| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "SamplerCore.hpp" |
| |
| #include "PixelRoutine.hpp" |
| #include "Constants.hpp" |
| #include "Vulkan/VkSampler.hpp" |
| #include "Vulkan/VkDebug.hpp" |
| |
| #include <limits> |
| |
| namespace |
| { |
| void applySwizzle(VkComponentSwizzle swizzle, sw::Float4& f, const sw::Vector4f& c, bool integer) |
| { |
| switch(swizzle) |
| { |
| case VK_COMPONENT_SWIZZLE_R: f = c.x; break; |
| case VK_COMPONENT_SWIZZLE_G: f = c.y; break; |
| case VK_COMPONENT_SWIZZLE_B: f = c.z; break; |
| case VK_COMPONENT_SWIZZLE_A: f = c.w; break; |
| case VK_COMPONENT_SWIZZLE_ZERO: f = sw::Float4(0.0f, 0.0f, 0.0f, 0.0f); break; |
| case VK_COMPONENT_SWIZZLE_ONE: |
| if (integer) |
| { |
| f = rr::As<sw::Float4>(sw::Int4(1, 1, 1, 1)); |
| } |
| else |
| { |
| f = sw::Float4(1.0f, 1.0f, 1.0f, 1.0f); |
| } |
| break; |
| default: ASSERT(false); |
| } |
| } |
| } |
| |
| namespace sw |
| { |
| SamplerCore::SamplerCore(Pointer<Byte> &constants, const Sampler &state) : constants(constants), state(state) |
| { |
| } |
| |
| Vector4f SamplerCore::sampleTexture(Pointer<Byte> &texture, Pointer<Byte> &sampler, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Float &&lodOrBias, Float4 &dsx, Float4 &dsy, Vector4f &offset, SamplerFunction function) |
| { |
| Vector4f c; |
| |
| Float4 uuuu = u; |
| Float4 vvvv = v; |
| Float4 wwww = w; |
| Float4 qqqq = q; |
| |
| Float lod; |
| Float anisotropy; |
| Float4 uDelta; |
| Float4 vDelta; |
| Float4 M; // Major axis |
| |
| if(state.textureType == TEXTURE_CUBE) |
| { |
| Int4 face = cubeFace(uuuu, vvvv, u, v, w, M); |
| wwww = As<Float4>(face); |
| } |
| |
| if(function == Implicit || function == Bias || function == Grad || function == Query) |
| { |
| if(state.textureType != TEXTURE_3D) |
| { |
| if(state.textureType != TEXTURE_CUBE) |
| { |
| computeLod(texture, sampler, lod, anisotropy, uDelta, vDelta, uuuu, vvvv, dsx, dsy, function); |
| } |
| else |
| { |
| computeLodCube(texture, sampler, lod, u, v, w, dsx, dsy, M, function); |
| } |
| } |
| else |
| { |
| computeLod3D(texture, sampler, lod, uuuu, vvvv, wwww, dsx, dsy, function); |
| } |
| |
| Float bias = *Pointer<Float>(sampler + OFFSET(vk::Sampler, mipLodBias)); |
| |
| if(function == Bias) |
| { |
| // Add SPIR-V Bias operand to the sampler provided bias and clamp to maxSamplerLodBias limit. |
| bias = Min(Max(bias + lodOrBias, -vk::MAX_SAMPLER_LOD_BIAS), vk::MAX_SAMPLER_LOD_BIAS); |
| } |
| |
| lod += bias; |
| } |
| else if(function == Lod) |
| { |
| // Vulkan 1.1: "The absolute value of mipLodBias must be less than or equal to VkPhysicalDeviceLimits::maxSamplerLodBias" |
| // Hence no explicit clamping to maxSamplerLodBias is required in this case. |
| lod = lodOrBias + *Pointer<Float>(sampler + OFFSET(vk::Sampler, mipLodBias)); |
| } |
| else if(function == Fetch) |
| { |
| // TODO: Eliminate int-float-int conversion. |
| lod = Float(As<Int>(lodOrBias)); |
| } |
| else if(function == Base || function == Gather) |
| { |
| lod = Float(0); |
| } |
| else UNREACHABLE("Sampler function %d", int(function)); |
| |
| if(function != Base && function != Fetch && function != Gather) |
| { |
| if(function == Query) |
| { |
| c.y = Float4(lod); // Unclamped LOD. |
| } |
| |
| lod = Max(lod, *Pointer<Float>(sampler + OFFSET(vk::Sampler, minLod))); |
| lod = Min(lod, *Pointer<Float>(sampler + OFFSET(vk::Sampler, maxLod))); |
| |
| if(function == Query) |
| { |
| if(state.mipmapFilter == MIPMAP_POINT) |
| { |
| lod = Round(lod); // TODO: Preferred formula is ceil(lod + 0.5) - 1 |
| } |
| |
| c.x = lod; |
| // c.y contains unclamped LOD. |
| |
| return c; |
| } |
| } |
| |
| bool force32BitFiltering = state.highPrecisionFiltering && !isYcbcrFormat() && (state.textureFilter != FILTER_POINT); |
| bool seamlessCube = (state.addressingModeU == ADDRESSING_SEAMLESS); |
| bool use32BitFiltering = hasFloatTexture() || hasUnnormalizedIntegerTexture() || force32BitFiltering || |
| seamlessCube || state.unnormalizedCoordinates || state.compareEnable || state.largeTexture || |
| borderModeActive() || (function == Gather); |
| |
| if(use32BitFiltering) |
| { |
| c = sampleFloatFilter(texture, uuuu, vvvv, wwww, qqqq, offset, lod, anisotropy, uDelta, vDelta, function); |
| |
| if (!hasFloatTexture() && !hasUnnormalizedIntegerTexture() && !state.compareEnable) |
| { |
| switch (state.textureFormat) |
| { |
| case VK_FORMAT_R5G6B5_UNORM_PACK16: |
| c.x *= Float4(1.0f / 0xF800); |
| c.y *= Float4(1.0f / 0xFC00); |
| c.z *= Float4(1.0f / 0xF800); |
| break; |
| case VK_FORMAT_B4G4R4A4_UNORM_PACK16: |
| c.x *= Float4(1.0f / 0xF000); |
| c.y *= Float4(1.0f / 0xF000); |
| c.z *= Float4(1.0f / 0xF000); |
| c.w *= Float4(1.0f / 0xF000); |
| break; |
| case VK_FORMAT_A1R5G5B5_UNORM_PACK16: |
| c.x *= Float4(1.0f / 0xF800); |
| c.y *= Float4(1.0f / 0xF800); |
| c.z *= Float4(1.0f / 0xF800); |
| c.w *= Float4(1.0f / 0x8000); |
| break; |
| case VK_FORMAT_R8_SNORM: |
| case VK_FORMAT_R8G8_SNORM: |
| case VK_FORMAT_R8G8B8A8_SNORM: |
| case VK_FORMAT_A8B8G8R8_SNORM_PACK32: |
| c.x *= Float4(1.0f / 0x7F00); |
| c.y *= Float4(1.0f / 0x7F00); |
| c.z *= Float4(1.0f / 0x7F00); |
| c.w *= Float4(1.0f / 0x7F00); |
| break; |
| case VK_FORMAT_R8_UNORM: |
| case VK_FORMAT_R8G8_UNORM: |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_B8G8R8A8_UNORM: |
| case VK_FORMAT_A8B8G8R8_UNORM_PACK32: |
| case VK_FORMAT_B8G8R8A8_SRGB: |
| case VK_FORMAT_R8G8B8A8_SRGB: |
| case VK_FORMAT_R8_SRGB: |
| case VK_FORMAT_R8G8_SRGB: |
| c.x *= Float4(1.0f / 0xFF00u); |
| c.y *= Float4(1.0f / 0xFF00u); |
| c.z *= Float4(1.0f / 0xFF00u); |
| c.w *= Float4(1.0f / 0xFF00u); |
| break; |
| default: |
| for (int component = 0; component < textureComponentCount(); component++) |
| { |
| c[component] *= Float4(hasUnsignedTextureComponent(component) ? 1.0f / 0xFFFF : 1.0f / 0x7FFF); |
| } |
| } |
| } |
| } |
| else // 16-bit filtering. |
| { |
| Vector4s cs = sampleFilter(texture, uuuu, vvvv, wwww, offset, lod, anisotropy, uDelta, vDelta, function); |
| |
| switch (state.textureFormat) |
| { |
| case VK_FORMAT_R5G6B5_UNORM_PACK16: |
| c.x = Float4(As<UShort4>(cs.x)) * Float4(1.0f / 0xF800); |
| c.y = Float4(As<UShort4>(cs.y)) * Float4(1.0f / 0xFC00); |
| c.z = Float4(As<UShort4>(cs.z)) * Float4(1.0f / 0xF800); |
| break; |
| case VK_FORMAT_B4G4R4A4_UNORM_PACK16: |
| c.x = Float4(As<UShort4>(cs.x)) * Float4(1.0f / 0xF000); |
| c.y = Float4(As<UShort4>(cs.y)) * Float4(1.0f / 0xF000); |
| c.z = Float4(As<UShort4>(cs.z)) * Float4(1.0f / 0xF000); |
| c.w = Float4(As<UShort4>(cs.w)) * Float4(1.0f / 0xF000); |
| break; |
| case VK_FORMAT_A1R5G5B5_UNORM_PACK16: |
| c.x = Float4(As<UShort4>(cs.x)) * Float4(1.0f / 0xF800); |
| c.y = Float4(As<UShort4>(cs.y)) * Float4(1.0f / 0xF800); |
| c.z = Float4(As<UShort4>(cs.z)) * Float4(1.0f / 0xF800); |
| c.w = Float4(As<UShort4>(cs.w)) * Float4(1.0f / 0x8000); |
| break; |
| case VK_FORMAT_R8_SNORM: |
| case VK_FORMAT_R8G8_SNORM: |
| case VK_FORMAT_R8G8B8A8_SNORM: |
| case VK_FORMAT_A8B8G8R8_SNORM_PACK32: |
| c.x = Float4(cs.x) * Float4(1.0f / 0x7F00); |
| c.y = Float4(cs.y) * Float4(1.0f / 0x7F00); |
| c.z = Float4(cs.z) * Float4(1.0f / 0x7F00); |
| c.w = Float4(cs.w) * Float4(1.0f / 0x7F00); |
| break; |
| case VK_FORMAT_R8_UNORM: |
| case VK_FORMAT_R8G8_UNORM: |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_B8G8R8A8_UNORM: |
| case VK_FORMAT_A8B8G8R8_UNORM_PACK32: |
| case VK_FORMAT_B8G8R8A8_SRGB: |
| case VK_FORMAT_R8G8B8A8_SRGB: |
| case VK_FORMAT_R8_SRGB: |
| case VK_FORMAT_R8G8_SRGB: |
| c.x = Float4(As<UShort4>(cs.x)) * Float4(1.0f / 0xFF00u); |
| c.y = Float4(As<UShort4>(cs.y)) * Float4(1.0f / 0xFF00u); |
| c.z = Float4(As<UShort4>(cs.z)) * Float4(1.0f / 0xFF00u); |
| c.w = Float4(As<UShort4>(cs.w)) * Float4(1.0f / 0xFF00u); |
| break; |
| default: |
| for(int component = 0; component < textureComponentCount(); component++) |
| { |
| if(hasUnsignedTextureComponent(component)) |
| { |
| convertUnsigned16(c[component], cs[component]); |
| } |
| else |
| { |
| convertSigned15(c[component], cs[component]); |
| } |
| } |
| } |
| } |
| |
| if(state.textureFilter != FILTER_GATHER) |
| { |
| if((state.swizzle.r != VK_COMPONENT_SWIZZLE_R) || |
| (state.swizzle.g != VK_COMPONENT_SWIZZLE_G) || |
| (state.swizzle.b != VK_COMPONENT_SWIZZLE_B) || |
| (state.swizzle.a != VK_COMPONENT_SWIZZLE_A)) |
| { |
| const Vector4f col(c); |
| bool integer = hasUnnormalizedIntegerTexture(); |
| applySwizzle(state.swizzle.r, c.x, col, integer); |
| applySwizzle(state.swizzle.g, c.y, col, integer); |
| applySwizzle(state.swizzle.b, c.z, col, integer); |
| applySwizzle(state.swizzle.a, c.w, col, integer); |
| } |
| } |
| else // Gather |
| { |
| VkComponentSwizzle swizzle = gatherSwizzle(); |
| |
| // R/G/B/A swizzles affect the component collected from each texel earlier. |
| // Handle the ZERO and ONE cases here because we don't need to know the format. |
| |
| if(swizzle == VK_COMPONENT_SWIZZLE_ZERO) |
| { |
| c.x = c.y = c.z = c.w = Float4(0); |
| } |
| else if(swizzle == VK_COMPONENT_SWIZZLE_ONE) |
| { |
| bool integer = hasUnnormalizedIntegerTexture(); |
| c.x = c.y = c.z = c.w = integer ? As<Float4>(Int4(1)) : RValue<Float4>(Float4(1.0f)); |
| } |
| } |
| |
| return c; |
| } |
| |
| Short4 SamplerCore::offsetSample(Short4 &uvw, Pointer<Byte> &mipmap, int halfOffset, bool wrap, int count, Float &lod) |
| { |
| Short4 offset = *Pointer<Short4>(mipmap + halfOffset); |
| |
| if(state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT) |
| { |
| offset &= Short4(CmpNLE(Float4(lod), Float4(0.0f))); |
| } |
| else if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR) |
| { |
| offset &= Short4(CmpLE(Float4(lod), Float4(0.0f))); |
| } |
| |
| if(wrap) |
| { |
| switch(count) |
| { |
| case -1: return uvw - offset; |
| case 0: return uvw; |
| case +1: return uvw + offset; |
| case 2: return uvw + offset + offset; |
