blob: d2e5ca2ddd59fba13838ec24229e08ad4f26c4e3 [file] [log] [blame]
; RUN: llc < %s -asm-verbose=false -disable-wasm-explicit-locals -disable-wasm-fallthrough-return-opt | FileCheck %s
; Test constant load and store address offsets.
target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128"
target triple = "wasm32-unknown-unknown"
;===----------------------------------------------------------------------------
; Loads: 32-bit
;===----------------------------------------------------------------------------
; Basic load.
; CHECK-LABEL: load_i32_no_offset:
; CHECK: i32.load $push0=, 0($0){{$}}
; CHECK-NEXT: return $pop0{{$}}
define i32 @load_i32_no_offset(i32 *%p) {
%v = load i32, i32* %p
ret i32 %v
}
; With an nuw add, we can fold an offset.
; CHECK-LABEL: load_i32_with_folded_offset:
; CHECK: i32.load $push0=, 24($0){{$}}
define i32 @load_i32_with_folded_offset(i32* %p) {
%q = ptrtoint i32* %p to i32
%r = add nuw i32 %q, 24
%s = inttoptr i32 %r to i32*
%t = load i32, i32* %s
ret i32 %t
}
; With an inbounds gep, we can fold an offset.
; CHECK-LABEL: load_i32_with_folded_gep_offset:
; CHECK: i32.load $push0=, 24($0){{$}}
define i32 @load_i32_with_folded_gep_offset(i32* %p) {
%s = getelementptr inbounds i32, i32* %p, i32 6
%t = load i32, i32* %s
ret i32 %t
}
; We can't fold a negative offset though, even with an inbounds gep.
; CHECK-LABEL: load_i32_with_unfolded_gep_negative_offset:
; CHECK: i32.const $push0=, -24{{$}}
; CHECK: i32.add $push1=, $0, $pop0{{$}}
; CHECK: i32.load $push2=, 0($pop1){{$}}
define i32 @load_i32_with_unfolded_gep_negative_offset(i32* %p) {
%s = getelementptr inbounds i32, i32* %p, i32 -6
%t = load i32, i32* %s
ret i32 %t
}
; Without nuw, and even with nsw, we can't fold an offset.
; CHECK-LABEL: load_i32_with_unfolded_offset:
; CHECK: i32.const $push0=, 24{{$}}
; CHECK: i32.add $push1=, $0, $pop0{{$}}
; CHECK: i32.load $push2=, 0($pop1){{$}}
define i32 @load_i32_with_unfolded_offset(i32* %p) {
%q = ptrtoint i32* %p to i32
%r = add nsw i32 %q, 24
%s = inttoptr i32 %r to i32*
%t = load i32, i32* %s
ret i32 %t
}
; Without inbounds, we can't fold a gep offset.
; CHECK-LABEL: load_i32_with_unfolded_gep_offset:
; CHECK: i32.const $push0=, 24{{$}}
; CHECK: i32.add $push1=, $0, $pop0{{$}}
; CHECK: i32.load $push2=, 0($pop1){{$}}
define i32 @load_i32_with_unfolded_gep_offset(i32* %p) {
%s = getelementptr i32, i32* %p, i32 6
%t = load i32, i32* %s
ret i32 %t
}
; When loading from a fixed address, materialize a zero.
; CHECK-LABEL: load_i32_from_numeric_address
; CHECK: i32.const $push0=, 0{{$}}
; CHECK: i32.load $push1=, 42($pop0){{$}}
define i32 @load_i32_from_numeric_address() {
%s = inttoptr i32 42 to i32*
%t = load i32, i32* %s
ret i32 %t
}
; CHECK-LABEL: load_i32_from_global_address
; CHECK: i32.const $push0=, 0{{$}}
; CHECK: i32.load $push1=, gv($pop0){{$}}
@gv = global i32 0
define i32 @load_i32_from_global_address() {
%t = load i32, i32* @gv
ret i32 %t
}
;===----------------------------------------------------------------------------
; Loads: 64-bit
;===----------------------------------------------------------------------------
; Basic load.
