|  | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains some functions that are useful for math stuff. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_SUPPORT_MATHEXTRAS_H | 
|  | #define LLVM_SUPPORT_MATHEXTRAS_H | 
|  |  | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/SwapByteOrder.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstring> | 
|  | #include <type_traits> | 
|  | #include <limits> | 
|  |  | 
|  | #ifdef _MSC_VER | 
|  | #include <intrin.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef __ANDROID_NDK__ | 
|  | #include <android/api-level.h> | 
|  | #endif | 
|  |  | 
|  | namespace llvm { | 
|  | /// \brief The behavior an operation has on an input of 0. | 
|  | enum ZeroBehavior { | 
|  | /// \brief The returned value is undefined. | 
|  | ZB_Undefined, | 
|  | /// \brief The returned value is numeric_limits<T>::max() | 
|  | ZB_Max, | 
|  | /// \brief The returned value is numeric_limits<T>::digits | 
|  | ZB_Width | 
|  | }; | 
|  |  | 
|  | namespace detail { | 
|  | template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { | 
|  | static std::size_t count(T Val, ZeroBehavior) { | 
|  | if (!Val) | 
|  | return std::numeric_limits<T>::digits; | 
|  | if (Val & 0x1) | 
|  | return 0; | 
|  |  | 
|  | // Bisection method. | 
|  | std::size_t ZeroBits = 0; | 
|  | T Shift = std::numeric_limits<T>::digits >> 1; | 
|  | T Mask = std::numeric_limits<T>::max() >> Shift; | 
|  | while (Shift) { | 
|  | if ((Val & Mask) == 0) { | 
|  | Val >>= Shift; | 
|  | ZeroBits |= Shift; | 
|  | } | 
|  | Shift >>= 1; | 
|  | Mask >>= Shift; | 
|  | } | 
|  | return ZeroBits; | 
|  | } | 
|  | }; | 
|  |  | 
|  | #if __GNUC__ >= 4 || defined(_MSC_VER) | 
|  | template <typename T> struct TrailingZerosCounter<T, 4> { | 
|  | static std::size_t count(T Val, ZeroBehavior ZB) { | 
|  | if (ZB != ZB_Undefined && Val == 0) | 
|  | return 32; | 
|  |  | 
|  | #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0) | 
|  | return __builtin_ctz(Val); | 
|  | #elif defined(_MSC_VER) | 
|  | unsigned long Index; | 
|  | _BitScanForward(&Index, Val); | 
|  | return Index; | 
|  | #endif | 
|  | } | 
|  | }; | 
|  |  | 
|  | #if !defined(_MSC_VER) || defined(_M_X64) | 
|  | template <typename T> struct TrailingZerosCounter<T, 8> { | 
|  | static std::size_t count(T Val, ZeroBehavior ZB) { | 
|  | if (ZB != ZB_Undefined && Val == 0) | 
|  | return 64; | 
|  |  | 
|  | #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0) | 
|  | return __builtin_ctzll(Val); | 
|  | #elif defined(_MSC_VER) | 
|  | unsigned long Index; | 
|  | _BitScanForward64(&Index, Val); | 
|  | return Index; | 
|  | #endif | 
|  | } | 
|  | }; | 
|  | #endif | 
|  | #endif | 
|  | } // namespace detail | 
|  |  | 
|  | /// \brief Count number of 0's from the least significant bit to the most | 
|  | ///   stopping at the first 1. | 
|  | /// | 
|  | /// Only unsigned integral types are allowed. | 
|  | /// | 
|  | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are | 
|  | ///   valid arguments. | 
|  | template <typename T> | 
|  | std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { | 
|  | static_assert(std::numeric_limits<T>::is_integer && | 
|  | !std::numeric_limits<T>::is_signed, | 
|  | "Only unsigned integral types are allowed."); | 
|  | return detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); | 
|  | } | 
|  |  | 
|  | namespace detail { | 
|  | template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { | 
|  | static std::size_t count(T Val, ZeroBehavior) { | 
|  | if (!Val) | 
|  | return std::numeric_limits<T>::digits; | 
|  |  | 
|  | // Bisection method. | 
|  | std::size_t ZeroBits = 0; | 
|  | for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { | 
|  | T Tmp = Val >> Shift; | 
|  | if (Tmp) | 
|  | Val = Tmp; | 
|  | else | 
|  | ZeroBits |= Shift; | 
|  | } | 
|  | return ZeroBits; | 
|  | } | 
|  | }; | 
|  |  | 
|  | #if __GNUC__ >= 4 || defined(_MSC_VER) | 