| } |
| } |
| else // Clamp or mirror |
| { |
| switch(count) |
| { |
| case -1: return SubSat(As<UShort4>(uvw), As<UShort4>(offset)); |
| case 0: return uvw; |
| case +1: return AddSat(As<UShort4>(uvw), As<UShort4>(offset)); |
| case 2: return AddSat(AddSat(As<UShort4>(uvw), As<UShort4>(offset)), As<UShort4>(offset)); |
| } |
| } |
| |
| return uvw; |
| } |
| |
| Vector4s SamplerCore::sampleFilter(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Vector4f &offset, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, SamplerFunction function) |
| { |
| Vector4s c = sampleAniso(texture, u, v, w, offset, lod, anisotropy, uDelta, vDelta, false, function); |
| |
| if(function == Fetch) |
| { |
| return c; |
| } |
| |
| if(state.mipmapFilter == MIPMAP_LINEAR) |
| { |
| Vector4s cc = sampleAniso(texture, u, v, w, offset, lod, anisotropy, uDelta, vDelta, true, function); |
| |
| lod *= Float(1 << 16); |
| |
| UShort4 utri = UShort4(Float4(lod)); // FIXME: Optimize |
| Short4 stri = utri >> 1; // FIXME: Optimize |
| |
| if(hasUnsignedTextureComponent(0)) cc.x = MulHigh(As<UShort4>(cc.x), utri); else cc.x = MulHigh(cc.x, stri); |
| if(hasUnsignedTextureComponent(1)) cc.y = MulHigh(As<UShort4>(cc.y), utri); else cc.y = MulHigh(cc.y, stri); |
| if(hasUnsignedTextureComponent(2)) cc.z = MulHigh(As<UShort4>(cc.z), utri); else cc.z = MulHigh(cc.z, stri); |
| if(hasUnsignedTextureComponent(3)) cc.w = MulHigh(As<UShort4>(cc.w), utri); else cc.w = MulHigh(cc.w, stri); |
| |
| utri = ~utri; |
| stri = Short4(0x7FFF) - stri; |
| |
| if(hasUnsignedTextureComponent(0)) c.x = MulHigh(As<UShort4>(c.x), utri); else c.x = MulHigh(c.x, stri); |
| if(hasUnsignedTextureComponent(1)) c.y = MulHigh(As<UShort4>(c.y), utri); else c.y = MulHigh(c.y, stri); |
| if(hasUnsignedTextureComponent(2)) c.z = MulHigh(As<UShort4>(c.z), utri); else c.z = MulHigh(c.z, stri); |
| if(hasUnsignedTextureComponent(3)) c.w = MulHigh(As<UShort4>(c.w), utri); else c.w = MulHigh(c.w, stri); |
| |
| c.x += cc.x; |
| c.y += cc.y; |
| c.z += cc.z; |
| c.w += cc.w; |
| |
| if(!hasUnsignedTextureComponent(0)) c.x += c.x; |
| if(!hasUnsignedTextureComponent(1)) c.y += c.y; |
| if(!hasUnsignedTextureComponent(2)) c.z += c.z; |
| if(!hasUnsignedTextureComponent(3)) c.w += c.w; |
| } |
| |
| return c; |
| } |
| |
| Vector4s SamplerCore::sampleAniso(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Vector4f &offset, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, bool secondLOD, SamplerFunction function) |
| { |
| Vector4s c; |
| |
| if(state.textureFilter != FILTER_ANISOTROPIC || function == Lod || function == Fetch) |
| { |
| c = sampleQuad(texture, u, v, w, offset, lod, secondLOD, function); |
| } |
| else |
| { |
| Int a = RoundInt(anisotropy); |
| |
| Vector4s cSum; |
| |
| cSum.x = Short4(0); |
| cSum.y = Short4(0); |
| cSum.z = Short4(0); |
| cSum.w = Short4(0); |
| |
| Float4 A = *Pointer<Float4>(constants + OFFSET(Constants,uvWeight) + 16 * a); |
| Float4 B = *Pointer<Float4>(constants + OFFSET(Constants,uvStart) + 16 * a); |
| UShort4 cw = *Pointer<UShort4>(constants + OFFSET(Constants,cWeight) + 8 * a); |
| Short4 sw = Short4(cw >> 1); |
| |
| Float4 du = uDelta; |
| Float4 dv = vDelta; |
| |
| Float4 u0 = u + B * du; |
| Float4 v0 = v + B * dv; |
| |
| du *= A; |
| dv *= A; |
| |
| Int i = 0; |
| |
| Do |
| { |
| c = sampleQuad(texture, u0, v0, w, offset, lod, secondLOD, function); |
| |
| u0 += du; |
| v0 += dv; |
| |
| if(hasUnsignedTextureComponent(0)) cSum.x += As<Short4>(MulHigh(As<UShort4>(c.x), cw)); else cSum.x += MulHigh(c.x, sw); |
| if(hasUnsignedTextureComponent(1)) cSum.y += As<Short4>(MulHigh(As<UShort4>(c.y), cw)); else cSum.y += MulHigh(c.y, sw); |
| if(hasUnsignedTextureComponent(2)) cSum.z += As<Short4>(MulHigh(As<UShort4>(c.z), cw)); else cSum.z += MulHigh(c.z, sw); |
| if(hasUnsignedTextureComponent(3)) cSum.w += As<Short4>(MulHigh(As<UShort4>(c.w), cw)); else cSum.w += MulHigh(c.w, sw); |
| |
| i++; |
| } |
| Until(i >= a) |
| |
| if(hasUnsignedTextureComponent(0)) c.x = cSum.x; else c.x = AddSat(cSum.x, cSum.x); |
| if(hasUnsignedTextureComponent(1)) c.y = cSum.y; else c.y = AddSat(cSum.y, cSum.y); |
| if(hasUnsignedTextureComponent(2)) c.z = cSum.z; else c.z = AddSat(cSum.z, cSum.z); |
| if(hasUnsignedTextureComponent(3)) c.w = cSum.w; else c.w = AddSat(cSum.w, cSum.w); |
| } |
| |
| return c; |
| } |
| |
| Vector4s SamplerCore::sampleQuad(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Vector4f &offset, Float &lod, bool secondLOD, SamplerFunction function) |
| { |
| if(state.textureType != TEXTURE_3D) |
| { |
| return sampleQuad2D(texture, u, v, w, offset, lod, secondLOD, function); |
| } |
| else |
| { |
| return sample3D(texture, u, v, w, offset, lod, secondLOD, function); |
| } |
| } |
| |
| Vector4s SamplerCore::sampleQuad2D(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Vector4f &offset, Float &lod, bool secondLOD, SamplerFunction function) |
| { |
| Vector4s c; |
| |
| int componentCount = textureComponentCount(); |
| bool gather = (state.textureFilter == FILTER_GATHER); |
| |
| Pointer<Byte> mipmap; |
| Pointer<Byte> buffer; |
| selectMipmap(texture, mipmap, buffer, lod, secondLOD); |
| |
| bool texelFetch = (function == Fetch); |
| |
| Short4 uuuu = texelFetch ? Short4(As<Int4>(u)) : address(u, state.addressingModeU, mipmap); |
| Short4 vvvv = texelFetch ? Short4(As<Int4>(v)) : address(v, state.addressingModeV, mipmap); |
| Short4 wwww = texelFetch ? Short4(As<Int4>(w)) : address(w, state.addressingModeW, mipmap); |
| |
| if(state.textureFilter == FILTER_POINT || texelFetch) |
| { |
| c = sampleTexel(uuuu, vvvv, wwww, offset, mipmap, buffer, function); |
| } |
| else |
| { |
| Short4 uuuu0 = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, -1, lod); |
| Short4 vvvv0 = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, -1, lod); |
| Short4 uuuu1 = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, +1, lod); |
| Short4 vvvv1 = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, +1, lod); |
| |
| Vector4s c00 = sampleTexel(uuuu0, vvvv0, wwww, offset, mipmap, buffer, function); |
| Vector4s c10 = sampleTexel(uuuu1, vvvv0, wwww, offset, mipmap, buffer, function); |
| Vector4s c01 = sampleTexel(uuuu0, vvvv1, wwww, offset, mipmap, buffer, function); |
| Vector4s c11 = sampleTexel(uuuu1, vvvv1, wwww, offset, mipmap, buffer, function); |
| |
| if(!gather) // Blend |
| { |
| // Fractions |
| UShort4 f0u = As<UShort4>(uuuu0) * UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap,width))); |
| UShort4 f0v = As<UShort4>(vvvv0) * UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap,height))); |
| |
| UShort4 f1u = ~f0u; |
| UShort4 f1v = ~f0v; |
| |
| UShort4 f0u0v = MulHigh(f0u, f0v); |
| UShort4 f1u0v = MulHigh(f1u, f0v); |
| UShort4 f0u1v = MulHigh(f0u, f1v); |
| UShort4 f1u1v = MulHigh(f1u, f1v); |
| |
| // Signed fractions |
| Short4 f1u1vs; |
| Short4 f0u1vs; |
| Short4 f1u0vs; |
| Short4 f0u0vs; |
| |
| if(!hasUnsignedTextureComponent(0) || !hasUnsignedTextureComponent(1) || !hasUnsignedTextureComponent(2) || !hasUnsignedTextureComponent(3)) |
| { |
| f1u1vs = f1u1v >> 1; |
| f0u1vs = f0u1v >> 1; |
| f1u0vs = f1u0v >> 1; |
| f0u0vs = f0u0v >> 1; |
| } |
| |
| // Bilinear interpolation |
| if(componentCount >= 1) |
| { |
| if(has16bitTextureComponents() && hasUnsignedTextureComponent(0)) |
| { |
| c00.x = As<UShort4>(c00.x) - MulHigh(As<UShort4>(c00.x), f0u) + MulHigh(As<UShort4>(c10.x), f0u); |
| c01.x = As<UShort4>(c01.x) - MulHigh(As<UShort4>(c01.x), f0u) + MulHigh(As<UShort4>(c11.x), f0u); |
| c.x = As<UShort4>(c00.x) - MulHigh(As<UShort4>(c00.x), f0v) + MulHigh(As<UShort4>(c01.x), f0v); |
| } |
| else |
| { |
| if(hasUnsignedTextureComponent(0)) |
| { |
| c00.x = MulHigh(As<UShort4>(c00.x), f1u1v); |
| c10.x = MulHigh(As<UShort4>(c10.x), f0u1v); |
| c01.x = MulHigh(As<UShort4>(c01.x), f1u0v); |
| c11.x = MulHigh(As<UShort4>(c11.x), f0u0v); |
| } |
| else |
| { |
| c00.x = MulHigh(c00.x, f1u1vs); |
| c10.x = MulHigh(c10.x, f0u1vs); |
| c01.x = MulHigh(c01.x, f1u0vs); |
| c11.x = MulHigh(c11.x, f0u0vs); |
| } |
| |
| c.x = (c00.x + c10.x) + (c01.x + c11.x); |
| if(!hasUnsignedTextureComponent(0)) c.x = AddSat(c.x, c.x); // Correct for signed fractions |
| } |
| } |
| |
| if(componentCount >= 2) |
| { |
| if(has16bitTextureComponents() && hasUnsignedTextureComponent(1)) |
| { |
| c00.y = As<UShort4>(c00.y) - MulHigh(As<UShort4>(c00.y), f0u) + MulHigh(As<UShort4>(c10.y), f0u); |
| c01.y = As<UShort4>(c01.y) - MulHigh(As<UShort4>(c01.y), f0u) + MulHigh(As<UShort4>(c11.y), f0u); |
| c.y = As<UShort4>(c00.y) - MulHigh(As<UShort4>(c00.y), f0v) + MulHigh(As<UShort4>(c01.y), f0v); |
| } |
| else |
| { |
| if(hasUnsignedTextureComponent(1)) |
| { |
| c00.y = MulHigh(As<UShort4>(c00.y), f1u1v); |
| c10.y = MulHigh(As<UShort4>(c10.y), f0u1v); |
| c01.y = MulHigh(As<UShort4>(c01.y), f1u0v); |
| c11.y = MulHigh(As<UShort4>(c11.y), f0u0v); |
| } |
| else |
| { |
| c00.y = MulHigh(c00.y, f1u1vs); |
| c10.y = MulHigh(c10.y, f0u1vs); |
| c01.y = MulHigh(c01.y, f1u0vs); |
| c11.y = MulHigh(c11.y, f0u0vs); |
| } |
| |
| c.y = (c00.y + c10.y) + (c01.y + c11.y); |
| if(!hasUnsignedTextureComponent(1)) c.y = AddSat(c.y, c.y); // Correct for signed fractions |
| } |
| } |
| |
| if(componentCount >= 3) |
| { |
| if(has16bitTextureComponents() && hasUnsignedTextureComponent(2)) |
| { |
| c00.z = As<UShort4>(c00.z) - MulHigh(As<UShort4>(c00.z), f0u) + MulHigh(As<UShort4>(c10.z), f0u); |
| c01.z = As<UShort4>(c01.z) - MulHigh(As<UShort4>(c01.z), f0u) + MulHigh(As<UShort4>(c11.z), f0u); |
| c.z = As<UShort4>(c00.z) - MulHigh(As<UShort4>(c00.z), f0v) + MulHigh(As<UShort4>(c01.z), f0v); |
| } |
| else |
| { |
| if(hasUnsignedTextureComponent(2)) |
| { |
| c00.z = MulHigh(As<UShort4>(c00.z), f1u1v); |
| c10.z = MulHigh(As<UShort4>(c10.z), f0u1v); |
| c01.z = MulHigh(As<UShort4>(c01.z), f1u0v); |
