMatters(RxSBG, allOnes(Count))) |
| return false; |
| } else { |
| // Treat (shl X, count) as (and (rotl X, count), ~0<<count). |
| if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count)) |
| return false; |
| } |
| |
| RxSBG.Rotate = (RxSBG.Rotate + Count) & 63; |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| } |
| |
| case ISD::SRL: |
| case ISD::SRA: { |
| auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); |
| if (!CountNode) |
| return false; |
| |
| uint64_t Count = CountNode->getZExtValue(); |
| unsigned BitSize = N.getValueSizeInBits(); |
| if (Count < 1 || Count >= BitSize) |
| return false; |
| |
| if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) { |
| // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top |
| // count bits from RxSBG.Input are ignored. |
| if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count))) |
| return false; |
| } else { |
| // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count), |
| // which is similar to SLL above. |
| if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count))) |
| return false; |
| } |
| |
| RxSBG.Rotate = (RxSBG.Rotate - Count) & 63; |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const { |
| SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT, |
| SDValue N) const { |
| if (N.getValueType() == MVT::i32 && VT == MVT::i64) |
| return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32, |
| DL, VT, getUNDEF(DL, MVT::i64), N); |
| if (N.getValueType() == MVT::i64 && VT == MVT::i32) |
| return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N); |
| assert(N.getValueType() == VT && "Unexpected value types"); |
| return N; |
| } |
| |
| bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) { |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| if (!VT.isInteger() || VT.getSizeInBits() > 64) |
| return false; |
| RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0)); |
| unsigned Count = 0; |
| while (expandRxSBG(RISBG)) |
| // The widening or narrowing is expected to be free. |
| // Counting widening or narrowing as a saved operation will result in |
| // preferring an R*SBG over a simple shift/logical instruction. |
| if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND && |
| RISBG.Input.getOpcode() != ISD::TRUNCATE) |
| Count += 1; |
| if (Count == 0) |
| return false; |
| |
| // Prefer to use normal shift instructions over RISBG, since they can handle |
| // all cases and are sometimes shorter. |
| if (Count == 1 && N->getOpcode() != ISD::AND) |
| return false; |
| |
| // Prefer register extensions like LLC over RISBG. Also prefer to start |
| // out with normal ANDs if one instruction would be enough. We can convert |
| // these ANDs into an RISBG later if a three-address instruction is useful. |
| if (RISBG.Rotate == 0) { |
| bool PreferAnd = false; |
| // Prefer AND for any 32-bit and-immediate operation. |
| if (VT == MVT::i32) |
| PreferAnd = true; |
| // As well as for any 64-bit operation that can be implemented via LLC(R), |
| // LLH(R), LLGT(R), or one of the and-immediate instructions. |
| else if (RISBG.Mask == 0xff || |
| RISBG.Mask == 0xffff || |
| RISBG.Mask == 0x7fffffff || |
| SystemZ::isImmLF(~RISBG.Mask) || |
| SystemZ::isImmHF(~RISBG.Mask)) |
| PreferAnd = true; |
| // And likewise for the LLZRGF instruction, which doesn't have a register |
| // to register version. |
| else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) { |
| if (Load->getMemoryVT() == MVT::i32 && |
| (Load->getExtensionType() == ISD::EXTLOAD || |
| Load->getExtensionType() == ISD::ZEXTLOAD) && |
| RISBG.Mask == 0xffffff00 && |
| Subtarget->hasLoadAndZeroRightmostByte()) |
| PreferAnd = true; |
| } |
| if (PreferAnd) { |
| // Replace the current node with an AND. Note that the current node |
| // might already be that same AND, in which case it is already CSE'd |
| // with it, and we must not call ReplaceNode. |
| SDValue In = convertTo(DL, VT, RISBG.Input); |
| SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT); |
| SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask); |
| if (N != New.getNode()) { |
| insertDAGNode(CurDAG, N, Mask); |
| insertDAGNode(CurDAG, N, New); |
| ReplaceNode(N, New.getNode()); |
| N = New.getNode(); |
| } |
| // Now, select the machine opcode to implement this operation. |
| if (!N->isMachineOpcode()) |
| SelectCode(N); |
| return true; |
| } |
| } |
| |
| unsigned Opcode = SystemZ::RISBG; |
| // Prefer RISBGN if available, since it does not clobber CC. |
