| // Copyright 2018 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "VkDevice.hpp" |
| |
| #include "VkConfig.hpp" |
| #include "VkDescriptorSetLayout.hpp" |
| #include "VkFence.hpp" |
| #include "VkQueue.hpp" |
| #include "VkSemaphore.hpp" |
| #include "VkStringify.hpp" |
| #include "VkTimelineSemaphore.hpp" |
| #include "Debug/Context.hpp" |
| #include "Debug/Server.hpp" |
| #include "Device/Blitter.hpp" |
| #include "System/Debug.hpp" |
| |
| #include <chrono> |
| #include <climits> |
| #include <new> // Must #include this to use "placement new" |
| |
| namespace { |
| |
| using time_point = std::chrono::time_point<std::chrono::system_clock, std::chrono::nanoseconds>; |
| |
| time_point now() |
| { |
| return std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now()); |
| } |
| |
| const time_point getEndTimePoint(uint64_t timeout, bool &infiniteTimeout) |
| { |
| const time_point start = now(); |
| const uint64_t max_timeout = (LLONG_MAX - start.time_since_epoch().count()); |
| infiniteTimeout = (timeout > max_timeout); |
| return start + std::chrono::nanoseconds(std::min(max_timeout, timeout)); |
| } |
| |
| } // anonymous namespace |
| |
| namespace vk { |
| |
| void Device::SamplingRoutineCache::updateSnapshot() |
| { |
| marl::lock lock(mutex); |
| |
| if(snapshotNeedsUpdate) |
| { |
| snapshot.clear(); |
| |
| for(auto it : cache) |
| { |
| snapshot[it.key()] = it.data(); |
| } |
| |
| snapshotNeedsUpdate = false; |
| } |
| } |
| |
| Device::SamplerIndexer::~SamplerIndexer() |
| { |
| ASSERT(map.empty()); |
| } |
| |
| uint32_t Device::SamplerIndexer::index(const SamplerState &samplerState) |
| { |
| marl::lock lock(mutex); |
| |
| auto it = map.find(samplerState); |
| |
| if(it != map.end()) |
| { |
| it->second.count++; |
| return it->second.id; |
| } |
| |
| nextID++; |
| |
| map.emplace(samplerState, Identifier{ nextID, 1 }); |
| |
| return nextID; |
| } |
| |
| void Device::SamplerIndexer::remove(const SamplerState &samplerState) |
| { |
| marl::lock lock(mutex); |
| |
| auto it = map.find(samplerState); |
| ASSERT(it != map.end()); |
| |
| auto count = --it->second.count; |
| if(count == 0) |
| { |
| map.erase(it); |
| } |
| } |
| |
| const SamplerState *Device::SamplerIndexer::find(uint32_t id) |
| { |
| marl::lock lock(mutex); |
| |
| auto it = std::find_if(std::begin(map), std::end(map), |
| [&id](auto &&p) { return p.second.id == id; }); |
| |
| return (it != std::end(map)) ? &(it->first) : nullptr; |
| } |
| |
| Device::Device(const VkDeviceCreateInfo *pCreateInfo, void *mem, PhysicalDevice *physicalDevice, const VkPhysicalDeviceFeatures *enabledFeatures, const std::shared_ptr<marl::Scheduler> &scheduler) |
| : physicalDevice(physicalDevice) |
| , queues(reinterpret_cast<Queue *>(mem)) |
| , enabledExtensionCount(pCreateInfo->enabledExtensionCount) |
| , enabledFeatures(enabledFeatures ? *enabledFeatures : VkPhysicalDeviceFeatures{}) // "Setting pEnabledFeatures to NULL and not including a VkPhysicalDeviceFeatures2 in the pNext member of VkDeviceCreateInfo is equivalent to setting all members of the structure to VK_FALSE." |
| , scheduler(scheduler) |
| { |
| for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) |
| { |
| const VkDeviceQueueCreateInfo &queueCreateInfo = pCreateInfo->pQueueCreateInfos[i]; |