|  | template <typename T> struct LeadingZerosCounter<T, 4> { | 
|  | static std::size_t count(T Val, ZeroBehavior ZB) { | 
|  | if (ZB != ZB_Undefined && Val == 0) | 
|  | return 32; | 
|  |  | 
|  | #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0) | 
|  | return __builtin_clz(Val); | 
|  | #elif defined(_MSC_VER) | 
|  | unsigned long Index; | 
|  | _BitScanReverse(&Index, Val); | 
|  | return Index ^ 31; | 
|  | #endif | 
|  | } | 
|  | }; | 
|  |  | 
|  | #if !defined(_MSC_VER) || defined(_M_X64) | 
|  | template <typename T> struct LeadingZerosCounter<T, 8> { | 
|  | static std::size_t count(T Val, ZeroBehavior ZB) { | 
|  | if (ZB != ZB_Undefined && Val == 0) | 
|  | return 64; | 
|  |  | 
|  | #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0) | 
|  | return __builtin_clzll(Val); | 
|  | #elif defined(_MSC_VER) | 
|  | unsigned long Index; | 
|  | _BitScanReverse64(&Index, Val); | 
|  | return Index ^ 63; | 
|  | #endif | 
|  | } | 
|  | }; | 
|  | #endif | 
|  | #endif | 
|  | } // namespace detail | 
|  |  | 
|  | /// \brief Count number of 0's from the most significant bit to the least | 
|  | ///   stopping at the first 1. | 
|  | /// | 
|  | /// Only unsigned integral types are allowed. | 
|  | /// | 
|  | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are | 
|  | ///   valid arguments. | 
|  | template <typename T> | 
|  | std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { | 
|  | static_assert(std::numeric_limits<T>::is_integer && | 
|  | !std::numeric_limits<T>::is_signed, | 
|  | "Only unsigned integral types are allowed."); | 
|  | return detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); | 
|  | } | 
|  |  | 
|  | /// \brief Get the index of the first set bit starting from the least | 
|  | ///   significant bit. | 
|  | /// | 
|  | /// Only unsigned integral types are allowed. | 
|  | /// | 
|  | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are | 
|  | ///   valid arguments. | 
|  | template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { | 
|  | if (ZB == ZB_Max && Val == 0) | 
|  | return std::numeric_limits<T>::max(); | 
|  |  | 
|  | return countTrailingZeros(Val, ZB_Undefined); | 
|  | } | 
|  |  | 
|  | /// \brief Get the index of the last set bit starting from the least | 
|  | ///   significant bit. | 
|  | /// | 
|  | /// Only unsigned integral types are allowed. | 
|  | /// | 
|  | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are | 
|  | ///   valid arguments. | 
|  | template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { | 
|  | if (ZB == ZB_Max && Val == 0) | 
|  | return std::numeric_limits<T>::max(); | 
|  |  | 
|  | // Use ^ instead of - because both gcc and llvm can remove the associated ^ | 
|  | // in the __builtin_clz intrinsic on x86. | 
|  | return countLeadingZeros(Val, ZB_Undefined) ^ | 
|  | (std::numeric_limits<T>::digits - 1); | 
|  | } | 
|  |  | 
|  | /// \brief Macro compressed bit reversal table for 256 bits. | 
|  | /// | 
|  | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable | 
|  | static const unsigned char BitReverseTable256[256] = { | 
|  | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 | 
|  | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) | 
|  | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) | 
|  | R6(0), R6(2), R6(1), R6(3) | 
|  | #undef R2 | 
|  | #undef R4 | 
|  | #undef R6 | 
|  | }; | 
|  |  | 
|  | /// \brief Reverse the bits in \p Val. | 
|  | template <typename T> | 
|  | T reverseBits(T Val) { | 
|  | unsigned char in[sizeof(Val)]; | 
|  | unsigned char out[sizeof(Val)]; | 
|  | std::memcpy(in, &Val, sizeof(Val)); | 
|  | for (unsigned i = 0; i < sizeof(Val); ++i) | 
|  | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; | 
|  | std::memcpy(&Val, out, sizeof(Val)); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | // NOTE: The following support functions use the _32/_64 extensions instead of | 
|  | // type overloading so that signed and unsigned integers can be used without | 
