| //===-- WinEHPrepare - Prepare exception handling for code generation ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass lowers LLVM IR exception handling into something closer to what the |
| // backend wants for functions using a personality function from a runtime |
| // provided by MSVC. Functions with other personality functions are left alone |
| // and may be prepared by other passes. In particular, all supported MSVC |
| // personality functions require cleanup code to be outlined, and the C++ |
| // personality requires catch handler code to be outlined. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/WinEHFuncInfo.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "winehprepare" |
| |
| static cl::opt<bool> DisableDemotion( |
| "disable-demotion", cl::Hidden, |
| cl::desc( |
| "Clone multicolor basic blocks but do not demote cross scopes"), |
| cl::init(false)); |
| |
| static cl::opt<bool> DisableCleanups( |
| "disable-cleanups", cl::Hidden, |
| cl::desc("Do not remove implausible terminators or other similar cleanups"), |
| cl::init(false)); |
| |
| static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt( |
| "demote-catchswitch-only", cl::Hidden, |
| cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false)); |
| |
| namespace { |
| |
| class WinEHPrepare : public FunctionPass { |
| public: |
| static char ID; // Pass identification, replacement for typeid. |
| WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false) |
| : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {} |
| |
| bool runOnFunction(Function &Fn) override; |
| |
| bool doFinalization(Module &M) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override; |
| |
| StringRef getPassName() const override { |
| return "Windows exception handling preparation"; |
| } |
| |
| private: |
| void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot); |
| void |
| insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, |
| SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist); |
| AllocaInst *insertPHILoads(PHINode *PN, Function &F); |
| void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot, |
| DenseMap<BasicBlock *, Value *> &Loads, Function &F); |
| bool prepareExplicitEH(Function &F); |
| void colorFunclets(Function &F); |
| |
| void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly); |
| void cloneCommonBlocks(Function &F); |
| void removeImplausibleInstructions(Function &F); |
| void cleanupPreparedFunclets(Function &F); |
| void verifyPreparedFunclets(Function &F); |
| |
| bool DemoteCatchSwitchPHIOnly; |
| |
| // All fields are reset by runOnFunction. |
| EHPersonality Personality = EHPersonality::Unknown; |
| |
| const DataLayout *DL = nullptr; |
| DenseMap<BasicBlock *, ColorVector> BlockColors; |
| MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks; |
| }; |
| |
| } // end anonymous namespace |
| |
| char WinEHPrepare::ID = 0; |
| INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions", |
| false, false) |
| |
| FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) { |
| return new WinEHPrepare(DemoteCatchSwitchPHIOnly); |
| } |
| |
| bool WinEHPrepare::runOnFunction(Function &Fn) { |
| if (!Fn.hasPersonalityFn()) |
| return false; |
| |
| // Classify the personality to see what kind of preparation we need. |
| Personality = classifyEHPersonality(Fn.getPersonalityFn()); |
| |
| // Do nothing if this is not a scope-based personality. |
| if (!isScopedEHPersonality(Personality)) |
| return false; |
| |
| DL = &Fn.getParent()->getDataLayout(); |
| return prepareExplicitEH(Fn); |
| } |
| |
| bool WinEHPrepare::doFinalization(Module &M) { return false; } |
| |
| void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {} |
| |
| static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState, |
| const BasicBlock *BB) { |
| CxxUnwindMapEntry UME; |
| UME.ToState = ToState; |
| UME.Cleanup = BB; |
| FuncInfo.CxxUnwindMap.push_back(UME); |
| return FuncInfo.getLastStateNumber(); |
| } |
| |
| static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow, |
| int TryHigh, int CatchHigh, |
| ArrayRef<const CatchPadInst *> Handlers) { |
| WinEHTryBlockMapEntry TBME; |
| TBME.TryLow = TryLow; |
| TBME.TryHigh = TryHigh; |
| TBME.CatchHigh = CatchHigh; |
| assert(TBME.TryLow <= TBME.TryHigh); |
| for (const CatchPadInst *CPI : Handlers) { |
| WinEHHandlerType HT; |
| Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0)); |
| if (TypeInfo->isNullValue()) |
| HT.TypeDescriptor = nullptr; |
| else |
| HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts()); |
| HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue(); |
| HT.Handler = CPI->getParent(); |
| if (auto *AI = |
| dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts())) |
| HT.CatchObj.Alloca = AI; |
| else |
| HT.CatchObj.Alloca = nullptr; |
| TBME.HandlerArray.push_back(HT); |
| } |
| FuncInfo.TryBlockMap.push_back(TBME); |
| } |
| |
| static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) { |
| for (const User *U : CleanupPad->users()) |
| if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) |
| return CRI->getUnwindDest(); |
| return nullptr; |
| } |
| |
| static void calculateStateNumbersForInvokes(const Function *Fn, |
| WinEHFuncInfo &FuncInfo) { |
| auto *F = const_cast<Function *>(Fn); |
| DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F); |
| for (BasicBlock &BB : *F) { |
| auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); |
| if (!II) |
| continue; |
| |
| auto &BBColors = BlockColors[&BB]; |
| assert(BBColors.size() == 1 && "multi-color BB not removed by preparation"); |
| BasicBlock *FuncletEntryBB = BBColors.front(); |
| |
| BasicBlock *FuncletUnwindDest; |
| auto *FuncletPad = |
| dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI()); |
| assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock()); |
| if (!FuncletPad) |
| FuncletUnwindDest = nullptr; |