| queueCount += queueCreateInfo.queueCount; |
| } |
| |
| uint32_t queueID = 0; |
| for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) |
| { |
| const VkDeviceQueueCreateInfo &queueCreateInfo = pCreateInfo->pQueueCreateInfos[i]; |
| |
| for(uint32_t j = 0; j < queueCreateInfo.queueCount; j++, queueID++) |
| { |
| new(&queues[queueID]) Queue(this, scheduler.get()); |
| } |
| } |
| |
| extensions = reinterpret_cast<ExtensionName *>(static_cast<uint8_t *>(mem) + (sizeof(Queue) * queueCount)); |
| for(uint32_t i = 0; i < enabledExtensionCount; i++) |
| { |
| strncpy(extensions[i], pCreateInfo->ppEnabledExtensionNames[i], VK_MAX_EXTENSION_NAME_SIZE); |
| } |
| |
| if(pCreateInfo->enabledLayerCount) |
| { |
| // "The ppEnabledLayerNames and enabledLayerCount members of VkDeviceCreateInfo are deprecated and their values must be ignored by implementations." |
| UNSUPPORTED("enabledLayerCount"); |
| } |
| |
| // TODO(b/119409619): use an allocator here so we can control all memory allocations |
| blitter.reset(new sw::Blitter()); |
| samplingRoutineCache.reset(new SamplingRoutineCache()); |
| samplerIndexer.reset(new SamplerIndexer()); |
| |
| #ifdef SWIFTSHADER_DEVICE_MEMORY_REPORT |
| const auto *deviceMemoryReportCreateInfo = GetExtendedStruct<VkDeviceDeviceMemoryReportCreateInfoEXT>(pCreateInfo->pNext, VK_STRUCTURE_TYPE_DEVICE_DEVICE_MEMORY_REPORT_CREATE_INFO_EXT); |
| if(deviceMemoryReportCreateInfo && deviceMemoryReportCreateInfo->pfnUserCallback != nullptr) |
| { |
| deviceMemoryReportCallbacks.emplace_back(deviceMemoryReportCreateInfo->pfnUserCallback, deviceMemoryReportCreateInfo->pUserData); |
| } |
| #endif // SWIFTSHADER_DEVICE_MEMORY_REPORT |
| } |
| |
| void Device::destroy(const VkAllocationCallbacks *pAllocator) |
| { |
| for(uint32_t i = 0; i < queueCount; i++) |
| { |
| queues[i].~Queue(); |
| } |
| |
| vk::freeHostMemory(queues, pAllocator); |
| } |
| |
| size_t Device::ComputeRequiredAllocationSize(const VkDeviceCreateInfo *pCreateInfo) |
| { |
| uint32_t queueCount = 0; |
| for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) |
| { |
| queueCount += pCreateInfo->pQueueCreateInfos[i].queueCount; |
| } |
| |
| return (sizeof(Queue) * queueCount) + (pCreateInfo->enabledExtensionCount * sizeof(ExtensionName)); |
| } |
| |
| bool Device::hasExtension(const char *extensionName) const |
| { |
| for(uint32_t i = 0; i < enabledExtensionCount; i++) |
| { |
| if(strncmp(extensions[i], extensionName, VK_MAX_EXTENSION_NAME_SIZE) == 0) |
| { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| VkQueue Device::getQueue(uint32_t queueFamilyIndex, uint32_t queueIndex) const |
| { |
| ASSERT(queueFamilyIndex == 0); |
| |
| return queues[queueIndex]; |
| } |
| |
| VkResult Device::waitForFences(uint32_t fenceCount, const VkFence *pFences, VkBool32 waitAll, uint64_t timeout) |
| { |
| bool infiniteTimeout = false; |
| const time_point end_ns = getEndTimePoint(timeout, infiniteTimeout); |
| |
| if(waitAll != VK_FALSE) // All fences must be signaled |
| { |
| for(uint32_t i = 0; i < fenceCount; i++) |
| { |
| if(timeout == 0) |
| { |
| if(Cast(pFences[i])->getStatus() != VK_SUCCESS) // At least one fence is not signaled |
| { |
| return VK_TIMEOUT; |
| } |
| } |
| else if(infiniteTimeout) |
| { |