|  | // ambiguity. | 
|  |  | 
|  | /// Hi_32 - This function returns the high 32 bits of a 64 bit value. | 
|  | constexpr inline uint32_t Hi_32(uint64_t Value) { | 
|  | return static_cast<uint32_t>(Value >> 32); | 
|  | } | 
|  |  | 
|  | /// Lo_32 - This function returns the low 32 bits of a 64 bit value. | 
|  | constexpr inline uint32_t Lo_32(uint64_t Value) { | 
|  | return static_cast<uint32_t>(Value); | 
|  | } | 
|  |  | 
|  | /// Make_64 - This functions makes a 64-bit integer from a high / low pair of | 
|  | ///           32-bit integers. | 
|  | constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { | 
|  | return ((uint64_t)High << 32) | (uint64_t)Low; | 
|  | } | 
|  |  | 
|  | /// isInt - Checks if an integer fits into the given bit width. | 
|  | template <unsigned N> constexpr inline bool isInt(int64_t x) { | 
|  | return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); | 
|  | } | 
|  | // Template specializations to get better code for common cases. | 
|  | template <> constexpr inline bool isInt<8>(int64_t x) { | 
|  | return static_cast<int8_t>(x) == x; | 
|  | } | 
|  | template <> constexpr inline bool isInt<16>(int64_t x) { | 
|  | return static_cast<int16_t>(x) == x; | 
|  | } | 
|  | template <> constexpr inline bool isInt<32>(int64_t x) { | 
|  | return static_cast<int32_t>(x) == x; | 
|  | } | 
|  |  | 
|  | /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted | 
|  | ///                     left by S. | 
|  | template <unsigned N, unsigned S> | 
|  | constexpr inline bool isShiftedInt(int64_t x) { | 
|  | static_assert( | 
|  | N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); | 
|  | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); | 
|  | return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); | 
|  | } | 
|  |  | 
|  | /// isUInt - Checks if an unsigned integer fits into the given bit width. | 
|  | /// | 
|  | /// This is written as two functions rather than as simply | 
|  | /// | 
|  | ///   return N >= 64 || X < (UINT64_C(1) << N); | 
|  | /// | 
|  | /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting | 
|  | /// left too many places. | 
|  | template <unsigned N> | 
|  | constexpr inline typename std::enable_if<(N < 64), bool>::type | 
|  | isUInt(uint64_t X) { | 
|  | static_assert(N > 0, "isUInt<0> doesn't make sense"); | 
|  | return X < (UINT64_C(1) << (N)); | 
|  | } | 
|  | template <unsigned N> | 
|  | constexpr inline typename std::enable_if<N >= 64, bool>::type | 
|  | isUInt(uint64_t X) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Template specializations to get better code for common cases. | 
|  | template <> constexpr inline bool isUInt<8>(uint64_t x) { | 
|  | return static_cast<uint8_t>(x) == x; | 
|  | } | 
|  | template <> constexpr inline bool isUInt<16>(uint64_t x) { | 
|  | return static_cast<uint16_t>(x) == x; | 
|  | } | 
|  | template <> constexpr inline bool isUInt<32>(uint64_t x) { | 
|  | return static_cast<uint32_t>(x) == x; | 
|  | } | 
|  |  | 
|  | /// Checks if a unsigned integer is an N bit number shifted left by S. | 
|  | template <unsigned N, unsigned S> | 
|  | constexpr inline bool isShiftedUInt(uint64_t x) { | 
|  | static_assert( | 
|  | N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); | 
|  | static_assert(N + S <= 64, | 
|  | "isShiftedUInt<N, S> with N + S > 64 is too wide."); | 
|  | // Per the two static_asserts above, S must be strictly less than 64.  So | 
|  | // 1 << S is not undefined behavior. | 
|  | return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); | 
|  | } | 
|  |  | 
|  | /// Gets the maximum value for a N-bit unsigned integer. | 
|  | inline uint64_t maxUIntN(uint64_t N) { | 
|  | assert(N > 0 && N <= 64 && "integer width out of range"); | 
|  |  | 
|  | // uint64_t(1) << 64 is undefined behavior, so we can't do | 
|  | //   (uint64_t(1) << N) - 1 | 
|  | // without checking first that N != 64.  But this works and doesn't have a | 
|  | // branch. | 