| else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) |
| FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest(); |
| else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad)) |
| FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad); |
| else |
| llvm_unreachable("unexpected funclet pad!"); |
| |
| BasicBlock *InvokeUnwindDest = II->getUnwindDest(); |
| int BaseState = -1; |
| if (FuncletUnwindDest == InvokeUnwindDest) { |
| auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad); |
| if (BaseStateI != FuncInfo.FuncletBaseStateMap.end()) |
| BaseState = BaseStateI->second; |
| } |
| |
| if (BaseState != -1) { |
| FuncInfo.InvokeStateMap[II] = BaseState; |
| } else { |
| Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI(); |
| assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!"); |
| FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst]; |
| } |
| } |
| } |
| |
| // Given BB which ends in an unwind edge, return the EHPad that this BB belongs |
| // to. If the unwind edge came from an invoke, return null. |
| static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB, |
| Value *ParentPad) { |
| const TerminatorInst *TI = BB->getTerminator(); |
| if (isa<InvokeInst>(TI)) |
| return nullptr; |
| if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { |
| if (CatchSwitch->getParentPad() != ParentPad) |
| return nullptr; |
| return BB; |
| } |
| assert(!TI->isEHPad() && "unexpected EHPad!"); |
| auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad(); |
| if (CleanupPad->getParentPad() != ParentPad) |
| return nullptr; |
| return CleanupPad->getParent(); |
| } |
| |
| static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo, |
| const Instruction *FirstNonPHI, |
| int ParentState) { |
| const BasicBlock *BB = FirstNonPHI->getParent(); |
| assert(BB->isEHPad() && "not a funclet!"); |
| |
| if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) { |
| assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && |
| "shouldn't revist catch funclets!"); |
| |
| SmallVector<const CatchPadInst *, 2> Handlers; |
| for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { |
| auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI()); |
| Handlers.push_back(CatchPad); |
| } |
| int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr); |
| FuncInfo.EHPadStateMap[CatchSwitch] = TryLow; |
| for (const BasicBlock *PredBlock : predecessors(BB)) |
| if ((PredBlock = getEHPadFromPredecessor(PredBlock, |
| CatchSwitch->getParentPad()))) |
| calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), |
| TryLow); |
| int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr); |
| |
| // catchpads are separate funclets in C++ EH due to the way rethrow works. |
| int TryHigh = CatchLow - 1; |
| for (const auto *CatchPad : Handlers) { |
| FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow; |
| for (const User *U : CatchPad->users()) { |
| const auto *UserI = cast<Instruction>(U); |
| if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) { |
| BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); |
| if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
| calculateCXXStateNumbers(FuncInfo, UserI, CatchLow); |
| } |
| if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) { |
| BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad); |
| // If a nested cleanup pad reports a null unwind destination and the |
| // enclosing catch pad doesn't it must be post-dominated by an |
| // unreachable instruction. |
| if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
| calculateCXXStateNumbers(FuncInfo, UserI, CatchLow); |
| } |
| } |
| } |
| int CatchHigh = FuncInfo.getLastStateNumber(); |
| addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers); |
| LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n'); |
| LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh |
| << '\n'); |
| LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh |
| << '\n'); |
| } else { |
| auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI); |
| |
| // It's possible for a cleanup to be visited twice: it might have multiple |
| // cleanupret instructions. |
| if (FuncInfo.EHPadStateMap.count(CleanupPad)) |
| return; |
| |
| int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB); |
| FuncInfo.EHPadStateMap[CleanupPad] = CleanupState; |
| LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " |
| << BB->getName() << '\n'); |
| for (const BasicBlock *PredBlock : predecessors(BB)) { |
| if ((PredBlock = getEHPadFromPredecessor(PredBlock, |
| CleanupPad->getParentPad()))) { |
| calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), |
| CleanupState); |
| } |
| } |
| for (const User *U : CleanupPad->users()) { |
| const auto *UserI = cast<Instruction>(U); |
| if (UserI->isEHPad()) |
| report_fatal_error("Cleanup funclets for the MSVC++ personality cannot " |
| "contain exceptional actions"); |
| } |
| } |
| } |
| |
| static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState, |
| const Function *Filter, const BasicBlock *Handler) { |
| SEHUnwindMapEntry Entry; |
| Entry.ToState = ParentState; |
| Entry.IsFinally = false; |
| Entry.Filter = Filter; |
| Entry.Handler = Handler; |
| FuncInfo.SEHUnwindMap.push_back(Entry); |
| return FuncInfo.SEHUnwindMap.size() - 1; |
| } |
| |
| static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState, |
| const BasicBlock *Handler) { |
| SEHUnwindMapEntry Entry; |
| Entry.ToState = ParentState; |
| Entry.IsFinally = true; |
| Entry.Filter = nullptr; |
| Entry.Handler = Handler; |
| FuncInfo.SEHUnwindMap.push_back(Entry); |
| return FuncInfo.SEHUnwindMap.size() - 1; |
| } |
| |
| static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo, |
| const Instruction *FirstNonPHI, |
| int ParentState) { |
| const BasicBlock *BB = FirstNonPHI->getParent(); |
| assert(BB->isEHPad() && "no a funclet!"); |
| |