| c11.z = MulHigh(As<UShort4>(c11.z), f0u0v); |
| } |
| else |
| { |
| c00.z = MulHigh(c00.z, f1u1vs); |
| c10.z = MulHigh(c10.z, f0u1vs); |
| c01.z = MulHigh(c01.z, f1u0vs); |
| c11.z = MulHigh(c11.z, f0u0vs); |
| } |
| |
| c.z = (c00.z + c10.z) + (c01.z + c11.z); |
| if(!hasUnsignedTextureComponent(2)) c.z = AddSat(c.z, c.z); // Correct for signed fractions |
| } |
| } |
| |
| if(componentCount >= 4) |
| { |
| if(has16bitTextureComponents() && hasUnsignedTextureComponent(3)) |
| { |
| c00.w = As<UShort4>(c00.w) - MulHigh(As<UShort4>(c00.w), f0u) + MulHigh(As<UShort4>(c10.w), f0u); |
| c01.w = As<UShort4>(c01.w) - MulHigh(As<UShort4>(c01.w), f0u) + MulHigh(As<UShort4>(c11.w), f0u); |
| c.w = As<UShort4>(c00.w) - MulHigh(As<UShort4>(c00.w), f0v) + MulHigh(As<UShort4>(c01.w), f0v); |
| } |
| else |
| { |
| if(hasUnsignedTextureComponent(3)) |
| { |
| c00.w = MulHigh(As<UShort4>(c00.w), f1u1v); |
| c10.w = MulHigh(As<UShort4>(c10.w), f0u1v); |
| c01.w = MulHigh(As<UShort4>(c01.w), f1u0v); |
| c11.w = MulHigh(As<UShort4>(c11.w), f0u0v); |
| } |
| else |
| { |
| c00.w = MulHigh(c00.w, f1u1vs); |
| c10.w = MulHigh(c10.w, f0u1vs); |
| c01.w = MulHigh(c01.w, f1u0vs); |
| c11.w = MulHigh(c11.w, f0u0vs); |
| } |
| |
| c.w = (c00.w + c10.w) + (c01.w + c11.w); |
| if(!hasUnsignedTextureComponent(3)) c.w = AddSat(c.w, c.w); // Correct for signed fractions |
| } |
| } |
| } |
| else // Gather |
| { |
| VkComponentSwizzle swizzle = gatherSwizzle(); |
| switch(swizzle) |
| { |
| case VK_COMPONENT_SWIZZLE_ZERO: |
| case VK_COMPONENT_SWIZZLE_ONE: |
| // Handled at the final component swizzle. |
| break; |
| default: |
| c.x = c01[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| c.y = c11[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| c.z = c10[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| c.w = c00[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| break; |
| } |
| } |
| } |
| |
| return c; |
| } |
| |
| Vector4s SamplerCore::sample3D(Pointer<Byte> &texture, Float4 &u_, Float4 &v_, Float4 &w_, Vector4f &offset, Float &lod, bool secondLOD, SamplerFunction function) |
| { |
| Vector4s c_; |
| |
| int componentCount = textureComponentCount(); |
| |
| Pointer<Byte> mipmap; |
| Pointer<Byte> buffer; |
| selectMipmap(texture, mipmap, buffer, lod, secondLOD); |
| |
| bool texelFetch = (function == Fetch); |
| |
| Short4 uuuu = texelFetch ? Short4(As<Int4>(u_)) : address(u_, state.addressingModeU, mipmap); |
| Short4 vvvv = texelFetch ? Short4(As<Int4>(v_)) : address(v_, state.addressingModeV, mipmap); |
| Short4 wwww = texelFetch ? Short4(As<Int4>(w_)) : address(w_, state.addressingModeW, mipmap); |
| |
| if(state.textureFilter == FILTER_POINT || texelFetch) |
| { |
| c_ = sampleTexel(uuuu, vvvv, wwww, offset, mipmap, buffer, function); |
| } |
| else |
| { |
| Vector4s c[2][2][2]; |
| |
| Short4 u[2][2][2]; |
| Short4 v[2][2][2]; |
| Short4 s[2][2][2]; |
| |
| for(int i = 0; i < 2; i++) |
| { |
| for(int j = 0; j < 2; j++) |
| { |
| for(int k = 0; k < 2; k++) |
| { |
| u[i][j][k] = offsetSample(uuuu, mipmap, OFFSET(Mipmap,uHalf), state.addressingModeU == ADDRESSING_WRAP, i * 2 - 1, lod); |
| v[i][j][k] = offsetSample(vvvv, mipmap, OFFSET(Mipmap,vHalf), state.addressingModeV == ADDRESSING_WRAP, j * 2 - 1, lod); |
| s[i][j][k] = offsetSample(wwww, mipmap, OFFSET(Mipmap,wHalf), state.addressingModeW == ADDRESSING_WRAP, k * 2 - 1, lod); |
| } |
| } |
| } |
| |
| // Fractions |
| UShort4 f0u = As<UShort4>(u[0][0][0]) * UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap,width))); |
| UShort4 f0v = As<UShort4>(v[0][0][0]) * UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap,height))); |
| UShort4 f0s = As<UShort4>(s[0][0][0]) * UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap,depth))); |
| |
| UShort4 f1u = ~f0u; |
| UShort4 f1v = ~f0v; |
| UShort4 f1s = ~f0s; |
| |
| UShort4 f[2][2][2]; |
| Short4 fs[2][2][2]; |
| |
| f[1][1][1] = MulHigh(f1u, f1v); |
| f[0][1][1] = MulHigh(f0u, f1v); |
| f[1][0][1] = MulHigh(f1u, f0v); |
| f[0][0][1] = MulHigh(f0u, f0v); |
| f[1][1][0] = MulHigh(f1u, f1v); |
| f[0][1][0] = MulHigh(f0u, f1v); |
| f[1][0][0] = MulHigh(f1u, f0v); |
| f[0][0][0] = MulHigh(f0u, f0v); |
| |
| f[1][1][1] = MulHigh(f[1][1][1], f1s); |
| f[0][1][1] = MulHigh(f[0][1][1], f1s); |
| f[1][0][1] = MulHigh(f[1][0][1], f1s); |
| f[0][0][1] = MulHigh(f[0][0][1], f1s); |
| f[1][1][0] = MulHigh(f[1][1][0], f0s); |
| f[0][1][0] = MulHigh(f[0][1][0], f0s); |
| f[1][0][0] = MulHigh(f[1][0][0], f0s); |
| f[0][0][0] = MulHigh(f[0][0][0], f0s); |
| |
| // Signed fractions |
| if(!hasUnsignedTextureComponent(0) || !hasUnsignedTextureComponent(1) || !hasUnsignedTextureComponent(2) || !hasUnsignedTextureComponent(3)) |
| { |
| fs[0][0][0] = f[0][0][0] >> 1; |
| fs[0][0][1] = f[0][0][1] >> 1; |
| fs[0][1][0] = f[0][1][0] >> 1; |
| fs[0][1][1] = f[0][1][1] >> 1; |
| fs[1][0][0] = f[1][0][0] >> 1; |
| fs[1][0][1] = f[1][0][1] >> 1; |
| fs[1][1][0] = f[1][1][0] >> 1; |
| fs[1][1][1] = f[1][1][1] >> 1; |
| } |
| |
| for(int i = 0; i < 2; i++) |
| { |
| for(int j = 0; j < 2; j++) |
| { |
| for(int k = 0; k < 2; k++) |
| { |
| c[i][j][k] = sampleTexel(u[i][j][k], v[i][j][k], s[i][j][k], offset, mipmap, buffer, function); |
| |
| if(componentCount >= 1) { if(hasUnsignedTextureComponent(0)) c[i][j][k].x = MulHigh(As<UShort4>(c[i][j][k].x), f[1 - i][1 - j][1 - k]); else c[i][j][k].x = MulHigh(c[i][j][k].x, fs[1 - i][1 - j][1 - k]); } |
| if(componentCount >= 2) { if(hasUnsignedTextureComponent(1)) c[i][j][k].y = MulHigh(As<UShort4>(c[i][j][k].y), f[1 - i][1 - j][1 - k]); else c[i][j][k].y = MulHigh(c[i][j][k].y, fs[1 - i][1 - j][1 - k]); } |
| if(componentCount >= 3) { if(hasUnsignedTextureComponent(2)) c[i][j][k].z = MulHigh(As<UShort4>(c[i][j][k].z), f[1 - i][1 - j][1 - k]); else c[i][j][k].z = MulHigh(c[i][j][k].z, fs[1 - i][1 - j][1 - k]); } |
| if(componentCount >= 4) { if(hasUnsignedTextureComponent(3)) c[i][j][k].w = MulHigh(As<UShort4>(c[i][j][k].w), f[1 - i][1 - j][1 - k]); else c[i][j][k].w = MulHigh(c[i][j][k].w, fs[1 - i][1 - j][1 - k]); } |
| |
| if(i != 0 || j != 0 || k != 0) |
| { |
| if(componentCount >= 1) c[0][0][0].x += c[i][j][k].x; |
| if(componentCount >= 2) c[0][0][0].y += c[i][j][k].y; |
| if(componentCount >= 3) c[0][0][0].z += c[i][j][k].z; |
| if(componentCount >= 4) c[0][0][0].w += c[i][j][k].w; |
| } |
| } |
| } |
| } |
| |
| if(componentCount >= 1) c_.x = c[0][0][0].x; |
| if(componentCount >= 2) c_.y = c[0][0][0].y; |
| if(componentCount >= 3) c_.z = c[0][0][0].z; |
| if(componentCount >= 4) c_.w = c[0][0][0].w; |
| |
| // Correct for signed fractions |
| if(componentCount >= 1) if(!hasUnsignedTextureComponent(0)) c_.x = AddSat(c_.x, c_.x); |
| if(componentCount >= 2) if(!hasUnsignedTextureComponent(1)) c_.y = AddSat(c_.y, c_.y); |
| if(componentCount >= 3) if(!hasUnsignedTextureComponent(2)) c_.z = AddSat(c_.z, c_.z); |
| if(componentCount >= 4) if(!hasUnsignedTextureComponent(3)) c_.w = AddSat(c_.w, c_.w); |
| } |
| |
| return c_; |
| } |
| |
| Vector4f SamplerCore::sampleFloatFilter(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Vector4f &offset, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, SamplerFunction function) |
| { |
| Vector4f c = sampleFloatAniso(texture, u, v, w, q, offset, lod, anisotropy, uDelta, vDelta, false, function); |
| |
| if(function == Fetch) |
| { |
| return c; |
| } |
| |
| if(state.mipmapFilter == MIPMAP_LINEAR) |
| { |
| Vector4f cc = sampleFloatAniso(texture, u, v, w, q, offset, lod, anisotropy, uDelta, vDelta, true, function); |
| |
| Float4 lod4 = Float4(Frac(lod)); |
| |
| c.x = (cc.x - c.x) * lod4 + c.x; |
| c.y = (cc.y - c.y) * lod4 + c.y; |
| c.z = (cc.z - c.z) * lod4 + c.z; |
| c.w = (cc.w - c.w) * lod4 + c.w; |
| } |
| |
| return c; |
| } |
| |
| Vector4f SamplerCore::sampleFloatAniso(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Vector4f &offset, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, bool secondLOD, SamplerFunction function) |
| { |
| Vector4f c; |
| |
| if(state.textureFilter != FILTER_ANISOTROPIC || function == Lod || function == Fetch) |
| { |
| c = sampleFloat(texture, u, v, w, q, offset, lod, secondLOD, function); |
| } |
| else |
| { |
| Int a = RoundInt(anisotropy); |
| |
| Vector4f cSum; |
| |
| cSum.x = Float4(0.0f); |
| cSum.y = Float4(0.0f); |
| cSum.z = Float4(0.0f); |
| cSum.w = Float4(0.0f); |
| |
| Float4 A = *Pointer<Float4>(constants + OFFSET(Constants,uvWeight) + 16 * a); |
| Float4 B = *Pointer<Float4>(constants + OFFSET(Constants,uvStart) + 16 * a); |
| |
| Float4 du = uDelta; |
| Float4 dv = vDelta; |
| |
| Float4 u0 = u + B * du; |
| Float4 v0 = v + B * dv; |
| |
| du *= A; |
| dv *= A; |
| |
| Int i = 0; |
| |
| Do |
| { |
| c = sampleFloat(texture, u0, v0, w, q, offset, lod, secondLOD, function); |
| |
| u0 += du; |
| v0 += dv; |
| |
| cSum.x += c.x * A; |
| cSum.y += c.y * A; |
| cSum.z += c.z * A; |
| cSum.w += c.w * A; |
| |
| i++; |
| } |
| Until(i >= a) |
| |
| c.x = cSum.x; |
| c.y = cSum.y; |
| c.z = cSum.z; |
| c.w = cSum.w; |
| } |
| |
| return c; |
| } |
| |
| Vector4f SamplerCore::sampleFloat(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Vector4f &offset, Float &lod, bool secondLOD, SamplerFunction function) |
| { |
| if(state.textureType != TEXTURE_3D) |
| { |
| return sampleFloat2D(texture, u, v, w, q, offset, lod, secondLOD, function); |
| } |
| else |
| { |
| return sampleFloat3D(texture, u, v, w, offset, lod, secondLOD, function); |
| } |
| } |
| |
| Vector4f SamplerCore::sampleFloat2D(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Float4 &q, Vector4f &offset, Float &lod, bool secondLOD, SamplerFunction function) |
| { |
| Vector4f c; |
| |
| int componentCount = textureComponentCount(); |
| bool gather = (state.textureFilter == FILTER_GATHER); |
| |
| Pointer<Byte> mipmap; |
| Pointer<Byte> buffer; |
| selectMipmap(texture, mipmap, buffer, lod, secondLOD); |