|  | return UINT64_MAX >> (64 - N); | 
|  | } | 
|  |  | 
|  | /// Gets the minimum value for a N-bit signed integer. | 
|  | inline int64_t minIntN(int64_t N) { | 
|  | assert(N > 0 && N <= 64 && "integer width out of range"); | 
|  |  | 
|  | return -(UINT64_C(1)<<(N-1)); | 
|  | } | 
|  |  | 
|  | /// Gets the maximum value for a N-bit signed integer. | 
|  | inline int64_t maxIntN(int64_t N) { | 
|  | assert(N > 0 && N <= 64 && "integer width out of range"); | 
|  |  | 
|  | // This relies on two's complement wraparound when N == 64, so we convert to | 
|  | // int64_t only at the very end to avoid UB. | 
|  | return (UINT64_C(1) << (N - 1)) - 1; | 
|  | } | 
|  |  | 
|  | /// isUIntN - Checks if an unsigned integer fits into the given (dynamic) | 
|  | /// bit width. | 
|  | inline bool isUIntN(unsigned N, uint64_t x) { | 
|  | return N >= 64 || x <= maxUIntN(N); | 
|  | } | 
|  |  | 
|  | /// isIntN - Checks if an signed integer fits into the given (dynamic) | 
|  | /// bit width. | 
|  | inline bool isIntN(unsigned N, int64_t x) { | 
|  | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); | 
|  | } | 
|  |  | 
|  | /// isMask_32 - This function returns true if the argument is a non-empty | 
|  | /// sequence of ones starting at the least significant bit with the remainder | 
|  | /// zero (32 bit version).  Ex. isMask_32(0x0000FFFFU) == true. | 
|  | constexpr inline bool isMask_32(uint32_t Value) { | 
|  | return Value && ((Value + 1) & Value) == 0; | 
|  | } | 
|  |  | 
|  | /// isMask_64 - This function returns true if the argument is a non-empty | 
|  | /// sequence of ones starting at the least significant bit with the remainder | 
|  | /// zero (64 bit version). | 
|  | constexpr inline bool isMask_64(uint64_t Value) { | 
|  | return Value && ((Value + 1) & Value) == 0; | 
|  | } | 
|  |  | 
|  | /// isShiftedMask_32 - This function returns true if the argument contains a | 
|  | /// non-empty sequence of ones with the remainder zero (32 bit version.) | 
|  | /// Ex. isShiftedMask_32(0x0000FF00U) == true. | 
|  | constexpr inline bool isShiftedMask_32(uint32_t Value) { | 
|  | return Value && isMask_32((Value - 1) | Value); | 
|  | } | 
|  |  | 
|  | /// isShiftedMask_64 - This function returns true if the argument contains a | 
|  | /// non-empty sequence of ones with the remainder zero (64 bit version.) | 
|  | constexpr inline bool isShiftedMask_64(uint64_t Value) { | 
|  | return Value && isMask_64((Value - 1) | Value); | 
|  | } | 
|  |  | 
|  | /// isPowerOf2_32 - This function returns true if the argument is a power of | 
|  | /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) | 
|  | constexpr inline bool isPowerOf2_32(uint32_t Value) { | 
|  | return Value && !(Value & (Value - 1)); | 
|  | } | 
|  |  | 
|  | /// isPowerOf2_64 - This function returns true if the argument is a power of two | 
|  | /// > 0 (64 bit edition.) | 
|  | constexpr inline bool isPowerOf2_64(uint64_t Value) { | 
|  | return Value && !(Value & (Value - int64_t(1L))); | 
|  | } | 
|  |  | 
|  | /// ByteSwap_16 - This function returns a byte-swapped representation of the | 
|  | /// 16-bit argument, Value. | 
|  | inline uint16_t ByteSwap_16(uint16_t Value) { | 
|  | return sys::SwapByteOrder_16(Value); | 
|  | } | 
|  |  | 
|  | /// ByteSwap_32 - This function returns a byte-swapped representation of the | 
|  | /// 32-bit argument, Value. | 
|  | inline uint32_t ByteSwap_32(uint32_t Value) { | 
|  | return sys::SwapByteOrder_32(Value); | 
|  | } | 
|  |  | 
|  | /// ByteSwap_64 - This function returns a byte-swapped representation of the | 
|  | /// 64-bit argument, Value. | 
|  | inline uint64_t ByteSwap_64(uint64_t Value) { | 
|  | return sys::SwapByteOrder_64(Value); | 
|  | } | 
|  |  | 
|  | /// \brief Count the number of ones from the most significant bit to the first | 
|  | /// zero bit. | 
|  | /// | 
|  | /// Ex. CountLeadingOnes(0xFF0FFF00) == 8. | 
|  | /// Only unsigned integral types are allowed. | 