| if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) { |
| assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && |
| "shouldn't revist catch funclets!"); |
| |
| // Extract the filter function and the __except basic block and create a |
| // state for them. |
| assert(CatchSwitch->getNumHandlers() == 1 && |
| "SEH doesn't have multiple handlers per __try"); |
| const auto *CatchPad = |
| cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI()); |
| const BasicBlock *CatchPadBB = CatchPad->getParent(); |
| const Constant *FilterOrNull = |
| cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts()); |
| const Function *Filter = dyn_cast<Function>(FilterOrNull); |
| assert((Filter || FilterOrNull->isNullValue()) && |
| "unexpected filter value"); |
| int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB); |
| |
| // Everything in the __try block uses TryState as its parent state. |
| FuncInfo.EHPadStateMap[CatchSwitch] = TryState; |
| LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB " |
| << CatchPadBB->getName() << '\n'); |
| for (const BasicBlock *PredBlock : predecessors(BB)) |
| if ((PredBlock = getEHPadFromPredecessor(PredBlock, |
| CatchSwitch->getParentPad()))) |
| calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), |
| TryState); |
| |
| // Everything in the __except block unwinds to ParentState, just like code |
| // outside the __try. |
| for (const User *U : CatchPad->users()) { |
| const auto *UserI = cast<Instruction>(U); |
| if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) { |
| BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); |
| if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
| calculateSEHStateNumbers(FuncInfo, UserI, ParentState); |
| } |
| if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) { |
| BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad); |
| // If a nested cleanup pad reports a null unwind destination and the |
| // enclosing catch pad doesn't it must be post-dominated by an |
| // unreachable instruction. |
| if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
| calculateSEHStateNumbers(FuncInfo, UserI, ParentState); |
| } |
| } |
| } else { |
| auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI); |
| |
| // It's possible for a cleanup to be visited twice: it might have multiple |
| // cleanupret instructions. |
| if (FuncInfo.EHPadStateMap.count(CleanupPad)) |
| return; |
| |
| int CleanupState = addSEHFinally(FuncInfo, ParentState, BB); |
| FuncInfo.EHPadStateMap[CleanupPad] = CleanupState; |
| LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " |
| << BB->getName() << '\n'); |
| for (const BasicBlock *PredBlock : predecessors(BB)) |
| if ((PredBlock = |
| getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad()))) |
| calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), |
| CleanupState); |
| for (const User *U : CleanupPad->users()) { |
| const auto *UserI = cast<Instruction>(U); |
| if (UserI->isEHPad()) |
| report_fatal_error("Cleanup funclets for the SEH personality cannot " |
| "contain exceptional actions"); |
| } |
| } |
| } |
| |
| static bool isTopLevelPadForMSVC(const Instruction *EHPad) { |
| if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad)) |
| return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) && |
| CatchSwitch->unwindsToCaller(); |
| if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad)) |
| return isa<ConstantTokenNone>(CleanupPad->getParentPad()) && |
| getCleanupRetUnwindDest(CleanupPad) == nullptr; |
| if (isa<CatchPadInst>(EHPad)) |
| return false; |
| llvm_unreachable("unexpected EHPad!"); |
| } |
| |
| void llvm::calculateSEHStateNumbers(const Function *Fn, |
| WinEHFuncInfo &FuncInfo) { |
| // Don't compute state numbers twice. |
| if (!FuncInfo.SEHUnwindMap.empty()) |
| return; |
| |
| for (const BasicBlock &BB : *Fn) { |
| if (!BB.isEHPad()) |
| continue; |
| const Instruction *FirstNonPHI = BB.getFirstNonPHI(); |
| if (!isTopLevelPadForMSVC(FirstNonPHI)) |
| continue; |
| ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1); |
| } |
| |
| calculateStateNumbersForInvokes(Fn, FuncInfo); |
| } |
| |
| void llvm::calculateWinCXXEHStateNumbers(const Function *Fn, |
| WinEHFuncInfo &FuncInfo) { |
| // Return if it's already been done. |
| if (!FuncInfo.EHPadStateMap.empty()) |
| return; |
| |
| for (const BasicBlock &BB : *Fn) { |
| if (!BB.isEHPad()) |
| continue; |
| const Instruction *FirstNonPHI = BB.getFirstNonPHI(); |
| if (!isTopLevelPadForMSVC(FirstNonPHI)) |
| continue; |
| calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1); |
| } |
| |
| calculateStateNumbersForInvokes(Fn, FuncInfo); |
| } |
| |
| static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState, |
| int TryParentState, ClrHandlerType HandlerType, |
| uint32_t TypeToken, const BasicBlock *Handler) { |
| ClrEHUnwindMapEntry Entry; |
| Entry.HandlerParentState = HandlerParentState; |
| Entry.TryParentState = TryParentState; |
| Entry.Handler = Handler; |
| Entry.HandlerType = HandlerType; |
| Entry.TypeToken = TypeToken; |
| FuncInfo.ClrEHUnwindMap.push_back(Entry); |
| return FuncInfo.ClrEHUnwindMap.size() - 1; |
| } |
| |
| void llvm::calculateClrEHStateNumbers(const Function *Fn, |
| WinEHFuncInfo &FuncInfo) { |
| // Return if it's already been done. |
| if (!FuncInfo.EHPadStateMap.empty()) |
| return; |
| |
| // This numbering assigns one state number to each catchpad and cleanuppad. |
| // It also computes two tree-like relations over states: |
| // 1) Each state has a "HandlerParentState", which is the state of the next |
| // outer handler enclosing this state's handler (same as nearest ancestor |
| // per the ParentPad linkage on EH pads, but skipping over catchswitches). |
| // 2) Each state has a "TryParentState", which: |
| // a) for a catchpad that's not the last handler on its catchswitch, is |
| // the state of the next catchpad on that catchswitch |