| if (Subtarget->hasMiscellaneousExtensions()) |
| Opcode = SystemZ::RISBGN; |
| EVT OpcodeVT = MVT::i64; |
| if (VT == MVT::i32 && Subtarget->hasHighWord() && |
| // We can only use the 32-bit instructions if all source bits are |
| // in the low 32 bits without wrapping, both after rotation (because |
| // of the smaller range for Start and End) and before rotation |
| // (because the input value is truncated). |
| RISBG.Start >= 32 && RISBG.End >= RISBG.Start && |
| ((RISBG.Start + RISBG.Rotate) & 63) >= 32 && |
| ((RISBG.End + RISBG.Rotate) & 63) >= |
| ((RISBG.Start + RISBG.Rotate) & 63)) { |
| Opcode = SystemZ::RISBMux; |
| OpcodeVT = MVT::i32; |
| RISBG.Start &= 31; |
| RISBG.End &= 31; |
| } |
| SDValue Ops[5] = { |
| getUNDEF(DL, OpcodeVT), |
| convertTo(DL, OpcodeVT, RISBG.Input), |
| CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32), |
| CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32), |
| CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32) |
| }; |
| SDValue New = convertTo( |
| DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0)); |
| ReplaceNode(N, New.getNode()); |
| return true; |
| } |
| |
| bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) { |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| if (!VT.isInteger() || VT.getSizeInBits() > 64) |
| return false; |
| // Try treating each operand of N as the second operand of the RxSBG |
| // and see which goes deepest. |
| RxSBGOperands RxSBG[] = { |
| RxSBGOperands(Opcode, N->getOperand(0)), |
| RxSBGOperands(Opcode, N->getOperand(1)) |
| }; |
| unsigned Count[] = { 0, 0 }; |
| for (unsigned I = 0; I < 2; ++I) |
| while (expandRxSBG(RxSBG[I])) |
| // The widening or narrowing is expected to be free. |
| // Counting widening or narrowing as a saved operation will result in |
| // preferring an R*SBG over a simple shift/logical instruction. |
| if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND && |
| RxSBG[I].Input.getOpcode() != ISD::TRUNCATE) |
| Count[I] += 1; |
| |
| // Do nothing if neither operand is suitable. |
| if (Count[0] == 0 && Count[1] == 0) |
| return false; |
| |
| // Pick the deepest second operand. |
| unsigned I = Count[0] > Count[1] ? 0 : 1; |
| SDValue Op0 = N->getOperand(I ^ 1); |
| |
| // Prefer IC for character insertions from memory. |
| if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0) |
| if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode())) |
| if (Load->getMemoryVT() == MVT::i8) |
| return false; |
| |
| // See whether we can avoid an AND in the first operand by converting |
| // ROSBG to RISBG. |
| if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) { |
| Opcode = SystemZ::RISBG; |
| // Prefer RISBGN if available, since it does not clobber CC. |
| if (Subtarget->hasMiscellaneousExtensions()) |
| Opcode = SystemZ::RISBGN; |
| } |
| |
| SDValue Ops[5] = { |
| convertTo(DL, MVT::i64, Op0), |
| convertTo(DL, MVT::i64, RxSBG[I].Input), |
| CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32), |
| CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32), |
| CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32) |
| }; |
| SDValue New = convertTo( |
| DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0)); |
| ReplaceNode(N, New.getNode()); |
| return true; |
| } |
| |
| void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node, |
| SDValue Op0, uint64_t UpperVal, |
| uint64_t LowerVal) { |
| EVT VT = Node->getValueType(0); |
| SDLoc DL(Node); |
| SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT); |
| if (Op0.getNode()) |
| Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper); |
| |
| { |
| // When we haven't passed in Op0, Upper will be a constant. In order to |
| // prevent folding back to the large immediate in `Or = getNode(...)` we run |
| // SelectCode first and end up with an opaque machine node. This means that |
| // we need to use a handle to keep track of Upper in case it gets CSE'd by |
| // SelectCode. |
| // |
| // Note that in the case where Op0 is passed in we could just call |
| // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing |
| // the handle at all, but it's fine to do it here. |
| // |
| // TODO: This is a pretty hacky way to do this. Can we do something that |
| // doesn't require a two paragraph explanation? |
| HandleSDNode Handle(Upper); |
| SelectCode(Upper.getNode()); |
| Upper = Handle.getValue(); |
| } |
| |
| SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT); |
| SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower); |
| |