| |
| Int4 x0, x1, y0, y1, z0; |
| Float4 fu, fv, fw; |
| Int4 filter = computeFilterOffset(lod); |
| address(u, x0, x1, fu, mipmap, offset.x, filter, OFFSET(Mipmap, width), state.addressingModeU, function); |
| address(v, y0, y1, fv, mipmap, offset.y, filter, OFFSET(Mipmap, height), state.addressingModeV, function); |
| address(w, z0, z0, fw, mipmap, offset.z, filter, OFFSET(Mipmap, depth), state.addressingModeW, function); |
| |
| Int4 pitchP = *Pointer<Int4>(mipmap + OFFSET(Mipmap, pitchP), 16); |
| y0 *= pitchP; |
| if(state.addressingModeW != ADDRESSING_UNUSED) |
| { |
| z0 *= *Pointer<Int4>(mipmap + OFFSET(Mipmap, sliceP), 16); |
| } |
| |
| if(state.textureFilter == FILTER_POINT || (function == Fetch)) |
| { |
| c = sampleTexel(x0, y0, z0, q, mipmap, buffer, function); |
| } |
| else |
| { |
| y1 *= pitchP; |
| |
| Vector4f c00 = sampleTexel(x0, y0, z0, q, mipmap, buffer, function); |
| Vector4f c10 = sampleTexel(x1, y0, z0, q, mipmap, buffer, function); |
| Vector4f c01 = sampleTexel(x0, y1, z0, q, mipmap, buffer, function); |
| Vector4f c11 = sampleTexel(x1, y1, z0, q, mipmap, buffer, function); |
| |
| if(!gather) // Blend |
| { |
| if(componentCount >= 1) c00.x = c00.x + fu * (c10.x - c00.x); |
| if(componentCount >= 2) c00.y = c00.y + fu * (c10.y - c00.y); |
| if(componentCount >= 3) c00.z = c00.z + fu * (c10.z - c00.z); |
| if(componentCount >= 4) c00.w = c00.w + fu * (c10.w - c00.w); |
| |
| if(componentCount >= 1) c01.x = c01.x + fu * (c11.x - c01.x); |
| if(componentCount >= 2) c01.y = c01.y + fu * (c11.y - c01.y); |
| if(componentCount >= 3) c01.z = c01.z + fu * (c11.z - c01.z); |
| if(componentCount >= 4) c01.w = c01.w + fu * (c11.w - c01.w); |
| |
| if(componentCount >= 1) c.x = c00.x + fv * (c01.x - c00.x); |
| if(componentCount >= 2) c.y = c00.y + fv * (c01.y - c00.y); |
| if(componentCount >= 3) c.z = c00.z + fv * (c01.z - c00.z); |
| if(componentCount >= 4) c.w = c00.w + fv * (c01.w - c00.w); |
| } |
| else // Gather |
| { |
| VkComponentSwizzle swizzle = gatherSwizzle(); |
| switch(swizzle) |
| { |
| case VK_COMPONENT_SWIZZLE_ZERO: |
| case VK_COMPONENT_SWIZZLE_ONE: |
| // Handled at the final component swizzle. |
| break; |
| default: |
| c.x = c01[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| c.y = c11[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| c.z = c10[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| c.w = c00[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| break; |
| } |
| } |
| } |
| |
| return c; |
| } |
| |
| Vector4f SamplerCore::sampleFloat3D(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Vector4f &offset, Float &lod, bool secondLOD, SamplerFunction function) |
| { |
| Vector4f c; |
| |
| int componentCount = textureComponentCount(); |
| |
| Pointer<Byte> mipmap; |
| Pointer<Byte> buffer; |
| selectMipmap(texture, mipmap, buffer, lod, secondLOD); |
| |
| Int4 x0, x1, y0, y1, z0, z1; |
| Float4 fu, fv, fw; |
| Int4 filter = computeFilterOffset(lod); |
| address(u, x0, x1, fu, mipmap, offset.x, filter, OFFSET(Mipmap, width), state.addressingModeU, function); |
| address(v, y0, y1, fv, mipmap, offset.y, filter, OFFSET(Mipmap, height), state.addressingModeV, function); |
| address(w, z0, z1, fw, mipmap, offset.z, filter, OFFSET(Mipmap, depth), state.addressingModeW, function); |
| |
| Int4 pitchP = *Pointer<Int4>(mipmap + OFFSET(Mipmap, pitchP), 16); |
| Int4 sliceP = *Pointer<Int4>(mipmap + OFFSET(Mipmap, sliceP), 16); |
| y0 *= pitchP; |
| z0 *= sliceP; |
| |
| if(state.textureFilter == FILTER_POINT || (function == Fetch)) |
| { |
| c = sampleTexel(x0, y0, z0, w, mipmap, buffer, function); |
| } |
| else |
| { |
| y1 *= pitchP; |
| z1 *= sliceP; |
| |
| Vector4f c000 = sampleTexel(x0, y0, z0, w, mipmap, buffer, function); |
| Vector4f c100 = sampleTexel(x1, y0, z0, w, mipmap, buffer, function); |
| Vector4f c010 = sampleTexel(x0, y1, z0, w, mipmap, buffer, function); |
| Vector4f c110 = sampleTexel(x1, y1, z0, w, mipmap, buffer, function); |
| Vector4f c001 = sampleTexel(x0, y0, z1, w, mipmap, buffer, function); |
| Vector4f c101 = sampleTexel(x1, y0, z1, w, mipmap, buffer, function); |
| Vector4f c011 = sampleTexel(x0, y1, z1, w, mipmap, buffer, function); |
| Vector4f c111 = sampleTexel(x1, y1, z1, w, mipmap, buffer, function); |
| |
| // Blend first slice |
| if(componentCount >= 1) c000.x = c000.x + fu * (c100.x - c000.x); |
| if(componentCount >= 2) c000.y = c000.y + fu * (c100.y - c000.y); |
| if(componentCount >= 3) c000.z = c000.z + fu * (c100.z - c000.z); |
| if(componentCount >= 4) c000.w = c000.w + fu * (c100.w - c000.w); |
| |
| if(componentCount >= 1) c010.x = c010.x + fu * (c110.x - c010.x); |
| if(componentCount >= 2) c010.y = c010.y + fu * (c110.y - c010.y); |
| if(componentCount >= 3) c010.z = c010.z + fu * (c110.z - c010.z); |
| if(componentCount >= 4) c010.w = c010.w + fu * (c110.w - c010.w); |
| |
| if(componentCount >= 1) c000.x = c000.x + fv * (c010.x - c000.x); |
| if(componentCount >= 2) c000.y = c000.y + fv * (c010.y - c000.y); |
| if(componentCount >= 3) c000.z = c000.z + fv * (c010.z - c000.z); |
| if(componentCount >= 4) c000.w = c000.w + fv * (c010.w - c000.w); |
| |
| // Blend second slice |
| if(componentCount >= 1) c001.x = c001.x + fu * (c101.x - c001.x); |
| if(componentCount >= 2) c001.y = c001.y + fu * (c101.y - c001.y); |
| if(componentCount >= 3) c001.z = c001.z + fu * (c101.z - c001.z); |
| if(componentCount >= 4) c001.w = c001.w + fu * (c101.w - c001.w); |
| |
| if(componentCount >= 1) c011.x = c011.x + fu * (c111.x - c011.x); |
| if(componentCount >= 2) c011.y = c011.y + fu * (c111.y - c011.y); |
| if(componentCount >= 3) c011.z = c011.z + fu * (c111.z - c011.z); |
| if(componentCount >= 4) c011.w = c011.w + fu * (c111.w - c011.w); |
| |
| if(componentCount >= 1) c001.x = c001.x + fv * (c011.x - c001.x); |
| if(componentCount >= 2) c001.y = c001.y + fv * (c011.y - c001.y); |
| if(componentCount >= 3) c001.z = c001.z + fv * (c011.z - c001.z); |
| if(componentCount >= 4) c001.w = c001.w + fv * (c011.w - c001.w); |
| |
| // Blend slices |
| if(componentCount >= 1) c.x = c000.x + fw * (c001.x - c000.x); |
| if(componentCount >= 2) c.y = c000.y + fw * (c001.y - c000.y); |
| if(componentCount >= 3) c.z = c000.z + fw * (c001.z - c000.z); |
| if(componentCount >= 4) c.w = c000.w + fw * (c001.w - c000.w); |
| } |
| |
| return c; |
| } |
| |
| Float SamplerCore::log2sqrt(Float lod) |
| { |
| // log2(sqrt(lod)) // Equals 0.25 * log2(lod^2). |
| lod *= lod; // Squaring doubles the exponent and produces an extra bit of precision. |
| lod = Float(As<Int>(lod)) - Float(0x3F800000); // Interpret as integer and subtract the exponent bias. |
| lod *= As<Float>(Int(0x33000000)); // Scale by 0.25 * 2^-23 (mantissa length). |
| |
| return lod; |
| } |
| |
| Float SamplerCore::log2(Float lod) |
| { |
| lod *= lod; // Squaring doubles the exponent and produces an extra bit of precision. |
| lod = Float(As<Int>(lod)) - Float(0x3F800000); // Interpret as integer and subtract the exponent bias. |
| lod *= As<Float>(Int(0x33800000)); // Scale by 0.5 * 2^-23 (mantissa length). |
| |
| return lod; |
| } |
| |
| void SamplerCore::computeLod(Pointer<Byte> &texture, Pointer<Byte> &sampler, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Float4 &uuuu, Float4 &vvvv, Float4 &dsx, Float4 &dsy, SamplerFunction function) |
| { |
| Float4 duvdxy; |
| |
| if(function != Grad) // Implicit |
| { |
| duvdxy = Float4(uuuu.yz, vvvv.yz) - Float4(uuuu.xx, vvvv.xx); |
| } |
| else |
| { |
| Float4 dudxy = Float4(dsx.xx, dsy.xx); |
| Float4 dvdxy = Float4(dsx.yy, dsy.yy); |
| |
| duvdxy = Float4(dudxy.xz, dvdxy.xz); |
| } |
| |
| // Scale by texture dimensions. |
| Float4 dUVdxy = duvdxy * *Pointer<Float4>(texture + OFFSET(Texture, widthWidthHeightHeight)); |
| |
| Float4 dUV2dxy = dUVdxy * dUVdxy; |
| Float4 dUV2 = dUV2dxy.xy + dUV2dxy.zw; |
| |
| lod = Max(Float(dUV2.x), Float(dUV2.y)); // Square length of major axis |
| |
| if(state.textureFilter == FILTER_ANISOTROPIC) |
| { |
| Float det = Abs(Float(dUVdxy.x) * Float(dUVdxy.w) - Float(dUVdxy.y) * Float(dUVdxy.z)); |
| |
| Float4 dudx = duvdxy.xxxx; |
| Float4 dudy = duvdxy.yyyy; |
| Float4 dvdx = duvdxy.zzzz; |
| Float4 dvdy = duvdxy.wwww; |
| |
| Int4 mask = As<Int4>(CmpNLT(dUV2.x, dUV2.y)); |
| uDelta = As<Float4>((As<Int4>(dudx) & mask) | ((As<Int4>(dudy) & ~mask))); |
| vDelta = As<Float4>((As<Int4>(dvdx) & mask) | ((As<Int4>(dvdy) & ~mask))); |
| |
| anisotropy = lod * Rcp_pp(det); |
| anisotropy = Min(anisotropy, *Pointer<Float>(sampler + OFFSET(vk::Sampler,maxAnisotropy))); |
| |
| lod *= Rcp_pp(anisotropy * anisotropy); |
| } |
| |
| lod = log2sqrt(lod); // log2(sqrt(lod)) |
| } |
| |
| void SamplerCore::computeLodCube(Pointer<Byte> &texture, Pointer<Byte> &sampler, Float &lod, Float4 &u, Float4 &v, Float4 &w, Float4 &dsx, Float4 &dsy, Float4 &M, SamplerFunction function) |
| { |
| Float4 dudxy, dvdxy, dsdxy; |
| |
| if(function != Grad) // Implicit |
| { |
| Float4 U = u * M; |
| Float4 V = v * M; |
| Float4 W = w * M; |
| |
| dudxy = Abs(U - U.xxxx); |
| dvdxy = Abs(V - V.xxxx); |
| dsdxy = Abs(W - W.xxxx); |
| } |
| else |
| { |
| dudxy = Float4(dsx.xx, dsy.xx); |
| dvdxy = Float4(dsx.yy, dsy.yy); |
| dsdxy = Float4(dsx.zz, dsy.zz); |
| |
| dudxy = Abs(dudxy * Float4(M.x)); |
| dvdxy = Abs(dvdxy * Float4(M.x)); |
| dsdxy = Abs(dsdxy * Float4(M.x)); |
| } |
| |
| // Compute the largest Manhattan distance in two dimensions. |
| // This takes the footprint across adjacent faces into account. |
| Float4 duvdxy = dudxy + dvdxy; |
| Float4 dusdxy = dudxy + dsdxy; |
| Float4 dvsdxy = dvdxy + dsdxy; |
| |
| dudxy = Max(Max(duvdxy, dusdxy), dvsdxy); |
| |
| lod = Max(Float(dudxy.y), Float(dudxy.z)); // FIXME: Max(dudxy.y, dudxy.z); |
| |
| // Scale by texture dimension. |
| lod *= *Pointer<Float>(texture + OFFSET(Texture,width)); |
| |
| lod = log2(lod); |
| } |
| |