| // b) for all other pads, is the state of the pad whose try region is the |
| // next outer try region enclosing this state's try region. The "try |
| // regions are not present as such in the IR, but will be inferred |
| // based on the placement of invokes and pads which reach each other |
| // by exceptional exits |
| // Catchswitches do not get their own states, but each gets mapped to the |
| // state of its first catchpad. |
| |
| // Step one: walk down from outermost to innermost funclets, assigning each |
| // catchpad and cleanuppad a state number. Add an entry to the |
| // ClrEHUnwindMap for each state, recording its HandlerParentState and |
| // handler attributes. Record the TryParentState as well for each catchpad |
| // that's not the last on its catchswitch, but initialize all other entries' |
| // TryParentStates to a sentinel -1 value that the next pass will update. |
| |
| // Seed a worklist with pads that have no parent. |
| SmallVector<std::pair<const Instruction *, int>, 8> Worklist; |
| for (const BasicBlock &BB : *Fn) { |
| const Instruction *FirstNonPHI = BB.getFirstNonPHI(); |
| const Value *ParentPad; |
| if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI)) |
| ParentPad = CPI->getParentPad(); |
| else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI)) |
| ParentPad = CSI->getParentPad(); |
| else |
| continue; |
| if (isa<ConstantTokenNone>(ParentPad)) |
| Worklist.emplace_back(FirstNonPHI, -1); |
| } |
| |
| // Use the worklist to visit all pads, from outer to inner. Record |
| // HandlerParentState for all pads. Record TryParentState only for catchpads |
| // that aren't the last on their catchswitch (setting all other entries' |
| // TryParentStates to an initial value of -1). This loop is also responsible |
| // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and |
| // catchswitches. |
| while (!Worklist.empty()) { |
| const Instruction *Pad; |
| int HandlerParentState; |
| std::tie(Pad, HandlerParentState) = Worklist.pop_back_val(); |
| |
| if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) { |
| // Create the entry for this cleanup with the appropriate handler |
| // properties. Finally and fault handlers are distinguished by arity. |
| ClrHandlerType HandlerType = |
| (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault |
| : ClrHandlerType::Finally); |
| int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1, |
| HandlerType, 0, Pad->getParent()); |
| // Queue any child EH pads on the worklist. |
| for (const User *U : Cleanup->users()) |
| if (const auto *I = dyn_cast<Instruction>(U)) |
| if (I->isEHPad()) |
| Worklist.emplace_back(I, CleanupState); |
| // Remember this pad's state. |
| FuncInfo.EHPadStateMap[Cleanup] = CleanupState; |
| } else { |
| // Walk the handlers of this catchswitch in reverse order since all but |
| // the last need to set the following one as its TryParentState. |
| const auto *CatchSwitch = cast<CatchSwitchInst>(Pad); |
| int CatchState = -1, FollowerState = -1; |
| SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers()); |
| for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend(); |
| CBI != CBE; ++CBI, FollowerState = CatchState) { |
| const BasicBlock *CatchBlock = *CBI; |
| // Create the entry for this catch with the appropriate handler |
| // properties. |
| const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI()); |
| uint32_t TypeToken = static_cast<uint32_t>( |
| cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue()); |
| CatchState = |
| addClrEHHandler(FuncInfo, HandlerParentState, FollowerState, |
| ClrHandlerType::Catch, TypeToken, CatchBlock); |
| // Queue any child EH pads on the worklist. |
| for (const User *U : Catch->users()) |
| if (const auto *I = dyn_cast<Instruction>(U)) |
| if (I->isEHPad()) |
| Worklist.emplace_back(I, CatchState); |
| // Remember this catch's state. |
| FuncInfo.EHPadStateMap[Catch] = CatchState; |
| } |
| // Associate the catchswitch with the state of its first catch. |
| assert(CatchSwitch->getNumHandlers()); |
| FuncInfo.EHPadStateMap[CatchSwitch] = CatchState; |
| } |
| } |
| |
| // Step two: record the TryParentState of each state. For cleanuppads that |
| // don't have cleanuprets, we may need to infer this from their child pads, |
| // so visit pads in descendant-most to ancestor-most order. |
| for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(), |
| End = FuncInfo.ClrEHUnwindMap.rend(); |
| Entry != End; ++Entry) { |
| const Instruction *Pad = |
| Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI(); |
| // For most pads, the TryParentState is the state associated with the |
| // unwind dest of exceptional exits from it. |
| const BasicBlock *UnwindDest; |
| if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) { |
| // If a catch is not the last in its catchswitch, its TryParentState is |
| // the state associated with the next catch in the switch, even though |
| // that's not the unwind dest of exceptions escaping the catch. Those |
| // cases were already assigned a TryParentState in the first pass, so |
| // skip them. |
| if (Entry->TryParentState != -1) |
| continue; |
| // Otherwise, get the unwind dest from the catchswitch. |
| UnwindDest = Catch->getCatchSwitch()->getUnwindDest(); |
| } else { |
| const auto *Cleanup = cast<CleanupPadInst>(Pad); |
| UnwindDest = nullptr; |
| for (const User *U : Cleanup->users()) { |
| if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { |
| // Common and unambiguous case -- cleanupret indicates cleanup's |
| // unwind dest. |
| UnwindDest = CleanupRet->getUnwindDest(); |
| break; |
| } |
| |
| // Get an unwind dest for the user |
| const BasicBlock *UserUnwindDest = nullptr; |
| if (auto *Invoke = dyn_cast<InvokeInst>(U)) { |
| UserUnwindDest = Invoke->getUnwindDest(); |
| } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) { |
