| //===- README.txt - Notes for improving PowerPC-specific code gen ---------===// |
| |
| TODO: |
| * lmw/stmw pass a la arm load store optimizer for prolog/epilog |
| |
| ===-------------------------------------------------------------------------=== |
| |
| This code: |
| |
| unsigned add32carry(unsigned sum, unsigned x) { |
| unsigned z = sum + x; |
| if (sum + x < x) |
| z++; |
| return z; |
| } |
| |
| Should compile to something like: |
| |
| addc r3,r3,r4 |
| addze r3,r3 |
| |
| instead we get: |
| |
| add r3, r4, r3 |
| cmplw cr7, r3, r4 |
| mfcr r4 ; 1 |
| rlwinm r4, r4, 29, 31, 31 |
| add r3, r3, r4 |
| |
| Ick. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| We compile the hottest inner loop of viterbi to: |
| |
| li r6, 0 |
| b LBB1_84 ;bb432.i |
| LBB1_83: ;bb420.i |
| lbzx r8, r5, r7 |
| addi r6, r7, 1 |
| stbx r8, r4, r7 |
| LBB1_84: ;bb432.i |
| mr r7, r6 |
| cmplwi cr0, r7, 143 |
| bne cr0, LBB1_83 ;bb420.i |
| |
| The CBE manages to produce: |
| |
| li r0, 143 |
| mtctr r0 |
| loop: |
| lbzx r2, r2, r11 |
| stbx r0, r2, r9 |
| addi r2, r2, 1 |
| bdz later |
| b loop |
| |
| This could be much better (bdnz instead of bdz) but it still beats us. If we |
| produced this with bdnz, the loop would be a single dispatch group. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Lump the constant pool for each function into ONE pic object, and reference |
| pieces of it as offsets from the start. For functions like this (contrived |
| to have lots of constants obviously): |
| |
| double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; } |
| |
| We generate: |
| |
| _X: |
| lis r2, ha16(.CPI_X_0) |
| lfd f0, lo16(.CPI_X_0)(r2) |
| lis r2, ha16(.CPI_X_1) |
| lfd f2, lo16(.CPI_X_1)(r2) |
| fmadd f0, f1, f0, f2 |
| lis r2, ha16(.CPI_X_2) |
| lfd f1, lo16(.CPI_X_2)(r2) |
| lis r2, ha16(.CPI_X_3) |
| lfd f2, lo16(.CPI_X_3)(r2) |
| fmadd f1, f0, f1, f2 |
| blr |
| |
| It would be better to materialize .CPI_X into a register, then use immediates |
| off of the register to avoid the lis's. This is even more important in PIC |
| mode. |
| |
| Note that this (and the static variable version) is discussed here for GCC: |
| http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html |
| |
| Here's another example (the sgn function): |
| double testf(double a) { |
| return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0); |
| } |
| |
| it produces a BB like this: |
| LBB1_1: ; cond_true |
| lis r2, ha16(LCPI1_0) |
| lfs f0, lo16(LCPI1_0)(r2) |
| lis r2, ha16(LCPI1_1) |
| lis r3, ha16(LCPI1_2) |
| lfs f2, lo16(LCPI1_2)(r3) |
| lfs f3, lo16(LCPI1_1)(r2) |
| fsub f0, f0, f1 |
| fsel f1, f0, f2, f3 |
| blr |
| |
| ===-------------------------------------------------------------------------=== |
| |
| PIC Code Gen IPO optimization: |
| |
| Squish small scalar globals together into a single global struct, allowing the |
| address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size |
| of the GOT on targets with one). |
| |
| Note that this is discussed here for GCC: |
| http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Darwin Stub removal: |
| |
| We still generate calls to foo$stub, and stubs, on Darwin. This is not |
| necessary when building with the Leopard (10.5) or later linker, as stubs are |
| generated by ld when necessary. Parameterizing this based on the deployment |
| target (-mmacosx-version-min) is probably enough. x86-32 does this right, see |
| its logic. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Darwin Stub LICM optimization: |
| |
| Loops like this: |
| |
| for (...) bar(); |
| |
| Have to go through an indirect stub if bar is external or linkonce. It would |
| be better to compile it as: |
| |
| fp = &bar; |
| for (...) fp(); |
| |