| ReplaceNode(Node, Or.getNode()); |
| |
| SelectCode(Or.getNode()); |
| } |
| |
| void SystemZDAGToDAGISel::loadVectorConstant( |
| const SystemZVectorConstantInfo &VCI, SDNode *Node) { |
| assert((VCI.Opcode == SystemZISD::BYTE_MASK || |
| VCI.Opcode == SystemZISD::REPLICATE || |
| VCI.Opcode == SystemZISD::ROTATE_MASK) && |
| "Bad opcode!"); |
| assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type"); |
| EVT VT = Node->getValueType(0); |
| SDLoc DL(Node); |
| SmallVector<SDValue, 2> Ops; |
| for (unsigned OpVal : VCI.OpVals) |
| Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32)); |
| SDValue Op = CurDAG->getNode(VCI.Opcode, DL, VCI.VecVT, Ops); |
| |
| if (VCI.VecVT == VT.getSimpleVT()) |
| ReplaceNode(Node, Op.getNode()); |
| else if (VT.getSizeInBits() == 128) { |
| SDValue BitCast = CurDAG->getNode(ISD::BITCAST, DL, VT, Op); |
| ReplaceNode(Node, BitCast.getNode()); |
| SelectCode(BitCast.getNode()); |
| } else { // float or double |
| unsigned SubRegIdx = |
| (VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64); |
| ReplaceNode( |
| Node, CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, Op).getNode()); |
| } |
| SelectCode(Op.getNode()); |
| } |
| |
| bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) { |
| SDValue ElemV = N->getOperand(2); |
| auto *ElemN = dyn_cast<ConstantSDNode>(ElemV); |
| if (!ElemN) |
| return false; |
| |
| unsigned Elem = ElemN->getZExtValue(); |
| EVT VT = N->getValueType(0); |
| if (Elem >= VT.getVectorNumElements()) |
| return false; |
| |
| auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1)); |
| if (!Load || !Load->hasNUsesOfValue(1, 0)) |
| return false; |
| if (Load->getMemoryVT().getSizeInBits() != |
| Load->getValueType(0).getSizeInBits()) |
| return false; |
| |
| SDValue Base, Disp, Index; |
| if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) || |
| Index.getValueType() != VT.changeVectorElementTypeToInteger()) |
| return false; |
| |
| SDLoc DL(Load); |
| SDValue Ops[] = { |
| N->getOperand(0), Base, Disp, Index, |
| CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain() |
| }; |
| SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops); |
| ReplaceUses(SDValue(Load, 1), SDValue(Res, 1)); |
| ReplaceNode(N, Res); |
| return true; |
| } |
| |
| bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) { |
| SDValue Value = Store->getValue(); |
| if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return false; |
| if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits()) |
| return false; |
| |
| SDValue ElemV = Value.getOperand(1); |
| auto *ElemN = dyn_cast<ConstantSDNode>(ElemV); |
| if (!ElemN) |
| return false; |
| |
| SDValue Vec = Value.getOperand(0); |
| EVT VT = Vec.getValueType(); |
| unsigned Elem = ElemN->getZExtValue(); |
| if (Elem >= VT.getVectorNumElements()) |
| return false; |
| |
| SDValue Base, Disp, Index; |
| if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) || |
| Index.getValueType() != VT.changeVectorElementTypeToInteger()) |
| return false; |
| |
| SDLoc DL(Store); |
| SDValue Ops[] = { |
| Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32), |
| Store->getChain() |
| }; |
| ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops)); |
| return true; |
| } |
| |
| // Check whether or not the chain ending in StoreNode is suitable for doing |
| // the {load; op; store} to modify transformation. |
| static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode, |
| SDValue StoredVal, SelectionDAG *CurDAG, |
| LoadSDNode *&LoadNode, |
| SDValue &InputChain) { |
| // Is the stored value result 0 of the operation? |
| if (StoredVal.getResNo() != 0) |
| return false; |
| |
| // Are there other uses of the loaded value than the operation? |
| if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) |
| return false; |
| |
| // Is the store non-extending and non-indexed? |
| if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) |
| return false; |
| |
| SDValue Load = StoredVal->getOperand(0); |
| // Is the stored value a non-extending and non-indexed load? |
| if (!ISD::isNormalLoad(Load.getNode())) |
| return false; |
| |
| // Return LoadNode by reference. |
| LoadNode = cast<LoadSDNode>(Load); |
| |
| // Is store the only read of the loaded value? |
| if (!Load.hasOneUse()) |
| return false; |
| |
| // Is the address of the store the same as the load? |
| if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || |
| LoadNode->getOffset() != StoreNode->getOffset()) |
| return false; |
| |