; CHECK-LABEL: load_i64_no_offset:
; CHECK: i64.load $push0=, 0($0){{$}}
; CHECK-NEXT: return $pop0{{$}}
define i64 @load_i64_no_offset(i64 *%p) {
%v = load i64, i64* %p
ret i64 %v
}
; With an nuw add, we can fold an offset.
; CHECK-LABEL: load_i64_with_folded_offset:
; CHECK: i64.load $push0=, 24($0){{$}}
define i64 @load_i64_with_folded_offset(i64* %p) {
%q = ptrtoint i64* %p to i32
%r = add nuw i32 %q, 24
%s = inttoptr i32 %r to i64*
%t = load i64, i64* %s
ret i64 %t
}
; With an inbounds gep, we can fold an offset.
; CHECK-LABEL: load_i64_with_folded_gep_offset:
; CHECK: i64.load $push0=, 24($0){{$}}
define i64 @load_i64_with_folded_gep_offset(i64* %p) {
%s = getelementptr inbounds i64, i64* %p, i32 3
%t = load i64, i64* %s
ret i64 %t
}
; We can't fold a negative offset though, even with an inbounds gep.
; CHECK-LABEL: load_i64_with_unfolded_gep_negative_offset:
; CHECK: i32.const $push0=, -24{{$}}
; CHECK: i32.add $push1=, $0, $pop0{{$}}
; CHECK: i64.load $push2=, 0($pop1){{$}}
define i64 @load_i64_with_unfolded_gep_negative_offset(i64* %p) {
%s = getelementptr inbounds i64, i64* %p, i32 -3
%t = load i64, i64* %s
ret i64 %t
}
; Without nuw, and even with nsw, we can't fold an offset.
; CHECK-LABEL: load_i64_with_unfolded_offset:
; CHECK: i32.const $push0=, 24{{$}}
; CHECK: i32.add $push1=, $0, $pop0{{$}}
; CHECK: i64.load $push2=, 0($pop1){{$}}
define i64 @load_i64_with_unfolded_offset(i64* %p) {
%q = ptrtoint i64* %p to i32
%r = add nsw i32 %q, 24
%s = inttoptr i32 %r to i64*
%t = load i64, i64* %s
ret i64 %t
}
; Without inbounds, we can't fold a gep offset.
; CHECK-LABEL: load_i64_with_unfolded_gep_offset:
; CHECK: i32.const $push0=, 24{{$}}
; CHECK: i32.add $push1=, $0, $pop0{{$}}
; CHECK: i64.load $push2=, 0($pop1){{$}}
define i64 @load_i64_with_unfolded_gep_offset(i64* %p) {
%s = getelementptr i64, i64* %p, i32 3
%t = load i64, i64* %s
ret i64 %t
}
;===----------------------------------------------------------------------------
; Stores: 32-bit
;===----------------------------------------------------------------------------
; Basic store.
; CHECK-LABEL: store_i32_no_offset:
; CHECK-NEXT: .param i32, i32{{$}}
; CHECK-NEXT: i32.store 0($0), $1{{$}}
; CHECK-NEXT: return{{$}}
define void @store_i32_no_offset(i32 *%p, i32 %v) {
store i32 %v, i32* %p
ret void
}
; With an nuw add, we can fold an offset.
; CHECK-LABEL: store_i32_with_folded_offset:
; CHECK: i32.store 24($0), $pop0{{$}}
define void @store_i32_with_folded_offset(i32* %p) {
%q = ptrtoint i32* %p to i32
%r = add nuw i32 %q, 24
%s = inttoptr i32 %r to i32*
store i32 0, i32* %s
ret void
}
; With an inbounds gep, we can fold an offset.
