| //===- Dominators.cpp - Dominator Calculation -----------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements simple dominator construction algorithms for finding |
| // forward dominators. Postdominators are available in libanalysis, but are not |
| // included in libvmcore, because it's not needed. Forward dominators are |
| // needed to support the Verifier pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/GenericDomTreeConstruction.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| bool llvm::VerifyDomInfo = false; |
| static cl::opt<bool, true> |
| VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden, |
| cl::desc("Verify dominator info (time consuming)")); |
| |
| #ifdef EXPENSIVE_CHECKS |
| static constexpr bool ExpensiveChecksEnabled = true; |
| #else |
| static constexpr bool ExpensiveChecksEnabled = false; |
| #endif |
| |
| bool BasicBlockEdge::isSingleEdge() const { |
| const TerminatorInst *TI = Start->getTerminator(); |
| unsigned NumEdgesToEnd = 0; |
| for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { |
| if (TI->getSuccessor(i) == End) |
| ++NumEdgesToEnd; |
| if (NumEdgesToEnd >= 2) |
| return false; |
| } |
| assert(NumEdgesToEnd == 1); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DominatorTree Implementation |
| //===----------------------------------------------------------------------===// |
| // |
| // Provide public access to DominatorTree information. Implementation details |
| // can be found in Dominators.h, GenericDomTree.h, and |
| // GenericDomTreeConstruction.h. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| template class llvm::DomTreeNodeBase<BasicBlock>; |
| template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase |
| template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase |
| |
| template struct llvm::DomTreeBuilder::Update<BasicBlock *>; |
| |
| template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>( |
| DomTreeBuilder::BBDomTree &DT); |
| template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>( |
| DomTreeBuilder::BBPostDomTree &DT); |
| |
| template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>( |
| DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); |
| template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>( |
| DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); |
| |
| template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>( |
| DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); |
| template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>( |
| DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); |
| |
| template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>( |
| DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates); |
| template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>( |
| DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates); |
| |
| template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>( |
| const DomTreeBuilder::BBDomTree &DT, |
| DomTreeBuilder::BBDomTree::VerificationLevel VL); |
| template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>( |
| const DomTreeBuilder::BBPostDomTree &DT, |
| DomTreeBuilder::BBPostDomTree::VerificationLevel VL); |
| |
| bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, |
| FunctionAnalysisManager::Invalidator &) { |
| // Check whether the analysis, all analyses on functions, or the function's |
| // CFG have been preserved. |
| auto PAC = PA.getChecker<DominatorTreeAnalysis>(); |
| return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || |
| PAC.preservedSet<CFGAnalyses>()); |
| } |
| |
| // dominates - Return true if Def dominates a use in User. This performs |
| // the special checks necessary if Def and User are in the same basic block. |
| // Note that Def doesn't dominate a use in Def itself! |
| bool DominatorTree::dominates(const Instruction *Def, |
| const Instruction *User) const { |
| const BasicBlock *UseBB = User->getParent(); |