| if(Cast(pFences[i])->wait() != VK_SUCCESS) // At least one fence is not signaled |
| { |
| return VK_TIMEOUT; |
| } |
| } |
| else |
| { |
| if(Cast(pFences[i])->wait(end_ns) != VK_SUCCESS) // At least one fence is not signaled |
| { |
| return VK_TIMEOUT; |
| } |
| } |
| } |
| |
| return VK_SUCCESS; |
| } |
| else // At least one fence must be signaled |
| { |
| marl::containers::vector<marl::Event, 8> events; |
| for(uint32_t i = 0; i < fenceCount; i++) |
| { |
| events.push_back(Cast(pFences[i])->getCountedEvent()->event()); |
| } |
| |
| auto any = marl::Event::any(events.begin(), events.end()); |
| |
| if(timeout == 0) |
| { |
| return any.isSignalled() ? VK_SUCCESS : VK_TIMEOUT; |
| } |
| else if(infiniteTimeout) |
| { |
| any.wait(); |
| return VK_SUCCESS; |
| } |
| else |
| { |
| return any.wait_until(end_ns) ? VK_SUCCESS : VK_TIMEOUT; |
| } |
| } |
| } |
| |
| VkResult Device::waitForSemaphores(const VkSemaphoreWaitInfo *pWaitInfo, uint64_t timeout) |
| { |
| bool infiniteTimeout = false; |
| const time_point end_ns = getEndTimePoint(timeout, infiniteTimeout); |
| |
| if(pWaitInfo->flags & VK_SEMAPHORE_WAIT_ANY_BIT) |
| { |
| TimelineSemaphore any = TimelineSemaphore(); |
| |
| for(uint32_t i = 0; i < pWaitInfo->semaphoreCount; i++) |
| { |
| TimelineSemaphore *semaphore = DynamicCast<TimelineSemaphore>(pWaitInfo->pSemaphores[i]); |
| uint64_t waitValue = pWaitInfo->pValues[i]; |
| |
| if(semaphore->getCounterValue() == waitValue) |
| { |
| return VK_SUCCESS; |
| } |
| |
| semaphore->addDependent(any, waitValue); |
| } |
| |
| if(infiniteTimeout) |
| { |
| any.wait(1ull); |
| return VK_SUCCESS; |
| } |
| else |
| { |
| if(any.wait(1, end_ns) == VK_SUCCESS) |
| { |
| return VK_SUCCESS; |
| } |
| } |
| |
| return VK_TIMEOUT; |
| } |
| else |
| { |
| ASSERT(pWaitInfo->flags == 0); |
| for(uint32_t i = 0; i < pWaitInfo->semaphoreCount; i++) |
| { |
| TimelineSemaphore *semaphore = DynamicCast<TimelineSemaphore>(pWaitInfo->pSemaphores[i]); |
| uint64_t value = pWaitInfo->pValues[i]; |
| if(infiniteTimeout) |
| { |
| semaphore->wait(value); |
| } |
| else if(semaphore->wait(pWaitInfo->pValues[i], end_ns) != VK_SUCCESS) |
| { |
| return VK_TIMEOUT; |
| } |
| } |
| return VK_SUCCESS; |
| } |
| } |
| |
| VkResult Device::waitIdle() |
| { |
| for(uint32_t i = 0; i < queueCount; i++) |
| { |
| queues[i].waitIdle(); |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| void Device::getDescriptorSetLayoutSupport(const VkDescriptorSetLayoutCreateInfo *pCreateInfo, |
| VkDescriptorSetLayoutSupport *pSupport) const |
| { |
| // From Vulkan Spec 13.2.1 Descriptor Set Layout, in description of vkGetDescriptorSetLayoutSupport: |
| // "This command does not consider other limits such as maxPerStageDescriptor*, and so a descriptor |
| // set layout that is supported according to this command must still satisfy the pipeline layout limits |
| // such as maxPerStageDescriptor* in order to be used in a pipeline layout." |
| |
| // We have no "strange" limitations to enforce beyond the device limits, so we can safely always claim support. |
| pSupport->supported = VK_TRUE; |
| |
| if(pCreateInfo->bindingCount > 0) |
| { |
| bool hasVariableSizedDescriptor = false; |
| |
| const VkBaseInStructure *layoutInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext); |