|  | /// | 
|  | /// \param ZB the behavior on an input of all ones. Only ZB_Width and | 
|  | /// ZB_Undefined are valid arguments. | 
|  | template <typename T> | 
|  | std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { | 
|  | static_assert(std::numeric_limits<T>::is_integer && | 
|  | !std::numeric_limits<T>::is_signed, | 
|  | "Only unsigned integral types are allowed."); | 
|  | return countLeadingZeros(~Value, ZB); | 
|  | } | 
|  |  | 
|  | /// \brief Count the number of ones from the least significant bit to the first | 
|  | /// zero bit. | 
|  | /// | 
|  | /// Ex. countTrailingOnes(0x00FF00FF) == 8. | 
|  | /// Only unsigned integral types are allowed. | 
|  | /// | 
|  | /// \param ZB the behavior on an input of all ones. Only ZB_Width and | 
|  | /// ZB_Undefined are valid arguments. | 
|  | template <typename T> | 
|  | std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { | 
|  | static_assert(std::numeric_limits<T>::is_integer && | 
|  | !std::numeric_limits<T>::is_signed, | 
|  | "Only unsigned integral types are allowed."); | 
|  | return countTrailingZeros(~Value, ZB); | 
|  | } | 
|  |  | 
|  | namespace detail { | 
|  | template <typename T, std::size_t SizeOfT> struct PopulationCounter { | 
|  | static unsigned count(T Value) { | 
|  | // Generic version, forward to 32 bits. | 
|  | static_assert(SizeOfT <= 4, "Not implemented!"); | 
|  | #if __GNUC__ >= 4 | 
|  | return __builtin_popcount(Value); | 
|  | #else | 
|  | uint32_t v = Value; | 
|  | v = v - ((v >> 1) & 0x55555555); | 
|  | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); | 
|  | return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; | 
|  | #endif | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename T> struct PopulationCounter<T, 8> { | 
|  | static unsigned count(T Value) { | 
|  | #if __GNUC__ >= 4 | 
|  | return __builtin_popcountll(Value); | 
|  | #else | 
|  | uint64_t v = Value; | 
|  | v = v - ((v >> 1) & 0x5555555555555555ULL); | 
|  | v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); | 
|  | v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; | 
|  | return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); | 
|  | #endif | 
|  | } | 
|  | }; | 
|  | } // namespace detail | 
|  |  | 
|  | /// \brief Count the number of set bits in a value. | 
|  | /// Ex. countPopulation(0xF000F000) = 8 | 
|  | /// Returns 0 if the word is zero. | 
|  | template <typename T> | 
|  | inline unsigned countPopulation(T Value) { | 
|  | static_assert(std::numeric_limits<T>::is_integer && | 
|  | !std::numeric_limits<T>::is_signed, | 
|  | "Only unsigned integral types are allowed."); | 
|  | return detail::PopulationCounter<T, sizeof(T)>::count(Value); | 
|  | } | 
|  |  | 
|  | /// Log2 - This function returns the log base 2 of the specified value | 
|  | inline double Log2(double Value) { | 
|  | #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 | 
|  | return __builtin_log(Value) / __builtin_log(2.0); | 
|  | #else | 
|  | return log2(Value); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// Log2_32 - This function returns the floor log base 2 of the specified value, | 
|  | /// -1 if the value is zero. (32 bit edition.) | 
|  | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 | 
|  | inline unsigned Log2_32(uint32_t Value) { | 
|  | return 31 - countLeadingZeros(Value); | 
|  | } | 
|  |  | 
|  | /// Log2_64 - This function returns the floor log base 2 of the specified value, | 
|  | /// -1 if the value is zero. (64 bit edition.) | 
|  | inline unsigned Log2_64(uint64_t Value) { | 
|  | return 63 - countLeadingZeros(Value); | 
|  | } | 
|  |  | 
|  | /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified | 
|  | /// value, 32 if the value is zero. (32 bit edition). | 
|  | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 | 
|  | inline unsigned Log2_32_Ceil(uint32_t Value) { | 
|  | return 32 - countLeadingZeros(Value - 1); | 
|  | } | 
|  |  | 