| void SamplerCore::computeLod3D(Pointer<Byte> &texture, Pointer<Byte> &sampler, Float &lod, Float4 &uuuu, Float4 &vvvv, Float4 &wwww, Float4 &dsx, Float4 &dsy, SamplerFunction function) |
| { |
| Float4 dudxy, dvdxy, dsdxy; |
| |
| if(function != Grad) // Implicit |
| { |
| dudxy = uuuu - uuuu.xxxx; |
| dvdxy = vvvv - vvvv.xxxx; |
| dsdxy = wwww - wwww.xxxx; |
| } |
| else |
| { |
| dudxy = Float4(dsx.xx, dsy.xx); |
| dvdxy = Float4(dsx.yy, dsy.yy); |
| dsdxy = Float4(dsx.zz, dsy.zz); |
| } |
| |
| // Scale by texture dimensions. |
| dudxy *= *Pointer<Float4>(texture + OFFSET(Texture, width)); |
| dvdxy *= *Pointer<Float4>(texture + OFFSET(Texture, height)); |
| dsdxy *= *Pointer<Float4>(texture + OFFSET(Texture, depth)); |
| |
| dudxy *= dudxy; |
| dvdxy *= dvdxy; |
| dsdxy *= dsdxy; |
| |
| dudxy += dvdxy; |
| dudxy += dsdxy; |
| |
| lod = Max(Float(dudxy.y), Float(dudxy.z)); // FIXME: Max(dudxy.y, dudxy.z); |
| |
| lod = log2sqrt(lod); // log2(sqrt(lod)) |
| } |
| |
| Int4 SamplerCore::cubeFace(Float4 &U, Float4 &V, Float4 &x, Float4 &y, Float4 &z, Float4 &M) |
| { |
| // TODO: Comply with Vulkan recommendation: |
| // Vulkan 1.1: "The rules should have as the first rule that rz wins over ry and rx, and the second rule that ry wins over rx." |
| |
| Int4 xn = CmpLT(x, Float4(0.0f)); // x < 0 |
| Int4 yn = CmpLT(y, Float4(0.0f)); // y < 0 |
| Int4 zn = CmpLT(z, Float4(0.0f)); // z < 0 |
| |
| Float4 absX = Abs(x); |
| Float4 absY = Abs(y); |
| Float4 absZ = Abs(z); |
| |
| Int4 xy = CmpNLE(absX, absY); // abs(x) > abs(y) |
| Int4 yz = CmpNLE(absY, absZ); // abs(y) > abs(z) |
| Int4 zx = CmpNLE(absZ, absX); // abs(z) > abs(x) |
| Int4 xMajor = xy & ~zx; // abs(x) > abs(y) && abs(x) > abs(z) |
| Int4 yMajor = yz & ~xy; // abs(y) > abs(z) && abs(y) > abs(x) |
| Int4 zMajor = zx & ~yz; // abs(z) > abs(x) && abs(z) > abs(y) |
| |
| // FACE_POSITIVE_X = 000b |
| // FACE_NEGATIVE_X = 001b |
| // FACE_POSITIVE_Y = 010b |
| // FACE_NEGATIVE_Y = 011b |
| // FACE_POSITIVE_Z = 100b |
| // FACE_NEGATIVE_Z = 101b |
| |
| Int yAxis = SignMask(yMajor); |
| Int zAxis = SignMask(zMajor); |
| |
| Int4 n = ((xn & xMajor) | (yn & yMajor) | (zn & zMajor)) & Int4(0x80000000); |
| Int negative = SignMask(n); |
| |
| Int faces = *Pointer<Int>(constants + OFFSET(Constants,transposeBit0) + negative * 4); |
| faces |= *Pointer<Int>(constants + OFFSET(Constants,transposeBit1) + yAxis * 4); |
| faces |= *Pointer<Int>(constants + OFFSET(Constants,transposeBit2) + zAxis * 4); |
| |
| Int4 face; |
| face.x = faces & 0x7; |
| face.y = (faces >> 4) & 0x7; |
| face.z = (faces >> 8) & 0x7; |
| face.w = (faces >> 12) & 0x7; |
| |
| M = Max(Max(absX, absY), Max(absZ, Float4(std::numeric_limits<float>::min()))); |
| |
| // U = xMajor ? (neg ^ -z) : ((zMajor & neg) ^ x) |
| U = As<Float4>((xMajor & (n ^ As<Int4>(-z))) | (~xMajor & ((zMajor & n) ^ As<Int4>(x)))); |
| |
| // V = !yMajor ? -y : (n ^ z) |
| V = As<Float4>((~yMajor & As<Int4>(-y)) | (yMajor & (n ^ As<Int4>(z)))); |
| |
| M = reciprocal(M) * Float4(0.5f); |
| U = U * M + Float4(0.5f); |
| V = V * M + Float4(0.5f); |
| |
| return face; |
| } |
| |
| Short4 SamplerCore::applyOffset(Short4 &uvw, Float4 &offset, const Int4 &whd, AddressingMode mode) |
| { |
| Int4 tmp = Int4(As<UShort4>(uvw)); |
| tmp = tmp + As<Int4>(offset); |
| |
| switch(mode) |
| { |
| case AddressingMode::ADDRESSING_WRAP: |
| tmp = (tmp + whd * Int4(-MIN_PROGRAM_TEXEL_OFFSET)) % whd; |
| break; |
| case AddressingMode::ADDRESSING_CLAMP: |
| case AddressingMode::ADDRESSING_MIRROR: |
| case AddressingMode::ADDRESSING_MIRRORONCE: |
| case AddressingMode::ADDRESSING_BORDER: // FIXME: Implement and test ADDRESSING_MIRROR, ADDRESSING_MIRRORONCE, ADDRESSING_BORDER |
| tmp = Min(Max(tmp, Int4(0)), whd - Int4(1)); |
| break; |
| case ADDRESSING_TEXELFETCH: |
| break; |
| case AddressingMode::ADDRESSING_SEAMLESS: |
| ASSERT(false); // Cube sampling doesn't support offset. |
| default: |
| ASSERT(false); |
| } |
| |
| return As<Short4>(UShort4(tmp)); |
| } |
| |
| void SamplerCore::computeIndices(UInt index[4], Short4 uuuu, Short4 vvvv, Short4 wwww, Vector4f &offset, const Pointer<Byte> &mipmap, SamplerFunction function) |
| { |
| bool texelFetch = (function == Fetch); |
| bool hasOffset = (function.offset != 0); |
| |
| if(!texelFetch) |
| { |
| uuuu = MulHigh(As<UShort4>(uuuu), UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap, width)))); |
| vvvv = MulHigh(As<UShort4>(vvvv), UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap, height)))); |
| } |
| |
| if(hasOffset) |
| { |
| uuuu = applyOffset(uuuu, offset.x, *Pointer<Int4>(mipmap + OFFSET(Mipmap, width)), |
| texelFetch ? ADDRESSING_TEXELFETCH : state.addressingModeU); |
| vvvv = applyOffset(vvvv, offset.y, *Pointer<Int4>(mipmap + OFFSET(Mipmap, height)), |
| texelFetch ? ADDRESSING_TEXELFETCH : state.addressingModeV); |
| } |
| |
| Short4 uuu2 = uuuu; |
| uuuu = As<Short4>(UnpackLow(uuuu, vvvv)); |
| uuu2 = As<Short4>(UnpackHigh(uuu2, vvvv)); |
| uuuu = As<Short4>(MulAdd(uuuu, *Pointer<Short4>(mipmap + OFFSET(Mipmap,onePitchP)))); |
| uuu2 = As<Short4>(MulAdd(uuu2, *Pointer<Short4>(mipmap + OFFSET(Mipmap,onePitchP)))); |
| |
| if(hasThirdCoordinate()) |
| { |
| if(state.textureType == TEXTURE_3D) |
| { |
| if(!texelFetch) |
| { |
| wwww = MulHigh(As<UShort4>(wwww), UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap, depth)))); |
| } |
| |
| if(hasOffset) |
| { |
| wwww = applyOffset(wwww, offset.z, *Pointer<Int4>(mipmap + OFFSET(Mipmap, depth)), |
| texelFetch ? ADDRESSING_TEXELFETCH : state.addressingModeW); |
| } |
| } |
| |
| UInt4 uv(As<UInt2>(uuuu), As<UInt2>(uuu2)); |
| uv += As<UInt4>(Int4(As<UShort4>(wwww))) * *Pointer<UInt4>(mipmap + OFFSET(Mipmap, sliceP)); |
| |
| index[0] = Extract(As<Int4>(uv), 0); |
| index[1] = Extract(As<Int4>(uv), 1); |
| index[2] = Extract(As<Int4>(uv), 2); |
| index[3] = Extract(As<Int4>(uv), 3); |
| } |
| else |
| { |
| index[0] = Extract(As<Int2>(uuuu), 0); |
| index[1] = Extract(As<Int2>(uuuu), 1); |
| index[2] = Extract(As<Int2>(uuu2), 0); |
| index[3] = Extract(As<Int2>(uuu2), 1); |
| } |
| |
| if(texelFetch) |
| { |
| Int size = *Pointer<Int>(mipmap + OFFSET(Mipmap, sliceP)); |
| if(hasThirdCoordinate()) |
| { |
| size *= *Pointer<Int>(mipmap + OFFSET(Mipmap, depth)); |
| } |
| UInt min = 0; |
| UInt max = size - 1; |
| |
| for(int i = 0; i < 4; i++) |
| { |
| index[i] = Min(Max(index[i], min), max); |
| } |
| } |
| } |
| |
| void SamplerCore::computeIndices(UInt index[4], Int4 uuuu, Int4 vvvv, Int4 wwww, Int4 valid, const Pointer<Byte> &mipmap, SamplerFunction function) |
| { |
| UInt4 indices = uuuu + vvvv; |
| |
| if(state.addressingModeW != ADDRESSING_UNUSED) |
| { |
| indices += As<UInt4>(wwww); |
| } |
| |
| if(borderModeActive()) |
| { |
| // Texels out of range are still sampled before being replaced |
| // with the border color, so sample them at linear index 0. |
| indices &= As<UInt4>(valid); |
| } |
| |
| for(int i = 0; i < 4; i++) |
| { |
| index[i] = Extract(As<Int4>(indices), i); |
| } |
| } |
| |
| Vector4s SamplerCore::sampleTexel(UInt index[4], Pointer<Byte> buffer) |
| { |
| Vector4s c; |
| |
| if(has16bitTextureFormat()) |
| { |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[0]], 0); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[1]], 1); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[2]], 2); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[3]], 3); |
| |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_R5G6B5_UNORM_PACK16: |
| c.z = (c.x & Short4(0x001Fu)) << 11; |
| c.y = (c.x & Short4(0x07E0u)) << 5; |
| c.x = (c.x & Short4(0xF800u)); |
| break; |
| case VK_FORMAT_B4G4R4A4_UNORM_PACK16: |
| c.w = (c.x << 12) & Short4(0xF000u); |
| c.z = (c.x) & Short4(0xF000u); |
| c.y = (c.x << 4) & Short4(0xF000u); |
| c.x = (c.x << 8) & Short4(0xF000u); |
| break; |
| case VK_FORMAT_A1R5G5B5_UNORM_PACK16: |
| c.w = (c.x) & Short4(0x8000u); |
| c.z = (c.x << 11) & Short4(0xF800u); |
| c.y = (c.x << 6) & Short4(0xF800u); |
| c.x = (c.x << 1) & Short4(0xF800u); |
| break; |
| default: |
| ASSERT(false); |
| } |
| } |
| else if(has8bitTextureComponents()) |
| { |
| switch(textureComponentCount()) |
| { |
| case 4: |
| { |
| Byte4 c0 = Pointer<Byte4>(buffer)[index[0]]; |
| Byte4 c1 = Pointer<Byte4>(buffer)[index[1]]; |
| Byte4 c2 = Pointer<Byte4>(buffer)[index[2]]; |
| Byte4 c3 = Pointer<Byte4>(buffer)[index[3]]; |
| c.x = Unpack(c0, c1); |
| c.y = Unpack(c2, c3); |
| |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_B8G8R8A8_UNORM: |
| case VK_FORMAT_B8G8R8A8_SRGB: |
| c.z = As<Short4>(UnpackLow(c.x, c.y)); |
| c.x = As<Short4>(UnpackHigh(c.x, c.y)); |
| c.y = c.z; |
| c.w = c.x; |
| c.z = UnpackLow(As<Byte8>(Short4(0)), As<Byte8>(c.z)); |
| c.y = UnpackHigh(As<Byte8>(Short4(0)), As<Byte8>(c.y)); |
| c.x = UnpackLow(As<Byte8>(Short4(0)), As<Byte8>(c.x)); |
| c.w = UnpackHigh(As<Byte8>(Short4(0)), As<Byte8>(c.w)); |
| break; |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_R8G8B8A8_SINT: |
| case VK_FORMAT_R8G8B8A8_SNORM: |
| case VK_FORMAT_R8G8B8A8_SRGB: |
| c.z = As<Short4>(UnpackHigh(c.x, c.y)); |
| c.x = As<Short4>(UnpackLow(c.x, c.y)); |
| c.y = c.x; |
| c.w = c.z; |
| c.x = UnpackLow(As<Byte8>(Short4(0)), As<Byte8>(c.x)); |
| c.y = UnpackHigh(As<Byte8>(Short4(0)), As<Byte8>(c.y)); |
| c.z = UnpackLow(As<Byte8>(Short4(0)), As<Byte8>(c.z)); |
| c.w = UnpackHigh(As<Byte8>(Short4(0)), As<Byte8>(c.w)); |
| // Propagate sign bit |
| if(state.textureFormat == VK_FORMAT_R8G8B8A8_SINT) |
| { |
| c.x >>= 8; |
| c.y >>= 8; |
| c.z >>= 8; |
| c.w >>= 8; |
| } |
| break; |
| case VK_FORMAT_R8G8B8A8_UINT: |
| c.z = As<Short4>(UnpackHigh(c.x, c.y)); |
| c.x = As<Short4>(UnpackLow(c.x, c.y)); |
| c.y = c.x; |
| c.w = c.z; |
| c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(Short4(0))); |
| c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(Short4(0))); |