; CHECK-LABEL: store_i32_with_folded_gep_offset:
; CHECK: i32.store 24($0), $pop0{{$}}
define void @store_i32_with_folded_gep_offset(i32* %p) {
%s = getelementptr inbounds i32, i32* %p, i32 6
store i32 0, i32* %s
ret void
}
; We can't fold a negative offset though, even with an inbounds gep.
; CHECK-LABEL: store_i32_with_unfolded_gep_negative_offset:
; CHECK: i32.const $push0=, -24{{$}}
; CHECK: i32.add $push1=, $0, $pop0{{$}}
; CHECK: i32.store 0($pop1), $pop2{{$}}
define void @store_i32_with_unfolded_gep_negative_offset(i32* %p) {
%s = getelementptr inbounds i32, i32* %p, i32 -6
store i32 0, i32* %s
ret void
}
; Without nuw, and even with nsw, we can't fold an offset.
; CHECK-LABEL: store_i32_with_unfolded_offset:
; CHECK: i32.const $push0=, 24{{$}}
; CHECK: i32.add $push1=, $0, $pop0{{$}}
; CHECK: i32.store 0($pop1), $pop2{{$}}
define void @store_i32_with_unfolded_offset(i32* %p) {
%q = ptrtoint i32* %p to i32
%r = add nsw i32 %q, 24
%s = inttoptr i32 %r to i32*
store i32 0, i32* %s
ret void
}
; Without inbounds, we can't fold a gep offset.
; CHECK-LABEL: store_i32_with_unfolded_gep_offset:
; CHECK: i32.const $push0=, 24{{$}}
; CHECK: i32.add $push1=, $0, $pop0{{$}}
; CHECK: i32.store 0($pop1), $pop2{{$}}
define void @store_i32_with_unfolded_gep_offset(i32* %p) {
%s = getelementptr i32, i32* %p, i32 6
store i32 0, i32* %s
ret void
}
; When storing from a fixed address, materialize a zero.
; CHECK-LABEL: store_i32_to_numeric_address:
; CHECK-NEXT: i32.const $push0=, 0{{$}}
; CHECK-NEXT: i32.const $push1=, 0{{$}}
; CHECK-NEXT: i32.store 42($pop0), $pop1{{$}}
define void @store_i32_to_numeric_address() {
%s = inttoptr i32 42 to i32*
store i32 0, i32* %s
ret void
}
; CHECK-LABEL: store_i32_to_global_address:
; CHECK: i32.const $push0=, 0{{$}}
; CHECK: i32.const $push1=, 0{{$}}
; CHECK: i32.store gv($pop0), $pop1{{$}}
define void @store_i32_to_global_address() {
store i32 0, i32* @gv
ret void
}
;===----------------------------------------------------------------------------
; Stores: 64-bit
;===----------------------------------------------------------------------------
; Basic store.
; CHECK-LABEL: store_i64_with_folded_offset:
; CHECK: i64.store 24($0), $pop0{{$}}
define void @store_i64_with_folded_offset(i64* %p) {
%q = ptrtoint i64* %p to i32
%r = add nuw i32 %q, 24
%s = inttoptr i32 %r to i64*
store i64 0, i64* %s
ret void
}
; With an nuw add, we can fold an offset.
; CHECK-LABEL: store_i64_with_folded_gep_offset:
; CHECK: i64.store 24($0), $pop0{{$}}
define void @store_i64_with_folded_gep_offset(i64* %p) {
%s = getelementptr inbounds i64, i64* %p, i32 3
store i64 0, i64* %s
ret void
}
; With an inbounds gep, we can fold an offset.
; CHECK-LABEL: store_i64_with_unfolded_gep_negative_offset:
; CHECK: i32.const $push0=, -24{{$}}
; CHECK: i32.add $push1=, $0, $pop0{{$}}
; CHECK: i64.store 0($pop1), $pop2{{$}}
define void @store_i64_with_unfolded_gep_negative_offset(i64* %p) {
%s = getelementptr inbounds i64, i64* %p, i32 -3
store i64 0, i64* %s
ret void
}
; We can't fold a negative offset though, even with an inbounds gep.