| which only computes the address of bar once (instead of each time through the |
| stub). This is Darwin specific and would have to be done in the code generator. |
| Probably not a win on x86. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Simple IPO for argument passing, change: |
| void foo(int X, double Y, int Z) -> void foo(int X, int Z, double Y) |
| |
| the Darwin ABI specifies that any integer arguments in the first 32 bytes worth |
| of arguments get assigned to r3 through r10. That is, if you have a function |
| foo(int, double, int) you get r3, f1, r6, since the 64 bit double ate up the |
| argument bytes for r4 and r5. The trick then would be to shuffle the argument |
| order for functions we can internalize so that the maximum number of |
| integers/pointers get passed in regs before you see any of the fp arguments. |
| |
| Instead of implementing this, it would actually probably be easier to just |
| implement a PPC fastcc, where we could do whatever we wanted to the CC, |
| including having this work sanely. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Fix Darwin FP-In-Integer Registers ABI |
| |
| Darwin passes doubles in structures in integer registers, which is very very |
| bad. Add something like a BITCAST to LLVM, then do an i-p transformation that |
| percolates these things out of functions. |
| |
| Check out how horrible this is: |
| http://gcc.gnu.org/ml/gcc/2005-10/msg01036.html |
| |
| This is an extension of "interprocedural CC unmunging" that can't be done with |
| just fastcc. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Fold add and sub with constant into non-extern, non-weak addresses so this: |
| |
| static int a; |
| void bar(int b) { a = b; } |
| void foo(unsigned char *c) { |
| *c = a; |
| } |
| |
| So that |
| |
| _foo: |
| lis r2, ha16(_a) |
| la r2, lo16(_a)(r2) |
| lbz r2, 3(r2) |
| stb r2, 0(r3) |
| blr |
| |
| Becomes |
| |
| _foo: |
| lis r2, ha16(_a+3) |
| lbz r2, lo16(_a+3)(r2) |
| stb r2, 0(r3) |
| blr |
| |
| ===-------------------------------------------------------------------------=== |
| |
| We should compile these two functions to the same thing: |
| |
| #include <stdlib.h> |
| void f(int a, int b, int *P) { |
| *P = (a-b)>=0?(a-b):(b-a); |
| } |
| void g(int a, int b, int *P) { |
| *P = abs(a-b); |
| } |
| |
| Further, they should compile to something better than: |
| |
| _g: |
| subf r2, r4, r3 |
| subfic r3, r2, 0 |
| cmpwi cr0, r2, -1 |
| bgt cr0, LBB2_2 ; entry |
| LBB2_1: ; entry |
| mr r2, r3 |
| LBB2_2: ; entry |
| stw r2, 0(r5) |
| blr |
| |
| GCC produces: |
| |
| _g: |
| subf r4,r4,r3 |
| srawi r2,r4,31 |
| xor r0,r2,r4 |
| subf r0,r2,r0 |
| stw r0,0(r5) |
| blr |
| |
| ... which is much nicer. |
| |
| This theoretically may help improve twolf slightly (used in dimbox.c:142?). |
| |
| ===-------------------------------------------------------------------------=== |
| |
| PR5945: This: |
| define i32 @clamp0g(i32 %a) { |
| entry: |
| %cmp = icmp slt i32 %a, 0 |
| %sel = select i1 %cmp, i32 0, i32 %a |
| ret i32 %sel |
| } |
| |
| Is compile to this with the PowerPC (32-bit) backend: |
| |
| _clamp0g: |
| cmpwi cr0, r3, 0 |
| li r2, 0 |
| blt cr0, LBB1_2 |
| ; %bb.1: ; %entry |
| mr r2, r3 |
| LBB1_2: ; %entry |
| mr r3, r2 |
| blr |
| |
| This could be reduced to the much simpler: |
| |
| _clamp0g: |
| srawi r2, r3, 31 |
| andc r3, r3, r2 |
| blr |
| |
| ===-------------------------------------------------------------------------=== |
| |
| int foo(int N, int ***W, int **TK, int X) { |
| int t, i; |
| |
| for (t = 0; t < N; ++t) |
| for (i = 0; i < 4; ++i) |
| W[t / X][i][t % X] = TK[i][t]; |
| |
| return 5; |
| } |
| |
| We generate relatively atrocious code for this loop compared to gcc. |
| |
| We could also strength reduce the rem and the div: |
