| //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSchedule.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <cctype> |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> DisableHazardRecognizer( |
| "disable-sched-hazard", cl::Hidden, cl::init(false), |
| cl::desc("Disable hazard detection during preRA scheduling")); |
| |
| TargetInstrInfo::~TargetInstrInfo() { |
| } |
| |
| const TargetRegisterClass* |
| TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, |
| const TargetRegisterInfo *TRI, |
| const MachineFunction &MF) const { |
| if (OpNum >= MCID.getNumOperands()) |
| return nullptr; |
| |
| short RegClass = MCID.OpInfo[OpNum].RegClass; |
| if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) |
| return TRI->getPointerRegClass(MF, RegClass); |
| |
| // Instructions like INSERT_SUBREG do not have fixed register classes. |
| if (RegClass < 0) |
| return nullptr; |
| |
| // Otherwise just look it up normally. |
| return TRI->getRegClass(RegClass); |
| } |
| |
| /// insertNoop - Insert a noop into the instruction stream at the specified |
| /// point. |
| void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI) const { |
| llvm_unreachable("Target didn't implement insertNoop!"); |
| } |
| |
| static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { |
| return strncmp(Str, MAI.getCommentString().data(), |
| MAI.getCommentString().size()) == 0; |
| } |
| |
| /// Measure the specified inline asm to determine an approximation of its |
| /// length. |
| /// Comments (which run till the next SeparatorString or newline) do not |
| /// count as an instruction. |
| /// Any other non-whitespace text is considered an instruction, with |
| /// multiple instructions separated by SeparatorString or newlines. |
| /// Variable-length instructions are not handled here; this function |
| /// may be overloaded in the target code to do that. |
| /// We implement a special case of the .space directive which takes only a |
| /// single integer argument in base 10 that is the size in bytes. This is a |
| /// restricted form of the GAS directive in that we only interpret |
| /// simple--i.e. not a logical or arithmetic expression--size values without |
| /// the optional fill value. This is primarily used for creating arbitrary |
| /// sized inline asm blocks for testing purposes. |
| unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, |
| const MCAsmInfo &MAI) const { |
| // Count the number of instructions in the asm. |
| bool AtInsnStart = true; |
| unsigned Length = 0; |
| for (; *Str; ++Str) { |
| if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), |
| strlen(MAI.getSeparatorString())) == 0) { |
| AtInsnStart = true; |
| } else if (isAsmComment(Str, MAI)) { |
| // Stop counting as an instruction after a comment until the next |
| // separator. |
| AtInsnStart = false; |
| } |
| |
| if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { |
| unsigned AddLength = MAI.getMaxInstLength(); |
| if (strncmp(Str, ".space", 6) == 0) { |
| char *EStr; |
| int SpaceSize; |
| SpaceSize = strtol(Str + 6, &EStr, 10); |
| SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; |
| while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr))) |
| ++EStr; |
| if (*EStr == '\0' || *EStr == '\n' || |
| isAsmComment(EStr, MAI)) // Successfully parsed .space argument |
| AddLength = SpaceSize; |
| } |
| Length += AddLength; |
| AtInsnStart = false; |
| } |
| } |
| |
| return Length; |
| } |
| |
| /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything |
| /// after it, replacing it with an unconditional branch to NewDest. |
| void |
| TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, |
| MachineBasicBlock *NewDest) const { |
| MachineBasicBlock *MBB = Tail->getParent(); |
| |
| // Remove all the old successors of MBB from the CFG. |
| while (!MBB->succ_empty()) |
| MBB->removeSuccessor(MBB->succ_begin()); |
| |
| // Save off the debug loc before erasing the instruction. |
| DebugLoc DL = Tail->getDebugLoc(); |
| |
| // Remove all the dead instructions from the end of MBB. |
| MBB->erase(Tail, MBB->end()); |
| |
| // If MBB isn't immediately before MBB, insert a branch to it. |
| if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) |
| insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); |
| MBB->addSuccessor(NewDest); |
| } |
| |
| MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, |
| bool NewMI, unsigned Idx1, |
| unsigned Idx2) const { |
| const MCInstrDesc &MCID = MI.getDesc(); |
| bool HasDef = MCID.getNumDefs(); |
| if (HasDef && !MI.getOperand(0).isReg()) |
| // No idea how to commute this instruction. Target should implement its own. |
| return nullptr; |
| |
| unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; |
| unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; |
| assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && |
| CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && |
| "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); |
| assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && |
| "This only knows how to commute register operands so far"); |
| |
| unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0; |
| unsigned Reg1 = MI.getOperand(Idx1).getReg(); |
| unsigned Reg2 = MI.getOperand(Idx2).getReg(); |
| unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; |
| unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); |
| unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); |
| bool Reg1IsKill = MI.getOperand(Idx1).isKill(); |
| bool Reg2IsKill = MI.getOperand(Idx2).isKill(); |
| bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); |
| bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); |
| bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); |
| bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); |
| // Avoid calling isRenamable for virtual registers since we assert that |
| // renamable property is only queried/set for physical registers. |
| bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1) |
| ? MI.getOperand(Idx1).isRenamable() |
| : false; |
| bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2) |
| ? MI.getOperand(Idx2).isRenamable() |
| : false; |
| // If destination is tied to either of the commuted source register, then |
| // it must be updated. |
| if (HasDef && Reg0 == Reg1 && |
| MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { |
| Reg2IsKill = false; |
| Reg0 = Reg2; |
| SubReg0 = SubReg2; |
| } else if (HasDef && Reg0 == Reg2 && |
| MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { |
| Reg1IsKill = false; |
| Reg0 = Reg1; |
| SubReg0 = SubReg1; |
| } |
| |
| MachineInstr *CommutedMI = nullptr; |
| if (NewMI) { |
| // Create a new instruction. |
| MachineFunction &MF = *MI.getMF(); |
| CommutedMI = MF.CloneMachineInstr(&MI); |
| } else { |
| CommutedMI = &MI; |
| } |
| |
| if (HasDef) { |
| CommutedMI->getOperand(0).setReg(Reg0); |
| CommutedMI->getOperand(0).setSubReg(SubReg0); |
| } |
| CommutedMI->getOperand(Idx2).setReg(Reg1); |
| CommutedMI->getOperand(Idx1).setReg(Reg2); |
| CommutedMI->getOperand(Idx2).setSubReg(SubReg1); |
| CommutedMI->getOperand(Idx1).setSubReg(SubReg2); |
| CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); |
| CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); |
| CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); |
| CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); |
| CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); |
| CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); |
| // Avoid calling setIsRenamable for virtual registers since we assert that |
| // renamable property is only queried/set for physical registers. |
| if (TargetRegisterInfo::isPhysicalRegister(Reg1)) |
| CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg2)) |
| CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); |
| return CommutedMI; |
| } |
| |
| MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, |
| unsigned OpIdx1, |
| unsigned OpIdx2) const { |
| // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose |
| // any commutable operand, which is done in findCommutedOpIndices() method |
| // called below. |
| if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && |
| !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { |
| assert(MI.isCommutable() && |
| "Precondition violation: MI must be commutable."); |
| return nullptr; |
| } |
| return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| } |
| |
| bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, |
| unsigned &ResultIdx2, |
| unsigned CommutableOpIdx1, |
| unsigned CommutableOpIdx2) { |
| if (ResultIdx1 == CommuteAnyOperandIndex && |
| ResultIdx2 == CommuteAnyOperandIndex) { |
| ResultIdx1 = CommutableOpIdx1; |
| ResultIdx2 = CommutableOpIdx2; |
| } else if (ResultIdx1 == CommuteAnyOperandIndex) { |
| if (ResultIdx2 == CommutableOpIdx1) |
| ResultIdx1 = CommutableOpIdx2; |
| else if (ResultIdx2 == CommutableOpIdx2) |
| ResultIdx1 = CommutableOpIdx1; |
| else |
| return false; |
| } else if (ResultIdx2 == CommuteAnyOperandIndex) { |
| if (ResultIdx1 == CommutableOpIdx1) |
| ResultIdx2 = CommutableOpIdx2; |
| else if (ResultIdx1 == CommutableOpIdx2) |
| ResultIdx2 = CommutableOpIdx1; |
| else |
| return false; |
| } else |
| // Check that the result operand indices match the given commutable |
| // operand indices. |
| return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || |
| (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); |
| |
| return true; |
| } |
| |
| bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI, |
| unsigned &SrcOpIdx1, |
| unsigned &SrcOpIdx2) const { |
| assert(!MI.isBundle() && |
| "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); |
| |
| const MCInstrDesc &MCID = MI.getDesc(); |
| if (!MCID.isCommutable()) |
| return false; |
| |
| // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this |
| // is not true, then the target must implement this. |
| unsigned CommutableOpIdx1 = MCID.getNumDefs(); |
| unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; |
| if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, |
| CommutableOpIdx1, CommutableOpIdx2)) |
| return false; |
| |
| if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) |
| // No idea. |
| return false; |
| return true; |
| } |
| |
| bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { |
| if (!MI.isTerminator()) return false; |
| |
| // Conditional branch is a special case. |
| if (MI.isBranch() && !MI.isBarrier()) |
| return true; |
| if (!MI.isPredicable()) |
| return true; |
| return !isPredicated(MI); |