| const BasicBlock *DefBB = Def->getParent(); |
| |
| // Any unreachable use is dominated, even if Def == User. |
| if (!isReachableFromEntry(UseBB)) |
| return true; |
| |
| // Unreachable definitions don't dominate anything. |
| if (!isReachableFromEntry(DefBB)) |
| return false; |
| |
| // An instruction doesn't dominate a use in itself. |
| if (Def == User) |
| return false; |
| |
| // The value defined by an invoke dominates an instruction only if it |
| // dominates every instruction in UseBB. |
| // A PHI is dominated only if the instruction dominates every possible use in |
| // the UseBB. |
| if (isa<InvokeInst>(Def) || isa<PHINode>(User)) |
| return dominates(Def, UseBB); |
| |
| if (DefBB != UseBB) |
| return dominates(DefBB, UseBB); |
| |
| // Loop through the basic block until we find Def or User. |
| BasicBlock::const_iterator I = DefBB->begin(); |
| for (; &*I != Def && &*I != User; ++I) |
| /*empty*/; |
| |
| return &*I == Def; |
| } |
| |
| // true if Def would dominate a use in any instruction in UseBB. |
| // note that dominates(Def, Def->getParent()) is false. |
| bool DominatorTree::dominates(const Instruction *Def, |
| const BasicBlock *UseBB) const { |
| const BasicBlock *DefBB = Def->getParent(); |
| |
| // Any unreachable use is dominated, even if DefBB == UseBB. |
| if (!isReachableFromEntry(UseBB)) |
| return true; |
| |
| // Unreachable definitions don't dominate anything. |
| if (!isReachableFromEntry(DefBB)) |
| return false; |
| |
| if (DefBB == UseBB) |
| return false; |
| |
| // Invoke results are only usable in the normal destination, not in the |
| // exceptional destination. |
| if (const auto *II = dyn_cast<InvokeInst>(Def)) { |
| BasicBlock *NormalDest = II->getNormalDest(); |
| BasicBlockEdge E(DefBB, NormalDest); |
| return dominates(E, UseBB); |
| } |
| |
| return dominates(DefBB, UseBB); |
| } |
| |
| bool DominatorTree::dominates(const BasicBlockEdge &BBE, |
| const BasicBlock *UseBB) const { |
| // If the BB the edge ends in doesn't dominate the use BB, then the |
| // edge also doesn't. |
| const BasicBlock *Start = BBE.getStart(); |
| const BasicBlock *End = BBE.getEnd(); |
| if (!dominates(End, UseBB)) |
| return false; |
| |
| // Simple case: if the end BB has a single predecessor, the fact that it |
| // dominates the use block implies that the edge also does. |
| if (End->getSinglePredecessor()) |
| return true; |
| |
| // The normal edge from the invoke is critical. Conceptually, what we would |
| // like to do is split it and check if the new block dominates the use. |
| // With X being the new block, the graph would look like: |
| // |
| // DefBB |
| // /\ . . |
| // / \ . . |
| // / \ . . |
| // / \ | | |
| // A X B C |
| // | \ | / |
| // . \|/ |
| // . NormalDest |
| // . |
| // |
| // Given the definition of dominance, NormalDest is dominated by X iff X |
| // dominates all of NormalDest's predecessors (X, B, C in the example). X |
| // trivially dominates itself, so we only have to find if it dominates the |
| // other predecessors. Since the only way out of X is via NormalDest, X can |
| // only properly dominate a node if NormalDest dominates that node too. |
| int IsDuplicateEdge = 0; |
| for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); |
| PI != E; ++PI) { |
| const BasicBlock *BB = *PI; |
| if (BB == Start) { |
| // If there are multiple edges between Start and End, by definition they |
| // can't dominate anything. |
| if (IsDuplicateEdge++) |
| return false; |
| continue; |
| } |
| |
| if (!dominates(End, BB)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { |
| Instruction *UserInst = cast<Instruction>(U.getUser()); |
| // A PHI in the end of the edge is dominated by it. |
| PHINode *PN = dyn_cast<PHINode>(UserInst); |
| if (PN && PN->getParent() == BBE.getEnd() && |
| PN->getIncomingBlock(U) == BBE.getStart()) |
| return true; |
| |
| // Otherwise use the edge-dominates-block query, which |
| // handles the crazy critical edge cases properly. |