| UserUnwindDest = CatchSwitch->getUnwindDest(); |
| } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) { |
| int UserState = FuncInfo.EHPadStateMap[ChildCleanup]; |
| int UserUnwindState = |
| FuncInfo.ClrEHUnwindMap[UserState].TryParentState; |
| if (UserUnwindState != -1) |
| UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState] |
| .Handler.get<const BasicBlock *>(); |
| } |
| |
| // Not having an unwind dest for this user might indicate that it |
| // doesn't unwind, so can't be taken as proof that the cleanup itself |
| // may unwind to caller (see e.g. SimplifyUnreachable and |
| // RemoveUnwindEdge). |
| if (!UserUnwindDest) |
| continue; |
| |
| // Now we have an unwind dest for the user, but we need to see if it |
| // unwinds all the way out of the cleanup or if it stays within it. |
| const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI(); |
| const Value *UserUnwindParent; |
| if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad)) |
| UserUnwindParent = CSI->getParentPad(); |
| else |
| UserUnwindParent = |
| cast<CleanupPadInst>(UserUnwindPad)->getParentPad(); |
| |
| // The unwind stays within the cleanup iff it targets a child of the |
| // cleanup. |
| if (UserUnwindParent == Cleanup) |
| continue; |
| |
| // This unwind exits the cleanup, so its dest is the cleanup's dest. |
| UnwindDest = UserUnwindDest; |
| break; |
| } |
| } |
| |
| // Record the state of the unwind dest as the TryParentState. |
| int UnwindDestState; |
| |
| // If UnwindDest is null at this point, either the pad in question can |
| // be exited by unwind to caller, or it cannot be exited by unwind. In |
| // either case, reporting such cases as unwinding to caller is correct. |
| // This can lead to EH tables that "look strange" -- if this pad's is in |
| // a parent funclet which has other children that do unwind to an enclosing |
| // pad, the try region for this pad will be missing the "duplicate" EH |
| // clause entries that you'd expect to see covering the whole parent. That |
| // should be benign, since the unwind never actually happens. If it were |
| // an issue, we could add a subsequent pass that pushes unwind dests down |
| // from parents that have them to children that appear to unwind to caller. |
| if (!UnwindDest) { |
| UnwindDestState = -1; |
| } else { |
| UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()]; |
| } |
| |
| Entry->TryParentState = UnwindDestState; |
| } |
| |
| // Step three: transfer information from pads to invokes. |
| calculateStateNumbersForInvokes(Fn, FuncInfo); |
| } |
| |
| void WinEHPrepare::colorFunclets(Function &F) { |
| BlockColors = colorEHFunclets(F); |
| |
| // Invert the map from BB to colors to color to BBs. |
| for (BasicBlock &BB : F) { |
| ColorVector &Colors = BlockColors[&BB]; |
| for (BasicBlock *Color : Colors) |
| FuncletBlocks[Color].push_back(&BB); |
| } |
| } |
| |
| void WinEHPrepare::demotePHIsOnFunclets(Function &F, |
| bool DemoteCatchSwitchPHIOnly) { |
| // Strip PHI nodes off of EH pads. |
| SmallVector<PHINode *, 16> PHINodes; |
| for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) { |
| BasicBlock *BB = &*FI++; |
| if (!BB->isEHPad()) |
| continue; |
| if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB->getFirstNonPHI())) |
| continue; |
| |
| for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { |
| Instruction *I = &*BI++; |
| auto *PN = dyn_cast<PHINode>(I); |
| // Stop at the first non-PHI. |
| if (!PN) |
| break; |
| |
| AllocaInst *SpillSlot = insertPHILoads(PN, F); |
| if (SpillSlot) |
| insertPHIStores(PN, SpillSlot); |
| |
| PHINodes.push_back(PN); |
| } |
| } |
| |
| for (auto *PN : PHINodes) { |
| // There may be lingering uses on other EH PHIs being removed |
| PN->replaceAllUsesWith(UndefValue::get(PN->getType())); |
| PN->eraseFromParent(); |
| } |
| } |
| |
| void WinEHPrepare::cloneCommonBlocks(Function &F) { |
| // We need to clone all blocks which belong to multiple funclets. Values are |
| // remapped throughout the funclet to propagate both the new instructions |
| // *and* the new basic blocks themselves. |
| for (auto &Funclets : FuncletBlocks) { |
| BasicBlock *FuncletPadBB = Funclets.first; |
| std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second; |
| Value *FuncletToken; |
| if (FuncletPadBB == &F.getEntryBlock()) |
| FuncletToken = ConstantTokenNone::get(F.getContext()); |
| else |
| FuncletToken = FuncletPadBB->getFirstNonPHI(); |
| |
| std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone; |
| ValueToValueMapTy VMap; |
| for (BasicBlock *BB : BlocksInFunclet) { |
| ColorVector &ColorsForBB = BlockColors[BB]; |
| // We don't need to do anything if the block is monochromatic. |
| size_t NumColorsForBB = ColorsForBB.size(); |
| if (NumColorsForBB == 1) |
| continue; |
| |
| DEBUG_WITH_TYPE("winehprepare-coloring", |
| dbgs() << " Cloning block \'" << BB->getName() |
| << "\' for funclet \'" << FuncletPadBB->getName() |
| << "\'.\n"); |
| |
| // Create a new basic block and copy instructions into it! |
| BasicBlock *CBB = |
| CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName())); |
| // Insert the clone immediately after the original to ensure determinism |
| // and to keep the same relative ordering of any funclet's blocks. |
| CBB->insertInto(&F, BB->getNextNode()); |
| |
| // Add basic block mapping. |
| VMap[BB] = CBB; |
| |
| // Record delta operations that we need to perform to our color mappings. |
| Orig2Clone.emplace_back(BB, CBB); |
| } |
| |
| // If nothing was cloned, we're done cloning in this funclet. |
| if (Orig2Clone.empty()) |
| continue; |
| |
| // Update our color mappings to reflect that one block has lost a color and |
| // another has gained a color. |
| for (auto &BBMapping : Orig2Clone) { |
| BasicBlock *OldBlock = BBMapping.first; |
| BasicBlock *NewBlock = BBMapping.second; |
| |
| BlocksInFunclet.push_back(NewBlock); |
