| //=== llvm/Analysis/DominatorInternals.h - Dominator Calculation -*- C++ -*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ANALYSIS_DOMINATOR_INTERNALS_H |
| #define LLVM_ANALYSIS_DOMINATOR_INTERNALS_H |
| |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // DominatorTree construction - This pass constructs immediate dominator |
| // information for a flow-graph based on the algorithm described in this |
| // document: |
| // |
| // A Fast Algorithm for Finding Dominators in a Flowgraph |
| // T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. |
| // |
| // This implements the O(n*log(n)) versions of EVAL and LINK, because it turns |
| // out that the theoretically slower O(n*log(n)) implementation is actually |
| // faster than the almost-linear O(n*alpha(n)) version, even for large CFGs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| namespace llvm { |
| |
| template<class GraphT> |
| unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT, |
| typename GraphT::NodeType* V, unsigned N) { |
| // This is more understandable as a recursive algorithm, but we can't use the |
| // recursive algorithm due to stack depth issues. Keep it here for |
| // documentation purposes. |
| #if 0 |
| InfoRec &VInfo = DT.Info[DT.Roots[i]]; |
| VInfo.DFSNum = VInfo.Semi = ++N; |
| VInfo.Label = V; |
| |
| Vertex.push_back(V); // Vertex[n] = V; |
| |
| for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) { |
| InfoRec &SuccVInfo = DT.Info[*SI]; |
| if (SuccVInfo.Semi == 0) { |
| SuccVInfo.Parent = V; |
| N = DTDFSPass(DT, *SI, N); |
| } |
| } |
| #else |
| bool IsChildOfArtificialExit = (N != 0); |
| |
| SmallVector<std::pair<typename GraphT::NodeType*, |
| typename GraphT::ChildIteratorType>, 32> Worklist; |
| Worklist.push_back(std::make_pair(V, GraphT::child_begin(V))); |
| while (!Worklist.empty()) { |
| typename GraphT::NodeType* BB = Worklist.back().first; |
| typename GraphT::ChildIteratorType NextSucc = Worklist.back().second; |
| |
| typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo = |
| DT.Info[BB]; |
| |
| // First time we visited this BB? |
| if (NextSucc == GraphT::child_begin(BB)) { |
| BBInfo.DFSNum = BBInfo.Semi = ++N; |
| BBInfo.Label = BB; |
| |
| DT.Vertex.push_back(BB); // Vertex[n] = V; |
| |
| if (IsChildOfArtificialExit) |
| BBInfo.Parent = 1; |
| |
| IsChildOfArtificialExit = false; |
| } |
| |
| // store the DFS number of the current BB - the reference to BBInfo might |
| // get invalidated when processing the successors. |
| unsigned BBDFSNum = BBInfo.DFSNum; |
| |
| // If we are done with this block, remove it from the worklist. |
| if (NextSucc == GraphT::child_end(BB)) { |
| Worklist.pop_back(); |
| continue; |
| } |
| |
| // Increment the successor number for the next time we get to it. |
| ++Worklist.back().second; |
| |
| // Visit the successor next, if it isn't already visited. |
| typename GraphT::NodeType* Succ = *NextSucc; |
| |
| typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo = |
| DT.Info[Succ]; |
| if (SuccVInfo.Semi == 0) { |
| SuccVInfo.Parent = BBDFSNum; |
| Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ))); |
| } |
| } |
| #endif |
| return N; |
| } |
| |
| template<class GraphT> |
| typename GraphT::NodeType* |
| Eval(DominatorTreeBase<typename GraphT::NodeType>& DT, |
| typename GraphT::NodeType *VIn, unsigned LastLinked) { |
| typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo = |
| DT.Info[VIn]; |
| if (VInInfo.DFSNum < LastLinked) |
| return VIn; |
| |
| SmallVector<typename GraphT::NodeType*, 32> Work; |
| SmallPtrSet<typename GraphT::NodeType*, 32> Visited; |
| |
| if (VInInfo.Parent >= LastLinked) |
| Work.push_back(VIn); |
| |
| while (!Work.empty()) { |
| typename GraphT::NodeType* V = Work.back(); |
| typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo = |
| DT.Info[V]; |
| typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent]; |
| |
| // Process Ancestor first |
| if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) { |
| Work.push_back(VAncestor); |
| continue; |
| } |
| Work.pop_back(); |
| |
| // Update VInfo based on Ancestor info |
| if (VInfo.Parent < LastLinked) |
| continue; |
| |
| typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo = |
| DT.Info[VAncestor]; |
| typename GraphT::NodeType* VAncestorLabel = VAInfo.Label; |
| typename GraphT::NodeType* VLabel = VInfo.Label; |
| if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi) |
| VInfo.Label = VAncestorLabel; |
| VInfo.Parent = VAInfo.Parent; |
| } |
| |
| return VInInfo.Label; |
| } |
| |
| template<class FuncT, class NodeT> |
| void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT, |
| FuncT& F) { |
| typedef GraphTraits<NodeT> GraphT; |
| |
| unsigned N = 0; |
| bool MultipleRoots = (DT.Roots.size() > 1); |
| if (MultipleRoots) { |
| typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo = |
| DT.Info[NULL]; |
| BBInfo.DFSNum = BBInfo.Semi = ++N; |
| BBInfo.Label = NULL; |
| |
| DT.Vertex.push_back(NULL); // Vertex[n] = V; |
| } |
| |
| // Step #1: Number blocks in depth-first order and initialize variables used |
| // in later stages of the algorithm. |
| for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size()); |
| i != e; ++i) |
| N = DFSPass<GraphT>(DT, DT.Roots[i], N); |
| |
| // it might be that some blocks did not get a DFS number (e.g., blocks of |
| // infinite loops). In these cases an artificial exit node is required. |
| MultipleRoots |= (DT.isPostDominator() && N != F.size()); |
| |
| // When naively implemented, the Lengauer-Tarjan algorithm requires a separate |
| // bucket for each vertex. However, this is unnecessary, because each vertex |
| // is only placed into a single bucket (that of its semidominator), and each |
| // vertex's bucket is processed before it is added to any bucket itself. |
| // |
| // Instead of using a bucket per vertex, we use a single array Buckets that |
| // has two purposes. Before the vertex V with preorder number i is processed, |
| // Buckets[i] stores the index of the first element in V's bucket. After V's |
| // bucket is processed, Buckets[i] stores the index of the next element in the |
| // bucket containing V, if any. |
| SmallVector<unsigned, 32> Buckets; |
| Buckets.resize(N + 1); |
| for (unsigned i = 1; i <= N; ++i) |
| Buckets[i] = i; |
| |
| for (unsigned i = N; i >= 2; --i) { |
| typename GraphT::NodeType* W = DT.Vertex[i]; |
| typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo = |
| DT.Info[W]; |
| |
| // Step #2: Implicitly define the immediate dominator of vertices |
| for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) { |
| typename GraphT::NodeType* V = DT.Vertex[Buckets[j]]; |
| typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1); |
| DT.IDoms[V] = DT.Info[U].Semi < i ? U : W; |
| } |
| |
| // Step #3: Calculate the semidominators of all vertices |
| |
| // initialize the semi dominator to point to the parent node |
| WInfo.Semi = WInfo.Parent; |
| typedef GraphTraits<Inverse<NodeT> > InvTraits; |
| for (typename InvTraits::ChildIteratorType CI = |
| InvTraits::child_begin(W), |
| E = InvTraits::child_end(W); CI != E; ++CI) { |
| typename InvTraits::NodeType *N = *CI; |
| if (DT.Info.count(N)) { // Only if this predecessor is reachable! |
| unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi; |
| if (SemiU < WInfo.Semi) |
| WInfo.Semi = SemiU; |
| } |
| } |
| |
| // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is |
| // necessarily parent(V). In this case, set idom(V) here and avoid placing |
| // V into a bucket. |
| if (WInfo.Semi == WInfo.Parent) { |
| DT.IDoms[W] = DT.Vertex[WInfo.Parent]; |
| } else { |
| Buckets[i] = Buckets[WInfo.Semi]; |
| Buckets[WInfo.Semi] = i; |
| } |
| } |
| |
| if (N >= 1) { |
| typename GraphT::NodeType* Root = DT.Vertex[1]; |
| for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) { |
| typename GraphT::NodeType* V = DT.Vertex[Buckets[j]]; |
| DT.IDoms[V] = Root; |
| } |
| } |
| |
| // Step #4: Explicitly define the immediate dominator of each vertex |
| for (unsigned i = 2; i <= N; ++i) { |
| typename GraphT::NodeType* W = DT.Vertex[i]; |
| typename GraphT::NodeType*& WIDom = DT.IDoms[W]; |
| if (WIDom != DT.Vertex[DT.Info[W].Semi]) |
| WIDom = DT.IDoms[WIDom]; |
| } |
| |
| if (DT.Roots.empty()) return; |
| |
| // Add a node for the root. This node might be the actual root, if there is |
| // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0) |
| // which postdominates all real exits if there are multiple exit blocks, or |
| // an infinite loop. |
| typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0; |
| |
| DT.DomTreeNodes[Root] = DT.RootNode = |
| new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0); |
| |
| // Loop over all of the reachable blocks in the function... |
| for (unsigned i = 2; i <= N; ++i) { |
| typename GraphT::NodeType* W = DT.Vertex[i]; |
| |
| DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W]; |
| if (BBNode) continue; // Haven't calculated this node yet? |
| |
| typename GraphT::NodeType* ImmDom = DT.getIDom(W); |
| |
| assert(ImmDom || DT.DomTreeNodes[NULL]); |
| |
| // Get or calculate the node for the immediate dominator |
| DomTreeNodeBase<typename GraphT::NodeType> *IDomNode = |
| DT.getNodeForBlock(ImmDom); |
| |
| // Add a new tree node for this BasicBlock, and link it as a child of |
| // IDomNode |
| DomTreeNodeBase<typename GraphT::NodeType> *C = |
| new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode); |
| DT.DomTreeNodes[W] = IDomNode->addChild(C); |
| } |
| |
| // Free temporary memory used to construct idom's |
| DT.IDoms.clear(); |
| DT.Info.clear(); |
| std::vector<typename GraphT::NodeType*>().swap(DT.Vertex); |
| |
| DT.updateDFSNumbers(); |
| } |
| |
| } |
| |
| #endif |