; CHECK-LABEL: store_i64_with_unfolded_offset:
; CHECK: i32.const $push0=, 24{{$}}
; CHECK: i32.add $push1=, $0, $pop0{{$}}
; CHECK: i64.store 0($pop1), $pop2{{$}}
define void @store_i64_with_unfolded_offset(i64* %p) {
%q = ptrtoint i64* %p to i32
%r = add nsw i32 %q, 24
%s = inttoptr i32 %r to i64*
store i64 0, i64* %s
ret void
}
; Without nuw, and even with nsw, we can't fold an offset.
; CHECK-LABEL: store_i64_with_unfolded_gep_offset:
; CHECK: i32.const $push0=, 24{{$}}
; CHECK: i32.add $push1=, $0, $pop0{{$}}
; CHECK: i64.store 0($pop1), $pop2{{$}}
define void @store_i64_with_unfolded_gep_offset(i64* %p) {
%s = getelementptr i64, i64* %p, i32 3
store i64 0, i64* %s
ret void
}
; Without inbounds, we can't fold a gep offset.
; CHECK-LABEL: store_i32_with_folded_or_offset:
; CHECK: i32.store8 2($pop{{[0-9]+}}), $pop{{[0-9]+}}{{$}}
define void @store_i32_with_folded_or_offset(i32 %x) {
%and = and i32 %x, -4
%t0 = inttoptr i32 %and to i8*
%arrayidx = getelementptr inbounds i8, i8* %t0, i32 2
store i8 0, i8* %arrayidx, align 1
ret void
}
;===----------------------------------------------------------------------------
; Sign-extending loads
;===----------------------------------------------------------------------------
; Fold an offset into a sign-extending load.
; CHECK-LABEL: load_i8_i32_s_with_folded_offset:
; CHECK: i32.load8_s $push0=, 24($0){{$}}
define i32 @load_i8_i32_s_with_folded_offset(i8* %p) {
%q = ptrtoint i8* %p to i32
%r = add nuw i32 %q, 24
%s = inttoptr i32 %r to i8*
%t = load i8, i8* %s
%u = sext i8 %t to i32
ret i32 %u
}
; CHECK-LABEL: load_i32_i64_s_with_folded_offset:
; CHECK: i64.load32_s $push0=, 24($0){{$}}
define i64 @load_i32_i64_s_with_folded_offset(i32* %p) {
%q = ptrtoint i32* %p to i32
%r = add nuw i32 %q, 24
%s = inttoptr i32 %r to i32*
%t = load i32, i32* %s
%u = sext i32 %t to i64
ret i64 %u
}
; Fold a gep offset into a sign-extending load.
; CHECK-LABEL: load_i8_i32_s_with_folded_gep_offset:
; CHECK: i32.load8_s $push0=, 24($0){{$}}
define i32 @load_i8_i32_s_with_folded_gep_offset(i8* %p) {
%s = getelementptr inbounds i8, i8* %p, i32 24
%t = load i8, i8* %s
%u = sext i8 %t to i32
ret i32 %u
}
; CHECK-LABEL: load_i16_i32_s_with_folded_gep_offset:
; CHECK: i32.load16_s $push0=, 48($0){{$}}
define i32 @load_i16_i32_s_with_folded_gep_offset(i16* %p) {
%s = getelementptr inbounds i16, i16* %p, i32 24
%t = load i16, i16* %s
%u = sext i16 %t to i32
ret i32 %u
}
; CHECK-LABEL: load_i16_i64_s_with_folded_gep_offset:
; CHECK: i64.load16_s $push0=, 48($0){{$}}
define i64 @load_i16_i64_s_with_folded_gep_offset(i16* %p) {
%s = getelementptr inbounds i16, i16* %p, i32 24
%t = load i16, i16* %s
%u = sext i16 %t to i64
ret i64 %u
}
; 'add' in this code becomes 'or' after DAG optimization. Treat an 'or' node as
; an 'add' if the or'ed bits are known to be zero.