|  | /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified | 
|  | /// value, 64 if the value is zero. (64 bit edition.) | 
|  | inline unsigned Log2_64_Ceil(uint64_t Value) { | 
|  | return 64 - countLeadingZeros(Value - 1); | 
|  | } | 
|  |  | 
|  | /// GreatestCommonDivisor64 - Return the greatest common divisor of the two | 
|  | /// values using Euclid's algorithm. | 
|  | inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { | 
|  | while (B) { | 
|  | uint64_t T = B; | 
|  | B = A % B; | 
|  | A = T; | 
|  | } | 
|  | return A; | 
|  | } | 
|  |  | 
|  | /// BitsToDouble - This function takes a 64-bit integer and returns the bit | 
|  | /// equivalent double. | 
|  | inline double BitsToDouble(uint64_t Bits) { | 
|  | union { | 
|  | uint64_t L; | 
|  | double D; | 
|  | } T; | 
|  | T.L = Bits; | 
|  | return T.D; | 
|  | } | 
|  |  | 
|  | /// BitsToFloat - This function takes a 32-bit integer and returns the bit | 
|  | /// equivalent float. | 
|  | inline float BitsToFloat(uint32_t Bits) { | 
|  | union { | 
|  | uint32_t I; | 
|  | float F; | 
|  | } T; | 
|  | T.I = Bits; | 
|  | return T.F; | 
|  | } | 
|  |  | 
|  | /// DoubleToBits - This function takes a double and returns the bit | 
|  | /// equivalent 64-bit integer.  Note that copying doubles around | 
|  | /// changes the bits of NaNs on some hosts, notably x86, so this | 
|  | /// routine cannot be used if these bits are needed. | 
|  | inline uint64_t DoubleToBits(double Double) { | 
|  | union { | 
|  | uint64_t L; | 
|  | double D; | 
|  | } T; | 
|  | T.D = Double; | 
|  | return T.L; | 
|  | } | 
|  |  | 
|  | /// FloatToBits - This function takes a float and returns the bit | 
|  | /// equivalent 32-bit integer.  Note that copying floats around | 
|  | /// changes the bits of NaNs on some hosts, notably x86, so this | 
|  | /// routine cannot be used if these bits are needed. | 
|  | inline uint32_t FloatToBits(float Float) { | 
|  | union { | 
|  | uint32_t I; | 
|  | float F; | 
|  | } T; | 
|  | T.F = Float; | 
|  | return T.I; | 
|  | } | 
|  |  | 
|  | /// MinAlign - A and B are either alignments or offsets.  Return the minimum | 
|  | /// alignment that may be assumed after adding the two together. | 
|  | constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { | 
|  | // The largest power of 2 that divides both A and B. | 
|  | // | 
|  | // Replace "-Value" by "1+~Value" in the following commented code to avoid | 
|  | // MSVC warning C4146 | 
|  | //    return (A | B) & -(A | B); | 
|  | return (A | B) & (1 + ~(A | B)); | 
|  | } | 
|  |  | 
|  | /// \brief Aligns \c Addr to \c Alignment bytes, rounding up. | 
|  | /// | 
|  | /// Alignment should be a power of two.  This method rounds up, so | 
|  | /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8. | 
|  | inline uintptr_t alignAddr(const void *Addr, size_t Alignment) { | 
|  | assert(Alignment && isPowerOf2_64((uint64_t)Alignment) && | 
|  | "Alignment is not a power of two!"); | 
|  |  | 
|  | assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr); | 
|  |  | 
|  | return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1)); | 
|  | } | 
|  |  | 
|  | /// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment | 
|  | /// bytes, rounding up. | 
|  | inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) { | 
|  | return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr; | 
|  | } | 
|  |  | 
|  | /// NextPowerOf2 - Returns the next power of two (in 64-bits) | 
|  | /// that is strictly greater than A.  Returns zero on overflow. | 
|  | inline uint64_t NextPowerOf2(uint64_t A) { | 
|  | A |= (A >> 1); | 
|  | A |= (A >> 2); | 
|  | A |= (A >> 4); | 
|  | A |= (A >> 8); | 
|  | A |= (A >> 16); | 
|  | A |= (A >> 32); | 
|  | return A + 1; | 
|  | } | 
|  |  | 
|  | /// Returns the power of two which is less than or equal to the given value. | 
|  | /// Essentially, it is a floor operation across the domain of powers of two. | 
|  | inline uint64_t PowerOf2Floor(uint64_t A) { | 