| // Check if the chain is produced by the load or is a TokenFactor with |
| // the load output chain as an operand. Return InputChain by reference. |
| SDValue Chain = StoreNode->getChain(); |
| |
| bool ChainCheck = false; |
| if (Chain == Load.getValue(1)) { |
| ChainCheck = true; |
| InputChain = LoadNode->getChain(); |
| } else if (Chain.getOpcode() == ISD::TokenFactor) { |
| SmallVector<SDValue, 4> ChainOps; |
| SmallVector<const SDNode *, 4> LoopWorklist; |
| SmallPtrSet<const SDNode *, 16> Visited; |
| const unsigned int Max = 1024; |
| for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { |
| SDValue Op = Chain.getOperand(i); |
| if (Op == Load.getValue(1)) { |
| ChainCheck = true; |
| // Drop Load, but keep its chain. No cycle check necessary. |
| ChainOps.push_back(Load.getOperand(0)); |
| continue; |
| } |
| LoopWorklist.push_back(Op.getNode()); |
| ChainOps.push_back(Op); |
| } |
| |
| if (ChainCheck) { |
| // Add the other operand of StoredVal to worklist. |
| for (SDValue Op : StoredVal->ops()) |
| if (Op.getNode() != LoadNode) |
| LoopWorklist.push_back(Op.getNode()); |
| |
| // Check if Load is reachable from any of the nodes in the worklist. |
| if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max, |
| true)) |
| return false; |
| |
| // Make a new TokenFactor with all the other input chains except |
| // for the load. |
| InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), |
| MVT::Other, ChainOps); |
| } |
| } |
| if (!ChainCheck) |
| return false; |
| |
| return true; |
| } |
| |
| // Change a chain of {load; op; store} of the same value into a simple op |
| // through memory of that value, if the uses of the modified value and its |
| // address are suitable. |
| // |
| // The tablegen pattern memory operand pattern is currently not able to match |
| // the case where the CC on the original operation are used. |
| // |
| // See the equivalent routine in X86ISelDAGToDAG for further comments. |
| bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) { |
| StoreSDNode *StoreNode = cast<StoreSDNode>(Node); |
| SDValue StoredVal = StoreNode->getOperand(1); |
| unsigned Opc = StoredVal->getOpcode(); |
| SDLoc DL(StoreNode); |
| |
| // Before we try to select anything, make sure this is memory operand size |
| // and opcode we can handle. Note that this must match the code below that |
| // actually lowers the opcodes. |
| EVT MemVT = StoreNode->getMemoryVT(); |
| unsigned NewOpc = 0; |
| bool NegateOperand = false; |
| switch (Opc) { |
| default: |
| return false; |
| case SystemZISD::SSUBO: |
| NegateOperand = true; |
| LLVM_FALLTHROUGH; |
| case SystemZISD::SADDO: |
| if (MemVT == MVT::i32) |
| NewOpc = SystemZ::ASI; |
| else if (MemVT == MVT::i64) |
| NewOpc = SystemZ::AGSI; |
| else |
| return false; |
| break; |
| case SystemZISD::USUBO: |
| NegateOperand = true; |
| LLVM_FALLTHROUGH; |
| case SystemZISD::UADDO: |
| if (MemVT == MVT::i32) |
| NewOpc = SystemZ::ALSI; |
| else if (MemVT == MVT::i64) |
| NewOpc = SystemZ::ALGSI; |
| else |
| return false; |
| break; |
| } |
| |
| LoadSDNode *LoadNode = nullptr; |
| SDValue InputChain; |
| if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode, |
| InputChain)) |
| return false; |
| |
| SDValue Operand = StoredVal.getOperand(1); |
| auto *OperandC = dyn_cast<ConstantSDNode>(Operand); |
| if (!OperandC) |
| return false; |
| auto OperandV = OperandC->getAPIntValue(); |
| if (NegateOperand) |
| OperandV = -OperandV; |
| if (OperandV.getMinSignedBits() > 8) |
| return false; |
| Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT); |
| |
| SDValue Base, Disp; |
| if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp)) |
| return false; |
| |
| SDValue Ops[] = { Base, Disp, Operand, InputChain }; |
| MachineSDNode *Result = |
| CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops); |
| CurDAG->setNodeMemRefs( |
| Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()}); |
| |
| ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); |
| ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); |
| CurDAG->RemoveDeadNode(Node); |
| return true; |
| } |
| |
| bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store, |
| LoadSDNode *Load) const { |
| // Check that the two memory operands have the same size. |
| if (Load->getMemoryVT() != Store->getMemoryVT()) |
| return false; |
| |
| // Volatility stops an access from being decomposed. |
| if (Load->isVolatile() || Store->isVolatile()) |
| return false; |
| |
| // There's no chance of overlap if the load is invariant. |