| ColorVector &NewColors = BlockColors[NewBlock]; |
| assert(NewColors.empty() && "A new block should only have one color!"); |
| NewColors.push_back(FuncletPadBB); |
| |
| DEBUG_WITH_TYPE("winehprepare-coloring", |
| dbgs() << " Assigned color \'" << FuncletPadBB->getName() |
| << "\' to block \'" << NewBlock->getName() |
| << "\'.\n"); |
| |
| BlocksInFunclet.erase( |
| std::remove(BlocksInFunclet.begin(), BlocksInFunclet.end(), OldBlock), |
| BlocksInFunclet.end()); |
| ColorVector &OldColors = BlockColors[OldBlock]; |
| OldColors.erase( |
| std::remove(OldColors.begin(), OldColors.end(), FuncletPadBB), |
| OldColors.end()); |
| |
| DEBUG_WITH_TYPE("winehprepare-coloring", |
| dbgs() << " Removed color \'" << FuncletPadBB->getName() |
| << "\' from block \'" << OldBlock->getName() |
| << "\'.\n"); |
| } |
| |
| // Loop over all of the instructions in this funclet, fixing up operand |
| // references as we go. This uses VMap to do all the hard work. |
| for (BasicBlock *BB : BlocksInFunclet) |
| // Loop over all instructions, fixing each one as we find it... |
| for (Instruction &I : *BB) |
| RemapInstruction(&I, VMap, |
| RF_IgnoreMissingLocals | RF_NoModuleLevelChanges); |
| |
| // Catchrets targeting cloned blocks need to be updated separately from |
| // the loop above because they are not in the current funclet. |
| SmallVector<CatchReturnInst *, 2> FixupCatchrets; |
| for (auto &BBMapping : Orig2Clone) { |
| BasicBlock *OldBlock = BBMapping.first; |
| BasicBlock *NewBlock = BBMapping.second; |
| |
| FixupCatchrets.clear(); |
| for (BasicBlock *Pred : predecessors(OldBlock)) |
| if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator())) |
| if (CatchRet->getCatchSwitchParentPad() == FuncletToken) |
| FixupCatchrets.push_back(CatchRet); |
| |
| for (CatchReturnInst *CatchRet : FixupCatchrets) |
| CatchRet->setSuccessor(NewBlock); |
| } |
| |
| auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) { |
| unsigned NumPreds = PN->getNumIncomingValues(); |
| for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd; |
| ++PredIdx) { |
| BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx); |
| bool EdgeTargetsFunclet; |
| if (auto *CRI = |
| dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) { |
| EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken); |
| } else { |
| ColorVector &IncomingColors = BlockColors[IncomingBlock]; |
| assert(!IncomingColors.empty() && "Block not colored!"); |
| assert((IncomingColors.size() == 1 || |
| llvm::all_of(IncomingColors, |
| [&](BasicBlock *Color) { |
| return Color != FuncletPadBB; |
| })) && |
| "Cloning should leave this funclet's blocks monochromatic"); |
| EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB); |
| } |
| if (IsForOldBlock != EdgeTargetsFunclet) |
| continue; |
| PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false); |
| // Revisit the next entry. |
| --PredIdx; |
| --PredEnd; |
| } |
| }; |
| |
| for (auto &BBMapping : Orig2Clone) { |
| BasicBlock *OldBlock = BBMapping.first; |
| BasicBlock *NewBlock = BBMapping.second; |
| for (PHINode &OldPN : OldBlock->phis()) { |
| UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true); |
| } |
| for (PHINode &NewPN : NewBlock->phis()) { |
| UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false); |
| } |
| } |
| |
| // Check to see if SuccBB has PHI nodes. If so, we need to add entries to |
| // the PHI nodes for NewBB now. |
| for (auto &BBMapping : Orig2Clone) { |
| BasicBlock *OldBlock = BBMapping.first; |
| BasicBlock *NewBlock = BBMapping.second; |
| for (BasicBlock *SuccBB : successors(NewBlock)) { |
| for (PHINode &SuccPN : SuccBB->phis()) { |
| // Ok, we have a PHI node. Figure out what the incoming value was for |
| // the OldBlock. |
| int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock); |
| if (OldBlockIdx == -1) |
| break; |
| Value *IV = SuccPN.getIncomingValue(OldBlockIdx); |
| |
| // Remap the value if necessary. |
| if (auto *Inst = dyn_cast<Instruction>(IV)) { |
| ValueToValueMapTy::iterator I = VMap.find(Inst); |
| if (I != VMap.end()) |
| IV = I->second; |
| } |
| |
| SuccPN.addIncoming(IV, NewBlock); |
| } |
| } |
| } |
| |
| for (ValueToValueMapTy::value_type VT : VMap) { |
| // If there were values defined in BB that are used outside the funclet, |
| // then we now have to update all uses of the value to use either the |
| // original value, the cloned value, or some PHI derived value. This can |
| // require arbitrary PHI insertion, of which we are prepared to do, clean |
| // these up now. |
| SmallVector<Use *, 16> UsesToRename; |
| |
| auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first)); |
| if (!OldI) |
| continue; |
| auto *NewI = cast<Instruction>(VT.second); |
| // Scan all uses of this instruction to see if it is used outside of its |
| // funclet, and if so, record them in UsesToRename. |
| for (Use &U : OldI->uses()) { |
| Instruction *UserI = cast<Instruction>(U.getUser()); |
| BasicBlock *UserBB = UserI->getParent(); |
| ColorVector &ColorsForUserBB = BlockColors[UserBB]; |
| assert(!ColorsForUserBB.empty()); |
| if (ColorsForUserBB.size() > 1 || |
| *ColorsForUserBB.begin() != FuncletPadBB) |
| UsesToRename.push_back(&U); |
| } |
| |
| // If there are no uses outside the block, we're done with this |
| // instruction. |
| if (UsesToRename.empty()) |
| continue; |
| |
| // We found a use of OldI outside of the funclet. Rename all uses of OldI |
| // that are outside its funclet to be uses of the appropriate PHI node |
| // etc. |
| SSAUpdater SSAUpdate; |
| SSAUpdate.Initialize(OldI->getType(), OldI->getName()); |
| SSAUpdate.AddAvailableValue(OldI->getParent(), OldI); |
| SSAUpdate.AddAvailableValue(NewI->getParent(), NewI); |
| |
| while (!UsesToRename.empty()) |
| SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val()); |
| } |
| } |
| } |
| |
| void WinEHPrepare::removeImplausibleInstructions(Function &F) { |