| http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf |
| |
| ===-------------------------------------------------------------------------=== |
| |
| We generate ugly code for this: |
| |
| void func(unsigned int *ret, float dx, float dy, float dz, float dw) { |
| unsigned code = 0; |
| if(dx < -dw) code |= 1; |
| if(dx > dw) code |= 2; |
| if(dy < -dw) code |= 4; |
| if(dy > dw) code |= 8; |
| if(dz < -dw) code |= 16; |
| if(dz > dw) code |= 32; |
| *ret = code; |
| } |
| |
| ===-------------------------------------------------------------------------=== |
| |
| %struct.B = type { i8, [3 x i8] } |
| |
| define void @bar(%struct.B* %b) { |
| entry: |
| %tmp = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1] |
| %tmp = load i32* %tmp ; <uint> [#uses=1] |
| %tmp3 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1] |
| %tmp4 = load i32* %tmp3 ; <uint> [#uses=1] |
| %tmp8 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=2] |
| %tmp9 = load i32* %tmp8 ; <uint> [#uses=1] |
| %tmp4.mask17 = shl i32 %tmp4, i8 1 ; <uint> [#uses=1] |
| %tmp1415 = and i32 %tmp4.mask17, 2147483648 ; <uint> [#uses=1] |
| %tmp.masked = and i32 %tmp, 2147483648 ; <uint> [#uses=1] |
| %tmp11 = or i32 %tmp1415, %tmp.masked ; <uint> [#uses=1] |
| %tmp12 = and i32 %tmp9, 2147483647 ; <uint> [#uses=1] |
| %tmp13 = or i32 %tmp12, %tmp11 ; <uint> [#uses=1] |
| store i32 %tmp13, i32* %tmp8 |
| ret void |
| } |
| |
| We emit: |
| |
| _foo: |
| lwz r2, 0(r3) |
| slwi r4, r2, 1 |
| or r4, r4, r2 |
| rlwimi r2, r4, 0, 0, 0 |
| stw r2, 0(r3) |
| blr |
| |
| We could collapse a bunch of those ORs and ANDs and generate the following |
| equivalent code: |
| |
| _foo: |
| lwz r2, 0(r3) |
| rlwinm r4, r2, 1, 0, 0 |
| or r2, r2, r4 |
| stw r2, 0(r3) |
| blr |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Consider a function like this: |
| |
| float foo(float X) { return X + 1234.4123f; } |
| |
| The FP constant ends up in the constant pool, so we need to get the LR register. |
| This ends up producing code like this: |
| |
| _foo: |
| .LBB_foo_0: ; entry |
| mflr r11 |
| *** stw r11, 8(r1) |
| bl "L00000$pb" |
| "L00000$pb": |
| mflr r2 |
| addis r2, r2, ha16(.CPI_foo_0-"L00000$pb") |
| lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2) |
| fadds f1, f1, f0 |
| *** lwz r11, 8(r1) |
| mtlr r11 |
| blr |
| |
| This is functional, but there is no reason to spill the LR register all the way |
| to the stack (the two marked instrs): spilling it to a GPR is quite enough. |
| |
| Implementing this will require some codegen improvements. Nate writes: |
| |
| "So basically what we need to support the "no stack frame save and restore" is a |
| generalization of the LR optimization to "callee-save regs". |
| |
| Currently, we have LR marked as a callee-save reg. The register allocator sees |
| that it's callee save, and spills it directly to the stack. |
| |
| Ideally, something like this would happen: |
| |
| LR would be in a separate register class from the GPRs. The class of LR would be |
| marked "unspillable". When the register allocator came across an unspillable |
| reg, it would ask "what is the best class to copy this into that I *can* spill" |
| If it gets a class back, which it will in this case (the gprs), it grabs a free |
| register of that class. If it is then later necessary to spill that reg, so be |
| it. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| We compile this: |
| int test(_Bool X) { |
| return X ? 524288 : 0; |
| } |
| |
| to: |
| _test: |
| cmplwi cr0, r3, 0 |
| lis r2, 8 |
| li r3, 0 |
| beq cr0, LBB1_2 ;entry |
| LBB1_1: ;entry |
| mr r3, r2 |
| LBB1_2: ;entry |
| blr |
| |
| instead of: |
| _test: |
| addic r2,r3,-1 |
| subfe r0,r2,r3 |
| slwi r3,r0,19 |
| blr |
| |