| if (Load->isInvariant() && Load->isDereferenceable()) |
| return true; |
| |
| // Otherwise we need to check whether there's an alias. |
| const Value *V1 = Load->getMemOperand()->getValue(); |
| const Value *V2 = Store->getMemOperand()->getValue(); |
| if (!V1 || !V2) |
| return false; |
| |
| // Reject equality. |
| uint64_t Size = Load->getMemoryVT().getStoreSize(); |
| int64_t End1 = Load->getSrcValueOffset() + Size; |
| int64_t End2 = Store->getSrcValueOffset() + Size; |
| if (V1 == V2 && End1 == End2) |
| return false; |
| |
| return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()), |
| MemoryLocation(V2, End2, Store->getAAInfo())); |
| } |
| |
| bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const { |
| auto *Store = cast<StoreSDNode>(N); |
| auto *Load = cast<LoadSDNode>(Store->getValue()); |
| |
| // Prefer not to use MVC if either address can use ... RELATIVE LONG |
| // instructions. |
| uint64_t Size = Load->getMemoryVT().getStoreSize(); |
| if (Size > 1 && Size <= 8) { |
| // Prefer LHRL, LRL and LGRL. |
| if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode())) |
| return false; |
| // Prefer STHRL, STRL and STGRL. |
| if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode())) |
| return false; |
| } |
| |
| return canUseBlockOperation(Store, Load); |
| } |
| |
| bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N, |
| unsigned I) const { |
| auto *StoreA = cast<StoreSDNode>(N); |
| auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I)); |
| auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I)); |
| return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB); |
| } |
| |
| void SystemZDAGToDAGISel::Select(SDNode *Node) { |
| // If we have a custom node, we already have selected! |
| if (Node->isMachineOpcode()) { |
| LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n"); |
| Node->setNodeId(-1); |
| return; |
| } |
| |
| unsigned Opcode = Node->getOpcode(); |
| switch (Opcode) { |
| case ISD::OR: |
| if (Node->getOperand(1).getOpcode() != ISD::Constant) |
| if (tryRxSBG(Node, SystemZ::ROSBG)) |
| return; |
| goto or_xor; |
| |
| case ISD::XOR: |
| if (Node->getOperand(1).getOpcode() != ISD::Constant) |
| if (tryRxSBG(Node, SystemZ::RXSBG)) |
| return; |
| // Fall through. |
| or_xor: |
| // If this is a 64-bit operation in which both 32-bit halves are nonzero, |
| // split the operation into two. If both operands here happen to be |
| // constant, leave this to common code to optimize. |
| if (Node->getValueType(0) == MVT::i64 && |
| Node->getOperand(0).getOpcode() != ISD::Constant) |
| if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) { |
| uint64_t Val = Op1->getZExtValue(); |
| // Don't split the operation if we can match one of the combined |
| // logical operations provided by miscellaneous-extensions-3. |
| if (Subtarget->hasMiscellaneousExtensions3()) { |
| unsigned ChildOpcode = Node->getOperand(0).getOpcode(); |
| // Check whether this expression matches NAND/NOR/NXOR. |
| if (Val == (uint64_t)-1 && Opcode == ISD::XOR) |
| if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR || |
| ChildOpcode == ISD::XOR) |
| break; |
| // Check whether this expression matches OR-with-complement |
| // (or matches an alternate pattern for NXOR). |
| if (ChildOpcode == ISD::XOR) { |
| auto Op0 = Node->getOperand(0); |
| if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Op0->getOperand(1))) |
| if (Op0Op1->getZExtValue() == (uint64_t)-1) |
| break; |
| } |
| } |
| if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) { |
| splitLargeImmediate(Opcode, Node, Node->getOperand(0), |
| Val - uint32_t(Val), uint32_t(Val)); |
| return; |
| } |
| } |
| break; |
| |
| case ISD::AND: |
| if (Node->getOperand(1).getOpcode() != ISD::Constant) |
| if (tryRxSBG(Node, SystemZ::RNSBG)) |
| return; |
| LLVM_FALLTHROUGH; |
| case ISD::ROTL: |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::ZERO_EXTEND: |
| if (tryRISBGZero(Node)) |
| return; |
| break; |
| |
| case ISD::Constant: |
| // If this is a 64-bit constant that is out of the range of LLILF, |
| // LLIHF and LGFI, split it into two 32-bit pieces. |
| if (Node->getValueType(0) == MVT::i64) { |
| uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue(); |
| if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) { |
| splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val), |
| uint32_t(Val)); |
| return; |
| } |
| } |
| break; |
| |
| case SystemZISD::SELECT_CCMASK: { |
| SDValue Op0 = Node->getOperand(0); |