| c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(Short4(0))); |
| c.w = UnpackHigh(As<Byte8>(c.w), As<Byte8>(Short4(0))); |
| break; |
| default: |
| ASSERT(false); |
| } |
| } |
| break; |
| case 2: |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[0]], 0); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[1]], 1); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[2]], 2); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[3]], 3); |
| |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_R8G8_UNORM: |
| case VK_FORMAT_R8G8_SNORM: |
| case VK_FORMAT_R8G8_SRGB: |
| c.y = (c.x & Short4(0xFF00u)); |
| c.x = (c.x << 8); |
| break; |
| case VK_FORMAT_R8G8_SINT: |
| c.y = c.x >> 8; |
| c.x = (c.x << 8) >> 8; // Propagate sign bit |
| break; |
| case VK_FORMAT_R8G8_UINT: |
| c.y = As<Short4>(As<UShort4>(c.x) >> 8); |
| c.x &= Short4(0x00FFu); |
| break; |
| default: |
| ASSERT(false); |
| } |
| break; |
| case 1: |
| { |
| Int c0 = Int(*Pointer<Byte>(buffer + index[0])); |
| Int c1 = Int(*Pointer<Byte>(buffer + index[1])); |
| Int c2 = Int(*Pointer<Byte>(buffer + index[2])); |
| Int c3 = Int(*Pointer<Byte>(buffer + index[3])); |
| c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24); |
| |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_R8_SINT: |
| case VK_FORMAT_R8_UINT: |
| { |
| Int zero(0); |
| c.x = Unpack(As<Byte4>(c0), As<Byte4>(zero)); |
| // Propagate sign bit |
| if(state.textureFormat == VK_FORMAT_R8_SINT) |
| { |
| c.x = (c.x << 8) >> 8; |
| } |
| } |
| break; |
| case VK_FORMAT_R8_SNORM: |
| case VK_FORMAT_R8_UNORM: |
| case VK_FORMAT_R8_SRGB: |
| // TODO: avoid populating the low bits at all. |
| c.x = Unpack(As<Byte4>(c0)); |
| c.x &= Short4(0xFF00u); |
| break; |
| default: |
| c.x = Unpack(As<Byte4>(c0)); |
| break; |
| } |
| } |
| break; |
| default: |
| ASSERT(false); |
| } |
| } |
| else if(has16bitTextureComponents()) |
| { |
| switch(textureComponentCount()) |
| { |
| case 4: |
| c.x = Pointer<Short4>(buffer)[index[0]]; |
| c.y = Pointer<Short4>(buffer)[index[1]]; |
| c.z = Pointer<Short4>(buffer)[index[2]]; |
| c.w = Pointer<Short4>(buffer)[index[3]]; |
| transpose4x4(c.x, c.y, c.z, c.w); |
| break; |
| case 3: |
| c.x = Pointer<Short4>(buffer)[index[0]]; |
| c.y = Pointer<Short4>(buffer)[index[1]]; |
| c.z = Pointer<Short4>(buffer)[index[2]]; |
| c.w = Pointer<Short4>(buffer)[index[3]]; |
| transpose4x3(c.x, c.y, c.z, c.w); |
| break; |
| case 2: |
| c.x = *Pointer<Short4>(buffer + 4 * index[0]); |
| c.x = As<Short4>(UnpackLow(c.x, *Pointer<Short4>(buffer + 4 * index[1]))); |
| c.z = *Pointer<Short4>(buffer + 4 * index[2]); |
| c.z = As<Short4>(UnpackLow(c.z, *Pointer<Short4>(buffer + 4 * index[3]))); |
| c.y = c.x; |
| c.x = UnpackLow(As<Int2>(c.x), As<Int2>(c.z)); |
| c.y = UnpackHigh(As<Int2>(c.y), As<Int2>(c.z)); |
| break; |
| case 1: |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[0]], 0); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[1]], 1); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[2]], 2); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[3]], 3); |
| break; |
| default: |
| ASSERT(false); |
| } |
| } |
| else if(state.textureFormat == VK_FORMAT_A2B10G10R10_UNORM_PACK32) |
| { |
| Int4 cc; |
| cc = Insert(cc, Pointer<Int>(buffer)[index[0]], 0); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[1]], 1); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[2]], 2); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[3]], 3); |
| |
| // shift each 10 bit field left 6, and replicate 6 high bits into bottom 6 |
| c.x = Short4(((cc << 6) & Int4(0xFFC0)) | ((cc >> 4) & Int4(0x3F))); |
| c.y = Short4(((cc >> 4) & Int4(0xFFC0)) | ((cc >> 14) & Int4(0x3F))); |
| c.z = Short4(((cc >> 14) & Int4(0xFFC0)) | ((cc >> 24) & Int4(0x3F))); |
| c.w = Short4(((cc >> 16) & Int4(0xC000))); |
| |
| // replicate 2 bit alpha component all the way down |
| c.w |= (c.w >> 8) & Short4(0xc0); |
| c.w |= (c.w >> 4) & Short4(0x0c0c); |
| c.w |= (c.w >> 2) & Short4(0x3333); |
| } |
| else if(state.textureFormat == VK_FORMAT_A2B10G10R10_UINT_PACK32) |
| { |
| Int4 cc; |
| cc = Insert(cc, Pointer<Int>(buffer)[index[0]], 0); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[1]], 1); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[2]], 2); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[3]], 3); |
| |
| c.x = Short4(((cc) & Int4(0x3FF))); |
| c.y = Short4(((cc >> 10) & Int4(0x3FF))); |
| c.z = Short4(((cc >> 20) & Int4(0x3FF))); |
| c.w = Short4(((cc >> 30) & Int4(0x3))); |
| } |
| else ASSERT(false); |
| |
| if (state.textureFormat.isSRGBformat()) |
| { |
| for(int i = 0; i < textureComponentCount(); i++) |
| { |
| if(isRGBComponent(i)) |
| { |
| sRGBtoLinear16_8_16(c[i]); |
| } |
| } |
| } |
| |
| return c; |
| } |
| |
| Vector4s SamplerCore::sampleTexel(Short4 &uuuu, Short4 &vvvv, Short4 &wwww, Vector4f &offset, Pointer<Byte> &mipmap, Pointer<Byte> buffer, SamplerFunction function) |
| { |
| Vector4s c; |
| |
| UInt index[4]; |
| computeIndices(index, uuuu, vvvv, wwww, offset, mipmap, function); |
| |
| if(isYcbcrFormat()) |
| { |
| // Pointers to the planes of YCbCr images are stored in consecutive mipmap levels. |
| Pointer<Byte> bufferY = buffer; // *Pointer<Pointer<Byte>>(mipmap + 0 * sizeof(Mipmap) + OFFSET(Mipmap, buffer)); |
| Pointer<Byte> bufferU = *Pointer<Pointer<Byte>>(mipmap + 1 * sizeof(Mipmap) + OFFSET(Mipmap, buffer)); // U/V for 2-plane interleaved formats. |
| Pointer<Byte> bufferV = *Pointer<Pointer<Byte>>(mipmap + 2 * sizeof(Mipmap) + OFFSET(Mipmap, buffer)); |
| |
| // Luminance |
| Int c0 = Int(bufferY[index[0]]); |
| Int c1 = Int(bufferY[index[1]]); |
| Int c2 = Int(bufferY[index[2]]); |
| Int c3 = Int(bufferY[index[3]]); |
| c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24); |
| UShort4 Y = As<UShort4>(Unpack(As<Byte4>(c0))); |
| |
| UShort4 Cb, Cr; |
| |
| // Chroma |
| { |
| computeIndices(index, uuuu, vvvv, wwww, offset, mipmap + sizeof(Mipmap), function); |
| UShort4 U, V; |
| |
| if(state.textureFormat == VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM) |
| { |
| c0 = Int(bufferU[index[0]]); |
| c1 = Int(bufferU[index[1]]); |
| c2 = Int(bufferU[index[2]]); |
| c3 = Int(bufferU[index[3]]); |
| c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24); |
| U = As<UShort4>(Unpack(As<Byte4>(c0))); |
| |
| c0 = Int(bufferV[index[0]]); |
| c1 = Int(bufferV[index[1]]); |
| c2 = Int(bufferV[index[2]]); |
| c3 = Int(bufferV[index[3]]); |
| c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24); |
| V = As<UShort4>(Unpack(As<Byte4>(c0))); |
| } |
| else if(state.textureFormat == VK_FORMAT_G8_B8R8_2PLANE_420_UNORM) |
| { |
| Short4 UV; |
| UV = Insert(UV, Pointer<Short>(bufferU)[index[0]], 0); // TODO: Insert(UShort4, UShort) |
| UV = Insert(UV, Pointer<Short>(bufferU)[index[1]], 1); |
| UV = Insert(UV, Pointer<Short>(bufferU)[index[2]], 2); |
| UV = Insert(UV, Pointer<Short>(bufferU)[index[3]], 3); |
| U = (UV & Short4(0x00FFu)) | (UV << 8); |
| V = (UV & Short4(0xFF00u)) | As<Short4>(As<UShort4>(UV) >> 8); |
| } |
| else UNSUPPORTED("state.textureFormat %d", (int)state.textureFormat); |
| |
| if(!state.swappedChroma) |
| { |
| Cb = U; |
| Cr = V; |
| } |
| else |
| { |
| Cb = V; |
| Cr = U; |
| } |
| } |
| |
| if(state.ycbcrModel == VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY) |
| { |
| // YCbCr formats are treated as signed 15-bit. |
| c.x = Cr >> 1; |
| c.y = Y >> 1; |
| c.z = Cb >> 1; |
| } |
| else |
| { |
| // Scaling and bias for studio-swing range: Y = [16 .. 235], U/V = [16 .. 240] |
| // Scale down by 0x0101 to normalize the 8.8 samples, and up by 0x7FFF for signed 15-bit output. |
| float yOffset = static_cast<float>(state.studioSwing ? 16 * 0x0101 : 0); |
| float uvOffset = static_cast<float>(128 * 0x0101); |
| float yFactor = static_cast<float>(0x7FFF) / static_cast<float>(state.studioSwing ? 219 * 0x0101 : 255 * 0x0101); |
| float uvFactor = static_cast<float>(0x7FFF) / static_cast<float>(state.studioSwing ? 224 * 0x0101 : 255 * 0x0101); |
| |
| Float4 y = (Float4(Y) - Float4(yOffset)) * Float4(yFactor); |
| Float4 u = (Float4(Cb) - Float4(uvOffset)) * Float4(uvFactor); |
| Float4 v = (Float4(Cr) - Float4(uvOffset)) * Float4(uvFactor); |
| |
| if(state.ycbcrModel == VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY) |
| { |
| c.x = Short4(v); |
| c.y = Short4(y); |
| c.z = Short4(u); |
| } |
| else |
| { |
| // Generic YCbCr to RGB transformation: |
| // R = Y + 2 * (1 - Kr) * Cr |
| // G = Y - 2 * Kb * (1 - Kb) / Kg * Cb - 2 * Kr * (1 - Kr) / Kg * Cr |
| // B = Y + 2 * (1 - Kb) * Cb |
| |
| float Kb = 0.114f; |
| float Kr = 0.299f; |
| |
| switch(state.ycbcrModel) |
| { |
| case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709: |
| Kb = 0.0722f; |
| Kr = 0.2126f; |
| break; |
| case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601: |
| Kb = 0.114f; |
| Kr = 0.299f; |
| break; |
| case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020: |
| Kb = 0.0593f; |
| Kr = 0.2627f; |
| break; |
| default: |
| UNSUPPORTED("ycbcrModel %d", int(state.ycbcrModel)); |
| } |
| |
| const float Kg = 1.0f - Kr - Kb; |
| |
| const float Rr = 2 * (1 - Kr); |
| const float Gb = -2 * Kb * (1 - Kb) / Kg; |
| const float Gr = -2 * Kr * (1 - Kr) / Kg; |
| const float Bb = 2 * (1 - Kb); |
| |
| Float4 r = y + Float4(Rr) * v; |
| Float4 g = y + Float4(Gb) * u + Float4(Gr) * v; |
| Float4 b = y + Float4(Bb) * u ; |
| |
| c.x = Short4(r); |
| c.y = Short4(g); |
| c.z = Short4(b); |
| } |
| } |
| } |
| else |
| { |
| return sampleTexel(index, buffer); |
| } |
| |
| return c; |
| } |
| |
| Vector4f SamplerCore::sampleTexel(Int4 &uuuu, Int4 &vvvv, Int4 &wwww, Float4 &z, Pointer<Byte> &mipmap, Pointer<Byte> buffer, SamplerFunction function) |
| { |
| Int4 valid; |
| |
| if(borderModeActive()) |
| { |
| // Valid texels have positive coordinates. |
| Int4 negative = Int4(0); |