| // Remove implausible terminators and replace them with UnreachableInst. |
| for (auto &Funclet : FuncletBlocks) { |
| BasicBlock *FuncletPadBB = Funclet.first; |
| std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second; |
| Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI(); |
| auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI); |
| auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad); |
| auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad); |
| |
| for (BasicBlock *BB : BlocksInFunclet) { |
| for (Instruction &I : *BB) { |
| CallSite CS(&I); |
| if (!CS) |
| continue; |
| |
| Value *FuncletBundleOperand = nullptr; |
| if (auto BU = CS.getOperandBundle(LLVMContext::OB_funclet)) |
| FuncletBundleOperand = BU->Inputs.front(); |
| |
| if (FuncletBundleOperand == FuncletPad) |
| continue; |
| |
| // Skip call sites which are nounwind intrinsics or inline asm. |
| auto *CalledFn = |
| dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); |
| if (CalledFn && ((CalledFn->isIntrinsic() && CS.doesNotThrow()) || |
| CS.isInlineAsm())) |
| continue; |
| |
| // This call site was not part of this funclet, remove it. |
| if (CS.isInvoke()) { |
| // Remove the unwind edge if it was an invoke. |
| removeUnwindEdge(BB); |
| // Get a pointer to the new call. |
| BasicBlock::iterator CallI = |
| std::prev(BB->getTerminator()->getIterator()); |
| auto *CI = cast<CallInst>(&*CallI); |
| changeToUnreachable(CI, /*UseLLVMTrap=*/false); |
| } else { |
| changeToUnreachable(&I, /*UseLLVMTrap=*/false); |
| } |
| |
| // There are no more instructions in the block (except for unreachable), |
| // we are done. |
| break; |
| } |
| |
| TerminatorInst *TI = BB->getTerminator(); |
| // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst. |
| bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad; |
| // The token consumed by a CatchReturnInst must match the funclet token. |
| bool IsUnreachableCatchret = false; |
| if (auto *CRI = dyn_cast<CatchReturnInst>(TI)) |
| IsUnreachableCatchret = CRI->getCatchPad() != CatchPad; |
| // The token consumed by a CleanupReturnInst must match the funclet token. |
| bool IsUnreachableCleanupret = false; |
| if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) |
| IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad; |
| if (IsUnreachableRet || IsUnreachableCatchret || |
| IsUnreachableCleanupret) { |
| changeToUnreachable(TI, /*UseLLVMTrap=*/false); |
| } else if (isa<InvokeInst>(TI)) { |
| if (Personality == EHPersonality::MSVC_CXX && CleanupPad) { |
| // Invokes within a cleanuppad for the MSVC++ personality never |
| // transfer control to their unwind edge: the personality will |
| // terminate the program. |
| removeUnwindEdge(BB); |
| } |
| } |
| } |
| } |
| } |
| |
| void WinEHPrepare::cleanupPreparedFunclets(Function &F) { |
| // Clean-up some of the mess we made by removing useles PHI nodes, trivial |
| // branches, etc. |
| for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) { |
| BasicBlock *BB = &*FI++; |
| SimplifyInstructionsInBlock(BB); |
| ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true); |
| MergeBlockIntoPredecessor(BB); |
| } |
| |
| // We might have some unreachable blocks after cleaning up some impossible |
| // control flow. |
| removeUnreachableBlocks(F); |
| } |
| |
| #ifndef NDEBUG |
| void WinEHPrepare::verifyPreparedFunclets(Function &F) { |
| for (BasicBlock &BB : F) { |
| size_t NumColors = BlockColors[&BB].size(); |
| assert(NumColors == 1 && "Expected monochromatic BB!"); |
| if (NumColors == 0) |
| report_fatal_error("Uncolored BB!"); |
| if (NumColors > 1) |
| report_fatal_error("Multicolor BB!"); |
| assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && |
| "EH Pad still has a PHI!"); |
| } |
| } |
| #endif |
| |
| bool WinEHPrepare::prepareExplicitEH(Function &F) { |
| // Remove unreachable blocks. It is not valuable to assign them a color and |
| // their existence can trick us into thinking values are alive when they are |
| // not. |
| removeUnreachableBlocks(F); |
| |
| // Determine which blocks are reachable from which funclet entries. |
| colorFunclets(F); |
| |
| cloneCommonBlocks(F); |
| |
| if (!DisableDemotion) |
| demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly || |
| DemoteCatchSwitchPHIOnlyOpt); |
| |
| if (!DisableCleanups) { |
| LLVM_DEBUG(verifyFunction(F)); |
| removeImplausibleInstructions(F); |
| |
| LLVM_DEBUG(verifyFunction(F)); |
| cleanupPreparedFunclets(F); |
| } |
| |
| LLVM_DEBUG(verifyPreparedFunclets(F)); |
| // Recolor the CFG to verify that all is well. |
| LLVM_DEBUG(colorFunclets(F)); |
| LLVM_DEBUG(verifyPreparedFunclets(F)); |
| |
| BlockColors.clear(); |
| FuncletBlocks.clear(); |
| |
| return true; |
| } |
| |
| // TODO: Share loads when one use dominates another, or when a catchpad exit |
| // dominates uses (needs dominators). |
| AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) { |
| BasicBlock *PHIBlock = PN->getParent(); |
| AllocaInst *SpillSlot = nullptr; |
| Instruction *EHPad = PHIBlock->getFirstNonPHI(); |
| |
| if (!isa<TerminatorInst>(EHPad)) { |
| // If the EHPad isn't a terminator, then we can insert a load in this block |
| // that will dominate all uses. |
| SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr, |
| Twine(PN->getName(), ".wineh.spillslot"), |
| &F.getEntryBlock().front()); |
| Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"), |
| &*PHIBlock->getFirstInsertionPt()); |
| PN->replaceAllUsesWith(V); |
| return SpillSlot; |
| } |
| |
| // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert |
| // loads of the slot before every use. |
| DenseMap<BasicBlock *, Value *> Loads; |
| for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end(); |
| UI != UE;) { |
| Use &U = *UI++; |
| auto *UsingInst = cast<Instruction>(U.getUser()); |