| SDValue Op1 = Node->getOperand(1); |
| // Prefer to put any load first, so that it can be matched as a |
| // conditional load. Likewise for constants in range for LOCHI. |
| if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) || |
| (Subtarget->hasLoadStoreOnCond2() && |
| Node->getValueType(0).isInteger() && |
| Op1.getOpcode() == ISD::Constant && |
| isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) && |
| !(Op0.getOpcode() == ISD::Constant && |
| isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) { |
| SDValue CCValid = Node->getOperand(2); |
| SDValue CCMask = Node->getOperand(3); |
| uint64_t ConstCCValid = |
| cast<ConstantSDNode>(CCValid.getNode())->getZExtValue(); |
| uint64_t ConstCCMask = |
| cast<ConstantSDNode>(CCMask.getNode())->getZExtValue(); |
| // Invert the condition. |
| CCMask = CurDAG->getTargetConstant(ConstCCValid ^ ConstCCMask, |
| SDLoc(Node), CCMask.getValueType()); |
| SDValue Op4 = Node->getOperand(4); |
| SDNode *UpdatedNode = |
| CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4); |
| if (UpdatedNode != Node) { |
| // In case this node already exists then replace Node with it. |
| ReplaceNode(Node, UpdatedNode); |
| Node = UpdatedNode; |
| } |
| } |
| break; |
| } |
| |
| case ISD::INSERT_VECTOR_ELT: { |
| EVT VT = Node->getValueType(0); |
| unsigned ElemBitSize = VT.getScalarSizeInBits(); |
| if (ElemBitSize == 32) { |
| if (tryGather(Node, SystemZ::VGEF)) |
| return; |
| } else if (ElemBitSize == 64) { |
| if (tryGather(Node, SystemZ::VGEG)) |
| return; |
| } |
| break; |
| } |
| |
| case ISD::BUILD_VECTOR: { |
| auto *BVN = cast<BuildVectorSDNode>(Node); |
| SystemZVectorConstantInfo VCI(BVN); |
| if (VCI.isVectorConstantLegal(*Subtarget)) { |
| loadVectorConstant(VCI, Node); |
| return; |
| } |
| break; |
| } |
| |
| case ISD::ConstantFP: { |
| APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF(); |
| if (Imm.isZero() || Imm.isNegZero()) |
| break; |
| SystemZVectorConstantInfo VCI(Imm); |
| bool Success = VCI.isVectorConstantLegal(*Subtarget); (void)Success; |
| assert(Success && "Expected legal FP immediate"); |
| loadVectorConstant(VCI, Node); |
| return; |
| } |
| |
| case ISD::STORE: { |
| if (tryFoldLoadStoreIntoMemOperand(Node)) |
| return; |
| auto *Store = cast<StoreSDNode>(Node); |
| unsigned ElemBitSize = Store->getValue().getValueSizeInBits(); |
| if (ElemBitSize == 32) { |
| if (tryScatter(Store, SystemZ::VSCEF)) |
| return; |
| } else if (ElemBitSize == 64) { |
| if (tryScatter(Store, SystemZ::VSCEG)) |
| return; |
| } |
| break; |
| } |
| } |
| |
| SelectCode(Node); |
| } |
| |
| bool SystemZDAGToDAGISel:: |
| SelectInlineAsmMemoryOperand(const SDValue &Op, |
| unsigned ConstraintID, |
| std::vector<SDValue> &OutOps) { |
| SystemZAddressingMode::AddrForm Form; |
| SystemZAddressingMode::DispRange DispRange; |
| SDValue Base, Disp, Index; |
| |
| switch(ConstraintID) { |
| default: |
| llvm_unreachable("Unexpected asm memory constraint"); |
| case InlineAsm::Constraint_i: |
| case InlineAsm::Constraint_Q: |
| // Accept an address with a short displacement, but no index. |
| Form = SystemZAddressingMode::FormBD; |
| DispRange = SystemZAddressingMode::Disp12Only; |
| break; |
| case InlineAsm::Constraint_R: |
| // Accept an address with a short displacement and an index. |
| Form = SystemZAddressingMode::FormBDXNormal; |
| DispRange = SystemZAddressingMode::Disp12Only; |
| break; |
| case InlineAsm::Constraint_S: |
| // Accept an address with a long displacement, but no index. |
| Form = SystemZAddressingMode::FormBD; |
| DispRange = SystemZAddressingMode::Disp20Only; |
| break; |
| case InlineAsm::Constraint_T: |
| case InlineAsm::Constraint_m: |
| case InlineAsm::Constraint_o: |
| // Accept an address with a long displacement and an index. |
| // m works the same as T, as this is the most general case. |
| // We don't really have any special handling of "offsettable" |
| // memory addresses, so just treat o the same as m. |
| Form = SystemZAddressingMode::FormBDXNormal; |
| DispRange = SystemZAddressingMode::Disp20Only; |
| break; |
| } |
| |
| if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) { |
| const TargetRegisterClass *TRC = |
| Subtarget->getRegisterInfo()->getPointerRegClass(*MF); |
| SDLoc DL(Base); |
| SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32); |
| |
| // Make sure that the base address doesn't go into %r0. |
| // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything. |
| if (Base.getOpcode() != ISD::TargetFrameIndex && |