| } |
| |
| bool TargetInstrInfo::PredicateInstruction( |
| MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { |
| bool MadeChange = false; |
| |
| assert(!MI.isBundle() && |
| "TargetInstrInfo::PredicateInstruction() can't handle bundles"); |
| |
| const MCInstrDesc &MCID = MI.getDesc(); |
| if (!MI.isPredicable()) |
| return false; |
| |
| for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| if (MCID.OpInfo[i].isPredicate()) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (MO.isReg()) { |
| MO.setReg(Pred[j].getReg()); |
| MadeChange = true; |
| } else if (MO.isImm()) { |
| MO.setImm(Pred[j].getImm()); |
| MadeChange = true; |
| } else if (MO.isMBB()) { |
| MO.setMBB(Pred[j].getMBB()); |
| MadeChange = true; |
| } |
| ++j; |
| } |
| } |
| return MadeChange; |
| } |
| |
| bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI, |
| const MachineMemOperand *&MMO, |
| int &FrameIndex) const { |
| for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), |
| oe = MI.memoperands_end(); |
| o != oe; ++o) { |
| if ((*o)->isLoad()) { |
| if (const FixedStackPseudoSourceValue *Value = |
| dyn_cast_or_null<FixedStackPseudoSourceValue>( |
| (*o)->getPseudoValue())) { |
| FrameIndex = Value->getFrameIndex(); |
| MMO = *o; |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI, |
| const MachineMemOperand *&MMO, |
| int &FrameIndex) const { |
| for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), |
| oe = MI.memoperands_end(); |
| o != oe; ++o) { |
| if ((*o)->isStore()) { |
| if (const FixedStackPseudoSourceValue *Value = |
| dyn_cast_or_null<FixedStackPseudoSourceValue>( |
| (*o)->getPseudoValue())) { |
| FrameIndex = Value->getFrameIndex(); |
| MMO = *o; |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, |
| unsigned SubIdx, unsigned &Size, |
| unsigned &Offset, |
| const MachineFunction &MF) const { |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| if (!SubIdx) { |
| Size = TRI->getSpillSize(*RC); |
| Offset = 0; |
| return true; |
| } |
| unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); |
| // Convert bit size to byte size to be consistent with |
| // MCRegisterClass::getSize(). |
| if (BitSize % 8) |
| return false; |
| |
| int BitOffset = TRI->getSubRegIdxOffset(SubIdx); |
| if (BitOffset < 0 || BitOffset % 8) |
| return false; |
| |
| Size = BitSize /= 8; |
| Offset = (unsigned)BitOffset / 8; |
| |
| assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); |
| |
| if (!MF.getDataLayout().isLittleEndian()) { |
| Offset = TRI->getSpillSize(*RC) - (Offset + Size); |
| } |
| return true; |
| } |
| |
| void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned DestReg, unsigned SubIdx, |
| const MachineInstr &Orig, |
| const TargetRegisterInfo &TRI) const { |
| MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); |
| MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); |
| MBB.insert(I, MI); |
| } |
| |
| bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, |
| const MachineInstr &MI1, |
| const MachineRegisterInfo *MRI) const { |
| return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); |
| } |
| |
| MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const { |
| assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); |
| MachineFunction &MF = *MBB.getParent(); |
| return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig); |
| } |
| |
| // If the COPY instruction in MI can be folded to a stack operation, return |
| // the register class to use. |
| static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, |
| unsigned FoldIdx) { |
| assert(MI.isCopy() && "MI must be a COPY instruction"); |
| if (MI.getNumOperands() != 2) |
| return nullptr; |
| assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); |
| |
| const MachineOperand &FoldOp = MI.getOperand(FoldIdx); |
| const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); |
| |
| if (FoldOp.getSubReg() || LiveOp.getSubReg()) |
| return nullptr; |
| |
| unsigned FoldReg = FoldOp.getReg(); |
| unsigned LiveReg = LiveOp.getReg(); |
| |
| assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && |
| "Cannot fold physregs"); |
| |
| const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); |
| const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); |
| |
| if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) |
| return RC->contains(LiveOp.getReg()) ? RC : nullptr; |
| |
| if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) |
| return RC; |
| |
| // FIXME: Allow folding when register classes are memory compatible. |
| return nullptr; |
| } |
| |
| void TargetInstrInfo::getNoop(MCInst &NopInst) const { |
| llvm_unreachable("Not implemented"); |
| } |
| |
| static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, |
| ArrayRef<unsigned> Ops, int FrameIndex, |
| const TargetInstrInfo &TII) { |
| unsigned StartIdx = 0; |
| switch (MI.getOpcode()) { |
| case TargetOpcode::STACKMAP: { |
| // StackMapLiveValues are foldable |
| StartIdx = StackMapOpers(&MI).getVarIdx(); |
| break; |
| } |
| case TargetOpcode::PATCHPOINT: { |
| // For PatchPoint, the call args are not foldable (even if reported in the |
| // stackmap e.g. via anyregcc). |
| StartIdx = PatchPointOpers(&MI).getVarIdx(); |
| break; |
| } |
| case TargetOpcode::STATEPOINT: { |