| while(layoutInfo && !hasVariableSizedDescriptor) |
| { |
| if(layoutInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO) |
| { |
| const VkDescriptorSetLayoutBindingFlagsCreateInfo *bindingFlagsCreateInfo = |
| reinterpret_cast<const VkDescriptorSetLayoutBindingFlagsCreateInfo *>(layoutInfo); |
| |
| for(uint32_t i = 0; i < bindingFlagsCreateInfo->bindingCount; i++) |
| { |
| if(bindingFlagsCreateInfo->pBindingFlags[i] & VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT) |
| { |
| hasVariableSizedDescriptor = true; |
| break; |
| } |
| } |
| } |
| else |
| { |
| UNSUPPORTED("layoutInfo->sType = %s", vk::Stringify(layoutInfo->sType).c_str()); |
| } |
| |
| layoutInfo = layoutInfo->pNext; |
| } |
| |
| const auto &highestNumberedBinding = pCreateInfo->pBindings[pCreateInfo->bindingCount - 1]; |
| |
| VkBaseOutStructure *layoutSupport = reinterpret_cast<VkBaseOutStructure *>(pSupport->pNext); |
| while(layoutSupport) |
| { |
| if(layoutSupport->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT) |
| { |
| VkDescriptorSetVariableDescriptorCountLayoutSupport *variableDescriptorCountLayoutSupport = |
| reinterpret_cast<VkDescriptorSetVariableDescriptorCountLayoutSupport *>(layoutSupport); |
| |
| // If the VkDescriptorSetLayoutCreateInfo structure does not include a variable-sized descriptor, |
| // [...] then maxVariableDescriptorCount is set to zero. |
| variableDescriptorCountLayoutSupport->maxVariableDescriptorCount = |
| hasVariableSizedDescriptor ? ((highestNumberedBinding.descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) ? vk::MAX_INLINE_UNIFORM_BLOCK_SIZE : vk::MAX_UPDATE_AFTER_BIND_DESCRIPTORS) : 0; |
| } |
| else |
| { |
| UNSUPPORTED("layoutSupport->sType = %s", vk::Stringify(layoutSupport->sType).c_str()); |
| } |
| |
| layoutSupport = layoutSupport->pNext; |
| } |
| } |
| } |
| |
| void Device::updateDescriptorSets(uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites, |
| uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies) |
| { |
| for(uint32_t i = 0; i < descriptorWriteCount; i++) |
| { |
| DescriptorSetLayout::WriteDescriptorSet(this, pDescriptorWrites[i]); |
| } |
| |
| for(uint32_t i = 0; i < descriptorCopyCount; i++) |
| { |
| DescriptorSetLayout::CopyDescriptorSet(pDescriptorCopies[i]); |
| } |
| } |
| |
| void Device::getRequirements(VkMemoryDedicatedRequirements *requirements) const |
| { |
| requirements->prefersDedicatedAllocation = VK_FALSE; |
| requirements->requiresDedicatedAllocation = VK_FALSE; |
| } |
| |
| Device::SamplingRoutineCache *Device::getSamplingRoutineCache() const |
| { |
| return samplingRoutineCache.get(); |
| } |
| |
| void Device::updateSamplingRoutineSnapshotCache() |
| { |
| samplingRoutineCache->updateSnapshot(); |
| } |
| |
| uint32_t Device::indexSampler(const SamplerState &samplerState) |
| { |
| return samplerIndexer->index(samplerState); |
| } |
| |
| void Device::removeSampler(const SamplerState &samplerState) |
| { |
| samplerIndexer->remove(samplerState); |
| } |
| |
| const SamplerState *Device::findSampler(uint32_t samplerId) const |
| { |
| return samplerIndexer->find(samplerId); |
| } |
| |
| VkResult Device::setDebugUtilsObjectName(const VkDebugUtilsObjectNameInfoEXT *pNameInfo) |
| { |
| // Optionally maps user-friendly name to an object |