| This sort of thing occurs a lot due to globalopt. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| We compile: |
| |
| define i32 @bar(i32 %x) nounwind readnone ssp { |
| entry: |
| %0 = icmp eq i32 %x, 0 ; <i1> [#uses=1] |
| %neg = sext i1 %0 to i32 ; <i32> [#uses=1] |
| ret i32 %neg |
| } |
| |
| to: |
| |
| _bar: |
| cntlzw r2, r3 |
| slwi r2, r2, 26 |
| srawi r3, r2, 31 |
| blr |
| |
| it would be better to produce: |
| |
| _bar: |
| addic r3,r3,-1 |
| subfe r3,r3,r3 |
| blr |
| |
| ===-------------------------------------------------------------------------=== |
| |
| We generate horrible ppc code for this: |
| |
| #define N 2000000 |
| double a[N],c[N]; |
| void simpleloop() { |
| int j; |
| for (j=0; j<N; j++) |
| c[j] = a[j]; |
| } |
| |
| LBB1_1: ;bb |
| lfdx f0, r3, r4 |
| addi r5, r5, 1 ;; Extra IV for the exit value compare. |
| stfdx f0, r2, r4 |
| addi r4, r4, 8 |
| |
| xoris r6, r5, 30 ;; This is due to a large immediate. |
| cmplwi cr0, r6, 33920 |
| bne cr0, LBB1_1 |
| |
| //===---------------------------------------------------------------------===// |
| |
| This: |
| #include <algorithm> |
| inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b) |
| { return std::make_pair(a + b, a + b < a); } |
| bool no_overflow(unsigned a, unsigned b) |
| { return !full_add(a, b).second; } |
| |
| Should compile to: |
| |
| __Z11no_overflowjj: |
| add r4,r3,r4 |
| subfc r3,r3,r4 |
| li r3,0 |
| adde r3,r3,r3 |
| blr |
| |
| (or better) not: |
| |
| __Z11no_overflowjj: |
| add r2, r4, r3 |
| cmplw cr7, r2, r3 |
| mfcr r2 |
| rlwinm r2, r2, 29, 31, 31 |
| xori r3, r2, 1 |
| blr |
| |
| //===---------------------------------------------------------------------===// |
| |
| We compile some FP comparisons into an mfcr with two rlwinms and an or. For |
| example: |
| #include <math.h> |
| int test(double x, double y) { return islessequal(x, y);} |
| int test2(double x, double y) { return islessgreater(x, y);} |
| int test3(double x, double y) { return !islessequal(x, y);} |
| |
| Compiles into (all three are similar, but the bits differ): |
| |
| _test: |
| fcmpu cr7, f1, f2 |
| mfcr r2 |
| rlwinm r3, r2, 29, 31, 31 |
| rlwinm r2, r2, 31, 31, 31 |
| or r3, r2, r3 |
| blr |
| |
| GCC compiles this into: |
| |
| _test: |
| fcmpu cr7,f1,f2 |
| cror 30,28,30 |
| mfcr r3 |
| rlwinm r3,r3,31,1 |
| blr |
| |
| which is more efficient and can use mfocr. See PR642 for some more context. |
| |
| //===---------------------------------------------------------------------===// |
| |
| void foo(float *data, float d) { |
| long i; |
| for (i = 0; i < 8000; i++) |
| data[i] = d; |
| } |
| void foo2(float *data, float d) { |
| long i; |
| data--; |
| for (i = 0; i < 8000; i++) { |
| data[1] = d; |
| data++; |
| } |
| } |
| |
| These compile to: |
| |
| _foo: |
| li r2, 0 |
| LBB1_1: ; bb |
| addi r4, r2, 4 |
| stfsx f1, r3, r2 |
| cmplwi cr0, r4, 32000 |
| mr r2, r4 |
| bne cr0, LBB1_1 ; bb |
| blr |
| _foo2: |
| li r2, 0 |
| LBB2_1: ; bb |
| addi r4, r2, 4 |
| stfsx f1, r3, r2 |
| cmplwi cr0, r4, 32000 |
| mr r2, r4 |
| bne cr0, LBB2_1 ; bb |
| blr |
| |
| The 'mr' could be eliminated to folding the add into the cmp better. |
| |
| //===---------------------------------------------------------------------===// |
| Codegen for the following (low-probability) case deteriorated considerably |
| when the correctness fixes for unordered comparisons went in (PR 642, 58871). |
| It should be possible to recover the code quality described in the comments. |
| |
| ; RUN: llvm-as < %s | llc -march=ppc32 | grep or | count 3 |
| ; This should produce one 'or' or 'cror' instruction per function. |
| |
| ; RUN: llvm-as < %s | llc -march=ppc32 | grep mfcr | count 3 |
| ; PR2964 |
| |
| define i32 @test(double %x, double %y) nounwind { |
| entry: |
| %tmp3 = fcmp ole double %x, %y ; <i1> [#uses=1] |