; CHECK-LABEL: load_i8_i32_s_with_folded_or_offset:
; CHECK: i32.load8_s $push{{[0-9]+}}=, 2($pop{{[0-9]+}}){{$}}
define i32 @load_i8_i32_s_with_folded_or_offset(i32 %x) {
%and = and i32 %x, -4
%t0 = inttoptr i32 %and to i8*
%arrayidx = getelementptr inbounds i8, i8* %t0, i32 2
%t1 = load i8, i8* %arrayidx
%conv = sext i8 %t1 to i32
ret i32 %conv
}
; CHECK-LABEL: load_i8_i64_s_with_folded_or_offset:
; CHECK: i64.load8_s $push{{[0-9]+}}=, 2($pop{{[0-9]+}}){{$}}
define i64 @load_i8_i64_s_with_folded_or_offset(i32 %x) {
%and = and i32 %x, -4
%t0 = inttoptr i32 %and to i8*
%arrayidx = getelementptr inbounds i8, i8* %t0, i32 2
%t1 = load i8, i8* %arrayidx
%conv = sext i8 %t1 to i64
ret i64 %conv
}
; When loading from a fixed address, materialize a zero.
; CHECK-LABEL: load_i16_i32_s_from_numeric_address
; CHECK: i32.const $push0=, 0{{$}}
; CHECK: i32.load16_s $push1=, 42($pop0){{$}}
define i32 @load_i16_i32_s_from_numeric_address() {
%s = inttoptr i32 42 to i16*
%t = load i16, i16* %s
%u = sext i16 %t to i32
ret i32 %u
}
; CHECK-LABEL: load_i8_i32_s_from_global_address
; CHECK: i32.const $push0=, 0{{$}}
; CHECK: i32.load8_s $push1=, gv8($pop0){{$}}
@gv8 = global i8 0
define i32 @load_i8_i32_s_from_global_address() {
%t = load i8, i8* @gv8
%u = sext i8 %t to i32
ret i32 %u
}
;===----------------------------------------------------------------------------
; Zero-extending loads
;===----------------------------------------------------------------------------
; Fold an offset into a zero-extending load.
; CHECK-LABEL: load_i8_i32_z_with_folded_offset:
; CHECK: i32.load8_u $push0=, 24($0){{$}}
define i32 @load_i8_i32_z_with_folded_offset(i8* %p) {
%q = ptrtoint i8* %p to i32
%r = add nuw i32 %q, 24
%s = inttoptr i32 %r to i8*
%t = load i8, i8* %s
%u = zext i8 %t to i32
ret i32 %u
}
; CHECK-LABEL: load_i32_i64_z_with_folded_offset:
; CHECK: i64.load32_u $push0=, 24($0){{$}}
define i64 @load_i32_i64_z_with_folded_offset(i32* %p) {
%q = ptrtoint i32* %p to i32
%r = add nuw i32 %q, 24
%s = inttoptr i32 %r to i32*
%t = load i32, i32* %s
%u = zext i32 %t to i64
ret i64 %u
}
; Fold a gep offset into a zero-extending load.