| if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) { |
| // Use is on an EH pad phi. Leave it alone; we'll insert loads and |
| // stores for it separately. |
| continue; |
| } |
| replaceUseWithLoad(PN, U, SpillSlot, Loads, F); |
| } |
| return SpillSlot; |
| } |
| |
| // TODO: improve store placement. Inserting at def is probably good, but need |
| // to be careful not to introduce interfering stores (needs liveness analysis). |
| // TODO: identify related phi nodes that can share spill slots, and share them |
| // (also needs liveness). |
| void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI, |
| AllocaInst *SpillSlot) { |
| // Use a worklist of (Block, Value) pairs -- the given Value needs to be |
| // stored to the spill slot by the end of the given Block. |
| SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist; |
| |
| Worklist.push_back({OriginalPHI->getParent(), OriginalPHI}); |
| |
| while (!Worklist.empty()) { |
| BasicBlock *EHBlock; |
| Value *InVal; |
| std::tie(EHBlock, InVal) = Worklist.pop_back_val(); |
| |
| PHINode *PN = dyn_cast<PHINode>(InVal); |
| if (PN && PN->getParent() == EHBlock) { |
| // The value is defined by another PHI we need to remove, with no room to |
| // insert a store after the PHI, so each predecessor needs to store its |
| // incoming value. |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { |
| Value *PredVal = PN->getIncomingValue(i); |
| |
| // Undef can safely be skipped. |
| if (isa<UndefValue>(PredVal)) |
| continue; |
| |
| insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist); |
| } |
| } else { |
| // We need to store InVal, which dominates EHBlock, but can't put a store |
| // in EHBlock, so need to put stores in each predecessor. |
| for (BasicBlock *PredBlock : predecessors(EHBlock)) { |
| insertPHIStore(PredBlock, InVal, SpillSlot, Worklist); |
| } |
| } |
| } |
| } |
| |
| void WinEHPrepare::insertPHIStore( |
| BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, |
| SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) { |
| |
| if (PredBlock->isEHPad() && |
| isa<TerminatorInst>(PredBlock->getFirstNonPHI())) { |
| // Pred is unsplittable, so we need to queue it on the worklist. |
| Worklist.push_back({PredBlock, PredVal}); |
| return; |
| } |
| |
| // Otherwise, insert the store at the end of the basic block. |
| new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator()); |
| } |
| |
| void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot, |
| DenseMap<BasicBlock *, Value *> &Loads, |
| Function &F) { |
| // Lazilly create the spill slot. |
| if (!SpillSlot) |
| SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr, |
| Twine(V->getName(), ".wineh.spillslot"), |
| &F.getEntryBlock().front()); |
| |
| auto *UsingInst = cast<Instruction>(U.getUser()); |
| if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) { |
| // If this is a PHI node, we can't insert a load of the value before |
| // the use. Instead insert the load in the predecessor block |
| // corresponding to the incoming value. |
| // |
| // Note that if there are multiple edges from a basic block to this |
| // PHI node that we cannot have multiple loads. The problem is that |
| // the resulting PHI node will have multiple values (from each load) |
| // coming in from the same block, which is illegal SSA form. |
| // For this reason, we keep track of and reuse loads we insert. |
| BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U); |
| if (auto *CatchRet = |
| dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) { |
| // Putting a load above a catchret and use on the phi would still leave |
| // a cross-funclet def/use. We need to split the edge, change the |
| // catchret to target the new block, and put the load there. |
| BasicBlock *PHIBlock = UsingInst->getParent(); |
| BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock); |
| // SplitEdge gives us: |
| // IncomingBlock: |
| // ... |
| // br label %NewBlock |
| // NewBlock: |
| // catchret label %PHIBlock |
| // But we need: |
| // IncomingBlock: |
| // ... |
| // catchret label %NewBlock |
| // NewBlock: |
| // br label %PHIBlock |
| // So move the terminators to each others' blocks and swap their |
| // successors. |
| BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator()); |
| Goto->removeFromParent(); |
| CatchRet->removeFromParent(); |
| IncomingBlock->getInstList().push_back(CatchRet); |
| NewBlock->getInstList().push_back(Goto); |
| Goto->setSuccessor(0, PHIBlock); |
| CatchRet->setSuccessor(NewBlock); |
| // Update the color mapping for the newly split edge. |
| // Grab a reference to the ColorVector to be inserted before getting the |
| // reference to the vector we are copying because inserting the new |
| // element in BlockColors might cause the map to be reallocated. |
| ColorVector &ColorsForNewBlock = BlockColors[NewBlock]; |
| ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock]; |
| ColorsForNewBlock = ColorsForPHIBlock; |
| for (BasicBlock *FuncletPad : ColorsForPHIBlock) |
| FuncletBlocks[FuncletPad].push_back(NewBlock); |
| // Treat the new block as incoming for load insertion. |
| IncomingBlock = NewBlock; |
| } |
| Value *&Load = Loads[IncomingBlock]; |
| // Insert the load into the predecessor block |
| if (!Load) |
| Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"), |
| /*Volatile=*/false, IncomingBlock->getTerminator()); |
| |
| U.set(Load); |
| } else { |
| // Reload right before the old use. |
| auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"), |
| /*Volatile=*/false, UsingInst); |
| U.set(Load); |
| } |
| } |
| |
| void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II, |
| MCSymbol *InvokeBegin, |
| MCSymbol *InvokeEnd) { |
| assert(InvokeStateMap.count(II) && |
| "should get invoke with precomputed state"); |
| LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd); |
| } |
| |
| WinEHFuncInfo::WinEHFuncInfo() {} |