| %tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1] |
| ret i32 %tmp345 |
| } |
| |
| define i32 @test2(double %x, double %y) nounwind { |
| entry: |
| %tmp3 = fcmp one double %x, %y ; <i1> [#uses=1] |
| %tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1] |
| ret i32 %tmp345 |
| } |
| |
| define i32 @test3(double %x, double %y) nounwind { |
| entry: |
| %tmp3 = fcmp ugt double %x, %y ; <i1> [#uses=1] |
| %tmp34 = zext i1 %tmp3 to i32 ; <i32> [#uses=1] |
| ret i32 %tmp34 |
| } |
| |
| //===---------------------------------------------------------------------===// |
| for the following code: |
| |
| void foo (float *__restrict__ a, int *__restrict__ b, int n) { |
| a[n] = b[n] * 2.321; |
| } |
| |
| we load b[n] to GPR, then move it VSX register and convert it float. We should |
| use vsx scalar integer load instructions to avoid direct moves |
| |
| //===----------------------------------------------------------------------===// |
| ; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg |
| |
| ; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and |
| ; should not be generated except with -enable-finite-only-fp-math or the like). |
| ; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to |
| ; recognize a more elaborate tree than a simple SETxx. |
| |
| define double @test_FNEG_sel(double %A, double %B, double %C) { |
| %D = fsub double -0.000000e+00, %A ; <double> [#uses=1] |
| %Cond = fcmp ugt double %D, -0.000000e+00 ; <i1> [#uses=1] |
| %E = select i1 %Cond, double %B, double %C ; <double> [#uses=1] |
| ret double %E |
| } |
| |
| //===----------------------------------------------------------------------===// |
| The save/restore sequence for CR in prolog/epilog is terrible: |
| - Each CR subreg is saved individually, rather than doing one save as a unit. |
| - On Darwin, the save is done after the decrement of SP, which means the offset |
| from SP of the save slot can be too big for a store instruction, which means we |
| need an additional register (currently hacked in 96015+96020; the solution there |
| is correct, but poor). |
| - On SVR4 the same thing can happen, and I don't think saving before the SP |
| decrement is safe on that target, as there is no red zone. This is currently |
| broken AFAIK, although it's not a target I can exercise. |
| The following demonstrates the problem: |
| extern void bar(char *p); |
| void foo() { |
| char x[100000]; |
| bar(x); |
| __asm__("" ::: "cr2"); |
| } |
| |
| //===-------------------------------------------------------------------------=== |
| Naming convention for instruction formats is very haphazard. |
| We have agreed on a naming scheme as follows: |
| |
| <INST_form>{_<OP_type><OP_len>}+ |
| |
| Where: |
| INST_form is the instruction format (X-form, etc.) |
| OP_type is the operand type - one of OPC (opcode), RD (register destination), |
| RS (register source), |
| RDp (destination register pair), |
| RSp (source register pair), IM (immediate), |
| XO (extended opcode) |
| OP_len is the length of the operand in bits |
| |
| VSX register operands would be of length 6 (split across two fields), |
| condition register fields of length 3. |
| We would not need denote reserved fields in names of instruction formats. |
| |
| //===----------------------------------------------------------------------===// |
| |
| Instruction fusion was introduced in ISA 2.06 and more opportunities added in |
| ISA 2.07. LLVM needs to add infrastructure to recognize fusion opportunities |
| and force instruction pairs to be scheduled together. |
| |
| ----------------------------------------------------------------------------- |
| |
| More general handling of any_extend and zero_extend: |
| |
| See https://reviews.llvm.org/D24924#555306 |