| // For statepoints, fold deopt and gc arguments, but not call arguments. |
| StartIdx = StatepointOpers(&MI).getVarIdx(); |
| break; |
| } |
| default: |
| llvm_unreachable("unexpected stackmap opcode"); |
| } |
| |
| // Return false if any operands requested for folding are not foldable (not |
| // part of the stackmap's live values). |
| for (unsigned Op : Ops) { |
| if (Op < StartIdx) |
| return nullptr; |
| } |
| |
| MachineInstr *NewMI = |
| MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); |
| MachineInstrBuilder MIB(MF, NewMI); |
| |
| // No need to fold return, the meta data, and function arguments |
| for (unsigned i = 0; i < StartIdx; ++i) |
| MIB.add(MI.getOperand(i)); |
| |
| for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (is_contained(Ops, i)) { |
| unsigned SpillSize; |
| unsigned SpillOffset; |
| // Compute the spill slot size and offset. |
| const TargetRegisterClass *RC = |
| MF.getRegInfo().getRegClass(MO.getReg()); |
| bool Valid = |
| TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); |
| if (!Valid) |
| report_fatal_error("cannot spill patchpoint subregister operand"); |
| MIB.addImm(StackMaps::IndirectMemRefOp); |
| MIB.addImm(SpillSize); |
| MIB.addFrameIndex(FrameIndex); |
| MIB.addImm(SpillOffset); |
| } |
| else |
| MIB.add(MO); |
| } |
| return NewMI; |
| } |
| |
| MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, |
| ArrayRef<unsigned> Ops, int FI, |
| LiveIntervals *LIS) const { |
| auto Flags = MachineMemOperand::MONone; |
| for (unsigned OpIdx : Ops) |
| Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore |
| : MachineMemOperand::MOLoad; |
| |
| MachineBasicBlock *MBB = MI.getParent(); |
| assert(MBB && "foldMemoryOperand needs an inserted instruction"); |
| MachineFunction &MF = *MBB->getParent(); |
| |
| // If we're not folding a load into a subreg, the size of the load is the |
| // size of the spill slot. But if we are, we need to figure out what the |
| // actual load size is. |
| int64_t MemSize = 0; |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| |
| if (Flags & MachineMemOperand::MOStore) { |
| MemSize = MFI.getObjectSize(FI); |
| } else { |
| for (unsigned OpIdx : Ops) { |
| int64_t OpSize = MFI.getObjectSize(FI); |
| |
| if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { |
| unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); |
| if (SubRegSize > 0 && !(SubRegSize % 8)) |
| OpSize = SubRegSize / 8; |
| } |
| |
| MemSize = std::max(MemSize, OpSize); |
| } |
| } |
| |
| assert(MemSize && "Did not expect a zero-sized stack slot"); |
| |
| MachineInstr *NewMI = nullptr; |
| |
| if (MI.getOpcode() == TargetOpcode::STACKMAP || |
| MI.getOpcode() == TargetOpcode::PATCHPOINT || |
| MI.getOpcode() == TargetOpcode::STATEPOINT) { |
| // Fold stackmap/patchpoint. |
| NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); |
| if (NewMI) |
| MBB->insert(MI, NewMI); |
| } else { |
| // Ask the target to do the actual folding. |
| NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS); |
| } |
| |
| if (NewMI) { |
| NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); |
| // Add a memory operand, foldMemoryOperandImpl doesn't do that. |
| assert((!(Flags & MachineMemOperand::MOStore) || |
| NewMI->mayStore()) && |
| "Folded a def to a non-store!"); |
| assert((!(Flags & MachineMemOperand::MOLoad) || |
| NewMI->mayLoad()) && |
| "Folded a use to a non-load!"); |
| assert(MFI.getObjectOffset(FI) != -1); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize, |
| MFI.getObjectAlignment(FI)); |
| NewMI->addMemOperand(MF, MMO); |
| |
| return NewMI; |
| } |
| |
| // Straight COPY may fold as load/store. |
| if (!MI.isCopy() || Ops.size() != 1) |
| return nullptr; |
| |
| const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); |
| if (!RC) |
| return nullptr; |
| |
| const MachineOperand &MO = MI.getOperand(1 - Ops[0]); |
| MachineBasicBlock::iterator Pos = MI; |
| |
| if (Flags == MachineMemOperand::MOStore) |
| storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); |
| else |
| loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); |
| return &*--Pos; |
| } |
| |
| MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, |
| ArrayRef<unsigned> Ops, |
| MachineInstr &LoadMI, |
| LiveIntervals *LIS) const { |
| assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); |
| #ifndef NDEBUG |
| for (unsigned OpIdx : Ops) |
| assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); |
| #endif |
| |
| MachineBasicBlock &MBB = *MI.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| |
| // Ask the target to do the actual folding. |
| MachineInstr *NewMI = nullptr; |
| int FrameIndex = 0; |
| |
| if ((MI.getOpcode() == TargetOpcode::STACKMAP || |
| MI.getOpcode() == TargetOpcode::PATCHPOINT || |
| MI.getOpcode() == TargetOpcode::STATEPOINT) && |
| isLoadFromStackSlot(LoadMI, FrameIndex)) { |
| // Fold stackmap/patchpoint. |
| NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); |
| if (NewMI) |
| NewMI = &*MBB.insert(MI, NewMI); |
| } else { |
| // Ask the target to do the actual folding. |
| NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); |
| } |
| |
| if (!NewMI) |
| return nullptr; |
| |
| // Copy the memoperands from the load to the folded instruction. |
| if (MI.memoperands_empty()) { |