; CHECK-LABEL: load_i8_i32_z_with_folded_gep_offset:
; CHECK: i32.load8_u $push0=, 24($0){{$}}
define i32 @load_i8_i32_z_with_folded_gep_offset(i8* %p) {
%s = getelementptr inbounds i8, i8* %p, i32 24
%t = load i8, i8* %s
%u = zext i8 %t to i32
ret i32 %u
}
; CHECK-LABEL: load_i16_i32_z_with_folded_gep_offset:
; CHECK: i32.load16_u $push0=, 48($0){{$}}
define i32 @load_i16_i32_z_with_folded_gep_offset(i16* %p) {
%s = getelementptr inbounds i16, i16* %p, i32 24
%t = load i16, i16* %s
%u = zext i16 %t to i32
ret i32 %u
}
; CHECK-LABEL: load_i16_i64_z_with_folded_gep_offset:
; CHECK: i64.load16_u $push0=, 48($0){{$}}
define i64 @load_i16_i64_z_with_folded_gep_offset(i16* %p) {
%s = getelementptr inbounds i16, i16* %p, i64 24
%t = load i16, i16* %s
%u = zext i16 %t to i64
ret i64 %u
}
; When loading from a fixed address, materialize a zero.
; CHECK-LABEL: load_i16_i32_z_from_numeric_address
; CHECK: i32.const $push0=, 0{{$}}
; CHECK: i32.load16_u $push1=, 42($pop0){{$}}
define i32 @load_i16_i32_z_from_numeric_address() {
%s = inttoptr i32 42 to i16*
%t = load i16, i16* %s
%u = zext i16 %t to i32
ret i32 %u
}
; CHECK-LABEL: load_i8_i32_z_from_global_address
; CHECK: i32.const $push0=, 0{{$}}
; CHECK: i32.load8_u $push1=, gv8($pop0){{$}}
define i32 @load_i8_i32_z_from_global_address() {
%t = load i8, i8* @gv8
%u = zext i8 %t to i32
ret i32 %u
}
; i8 return value should test anyext loads
; CHECK-LABEL: load_i8_i32_retvalue:
; CHECK: i32.load8_u $push[[NUM:[0-9]+]]=, 0($0){{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i8 @load_i8_i32_retvalue(i8 *%p) {
%v = load i8, i8* %p
ret i8 %v
}
;===----------------------------------------------------------------------------
; Truncating stores
;===----------------------------------------------------------------------------
; Fold an offset into a truncating store.
; CHECK-LABEL: store_i8_i32_with_folded_offset:
; CHECK: i32.store8 24($0), $1{{$}}
define void @store_i8_i32_with_folded_offset(i8* %p, i32 %v) {
%q = ptrtoint i8* %p to i32
%r = add nuw i32 %q, 24
%s = inttoptr i32 %r to i8*
%t = trunc i32 %v to i8
store i8 %t, i8* %s
ret void
}
; CHECK-LABEL: store_i32_i64_with_folded_offset:
; CHECK: i64.store32 24($0), $1{{$}}
define void @store_i32_i64_with_folded_offset(i32* %p, i64 %v) {
%q = ptrtoint i32* %p to i32
%r = add nuw i32 %q, 24
%s = inttoptr i32 %r to i32*
%t = trunc i64 %v to i32
store i32 %t, i32* %s
ret void
}
; Fold a gep offset into a truncating store.
; CHECK-LABEL: store_i8_i32_with_folded_gep_offset:
; CHECK: i32.store8 24($0), $1{{$}}
define void @store_i8_i32_with_folded_gep_offset(i8* %p, i32 %v) {
%s = getelementptr inbounds i8, i8* %p, i32 24
%t = trunc i32 %v to i8
store i8 %t, i8* %s
ret void
}
; CHECK-LABEL: store_i16_i32_with_folded_gep_offset:
; CHECK: i32.store16 48($0), $1{{$}}
define void @store_i16_i32_with_folded_gep_offset(i16* %p, i32 %v) {
%s = getelementptr inbounds i16, i16* %p, i32 24
%t = trunc i32 %v to i16
store i16 %t, i16* %s
ret void
}
; CHECK-LABEL: store_i16_i64_with_folded_gep_offset:
; CHECK: i64.store16 48($0), $1{{$}}
define void @store_i16_i64_with_folded_gep_offset(i16* %p, i64 %v) {
%s = getelementptr inbounds i16, i16* %p, i64 24
%t = trunc i64 %v to i16
store i16 %t, i16* %s
ret void
}
; 'add' in this code becomes 'or' after DAG optimization. Treat an 'or' node as
; an 'add' if the or'ed bits are known to be zero.