| return VK_SUCCESS; |
| } |
| |
| VkResult Device::setDebugUtilsObjectTag(const VkDebugUtilsObjectTagInfoEXT *pTagInfo) |
| { |
| // Optionally attach arbitrary data to an object |
| return VK_SUCCESS; |
| } |
| |
| void Device::registerImageView(ImageView *imageView) |
| { |
| if(imageView != nullptr) |
| { |
| marl::lock lock(imageViewSetMutex); |
| imageViewSet.insert(imageView); |
| } |
| } |
| |
| void Device::unregisterImageView(ImageView *imageView) |
| { |
| if(imageView != nullptr) |
| { |
| marl::lock lock(imageViewSetMutex); |
| auto it = imageViewSet.find(imageView); |
| if(it != imageViewSet.end()) |
| { |
| imageViewSet.erase(it); |
| } |
| } |
| } |
| |
| void Device::prepareForSampling(ImageView *imageView) |
| { |
| if(imageView != nullptr) |
| { |
| marl::lock lock(imageViewSetMutex); |
| |
| auto it = imageViewSet.find(imageView); |
| if(it != imageViewSet.end()) |
| { |
| imageView->prepareForSampling(); |
| } |
| } |
| } |
| |
| void Device::contentsChanged(ImageView *imageView, Image::ContentsChangedContext context) |
| { |
| if(imageView != nullptr) |
| { |
| marl::lock lock(imageViewSetMutex); |
| |
| auto it = imageViewSet.find(imageView); |
| if(it != imageViewSet.end()) |
| { |
| imageView->contentsChanged(context); |
| } |
| } |
| } |
| |
| VkResult Device::setPrivateData(VkObjectType objectType, uint64_t objectHandle, const PrivateData *privateDataSlot, uint64_t data) |
| { |
| marl::lock lock(privateDataMutex); |
| |
| auto &privateDataSlotMap = privateData[privateDataSlot]; |
| const PrivateDataObject privateDataObject = { objectType, objectHandle }; |
| privateDataSlotMap[privateDataObject] = data; |
| return VK_SUCCESS; |
| } |
| |
| void Device::getPrivateData(VkObjectType objectType, uint64_t objectHandle, const PrivateData *privateDataSlot, uint64_t *data) |
| { |
| marl::lock lock(privateDataMutex); |
| |
| *data = 0; |
| auto it = privateData.find(privateDataSlot); |
| if(it != privateData.end()) |
| { |
| auto &privateDataSlotMap = it->second; |
| const PrivateDataObject privateDataObject = { objectType, objectHandle }; |
| auto it2 = privateDataSlotMap.find(privateDataObject); |
| if(it2 != privateDataSlotMap.end()) |
| { |
| *data = it2->second; |
| } |
| } |
| } |
| |
| void Device::removePrivateDataSlot(const PrivateData *privateDataSlot) |
| { |
| marl::lock lock(privateDataMutex); |
| |
| privateData.erase(privateDataSlot); |
| } |
| |
| #ifdef SWIFTSHADER_DEVICE_MEMORY_REPORT |
| void Device::emitDeviceMemoryReport(VkDeviceMemoryReportEventTypeEXT type, uint64_t memoryObjectId, VkDeviceSize size, VkObjectType objectType, uint64_t objectHandle, uint32_t heapIndex) |
| { |
| if(deviceMemoryReportCallbacks.empty()) return; |
| |
| const VkDeviceMemoryReportCallbackDataEXT callbackData = { |
| VK_STRUCTURE_TYPE_DEVICE_MEMORY_REPORT_CALLBACK_DATA_EXT, // sType |
| nullptr, // pNext |
| 0, // flags |
| type, // type |
| memoryObjectId, // memoryObjectId |
| size, // size |
| objectType, // objectType |
| objectHandle, // objectHandle |
| heapIndex, // heapIndex |
| }; |
| for(const auto &callback : deviceMemoryReportCallbacks) |
| { |
| callback.first(&callbackData, callback.second); |
| } |
| } |
| #endif // SWIFTSHADER_DEVICE_MEMORY_REPORT |
| |
| } // namespace vk |