| const BasicBlock *UseBB; |
| if (PN) |
| UseBB = PN->getIncomingBlock(U); |
| else |
| UseBB = UserInst->getParent(); |
| return dominates(BBE, UseBB); |
| } |
| |
| bool DominatorTree::dominates(const Instruction *Def, const Use &U) const { |
| Instruction *UserInst = cast<Instruction>(U.getUser()); |
| const BasicBlock *DefBB = Def->getParent(); |
| |
| // Determine the block in which the use happens. PHI nodes use |
| // their operands on edges; simulate this by thinking of the use |
| // happening at the end of the predecessor block. |
| const BasicBlock *UseBB; |
| if (PHINode *PN = dyn_cast<PHINode>(UserInst)) |
| UseBB = PN->getIncomingBlock(U); |
| else |
| UseBB = UserInst->getParent(); |
| |
| // Any unreachable use is dominated, even if Def == User. |
| if (!isReachableFromEntry(UseBB)) |
| return true; |
| |
| // Unreachable definitions don't dominate anything. |
| if (!isReachableFromEntry(DefBB)) |
| return false; |
| |
| // Invoke instructions define their return values on the edges to their normal |
| // successors, so we have to handle them specially. |
| // Among other things, this means they don't dominate anything in |
| // their own block, except possibly a phi, so we don't need to |
| // walk the block in any case. |
| if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { |
| BasicBlock *NormalDest = II->getNormalDest(); |
| BasicBlockEdge E(DefBB, NormalDest); |
| return dominates(E, U); |
| } |
| |
| // If the def and use are in different blocks, do a simple CFG dominator |
| // tree query. |
| if (DefBB != UseBB) |
| return dominates(DefBB, UseBB); |
| |
| // Ok, def and use are in the same block. If the def is an invoke, it |
| // doesn't dominate anything in the block. If it's a PHI, it dominates |
| // everything in the block. |
| if (isa<PHINode>(UserInst)) |
| return true; |
| |
| // Otherwise, just loop through the basic block until we find Def or User. |
| BasicBlock::const_iterator I = DefBB->begin(); |
| for (; &*I != Def && &*I != UserInst; ++I) |
| /*empty*/; |
| |
| return &*I != UserInst; |
| } |
| |
| bool DominatorTree::isReachableFromEntry(const Use &U) const { |
| Instruction *I = dyn_cast<Instruction>(U.getUser()); |
| |
| // ConstantExprs aren't really reachable from the entry block, but they |
| // don't need to be treated like unreachable code either. |
| if (!I) return true; |
| |
| // PHI nodes use their operands on their incoming edges. |
| if (PHINode *PN = dyn_cast<PHINode>(I)) |
| return isReachableFromEntry(PN->getIncomingBlock(U)); |
| |
| // Everything else uses their operands in their own block. |
| return isReachableFromEntry(I->getParent()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DominatorTreeAnalysis and related pass implementations |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the DominatorTreeAnalysis which is used with the new pass |
| // manager. It also implements some methods from utility passes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| DominatorTree DominatorTreeAnalysis::run(Function &F, |
| FunctionAnalysisManager &) { |
| DominatorTree DT; |
| DT.recalculate(F); |
| return DT; |
| } |
| |
| AnalysisKey DominatorTreeAnalysis::Key; |
| |
| DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} |
| |
| PreservedAnalyses DominatorTreePrinterPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| OS << "DominatorTree for function: " << F.getName() << "\n"; |
| AM.getResult<DominatorTreeAnalysis>(F).print(OS); |
| |
| return PreservedAnalyses::all(); |
| } |
| |
| PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| assert(DT.verify()); |
| (void)DT; |
| return PreservedAnalyses::all(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DominatorTreeWrapperPass Implementation |
| //===----------------------------------------------------------------------===// |
| // |
| // The implementation details of the wrapper pass that holds a DominatorTree |