| NewMI->setMemRefs(LoadMI.memoperands_begin(), LoadMI.memoperands_end()); |
| } else { |
| // Handle the rare case of folding multiple loads. |
| NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); |
| for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), |
| E = LoadMI.memoperands_end(); |
| I != E; ++I) { |
| NewMI->addMemOperand(MF, *I); |
| } |
| } |
| return NewMI; |
| } |
| |
| bool TargetInstrInfo::hasReassociableOperands( |
| const MachineInstr &Inst, const MachineBasicBlock *MBB) const { |
| const MachineOperand &Op1 = Inst.getOperand(1); |
| const MachineOperand &Op2 = Inst.getOperand(2); |
| const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); |
| |
| // We need virtual register definitions for the operands that we will |
| // reassociate. |
| MachineInstr *MI1 = nullptr; |
| MachineInstr *MI2 = nullptr; |
| if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg())) |
| MI1 = MRI.getUniqueVRegDef(Op1.getReg()); |
| if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg())) |
| MI2 = MRI.getUniqueVRegDef(Op2.getReg()); |
| |
| // And they need to be in the trace (otherwise, they won't have a depth). |
| return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; |
| } |
| |
| bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, |
| bool &Commuted) const { |
| const MachineBasicBlock *MBB = Inst.getParent(); |
| const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); |
| MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); |
| MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); |
| unsigned AssocOpcode = Inst.getOpcode(); |
| |
| // If only one operand has the same opcode and it's the second source operand, |
| // the operands must be commuted. |
| Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; |
| if (Commuted) |
| std::swap(MI1, MI2); |
| |
| // 1. The previous instruction must be the same type as Inst. |
| // 2. The previous instruction must have virtual register definitions for its |
| // operands in the same basic block as Inst. |
| // 3. The previous instruction's result must only be used by Inst. |
| return MI1->getOpcode() == AssocOpcode && |
| hasReassociableOperands(*MI1, MBB) && |
| MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); |
| } |
| |
| // 1. The operation must be associative and commutative. |
| // 2. The instruction must have virtual register definitions for its |
| // operands in the same basic block. |
| // 3. The instruction must have a reassociable sibling. |
| bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, |
| bool &Commuted) const { |
| return isAssociativeAndCommutative(Inst) && |
| hasReassociableOperands(Inst, Inst.getParent()) && |
| hasReassociableSibling(Inst, Commuted); |
| } |
| |
| // The concept of the reassociation pass is that these operations can benefit |
| // from this kind of transformation: |
| // |
| // A = ? op ? |
| // B = A op X (Prev) |
| // C = B op Y (Root) |
| // --> |
| // A = ? op ? |
| // B = X op Y |
| // C = A op B |
| // |
| // breaking the dependency between A and B, allowing them to be executed in |
| // parallel (or back-to-back in a pipeline) instead of depending on each other. |
| |
| // FIXME: This has the potential to be expensive (compile time) while not |
| // improving the code at all. Some ways to limit the overhead: |
| // 1. Track successful transforms; bail out if hit rate gets too low. |
| // 2. Only enable at -O3 or some other non-default optimization level. |
| // 3. Pre-screen pattern candidates here: if an operand of the previous |
| // instruction is known to not increase the critical path, then don't match |
| // that pattern. |
| bool TargetInstrInfo::getMachineCombinerPatterns( |
| MachineInstr &Root, |
| SmallVectorImpl<MachineCombinerPattern> &Patterns) const { |
| bool Commute; |
| if (isReassociationCandidate(Root, Commute)) { |
| // We found a sequence of instructions that may be suitable for a |
| // reassociation of operands to increase ILP. Specify each commutation |
| // possibility for the Prev instruction in the sequence and let the |
| // machine combiner decide if changing the operands is worthwhile. |
| if (Commute) { |
| Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); |
| Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); |
| } else { |
| Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); |
| Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Return true when a code sequence can improve loop throughput. |
| bool |
| TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { |
| return false; |
| } |
| |
| /// Attempt the reassociation transformation to reduce critical path length. |
| /// See the above comments before getMachineCombinerPatterns(). |
| void TargetInstrInfo::reassociateOps( |
| MachineInstr &Root, MachineInstr &Prev, |
| MachineCombinerPattern Pattern, |
| SmallVectorImpl<MachineInstr *> &InsInstrs, |
| SmallVectorImpl<MachineInstr *> &DelInstrs, |
| DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { |
| MachineFunction *MF = Root.getMF(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
| const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); |
| |
| // This array encodes the operand index for each parameter because the |
| // operands may be commuted. Each row corresponds to a pattern value, |