|  | if (!A) return 0; | 
|  | return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); | 
|  | } | 
|  |  | 
|  | /// Returns the power of two which is greater than or equal to the given value. | 
|  | /// Essentially, it is a ceil operation across the domain of powers of two. | 
|  | inline uint64_t PowerOf2Ceil(uint64_t A) { | 
|  | if (!A) | 
|  | return 0; | 
|  | return NextPowerOf2(A - 1); | 
|  | } | 
|  |  | 
|  | /// Returns the next integer (mod 2**64) that is greater than or equal to | 
|  | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. | 
|  | /// | 
|  | /// If non-zero \p Skew is specified, the return value will be a minimal | 
|  | /// integer that is greater than or equal to \p Value and equal to | 
|  | /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than | 
|  | /// \p Align, its value is adjusted to '\p Skew mod \p Align'. | 
|  | /// | 
|  | /// Examples: | 
|  | /// \code | 
|  | ///   alignTo(5, 8) = 8 | 
|  | ///   alignTo(17, 8) = 24 | 
|  | ///   alignTo(~0LL, 8) = 0 | 
|  | ///   alignTo(321, 255) = 510 | 
|  | /// | 
|  | ///   alignTo(5, 8, 7) = 7 | 
|  | ///   alignTo(17, 8, 1) = 17 | 
|  | ///   alignTo(~0LL, 8, 3) = 3 | 
|  | ///   alignTo(321, 255, 42) = 552 | 
|  | /// \endcode | 
|  | inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { | 
|  | assert(Align != 0u && "Align can't be 0."); | 
|  | Skew %= Align; | 
|  | return (Value + Align - 1 - Skew) / Align * Align + Skew; | 
|  | } | 
|  |  | 
|  | /// Returns the next integer (mod 2**64) that is greater than or equal to | 
|  | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. | 
|  | template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { | 
|  | static_assert(Align != 0u, "Align must be non-zero"); | 
|  | return (Value + Align - 1) / Align * Align; | 
|  | } | 
|  |  | 
|  | /// \c alignTo for contexts where a constant expression is required. | 
|  | /// \sa alignTo | 
|  | /// | 
|  | /// \todo FIXME: remove when \c constexpr becomes really \c constexpr | 
|  | template <uint64_t Align> | 
|  | struct AlignTo { | 
|  | static_assert(Align != 0u, "Align must be non-zero"); | 
|  | template <uint64_t Value> | 
|  | struct from_value { | 
|  | static const uint64_t value = (Value + Align - 1) / Align * Align; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | /// Returns the largest uint64_t less than or equal to \p Value and is | 
|  | /// \p Skew mod \p Align. \p Align must be non-zero | 
|  | inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { | 
|  | assert(Align != 0u && "Align can't be 0."); | 
|  | Skew %= Align; | 
|  | return (Value - Skew) / Align * Align + Skew; | 
|  | } | 
|  |  | 
|  | /// Returns the offset to the next integer (mod 2**64) that is greater than | 
|  | /// or equal to \p Value and is a multiple of \p Align. \p Align must be | 
|  | /// non-zero. | 
|  | inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { | 
|  | return alignTo(Value, Align) - Value; | 
|  | } | 
|  |  | 
|  | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. | 
|  | /// Requires 0 < B <= 32. | 
|  | template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { | 
|  | static_assert(B > 0, "Bit width can't be 0."); | 
|  | static_assert(B <= 32, "Bit width out of range."); | 
|  | return int32_t(X << (32 - B)) >> (32 - B); | 
|  | } | 
|  |  | 
|  | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. | 
|  | /// Requires 0 < B < 32. | 
|  | inline int32_t SignExtend32(uint32_t X, unsigned B) { | 
|  | assert(B > 0 && "Bit width can't be 0."); | 
|  | assert(B <= 32 && "Bit width out of range."); | 
|  | return int32_t(X << (32 - B)) >> (32 - B); | 
|  | } | 
|  |  | 
|  | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. | 
|  | /// Requires 0 < B < 64. | 
|  | template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { | 
|  | static_assert(B > 0, "Bit width can't be 0."); | 
|  | static_assert(B <= 64, "Bit width out of range."); | 
|  | return int64_t(x << (64 - B)) >> (64 - B); | 