| if(state.addressingModeU == ADDRESSING_BORDER) negative |= uuuu; |
| if(state.addressingModeV == ADDRESSING_BORDER) negative |= vvvv; |
| if(state.addressingModeW == ADDRESSING_BORDER) negative |= wwww; |
| valid = CmpNLT(negative, Int4(0)); |
| } |
| |
| UInt index[4]; |
| UInt4 t0, t1, t2, t3; |
| computeIndices(index, uuuu, vvvv, wwww, valid, mipmap, function); |
| |
| Vector4f c; |
| |
| if(hasFloatTexture() || has32bitIntegerTextureComponents()) |
| { |
| switch (state.textureFormat) |
| { |
| case VK_FORMAT_R16_SFLOAT: |
| t0 = Int4(*Pointer<UShort4>(buffer + index[0] * 2)); |
| t1 = Int4(*Pointer<UShort4>(buffer + index[1] * 2)); |
| t2 = Int4(*Pointer<UShort4>(buffer + index[2] * 2)); |
| t3 = Int4(*Pointer<UShort4>(buffer + index[3] * 2)); |
| |
| c.x.x = Extract(As<Float4>(halfToFloatBits(t0)), 0); |
| c.x.y = Extract(As<Float4>(halfToFloatBits(t1)), 0); |
| c.x.z = Extract(As<Float4>(halfToFloatBits(t2)), 0); |
| c.x.w = Extract(As<Float4>(halfToFloatBits(t3)), 0); |
| break; |
| case VK_FORMAT_R16G16_SFLOAT: |
| t0 = Int4(*Pointer<UShort4>(buffer + index[0] * 4)); |
| t1 = Int4(*Pointer<UShort4>(buffer + index[1] * 4)); |
| t2 = Int4(*Pointer<UShort4>(buffer + index[2] * 4)); |
| t3 = Int4(*Pointer<UShort4>(buffer + index[3] * 4)); |
| |
| // FIXME: shuffles |
| c.x = As<Float4>(halfToFloatBits(t0)); |
| c.y = As<Float4>(halfToFloatBits(t1)); |
| c.z = As<Float4>(halfToFloatBits(t2)); |
| c.w = As<Float4>(halfToFloatBits(t3)); |
| transpose4x4(c.x, c.y, c.z, c.w); |
| break; |
| case VK_FORMAT_R16G16B16A16_SFLOAT: |
| t0 = Int4(*Pointer<UShort4>(buffer + index[0] * 8)); |
| t1 = Int4(*Pointer<UShort4>(buffer + index[1] * 8)); |
| t2 = Int4(*Pointer<UShort4>(buffer + index[2] * 8)); |
| t3 = Int4(*Pointer<UShort4>(buffer + index[3] * 8)); |
| |
| c.x = As<Float4>(halfToFloatBits(t0)); |
| c.y = As<Float4>(halfToFloatBits(t1)); |
| c.z = As<Float4>(halfToFloatBits(t2)); |
| c.w = As<Float4>(halfToFloatBits(t3)); |
| transpose4x4(c.x, c.y, c.z, c.w); |
| break; |
| case VK_FORMAT_R32_SFLOAT: |
| case VK_FORMAT_R32_SINT: |
| case VK_FORMAT_R32_UINT: |
| case VK_FORMAT_D32_SFLOAT: |
| // FIXME: Optimal shuffling? |
| c.x.x = *Pointer<Float>(buffer + index[0] * 4); |
| c.x.y = *Pointer<Float>(buffer + index[1] * 4); |
| c.x.z = *Pointer<Float>(buffer + index[2] * 4); |
| c.x.w = *Pointer<Float>(buffer + index[3] * 4); |
| break; |
| case VK_FORMAT_R32G32_SFLOAT: |
| case VK_FORMAT_R32G32_SINT: |
| case VK_FORMAT_R32G32_UINT: |
| // FIXME: Optimal shuffling? |
| c.x.xy = *Pointer<Float4>(buffer + index[0] * 8); |
| c.x.zw = *Pointer<Float4>(buffer + index[1] * 8 - 8); |
| c.z.xy = *Pointer<Float4>(buffer + index[2] * 8); |
| c.z.zw = *Pointer<Float4>(buffer + index[3] * 8 - 8); |
| c.y = c.x; |
| c.x = Float4(c.x.xz, c.z.xz); |
| c.y = Float4(c.y.yw, c.z.yw); |
| break; |
| case VK_FORMAT_R32G32B32_SFLOAT: |
| case VK_FORMAT_R32G32B32_SINT: |
| case VK_FORMAT_R32G32B32_UINT: |
| c.x = *Pointer<Float4>(buffer + index[0] * 16, 16); |
| c.y = *Pointer<Float4>(buffer + index[1] * 16, 16); |
| c.z = *Pointer<Float4>(buffer + index[2] * 16, 16); |
| c.w = *Pointer<Float4>(buffer + index[3] * 16, 16); |
| transpose4x3(c.x, c.y, c.z, c.w); |
| break; |
| case VK_FORMAT_R32G32B32A32_SFLOAT: |
| case VK_FORMAT_R32G32B32A32_SINT: |
| case VK_FORMAT_R32G32B32A32_UINT: |
| c.x = *Pointer<Float4>(buffer + index[0] * 16, 16); |
| c.y = *Pointer<Float4>(buffer + index[1] * 16, 16); |
| c.z = *Pointer<Float4>(buffer + index[2] * 16, 16); |
| c.w = *Pointer<Float4>(buffer + index[3] * 16, 16); |
| transpose4x4(c.x, c.y, c.z, c.w); |
| break; |
| case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: |
| { |
| Float4 t; // TODO: add Insert(UInt4, RValue<UInt>) |
| t.x = *Pointer<Float>(buffer + index[0] * 4); |
| t.y = *Pointer<Float>(buffer + index[1] * 4); |
| t.z = *Pointer<Float>(buffer + index[2] * 4); |
| t.w = *Pointer<Float>(buffer + index[3] * 4); |
| t0 = As<UInt4>(t); |
| c.w = Float4(UInt4(1) << ((t0 >> 27) & UInt4(0x1F))) * Float4(1.0f / (1 << 24)); |
| c.x = Float4((t0) & UInt4(0x1FF)) * c.w; |
| c.y = Float4((t0 >> 9) & UInt4(0x1FF)) * c.w; |
| c.z = Float4((t0 >> 18) & UInt4(0x1FF)) * c.w; |
| break; |
| } |
| case VK_FORMAT_B10G11R11_UFLOAT_PACK32: |
| { |
| Float4 t; // TODO: add Insert(UInt4, RValue<UInt>) |
| t.x = *Pointer<Float>(buffer + index[0] * 4); |
| t.y = *Pointer<Float>(buffer + index[1] * 4); |
| t.z = *Pointer<Float>(buffer + index[2] * 4); |
| t.w = *Pointer<Float>(buffer + index[3] * 4); |
| t0 = As<UInt4>(t); |
| c.x = As<Float4>(halfToFloatBits((t0 << 4) & UInt4(0x7FF0))); |
| c.y = As<Float4>(halfToFloatBits((t0 >> 7) & UInt4(0x7FF0))); |
| c.z = As<Float4>(halfToFloatBits((t0 >> 17) & UInt4(0x7FE0))); |
| break; |
| } |
| default: |
| UNIMPLEMENTED("Format %d", VkFormat(state.textureFormat)); |
| } |
| } |
| else |
| { |
| ASSERT(!isYcbcrFormat()); |
| |
| Vector4s cs = sampleTexel(index, buffer); |
| |
| bool isInteger = state.textureFormat.isNonNormalizedInteger(); |
| int componentCount = textureComponentCount(); |
| for(int n = 0; n < componentCount; n++) |
| { |
| if(hasUnsignedTextureComponent(n)) |
| { |
| if(isInteger) |
| { |
| c[n] = As<Float4>(Int4(As<UShort4>(cs[n]))); |
| } |
| else |
| { |
| c[n] = Float4(As<UShort4>(cs[n])); |
| } |
| } |
| else |
| { |
| if(isInteger) |
| { |
| c[n] = As<Float4>(Int4(cs[n])); |
| } |
| else |
| { |
| c[n] = Float4(cs[n]); |
| } |
| } |
| } |
| } |
| |
| if(state.compareEnable) |
| { |
| Float4 ref = z; |
| |
| if(!hasFloatTexture()) |
| { |
| // D16_UNORM: clamp reference, normalize texel value |
| ref = Min(Max(ref, Float4(0.0f)), Float4(1.0f)); |
| c.x = c.x * Float4(1.0f / 0xFFFF); |
| } |
| |
| Int4 boolean; |
| |
| switch(state.compareOp) |
| { |
| case VK_COMPARE_OP_LESS_OR_EQUAL: boolean = CmpLE(ref, c.x); break; |
| case VK_COMPARE_OP_GREATER_OR_EQUAL: boolean = CmpNLT(ref, c.x); break; |
| case VK_COMPARE_OP_LESS: boolean = CmpLT(ref, c.x); break; |
| case VK_COMPARE_OP_GREATER: boolean = CmpNLE(ref, c.x); break; |
| case VK_COMPARE_OP_EQUAL: boolean = CmpEQ(ref, c.x); break; |
| case VK_COMPARE_OP_NOT_EQUAL: boolean = CmpNEQ(ref, c.x); break; |
| case VK_COMPARE_OP_ALWAYS: boolean = Int4(-1); break; |
| case VK_COMPARE_OP_NEVER: boolean = Int4(0); break; |
| default: ASSERT(false); |
| } |
| |
| c.x = As<Float4>(boolean & As<Int4>(Float4(1.0f))); |
| c.y = Float4(0.0f); |
| c.z = Float4(0.0f); |
| c.w = Float4(1.0f); |
| } |
| |
| if(borderModeActive()) |
| { |
| c = replaceBorderTexel(c, valid); |
| } |
| |
| return c; |
| } |
| |
| Vector4f SamplerCore::replaceBorderTexel(const Vector4f &c, Int4 valid) |
| { |
| Int4 borderRGB; |
| Int4 borderA; |
| |
| bool scaled = !hasFloatTexture() && !hasUnnormalizedIntegerTexture() && !state.compareEnable; |
| bool sign = !hasUnsignedTextureComponent(0); |
| Int4 float_one = scaled ? As<Int4>(Float4(static_cast<float>(sign ? 0x7FFF : 0xFFFF))) : As<Int4>(Float4(1.0f)); |
| |
| switch(state.border) |
| { |
| case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK: |
| case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK: |
| borderRGB = Int4(0); |
| borderA = Int4(0); |
| break; |
| case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK: |
| borderRGB = Int4(0); |
| borderA = float_one; |
| break; |
| case VK_BORDER_COLOR_INT_OPAQUE_BLACK: |
| borderRGB = Int4(0); |
| borderA = Int4(1); |
| break; |
| case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE: |
| borderRGB = float_one; |
| borderA = float_one; |
| break; |
| case VK_BORDER_COLOR_INT_OPAQUE_WHITE: |
| borderRGB = Int4(1); |
| borderA = Int4(1); |
| break; |
| default: |
| UNIMPLEMENTED("sint/uint/sfloat border: %u", state.border); |
| } |
| |
| Vector4f out; |
| out.x = As<Float4>((valid & As<Int4>(c.x)) | (~valid & borderRGB)); |
| out.y = As<Float4>((valid & As<Int4>(c.y)) | (~valid & borderRGB)); |
| out.z = As<Float4>((valid & As<Int4>(c.z)) | (~valid & borderRGB)); |
| out.w = As<Float4>((valid & As<Int4>(c.w)) | (~valid & borderA)); |
| |
| return out; |
| } |
| |
| void SamplerCore::selectMipmap(const Pointer<Byte> &texture, Pointer<Byte> &mipmap, Pointer<Byte> &buffer, const Float &lod, bool secondLOD) |
| { |
| Pointer<Byte> mipmap0 = texture + OFFSET(Texture, mipmap[0]); |
| |
| if(state.mipmapFilter == MIPMAP_NONE) |
| { |
| mipmap = mipmap0; |
| } |
| else |
| { |
| Int ilod; |
| |
| if(state.mipmapFilter == MIPMAP_POINT) |
| { |
| // TODO: Preferred formula is ceil(lod + 0.5) - 1 |
| ilod = RoundInt(lod); |
| } |
| else // MIPMAP_LINEAR |
| { |
| ilod = Int(lod); |
| } |
| |
| mipmap = mipmap0 + ilod * sizeof(Mipmap) + secondLOD * sizeof(Mipmap); |
| } |
| |
| buffer = *Pointer<Pointer<Byte>>(mipmap + OFFSET(Mipmap, buffer)); |
| } |
| |
| Int4 SamplerCore::computeFilterOffset(Float &lod) |
| { |
| if(state.textureFilter == FILTER_POINT) |
| { |
| return Int4(0); |
| } |
| else if(state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT) |
| { |
| return CmpNLE(Float4(lod), Float4(0.0f)); |
| } |
| else if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR) |
| { |
| return CmpLE(Float4(lod), Float4(0.0f)); |
| } |
| |
| return Int4(~0); |
| } |
| |
| Short4 SamplerCore::address(Float4 &uw, AddressingMode addressingMode, Pointer<Byte> &mipmap) |
| { |
| if(addressingMode == ADDRESSING_UNUSED) |
| { |
| return Short4(); |
| } |
| else if(addressingMode == ADDRESSING_LAYER) |
| { |
| return Short4(Min(Max(RoundInt(uw), Int4(0)), *Pointer<Int4>(mipmap + OFFSET(Mipmap, depth)) - Int4(1))); |
| } |
| else if(addressingMode == ADDRESSING_CLAMP || addressingMode == ADDRESSING_BORDER) |
| { |
| Float4 clamp = Min(Max(uw, Float4(0.0f)), Float4(65535.0f / 65536.0f)); |
| |
| return Short4(Int4(clamp * Float4(1 << 16))); |
| } |
| else if(addressingMode == ADDRESSING_MIRROR) |
| { |
| Int4 convert = Int4(uw * Float4(1 << 16)); |
| Int4 mirror = (convert << 15) >> 31; |
| |