| // and each column specifies the index of A, B, X, Y. |
| unsigned OpIdx[4][4] = { |
| { 1, 1, 2, 2 }, |
| { 1, 2, 2, 1 }, |
| { 2, 1, 1, 2 }, |
| { 2, 2, 1, 1 } |
| }; |
| |
| int Row; |
| switch (Pattern) { |
| case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; |
| case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; |
| case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; |
| case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; |
| default: llvm_unreachable("unexpected MachineCombinerPattern"); |
| } |
| |
| MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); |
| MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); |
| MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); |
| MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); |
| MachineOperand &OpC = Root.getOperand(0); |
| |
| unsigned RegA = OpA.getReg(); |
| unsigned RegB = OpB.getReg(); |
| unsigned RegX = OpX.getReg(); |
| unsigned RegY = OpY.getReg(); |
| unsigned RegC = OpC.getReg(); |
| |
| if (TargetRegisterInfo::isVirtualRegister(RegA)) |
| MRI.constrainRegClass(RegA, RC); |
| if (TargetRegisterInfo::isVirtualRegister(RegB)) |
| MRI.constrainRegClass(RegB, RC); |
| if (TargetRegisterInfo::isVirtualRegister(RegX)) |
| MRI.constrainRegClass(RegX, RC); |
| if (TargetRegisterInfo::isVirtualRegister(RegY)) |
| MRI.constrainRegClass(RegY, RC); |
| if (TargetRegisterInfo::isVirtualRegister(RegC)) |
| MRI.constrainRegClass(RegC, RC); |
| |
| // Create a new virtual register for the result of (X op Y) instead of |
| // recycling RegB because the MachineCombiner's computation of the critical |
| // path requires a new register definition rather than an existing one. |
| unsigned NewVR = MRI.createVirtualRegister(RC); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); |
| |
| unsigned Opcode = Root.getOpcode(); |
| bool KillA = OpA.isKill(); |
| bool KillX = OpX.isKill(); |
| bool KillY = OpY.isKill(); |
| |
| // Create new instructions for insertion. |
| MachineInstrBuilder MIB1 = |
| BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) |
| .addReg(RegX, getKillRegState(KillX)) |
| .addReg(RegY, getKillRegState(KillY)); |
| MachineInstrBuilder MIB2 = |
| BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) |
| .addReg(RegA, getKillRegState(KillA)) |
| .addReg(NewVR, getKillRegState(true)); |
| |
| setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); |
| |
| // Record new instructions for insertion and old instructions for deletion. |
| InsInstrs.push_back(MIB1); |
| InsInstrs.push_back(MIB2); |
| DelInstrs.push_back(&Prev); |
| DelInstrs.push_back(&Root); |
| } |
| |
| void TargetInstrInfo::genAlternativeCodeSequence( |
| MachineInstr &Root, MachineCombinerPattern Pattern, |
| SmallVectorImpl<MachineInstr *> &InsInstrs, |
| SmallVectorImpl<MachineInstr *> &DelInstrs, |
| DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { |
| MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); |
| |
| // Select the previous instruction in the sequence based on the input pattern. |
| MachineInstr *Prev = nullptr; |
| switch (Pattern) { |
| case MachineCombinerPattern::REASSOC_AX_BY: |
| case MachineCombinerPattern::REASSOC_XA_BY: |
| Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); |
| break; |
| case MachineCombinerPattern::REASSOC_AX_YB: |
| case MachineCombinerPattern::REASSOC_XA_YB: |
| Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); |
| break; |
| default: |
| break; |
| } |
| |
| assert(Prev && "Unknown pattern for machine combiner"); |
| |
| reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); |
| } |
| |
| bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( |
| const MachineInstr &MI, AliasAnalysis *AA) const { |
| const MachineFunction &MF = *MI.getMF(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| // Remat clients assume operand 0 is the defined register. |
| if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) |
| return false; |
| unsigned DefReg = MI.getOperand(0).getReg(); |
| |
| // A sub-register definition can only be rematerialized if the instruction |
| // doesn't read the other parts of the register. Otherwise it is really a |
| // read-modify-write operation on the full virtual register which cannot be |
| // moved safely. |
| if (TargetRegisterInfo::isVirtualRegister(DefReg) && |
| MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg)) |
| return false; |
| |
| // A load from a fixed stack slot can be rematerialized. This may be |
| // redundant with subsequent checks, but it's target-independent, |
| // simple, and a common case. |
| int FrameIdx = 0; |
| if (isLoadFromStackSlot(MI, FrameIdx) && |
| MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) |
| return true; |
| |
| // Avoid instructions obviously unsafe for remat. |
| if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects()) |
| return false; |
| |
| // Don't remat inline asm. We have no idea how expensive it is |
| // even if it's side effect free. |
| if (MI.isInlineAsm()) |
| return false; |
| |
| // Avoid instructions which load from potentially varying memory. |
| if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)) |
| return false; |
| |
| // If any of the registers accessed are non-constant, conservatively assume |
| // the instruction is not rematerializable. |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) |