|  | } | 
|  |  | 
|  | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. | 
|  | /// Requires 0 < B < 64. | 
|  | inline int64_t SignExtend64(uint64_t X, unsigned B) { | 
|  | assert(B > 0 && "Bit width can't be 0."); | 
|  | assert(B <= 64 && "Bit width out of range."); | 
|  | return int64_t(X << (64 - B)) >> (64 - B); | 
|  | } | 
|  |  | 
|  | /// Subtract two unsigned integers, X and Y, of type T and return the absolute | 
|  | /// value of the result. | 
|  | template <typename T> | 
|  | typename std::enable_if<std::is_unsigned<T>::value, T>::type | 
|  | AbsoluteDifference(T X, T Y) { | 
|  | return std::max(X, Y) - std::min(X, Y); | 
|  | } | 
|  |  | 
|  | /// Add two unsigned integers, X and Y, of type T.  Clamp the result to the | 
|  | /// maximum representable value of T on overflow.  ResultOverflowed indicates if | 
|  | /// the result is larger than the maximum representable value of type T. | 
|  | template <typename T> | 
|  | typename std::enable_if<std::is_unsigned<T>::value, T>::type | 
|  | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { | 
|  | bool Dummy; | 
|  | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; | 
|  | // Hacker's Delight, p. 29 | 
|  | T Z = X + Y; | 
|  | Overflowed = (Z < X || Z < Y); | 
|  | if (Overflowed) | 
|  | return std::numeric_limits<T>::max(); | 
|  | else | 
|  | return Z; | 
|  | } | 
|  |  | 
|  | /// Multiply two unsigned integers, X and Y, of type T.  Clamp the result to the | 
|  | /// maximum representable value of T on overflow.  ResultOverflowed indicates if | 
|  | /// the result is larger than the maximum representable value of type T. | 
|  | template <typename T> | 
|  | typename std::enable_if<std::is_unsigned<T>::value, T>::type | 
|  | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { | 
|  | bool Dummy; | 
|  | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; | 
|  |  | 
|  | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that | 
|  | // because it fails for uint16_t (where multiplication can have undefined | 
|  | // behavior due to promotion to int), and requires a division in addition | 
|  | // to the multiplication. | 
|  |  | 
|  | Overflowed = false; | 
|  |  | 
|  | // Log2(Z) would be either Log2Z or Log2Z + 1. | 
|  | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z | 
|  | // will necessarily be less than Log2Max as desired. | 
|  | int Log2Z = Log2_64(X) + Log2_64(Y); | 
|  | const T Max = std::numeric_limits<T>::max(); | 
|  | int Log2Max = Log2_64(Max); | 
|  | if (Log2Z < Log2Max) { | 
|  | return X * Y; | 
|  | } | 
|  | if (Log2Z > Log2Max) { | 
|  | Overflowed = true; | 
|  | return Max; | 
|  | } | 
|  |  | 
|  | // We're going to use the top bit, and maybe overflow one | 
|  | // bit past it. Multiply all but the bottom bit then add | 
|  | // that on at the end. | 
|  | T Z = (X >> 1) * Y; | 
|  | if (Z & ~(Max >> 1)) { | 
|  | Overflowed = true; | 
|  | return Max; | 
|  | } | 
|  | Z <<= 1; | 
|  | if (X & 1) | 
|  | return SaturatingAdd(Z, Y, ResultOverflowed); | 
|  |  | 
|  | return Z; | 
|  | } | 
|  |  | 
|  | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to | 
|  | /// the product. Clamp the result to the maximum representable value of T on | 
|  | /// overflow. ResultOverflowed indicates if the result is larger than the | 
|  | /// maximum representable value of type T. | 
|  | template <typename T> | 
|  | typename std::enable_if<std::is_unsigned<T>::value, T>::type | 
|  | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { | 
|  | bool Dummy; | 
|  | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; | 
|  |  | 
|  | T Product = SaturatingMultiply(X, Y, &Overflowed); | 
|  | if (Overflowed) | 
|  | return Product; | 
|  |  | 
|  | return SaturatingAdd(A, Product, &Overflowed); | 
|  | } | 
|  |  | 
|  | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. | 
|  | extern const float huge_valf; | 
|  | } // End llvm namespace | 
|  |  | 
|  | #endif |