| convert ^= mirror; |
| |
| return Short4(convert); |
| } |
| else if(addressingMode == ADDRESSING_MIRRORONCE) |
| { |
| // Absolute value |
| Int4 convert = Int4(Abs(uw * Float4(1 << 16))); |
| |
| // Clamp |
| convert -= Int4(0x00008000, 0x00008000, 0x00008000, 0x00008000); |
| convert = As<Int4>(PackSigned(convert, convert)); |
| |
| return As<Short4>(Int2(convert)) + Short4(0x8000u); |
| } |
| else // Wrap |
| { |
| return Short4(Int4(uw * Float4(1 << 16))); |
| } |
| } |
| |
| // TODO: Eliminate when the gather + mirror addressing case is handled by mirroring the footprint. |
| static Int4 mirror(Int4 n) |
| { |
| auto positive = CmpNLT(n, Int4(0)); |
| return (positive & n) | (~positive & (-(Int4(1) + n))); |
| } |
| |
| static Int4 mod(Int4 n, Int4 d) |
| { |
| auto x = n % d; |
| auto positive = CmpNLT(x, Int4(0)); |
| return (positive & x) | (~positive & (x + d)); |
| } |
| |
| void SamplerCore::address(Float4 &uvw, Int4 &xyz0, Int4 &xyz1, Float4 &f, Pointer<Byte> &mipmap, Float4 &texOffset, Int4 &filter, int whd, AddressingMode addressingMode, SamplerFunction function) |
| { |
| if(addressingMode == ADDRESSING_UNUSED) |
| { |
| return; |
| } |
| |
| Int4 dim = *Pointer<Int4>(mipmap + whd, 16); |
| Int4 maxXYZ = dim - Int4(1); |
| |
| if(function == Fetch) |
| { |
| xyz0 = Min(Max(((function.offset != 0) && (addressingMode != ADDRESSING_LAYER)) ? As<Int4>(uvw) + As<Int4>(texOffset) : As<Int4>(uvw), Int4(0)), maxXYZ); |
| } |
| else if(addressingMode == ADDRESSING_LAYER) // Note: Offset does not apply to array layers |
| { |
| xyz0 = Min(Max(RoundInt(uvw), Int4(0)), maxXYZ); |
| } |
| else if(addressingMode == ADDRESSING_CUBEFACE) |
| { |
| xyz0 = As<Int4>(uvw); |
| } |
| else |
| { |
| const int halfBits = 0x3EFFFFFF; // Value just under 0.5f |
| const int oneBits = 0x3F7FFFFF; // Value just under 1.0f |
| const int twoBits = 0x3FFFFFFF; // Value just under 2.0f |
| |
| bool pointFilter = state.textureFilter == FILTER_POINT || |
| state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR || |
| state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT; |
| |
| Float4 coord = uvw; |
| |
| if(state.unnormalizedCoordinates) |
| { |
| switch(addressingMode) |
| { |
| case ADDRESSING_CLAMP: |
| coord = Min(Max(coord, Float4(0.0f)), Float4(dim) * As<Float4>(Int4(oneBits))); |
| break; |
| case ADDRESSING_BORDER: |
| // Don't map to a valid range here. |
| break; |
| default: |
| // If unnormalizedCoordinates is VK_TRUE, addressModeU and addressModeV must each be |
| // either VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER |
| UNREACHABLE("addressingMode %d", int(addressingMode)); |
| break; |
| } |
| } |
| else if(state.textureFilter == FILTER_GATHER && addressingMode == ADDRESSING_MIRROR) |
| { |
| // Gather requires the 'footprint' of the texels from which a component is taken, to also mirror around. |
| // Therefore we can't just compute one texel's location and find the other ones at +1 offsets from it. |
| // Here we handle that case separately by doing the mirroring per texel coordinate. |
| // TODO: Mirror the footprint by adjusting the sign of the 0.5f and 1 offsets. |
| |
| coord = coord * Float4(dim); |
| coord -= Float4(0.5f); |
| Float4 floor = Floor(coord); |
| xyz0 = Int4(floor); |
| |
| if(function.offset != 0) |
| { |
| xyz0 += As<Int4>(texOffset); |
| } |
| |
| xyz1 = xyz0 + Int4(1); |
| |
| xyz0 = (maxXYZ) - mirror(mod(xyz0, Int4(2) * dim) - dim); |
| xyz1 = (maxXYZ) - mirror(mod(xyz1, Int4(2) * dim) - dim); |
| |
| return; |
| } |
| else |
| { |
| if(function.offset == 0) |
| { |
| switch(addressingMode) |
| { |
| case ADDRESSING_CLAMP: |
| case ADDRESSING_SEAMLESS: |
| // Linear filtering of cube doesn't require clamping because the coordinates |
| // are already in [0, 1] range and numerical imprecision is tolerated. |
| if(addressingMode != ADDRESSING_SEAMLESS || pointFilter) |
| { |
| Float4 one = As<Float4>(Int4(oneBits)); |
| coord = Min(Max(coord, Float4(0.0f)), one); |
| } |
| break; |
| case ADDRESSING_MIRROR: |
| { |
| Float4 half = As<Float4>(Int4(halfBits)); |
| Float4 one = As<Float4>(Int4(oneBits)); |
| Float4 two = As<Float4>(Int4(twoBits)); |
| coord = one - Abs(two * Frac(coord * half) - one); |
| } |
| break; |
| case ADDRESSING_MIRRORONCE: |
| { |
| Float4 half = As<Float4>(Int4(halfBits)); |
| Float4 one = As<Float4>(Int4(oneBits)); |
| Float4 two = As<Float4>(Int4(twoBits)); |
| coord = one - Abs(two * Frac(Min(Max(coord, -one), two) * half) - one); |
| } |
| break; |
| case ADDRESSING_BORDER: |
| // Don't map to a valid range here. |
| break; |
| default: // Wrap |
| coord = Frac(coord); |
| break; |
| } |
| } |
| |
| coord = coord * Float4(dim); |
| } |
| |
| if(state.textureFilter == FILTER_POINT) |
| { |
| if(addressingMode == ADDRESSING_BORDER || function.offset != 0) |
| { |
| xyz0 = Int4(Floor(coord)); |
| } |
| else // Can't have negative coordinates, so floor() is redundant when casting to int. |
| { |
| xyz0 = Int4(coord); |
| } |
| } |
| else |
| { |
| if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR || |
| state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT) |
| { |
| coord -= As<Float4>(As<Int4>(Float4(0.5f)) & filter); |
| } |
| else |
| { |
| coord -= Float4(0.5f); |
| } |
| |
| Float4 floor = Floor(coord); |
| xyz0 = Int4(floor); |
| f = coord - floor; |
| } |
| |
| if(function.offset != 0) |
| { |
| xyz0 += As<Int4>(texOffset); |
| } |
| |
| if(addressingMode == ADDRESSING_SEAMLESS) // Adjust for border. |
| { |
| xyz0 += Int4(1); |
| } |
| |
| xyz1 = xyz0 - filter; // Increment |
| |
| if(addressingMode == ADDRESSING_BORDER) |
| { |
| // Replace the coordinates with -1 if they're out of range. |
| Int4 border0 = CmpLT(xyz0, Int4(0)) | CmpNLT(xyz0, dim); |
| Int4 border1 = CmpLT(xyz1, Int4(0)) | CmpNLT(xyz1, dim); |
| xyz0 |= border0; |
| xyz1 |= border1; |
| } |
| else if(function.offset != 0) |
| { |
| switch(addressingMode) |
| { |
| case ADDRESSING_SEAMLESS: |
| UNREACHABLE("addressingMode %d", int(addressingMode)); // Cube sampling doesn't support offset. |
| case ADDRESSING_MIRROR: |
| case ADDRESSING_MIRRORONCE: |
| // TODO: Implement ADDRESSING_MIRROR and ADDRESSING_MIRRORONCE. |
| // Fall through to Clamp. |
| case ADDRESSING_CLAMP: |
| xyz0 = Min(Max(xyz0, Int4(0)), maxXYZ); |
| xyz1 = Min(Max(xyz1, Int4(0)), maxXYZ); |
| break; |
| default: // Wrap |
| xyz0 = mod(xyz0, dim); |
| xyz1 = mod(xyz1, dim); |
| break; |
| } |
| } |
| else if(state.textureFilter != FILTER_POINT) |
| { |
| switch(addressingMode) |
| { |
| case ADDRESSING_SEAMLESS: |
| break; |
| case ADDRESSING_MIRROR: |
| case ADDRESSING_MIRRORONCE: |
| case ADDRESSING_CLAMP: |
| xyz0 = Max(xyz0, Int4(0)); |
| xyz1 = Min(xyz1, maxXYZ); |
| break; |
| default: // Wrap |
| { |
| Int4 under = CmpLT(xyz0, Int4(0)); |
| xyz0 = (under & maxXYZ) | (~under & xyz0); // xyz < 0 ? dim - 1 : xyz // TODO: IfThenElse() |
| |
| Int4 nover = CmpLT(xyz1, dim); |
| xyz1 = nover & xyz1; // xyz >= dim ? 0 : xyz |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| void SamplerCore::convertSigned15(Float4 &cf, Short4 &cs) |
| { |
| cf = Float4(cs) * Float4(1.0f / 0x7FFF); |
| } |
| |
| void SamplerCore::convertUnsigned16(Float4 &cf, Short4 &cs) |
| { |
| cf = Float4(As<UShort4>(cs)) * Float4(1.0f / 0xFFFF); |
| } |
| |
| void SamplerCore::sRGBtoLinear16_8_16(Short4 &c) |
| { |
| c = As<UShort4>(c) >> 8; |
| |
| Pointer<Byte> LUT = Pointer<Byte>(constants + OFFSET(Constants,sRGBtoLinear8_16)); |
| |
| c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 0))), 0); |
| c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 1))), 1); |
| c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 2))), 2); |
| c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 3))), 3); |
| } |
| |
| bool SamplerCore::hasFloatTexture() const |
| { |
| return state.textureFormat.isFloatFormat(); |
| } |
| |
| bool SamplerCore::hasUnnormalizedIntegerTexture() const |
| { |
| return state.textureFormat.isNonNormalizedInteger(); |
| } |
| |
| bool SamplerCore::hasUnsignedTextureComponent(int component) const |
| { |
| return state.textureFormat.isUnsignedComponent(component); |
| } |
| |
| int SamplerCore::textureComponentCount() const |
| { |
| return state.textureFormat.componentCount(); |
| } |
| |
| bool SamplerCore::hasThirdCoordinate() const |
| { |
| return (state.textureType == TEXTURE_3D) || |
| (state.textureType == TEXTURE_2D_ARRAY) || |
| (state.textureType == TEXTURE_1D_ARRAY); // Treated as 2D texture with second coordinate 0. TODO(b/134669567) |
| } |
| |
| bool SamplerCore::has16bitTextureFormat() const |
| { |
| return state.textureFormat.has16bitTextureFormat(); |
| } |
| |
| bool SamplerCore::has8bitTextureComponents() const |
| { |
| return state.textureFormat.has8bitTextureComponents(); |
| } |
| |
| bool SamplerCore::has16bitTextureComponents() const |
| { |
| return state.textureFormat.has16bitTextureComponents(); |
| } |
| |
| bool SamplerCore::has32bitIntegerTextureComponents() const |
| { |
| return state.textureFormat.has32bitIntegerTextureComponents(); |
| } |
| |
| bool SamplerCore::isYcbcrFormat() const |
| { |
| return state.textureFormat.isYcbcrFormat(); |
| } |
| |
| bool SamplerCore::isRGBComponent(int component) const |
| { |
| return state.textureFormat.isRGBComponent(component); |
| } |
| |
| bool SamplerCore::borderModeActive() const |
| { |
| return state.addressingModeU == ADDRESSING_BORDER || |
| state.addressingModeV == ADDRESSING_BORDER || |
| state.addressingModeW == ADDRESSING_BORDER; |
| } |
| |
| VkComponentSwizzle SamplerCore::gatherSwizzle() const |
| { |
| switch(state.gatherComponent) |
| { |
| case 0: return state.swizzle.r; |
| case 1: return state.swizzle.g; |
| case 2: return state.swizzle.b; |
| case 3: return state.swizzle.a; |
| default: |
| UNREACHABLE("Invalid component"); |
| return VK_COMPONENT_SWIZZLE_R; |
| } |
| } |
| } |