| Base.getOpcode() != ISD::Register) { |
| Base = |
| SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, |
| DL, Base.getValueType(), |
| Base, RC), 0); |
| } |
| |
| // Make sure that the index register isn't assigned to %r0 either. |
| if (Index.getOpcode() != ISD::Register) { |
| Index = |
| SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, |
| DL, Index.getValueType(), |
| Index, RC), 0); |
| } |
| |
| OutOps.push_back(Base); |
| OutOps.push_back(Disp); |
| OutOps.push_back(Index); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // IsProfitableToFold - Returns true if is profitable to fold the specific |
| // operand node N of U during instruction selection that starts at Root. |
| bool |
| SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, |
| SDNode *Root) const { |
| // We want to avoid folding a LOAD into an ICMP node if as a result |
| // we would be forced to spill the condition code into a GPR. |
| if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) { |
| if (!N.hasOneUse() || !U->hasOneUse()) |
| return false; |
| |
| // The user of the CC value will usually be a CopyToReg into the |
| // physical CC register, which in turn is glued and chained to the |
| // actual instruction that uses the CC value. Bail out if we have |
| // anything else than that. |
| SDNode *CCUser = *U->use_begin(); |
| SDNode *CCRegUser = nullptr; |
| if (CCUser->getOpcode() == ISD::CopyToReg || |
| cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) { |
| for (auto *U : CCUser->uses()) { |
| if (CCRegUser == nullptr) |
| CCRegUser = U; |
| else if (CCRegUser != U) |
| return false; |
| } |
| } |
| if (CCRegUser == nullptr) |
| return false; |
| |
| // If the actual instruction is a branch, the only thing that remains to be |
| // checked is whether the CCUser chain is a predecessor of the load. |
| if (CCRegUser->isMachineOpcode() && |
| CCRegUser->getMachineOpcode() == SystemZ::BRC) |
| return !N->isPredecessorOf(CCUser->getOperand(0).getNode()); |
| |
| // Otherwise, the instruction may have multiple operands, and we need to |
| // verify that none of them are a predecessor of the load. This is exactly |
| // the same check that would be done by common code if the CC setter were |
| // glued to the CC user, so simply invoke that check here. |
| if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| namespace { |
| // Represents a sequence for extracting a 0/1 value from an IPM result: |
| // (((X ^ XORValue) + AddValue) >> Bit) |
| struct IPMConversion { |
| IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) |
| : XORValue(xorValue), AddValue(addValue), Bit(bit) {} |
| |
| int64_t XORValue; |
| int64_t AddValue; |
| unsigned Bit; |
| }; |
| } // end anonymous namespace |
| |
| // Return a sequence for getting a 1 from an IPM result when CC has a |
| // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. |
| // The handling of CC values outside CCValid doesn't matter. |
| static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { |
| // Deal with cases where the result can be taken directly from a bit |
| // of the IPM result. |
| if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) |
| return IPMConversion(0, 0, SystemZ::IPM_CC); |
| if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) |
| return IPMConversion(0, 0, SystemZ::IPM_CC + 1); |
| |
| // Deal with cases where we can add a value to force the sign bit |
| // to contain the right value. Putting the bit in 31 means we can |
| // use SRL rather than RISBG(L), and also makes it easier to get a |
| // 0/-1 value, so it has priority over the other tests below. |
| // |
| // These sequences rely on the fact that the upper two bits of the |
| // IPM result are zero. |
| uint64_t TopBit = uint64_t(1) << 31; |
| if (CCMask == (CCValid & SystemZ::CCMASK_0)) |
| return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); |
| if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) |
| return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); |
| if (CCMask == (CCValid & (SystemZ::CCMASK_0 |
| | SystemZ::CCMASK_1 |
| | SystemZ::CCMASK_2))) |
| return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); |
| if (CCMask == (CCValid & SystemZ::CCMASK_3)) |
| return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); |
| if (CCMask == (CCValid & (SystemZ::CCMASK_1 |
| | SystemZ::CCMASK_2 |
| | SystemZ::CCMASK_3))) |
| return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); |
| |
| // Next try inverting the value and testing a bit. 0/1 could be |