| // suitable for use with the legacy pass manager. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| char DominatorTreeWrapperPass::ID = 0; |
| INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", |
| "Dominator Tree Construction", true, true) |
| |
| bool DominatorTreeWrapperPass::runOnFunction(Function &F) { |
| DT.recalculate(F); |
| return false; |
| } |
| |
| void DominatorTreeWrapperPass::verifyAnalysis() const { |
| if (VerifyDomInfo) |
| assert(DT.verify(DominatorTree::VerificationLevel::Full)); |
| else if (ExpensiveChecksEnabled) |
| assert(DT.verify(DominatorTree::VerificationLevel::Basic)); |
| } |
| |
| void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { |
| DT.print(OS); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DeferredDominance Implementation |
| //===----------------------------------------------------------------------===// |
| // |
| // The implementation details of the DeferredDominance class which allows |
| // one to queue updates to a DominatorTree. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| /// Queues multiple updates and discards duplicates. |
| void DeferredDominance::applyUpdates( |
| ArrayRef<DominatorTree::UpdateType> Updates) { |
| SmallVector<DominatorTree::UpdateType, 8> Seen; |
| for (auto U : Updates) |
| // Avoid duplicates to applyUpdate() to save on analysis. |
| if (std::none_of(Seen.begin(), Seen.end(), |
| [U](DominatorTree::UpdateType S) { return S == U; })) { |
| Seen.push_back(U); |
| applyUpdate(U.getKind(), U.getFrom(), U.getTo()); |
| } |
| } |
| |
| /// Helper method for a single edge insertion. It's almost always better |
| /// to batch updates and call applyUpdates to quickly remove duplicate edges. |
| /// This is best used when there is only a single insertion needed to update |
| /// Dominators. |
| void DeferredDominance::insertEdge(BasicBlock *From, BasicBlock *To) { |
| applyUpdate(DominatorTree::Insert, From, To); |
| } |
| |
| /// Helper method for a single edge deletion. It's almost always better |
| /// to batch updates and call applyUpdates to quickly remove duplicate edges. |
| /// This is best used when there is only a single deletion needed to update |
| /// Dominators. |
| void DeferredDominance::deleteEdge(BasicBlock *From, BasicBlock *To) { |
| applyUpdate(DominatorTree::Delete, From, To); |
| } |
| |
| /// Delays the deletion of a basic block until a flush() event. |
| void DeferredDominance::deleteBB(BasicBlock *DelBB) { |
| assert(DelBB && "Invalid push_back of nullptr DelBB."); |
| assert(pred_empty(DelBB) && "DelBB has one or more predecessors."); |
| // DelBB is unreachable and all its instructions are dead. |
| while (!DelBB->empty()) { |
| Instruction &I = DelBB->back(); |
| // Replace used instructions with an arbitrary value (undef). |
| if (!I.use_empty()) |
| I.replaceAllUsesWith(llvm::UndefValue::get(I.getType())); |
| DelBB->getInstList().pop_back(); |
| } |
| // Make sure DelBB has a valid terminator instruction. As long as DelBB is a |
| // Child of Function F it must contain valid IR. |
| new UnreachableInst(DelBB->getContext(), DelBB); |
| DeletedBBs.insert(DelBB); |
| } |
| |
| /// Returns true if DelBB is awaiting deletion at a flush() event. |
| bool DeferredDominance::pendingDeletedBB(BasicBlock *DelBB) { |
| if (DeletedBBs.empty()) |
| return false; |
| return DeletedBBs.count(DelBB) != 0; |
| } |
| |
| /// Returns true if pending DT updates are queued for a flush() event. |
| bool DeferredDominance::pending() { return !PendUpdates.empty(); } |
| |
| /// Flushes all pending updates and block deletions. Returns a |
| /// correct DominatorTree reference to be used by the caller for analysis. |
| DominatorTree &DeferredDominance::flush() { |
| // Updates to DT must happen before blocks are deleted below. Otherwise the |
| // DT traversal will encounter badref blocks and assert. |
| if (!PendUpdates.empty()) { |
| DT.applyUpdates(PendUpdates); |
| PendUpdates.clear(); |
| } |
| flushDelBB(); |
| return DT; |
| } |
| |
