blob: 5288ca6727742d724cee4f93f6a65ad094027d4f [file] [log] [blame]
//===-- UnreachableBlockElim.cpp - Remove unreachable blocks for codegen --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is an extremely simple version of the SimplifyCFG pass. Its sole
// job is to delete LLVM basic blocks that are not reachable from the entry
// node. To do this, it performs a simple depth first traversal of the CFG,
// then deletes any unvisited nodes.
//
// Note that this pass is really a hack. In particular, the instruction
// selectors for various targets should just not generate code for unreachable
// blocks. Until LLVM has a more systematic way of defining instruction
// selectors, however, we cannot really expect them to handle additional
// complexity.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/UnreachableBlockElim.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
using namespace llvm;
static bool eliminateUnreachableBlock(Function &F) {
df_iterator_default_set<BasicBlock*> Reachable;
// Mark all reachable blocks.
for (BasicBlock *BB : depth_first_ext(&F, Reachable))
(void)BB/* Mark all reachable blocks */;
// Loop over all dead blocks, remembering them and deleting all instructions
// in them.
std::vector<BasicBlock*> DeadBlocks;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
if (!Reachable.count(&*I)) {
BasicBlock *BB = &*I;
DeadBlocks.push_back(BB);
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
BB->getInstList().pop_front();
}
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
(*SI)->removePredecessor(BB);
BB->dropAllReferences();
}
// Actually remove the blocks now.
for (unsigned i = 0, e = DeadBlocks.size(); i != e; ++i) {
DeadBlocks[i]->eraseFromParent();
}
return !DeadBlocks.empty();
}
namespace {
class UnreachableBlockElimLegacyPass : public FunctionPass {
bool runOnFunction(Function &F) override {
return eliminateUnreachableBlock(F);
}
public:
static char ID; // Pass identification, replacement for typeid
UnreachableBlockElimLegacyPass() : FunctionPass(ID) {
initializeUnreachableBlockElimLegacyPassPass(
*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
}
};
}
char UnreachableBlockElimLegacyPass::ID = 0;
INITIALIZE_PASS(UnreachableBlockElimLegacyPass, "unreachableblockelim",
"Remove unreachable blocks from the CFG", false, false)
FunctionPass *llvm::createUnreachableBlockEliminationPass() {
return new UnreachableBlockElimLegacyPass();
}
PreservedAnalyses UnreachableBlockElimPass::run(Function &F,
FunctionAnalysisManager &AM) {
bool Changed = eliminateUnreachableBlock(F);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
return PA;
}
namespace {
class UnreachableMachineBlockElim : public MachineFunctionPass {
bool runOnMachineFunction(MachineFunction &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
MachineModuleInfo *MMI;
public:
static char ID; // Pass identification, replacement for typeid
UnreachableMachineBlockElim() : MachineFunctionPass(ID) {}
};
}
char UnreachableMachineBlockElim::ID = 0;
INITIALIZE_PASS(UnreachableMachineBlockElim, "unreachable-mbb-elimination",
"Remove unreachable machine basic blocks", false, false)
char &llvm::UnreachableMachineBlockElimID = UnreachableMachineBlockElim::ID;
void UnreachableMachineBlockElim::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool UnreachableMachineBlockElim::runOnMachineFunction(MachineFunction &F) {
df_iterator_default_set<MachineBasicBlock*> Reachable;
bool ModifiedPHI = false;
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
MachineDominatorTree *MDT = getAnalysisIfAvailable<MachineDominatorTree>();
MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
// Mark all reachable blocks.
for (MachineBasicBlock *BB : depth_first_ext(&F, Reachable))
(void)BB/* Mark all reachable blocks */;
// Loop over all dead blocks, remembering them and deleting all instructions
// in them.
std::vector<MachineBasicBlock*> DeadBlocks;
for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
MachineBasicBlock *BB = &*I;
// Test for deadness.
if (!Reachable.count(BB)) {
DeadBlocks.push_back(BB);
// Update dominator and loop info.
if (MLI) MLI->removeBlock(BB);
if (MDT && MDT->getNode(BB)) MDT->eraseNode(BB);
while (BB->succ_begin() != BB->succ_end()) {
MachineBasicBlock* succ = *BB->succ_begin();
MachineBasicBlock::iterator start = succ->begin();
while (start != succ->end() && start->isPHI()) {
for (unsigned i = start->getNumOperands() - 1; i >= 2; i-=2)
if (start->getOperand(i).isMBB() &&
start->getOperand(i).getMBB() == BB) {
start->RemoveOperand(i);
start->RemoveOperand(i-1);
}
start++;
}
BB->removeSuccessor(BB->succ_begin());
}
}
}
// Actually remove the blocks now.
for (unsigned i = 0, e = DeadBlocks.size(); i != e; ++i)
DeadBlocks[i]->eraseFromParent();
// Cleanup PHI nodes.
for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
MachineBasicBlock *BB = &*I;
// Prune unneeded PHI entries.
SmallPtrSet<MachineBasicBlock*, 8> preds(BB->pred_begin(),
BB->pred_end());
MachineBasicBlock::iterator phi = BB->begin();
while (phi != BB->end() && phi->isPHI()) {
for (unsigned i = phi->getNumOperands() - 1; i >= 2; i-=2)
if (!preds.count(phi->getOperand(i).getMBB())) {
phi->RemoveOperand(i);
phi->RemoveOperand(i-1);
ModifiedPHI = true;
}
if (phi->getNumOperands() == 3) {
const MachineOperand &Input = phi->getOperand(1);
const MachineOperand &Output = phi->getOperand(0);
unsigned InputReg = Input.getReg();
unsigned OutputReg = Output.getReg();
assert(Output.getSubReg() == 0 && "Cannot have output subregister");
ModifiedPHI = true;
if (InputReg != OutputReg) {
MachineRegisterInfo &MRI = F.getRegInfo();
unsigned InputSub = Input.getSubReg();
if (InputSub == 0 &&
MRI.constrainRegClass(InputReg, MRI.getRegClass(OutputReg)) &&
!Input.isUndef()) {
MRI.replaceRegWith(OutputReg, InputReg);
} else {
// The input register to the PHI has a subregister or it can't be
// constrained to the proper register class or it is undef:
// insert a COPY instead of simply replacing the output
// with the input.
const TargetInstrInfo *TII = F.getSubtarget().getInstrInfo();
BuildMI(*BB, BB->getFirstNonPHI(), phi->getDebugLoc(),
TII->get(TargetOpcode::COPY), OutputReg)
.addReg(InputReg, getRegState(Input), InputSub);
}
phi++->eraseFromParent();
}
continue;
}
++phi;
}
}
F.RenumberBlocks();
return (!DeadBlocks.empty() || ModifiedPHI);
}