| // handled this way too, but we dealt with that case above. |
| if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) |
| return IPMConversion(-1, 0, SystemZ::IPM_CC); |
| |
| // Handle cases where adding a value forces a non-sign bit to contain |
| // the right value. |
| if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) |
| return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); |
| if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) |
| return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); |
| |
| // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are |
| // can be done by inverting the low CC bit and applying one of the |
| // sign-based extractions above. |
| if (CCMask == (CCValid & SystemZ::CCMASK_1)) |
| return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); |
| if (CCMask == (CCValid & SystemZ::CCMASK_2)) |
| return IPMConversion(1 << SystemZ::IPM_CC, |
| TopBit - (3 << SystemZ::IPM_CC), 31); |
| if (CCMask == (CCValid & (SystemZ::CCMASK_0 |
| | SystemZ::CCMASK_1 |
| | SystemZ::CCMASK_3))) |
| return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); |
| if (CCMask == (CCValid & (SystemZ::CCMASK_0 |
| | SystemZ::CCMASK_2 |
| | SystemZ::CCMASK_3))) |
| return IPMConversion(1 << SystemZ::IPM_CC, |
| TopBit - (1 << SystemZ::IPM_CC), 31); |
| |
| llvm_unreachable("Unexpected CC combination"); |
| } |
| |
| SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) { |
| auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0)); |
| auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1)); |
| if (!TrueOp || !FalseOp) |
| return SDValue(); |
| if (FalseOp->getZExtValue() != 0) |
| return SDValue(); |
| if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1) |
| return SDValue(); |
| |
| auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2)); |
| auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3)); |
| if (!CCValidOp || !CCMaskOp) |
| return SDValue(); |
| int CCValid = CCValidOp->getZExtValue(); |
| int CCMask = CCMaskOp->getZExtValue(); |
| |
| SDLoc DL(Node); |
| SDValue CCReg = Node->getOperand(4); |
| IPMConversion IPM = getIPMConversion(CCValid, CCMask); |
| SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); |
| |
| if (IPM.XORValue) |
| Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result, |
| CurDAG->getConstant(IPM.XORValue, DL, MVT::i32)); |
| |
| if (IPM.AddValue) |
| Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result, |
| CurDAG->getConstant(IPM.AddValue, DL, MVT::i32)); |
| |
| EVT VT = Node->getValueType(0); |
| if (VT == MVT::i32 && IPM.Bit == 31) { |
| unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA; |
| Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result, |
| CurDAG->getConstant(IPM.Bit, DL, MVT::i32)); |
| } else { |
| if (VT != MVT::i32) |
| Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result); |
| |
| if (TrueOp->getSExtValue() == 1) { |
| // The SHR/AND sequence should get optimized to an RISBG. |
| Result = CurDAG->getNode(ISD::SRL, DL, VT, Result, |
| CurDAG->getConstant(IPM.Bit, DL, MVT::i32)); |
| Result = CurDAG->getNode(ISD::AND, DL, VT, Result, |
| CurDAG->getConstant(1, DL, VT)); |
| } else { |
| // Sign-extend from IPM.Bit using a pair of shifts. |
| int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit; |
| int SraAmt = VT.getSizeInBits() - 1; |
| Result = CurDAG->getNode(ISD::SHL, DL, VT, Result, |
| CurDAG->getConstant(ShlAmt, DL, MVT::i32)); |
| Result = CurDAG->getNode(ISD::SRA, DL, VT, Result, |
| CurDAG->getConstant(SraAmt, DL, MVT::i32)); |
| } |
| } |
| |
| return Result; |
| } |
| |
| void SystemZDAGToDAGISel::PreprocessISelDAG() { |
| // If we have conditional immediate loads, we always prefer |
| // using those over an IPM sequence. |
| if (Subtarget->hasLoadStoreOnCond2()) |
| return; |
| |
| bool MadeChange = false; |
| |
| for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), |
| E = CurDAG->allnodes_end(); |
| I != E;) { |
| SDNode *N = &*I++; |
| if (N->use_empty()) |
| continue; |
| |
| SDValue Res; |
| switch (N->getOpcode()) { |
| default: break; |
| case SystemZISD::SELECT_CCMASK: |
| Res = expandSelectBoolean(N); |
| break; |
| } |
| |
| if (Res) { |
| LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: "); |
| LLVM_DEBUG(N->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\nNew: "); |
| LLVM_DEBUG(Res.getNode()->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); |
| MadeChange = true; |
| } |
| } |
| |
| if (MadeChange) |
| CurDAG->RemoveDeadNodes(); |
| } |