| /// Drops all internal state and forces a (slow) recalculation of the |
| /// DominatorTree based on the current state of the LLVM IR in F. This should |
| /// only be used in corner cases such as the Entry block of F being deleted. |
| void DeferredDominance::recalculate(Function &F) { |
| // flushDelBB must be flushed before the recalculation. The state of the IR |
| // must be consistent before the DT traversal algorithm determines the |
| // actual DT. |
| if (flushDelBB() || !PendUpdates.empty()) { |
| DT.recalculate(F); |
| PendUpdates.clear(); |
| } |
| } |
| |
| /// Debug method to help view the state of pending updates. |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void DeferredDominance::dump() const { |
| raw_ostream &OS = llvm::dbgs(); |
| OS << "PendUpdates:\n"; |
| int I = 0; |
| for (auto U : PendUpdates) { |
| OS << " " << I << " : "; |
| ++I; |
| if (U.getKind() == DominatorTree::Insert) |
| OS << "Insert, "; |
| else |
| OS << "Delete, "; |
| BasicBlock *From = U.getFrom(); |
| if (From) { |
| auto S = From->getName(); |
| if (!From->hasName()) |
| S = "(no name)"; |
| OS << S << "(" << From << "), "; |
| } else { |
| OS << "(badref), "; |
| } |
| BasicBlock *To = U.getTo(); |
| if (To) { |
| auto S = To->getName(); |
| if (!To->hasName()) |
| S = "(no_name)"; |
| OS << S << "(" << To << ")\n"; |
| } else { |
| OS << "(badref)\n"; |
| } |
| } |
| OS << "DeletedBBs:\n"; |
| I = 0; |
| for (auto BB : DeletedBBs) { |
| OS << " " << I << " : "; |
| ++I; |
| if (BB->hasName()) |
| OS << BB->getName() << "("; |
| else |
| OS << "(no_name)("; |
| OS << BB << ")\n"; |
| } |
| } |
| #endif |
| |
| /// Apply an update (Kind, From, To) to the internal queued updates. The |
| /// update is only added when determined to be necessary. Checks for |
| /// self-domination, unnecessary updates, duplicate requests, and balanced |
| /// pairs of requests are all performed. Returns true if the update is |
| /// queued and false if it is discarded. |
| bool DeferredDominance::applyUpdate(DominatorTree::UpdateKind Kind, |
| BasicBlock *From, BasicBlock *To) { |
| if (From == To) |
| return false; // Cannot dominate self; discard update. |
| |
| // Discard updates by inspecting the current state of successors of From. |
| // Since applyUpdate() must be called *after* the Terminator of From is |
| // altered we can determine if the update is unnecessary. |
| bool HasEdge = std::any_of(succ_begin(From), succ_end(From), |
| [To](BasicBlock *B) { return B == To; }); |
| if (Kind == DominatorTree::Insert && !HasEdge) |
| return false; // Unnecessary Insert: edge does not exist in IR. |
| if (Kind == DominatorTree::Delete && HasEdge) |
| return false; // Unnecessary Delete: edge still exists in IR. |
| |
| // Analyze pending updates to determine if the update is unnecessary. |
| DominatorTree::UpdateType Update = {Kind, From, To}; |
| DominatorTree::UpdateType Invert = {Kind != DominatorTree::Insert |
| ? DominatorTree::Insert |
| : DominatorTree::Delete, |
| From, To}; |
| for (auto I = PendUpdates.begin(), E = PendUpdates.end(); I != E; ++I) { |
| if (Update == *I) |
| return false; // Discard duplicate updates. |
| if (Invert == *I) { |
| // Update and Invert are both valid (equivalent to a no-op). Remove |
| // Invert from PendUpdates and discard the Update. |
| PendUpdates.erase(I); |
| return false; |
| } |
| } |
| PendUpdates.push_back(Update); // Save the valid update. |
| return true; |
| } |
| |
| /// Performs all pending basic block deletions. We have to defer the deletion |
| /// of these blocks until after the DominatorTree updates are applied. The |
| /// internal workings of the DominatorTree code expect every update's From |
| /// and To blocks to exist and to be a member of the same Function. |
| bool DeferredDominance::flushDelBB() { |
| if (DeletedBBs.empty()) |
| return false; |
| for (auto *BB : DeletedBBs) |
| BB->eraseFromParent(); |
| DeletedBBs.clear(); |
| return true; |
| } |