; CHECK-LABEL: store_i8_i32_with_folded_or_offset:
; CHECK: i32.store8 2($pop{{[0-9]+}}), $1{{$}}
define void @store_i8_i32_with_folded_or_offset(i32 %x, i32 %v) {
%and = and i32 %x, -4
%p = inttoptr i32 %and to i8*
%arrayidx = getelementptr inbounds i8, i8* %p, i32 2
%t = trunc i32 %v to i8
store i8 %t, i8* %arrayidx
ret void
}
; CHECK-LABEL: store_i8_i64_with_folded_or_offset:
; CHECK: i64.store8 2($pop{{[0-9]+}}), $1{{$}}
define void @store_i8_i64_with_folded_or_offset(i32 %x, i64 %v) {
%and = and i32 %x, -4
%p = inttoptr i32 %and to i8*
%arrayidx = getelementptr inbounds i8, i8* %p, i32 2
%t = trunc i64 %v to i8
store i8 %t, i8* %arrayidx
ret void
}
;===----------------------------------------------------------------------------
; Aggregate values
;===----------------------------------------------------------------------------
; Fold the offsets when lowering aggregate loads and stores.
; CHECK-LABEL: aggregate_load_store:
; CHECK: i32.load $2=, 0($0){{$}}
; CHECK: i32.load $3=, 4($0){{$}}
; CHECK: i32.load $4=, 8($0){{$}}
; CHECK: i32.load $push0=, 12($0){{$}}
; CHECK: i32.store 12($1), $pop0{{$}}
; CHECK: i32.store 8($1), $4{{$}}
; CHECK: i32.store 4($1), $3{{$}}
; CHECK: i32.store 0($1), $2{{$}}
define void @aggregate_load_store({i32,i32,i32,i32}* %p, {i32,i32,i32,i32}* %q) {
; volatile so that things stay in order for the tests above
%t = load volatile {i32,i32,i32,i32}, {i32, i32,i32,i32}* %p
store volatile {i32,i32,i32,i32} %t, {i32, i32,i32,i32}* %q
ret void
}
; Fold the offsets when lowering aggregate return values. The stores get
; merged into i64 stores.
; CHECK-LABEL: aggregate_return:
; CHECK: i64.const $push[[L0:[0-9]+]]=, 0{{$}}
; CHECK: i64.store 8($0):p2align=2, $pop[[L0]]{{$}}
; CHECK: i64.const $push[[L1:[0-9]+]]=, 0{{$}}
; CHECK: i64.store 0($0):p2align=2, $pop[[L1]]{{$}}
define {i32,i32,i32,i32} @aggregate_return() {
ret {i32,i32,i32,i32} zeroinitializer
}
; Fold the offsets when lowering aggregate return values. The stores are not
; merged.
; CHECK-LABEL: aggregate_return_without_merge:
; CHECK: i32.const $push[[L0:[0-9]+]]=, 0{{$}}
; CHECK: i32.store8 14($0), $pop[[L0]]{{$}}
; CHECK: i32.const $push[[L1:[0-9]+]]=, 0{{$}}
; CHECK: i32.store16 12($0), $pop[[L1]]{{$}}
; CHECK: i32.const $push[[L2:[0-9]+]]=, 0{{$}}
; CHECK: i32.store 8($0), $pop[[L2]]{{$}}
; CHECK: i64.const $push[[L3:[0-9]+]]=, 0{{$}}
; CHECK: i64.store 0($0), $pop[[L3]]{{$}}
define {i64,i32,i16,i8} @aggregate_return_without_merge() {
ret {i64,i32,i16,i8} zeroinitializer
}