| continue; |
| |
| // Check for a well-behaved physical register. |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| if (MO.isUse()) { |
| // If the physreg has no defs anywhere, it's just an ambient register |
| // and we can freely move its uses. Alternatively, if it's allocatable, |
| // it could get allocated to something with a def during allocation. |
| if (!MRI.isConstantPhysReg(Reg)) |
| return false; |
| } else { |
| // A physreg def. We can't remat it. |
| return false; |
| } |
| continue; |
| } |
| |
| // Only allow one virtual-register def. There may be multiple defs of the |
| // same virtual register, though. |
| if (MO.isDef() && Reg != DefReg) |
| return false; |
| |
| // Don't allow any virtual-register uses. Rematting an instruction with |
| // virtual register uses would length the live ranges of the uses, which |
| // is not necessarily a good idea, certainly not "trivial". |
| if (MO.isUse()) |
| return false; |
| } |
| |
| // Everything checked out. |
| return true; |
| } |
| |
| int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { |
| const MachineFunction *MF = MI.getMF(); |
| const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); |
| bool StackGrowsDown = |
| TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; |
| |
| unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); |
| unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); |
| |
| if (!isFrameInstr(MI)) |
| return 0; |
| |
| int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); |
| |
| if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || |
| (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) |
| SPAdj = -SPAdj; |
| |
| return SPAdj; |
| } |
| |
| /// isSchedulingBoundary - Test if the given instruction should be |
| /// considered a scheduling boundary. This primarily includes labels |
| /// and terminators. |
| bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, |
| const MachineBasicBlock *MBB, |
| const MachineFunction &MF) const { |
| // Terminators and labels can't be scheduled around. |
| if (MI.isTerminator() || MI.isPosition()) |
| return true; |
| |
| // Don't attempt to schedule around any instruction that defines |
| // a stack-oriented pointer, as it's unlikely to be profitable. This |
| // saves compile time, because it doesn't require every single |
| // stack slot reference to depend on the instruction that does the |
| // modification. |
| const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); |
| } |
| |
| // Provide a global flag for disabling the PreRA hazard recognizer that targets |
| // may choose to honor. |
| bool TargetInstrInfo::usePreRAHazardRecognizer() const { |
| return !DisableHazardRecognizer; |
| } |
| |
| // Default implementation of CreateTargetRAHazardRecognizer. |
| ScheduleHazardRecognizer *TargetInstrInfo:: |
| CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, |
| const ScheduleDAG *DAG) const { |
| // Dummy hazard recognizer allows all instructions to issue. |
| return new ScheduleHazardRecognizer(); |
| } |
| |
| // Default implementation of CreateTargetMIHazardRecognizer. |
| ScheduleHazardRecognizer *TargetInstrInfo:: |
| CreateTargetMIHazardRecognizer(const InstrItineraryData *II, |
| const ScheduleDAG *DAG) const { |
| return (ScheduleHazardRecognizer *) |
| new ScoreboardHazardRecognizer(II, DAG, "misched"); |
| } |
| |
| // Default implementation of CreateTargetPostRAHazardRecognizer. |
| ScheduleHazardRecognizer *TargetInstrInfo:: |
| CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, |
| const ScheduleDAG *DAG) const { |
| return (ScheduleHazardRecognizer *) |
| new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAG latency interface. |
| //===----------------------------------------------------------------------===// |
| |
| int |
| TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, |
| SDNode *DefNode, unsigned DefIdx, |
| SDNode *UseNode, unsigned UseIdx) const { |
| if (!ItinData || ItinData->isEmpty()) |
| return -1; |
| |
| if (!DefNode->isMachineOpcode()) |
| return -1; |
| |
| unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); |
| if (!UseNode->isMachineOpcode()) |
| return ItinData->getOperandCycle(DefClass, DefIdx); |
| unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); |
| return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); |
| } |
| |
| int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, |
| SDNode *N) const { |
| if (!ItinData || ItinData->isEmpty()) |
| return 1; |
| |
| if (!N->isMachineOpcode()) |
| return 1; |
| |
| return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MachineInstr latency interface. |
| //===----------------------------------------------------------------------===// |
| |
| unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, |
| const MachineInstr &MI) const { |
| if (!ItinData || ItinData->isEmpty()) |
| return 1; |
| |
| unsigned Class = MI.getDesc().getSchedClass(); |
| int UOps = ItinData->Itineraries[Class].NumMicroOps; |
| if (UOps >= 0) |
| return UOps; |
| |
| // The # of u-ops is dynamically determined. The specific target should |
| // override this function to return the right number. |
| return 1; |
| } |
| |
| /// Return the default expected latency for a def based on it's opcode. |
| unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, |
| const MachineInstr &DefMI) const { |
| if (DefMI.isTransient()) |
| return 0; |
| if (DefMI.mayLoad()) |
| return SchedModel.LoadLatency; |
| if (isHighLatencyDef(DefMI.getOpcode())) |
| return SchedModel.HighLatency; |
| return 1; |
| } |
| |
| unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { |
| return 0; |
| } |
| |
| unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, |
| const MachineInstr &MI, |
| unsigned *PredCost) const { |
| // Default to one cycle for no itinerary. However, an "empty" itinerary may |
| // still have a MinLatency property, which getStageLatency checks. |
| if (!ItinData) |
| return MI.mayLoad() ? 2 : 1; |
| |
| return ItinData->getStageLatency(MI.getDesc().getSchedClass()); |
| } |
| |
| bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, |
| const MachineInstr &DefMI, |
| unsigned DefIdx) const { |
| const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); |
| if (!ItinData || ItinData->isEmpty()) |
| return false; |
| |
| unsigned DefClass = DefMI.getDesc().getSchedClass(); |
| int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); |
| return (DefCycle != -1 && DefCycle <= 1); |
| } |
| |
| /// Both DefMI and UseMI must be valid. By default, call directly to the |
| /// itinerary. This may be overriden by the target. |
| int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, |
| const MachineInstr &DefMI, |
| unsigned DefIdx, |
| const MachineInstr &UseMI, |
| unsigned UseIdx) const { |
| unsigned DefClass = DefMI.getDesc().getSchedClass(); |
| unsigned UseClass = UseMI.getDesc().getSchedClass(); |
| return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); |
| } |
| |
| /// If we can determine the operand latency from the def only, without itinerary |
| /// lookup, do so. Otherwise return -1. |
| int TargetInstrInfo::computeDefOperandLatency( |
| const InstrItineraryData *ItinData, const MachineInstr &DefMI) const { |
| |
| // Let the target hook getInstrLatency handle missing itineraries. |
| if (!ItinData) |
| return getInstrLatency(ItinData, DefMI); |
| |
| if(ItinData->isEmpty()) |
| return defaultDefLatency(ItinData->SchedModel, DefMI); |
| |
| // ...operand lookup required |
| return -1; |
| } |
| |
| bool TargetInstrInfo::getRegSequenceInputs( |
| const MachineInstr &MI, unsigned DefIdx, |
| SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { |
| assert((MI.isRegSequence() || |
| MI.isRegSequenceLike()) && "Instruction do not have the proper type"); |
| |
| if (!MI.isRegSequence()) |
| return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); |
| |
| // We are looking at: |
| // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... |
| assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); |
| for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; |
| OpIdx += 2) { |
| const MachineOperand &MOReg = MI.getOperand(OpIdx); |
| if (MOReg.isUndef()) |
| continue; |
| const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); |
| assert(MOSubIdx.isImm() && |
| "One of the subindex of the reg_sequence is not an immediate"); |
| // Record Reg:SubReg, SubIdx. |
| InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), |
| (unsigned)MOSubIdx.getImm())); |
| } |
| return true; |
| } |
| |
| bool TargetInstrInfo::getExtractSubregInputs( |
| const MachineInstr &MI, unsigned DefIdx, |
| RegSubRegPairAndIdx &InputReg) const { |
| assert((MI.isExtractSubreg() || |
| MI.isExtractSubregLike()) && "Instruction do not have the proper type"); |
| |
| if (!MI.isExtractSubreg()) |
| return getExtractSubregLikeInputs(MI, DefIdx, InputReg); |
| |
| // We are looking at: |
| // Def = EXTRACT_SUBREG v0.sub1, sub0. |
| assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); |
| const MachineOperand &MOReg = MI.getOperand(1); |
| if (MOReg.isUndef()) |
| return false; |
| const MachineOperand &MOSubIdx = MI.getOperand(2); |
| assert(MOSubIdx.isImm() && |
| "The subindex of the extract_subreg is not an immediate"); |
| |
| InputReg.Reg = MOReg.getReg(); |
| InputReg.SubReg = MOReg.getSubReg(); |
| InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); |
| return true; |
| } |
| |
| bool TargetInstrInfo::getInsertSubregInputs( |
| const MachineInstr &MI, unsigned DefIdx, |
| RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { |
| assert((MI.isInsertSubreg() || |
| MI.isInsertSubregLike()) && "Instruction do not have the proper type"); |
| |
| if (!MI.isInsertSubreg()) |
| return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); |
| |
| // We are looking at: |
| // Def = INSERT_SEQUENCE v0, v1, sub0. |
| assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); |
| const MachineOperand &MOBaseReg = MI.getOperand(1); |
| const MachineOperand &MOInsertedReg = MI.getOperand(2); |
| if (MOInsertedReg.isUndef()) |
| return false; |
| const MachineOperand &MOSubIdx = MI.getOperand(3); |
| assert(MOSubIdx.isImm() && |
| "One of the subindex of the reg_sequence is not an immediate"); |
| BaseReg.Reg = MOBaseReg.getReg(); |
| BaseReg.SubReg = MOBaseReg.getSubReg(); |
| |
| InsertedReg.Reg = MOInsertedReg.getReg(); |
| InsertedReg.SubReg = MOInsertedReg.getSubReg(); |
| InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); |
| return true; |
| } |