| //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the TargetLowering class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <cctype> |
| using namespace llvm; |
| |
| /// NOTE: The TargetMachine owns TLOF. |
| TargetLowering::TargetLowering(const TargetMachine &tm) |
| : TargetLoweringBase(tm) {} |
| |
| const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| return nullptr; |
| } |
| |
| bool TargetLowering::isPositionIndependent() const { |
| return getTargetMachine().isPositionIndependent(); |
| } |
| |
| /// Check whether a given call node is in tail position within its function. If |
| /// so, it sets Chain to the input chain of the tail call. |
| bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, |
| SDValue &Chain) const { |
| const Function &F = DAG.getMachineFunction().getFunction(); |
| |
| // Conservatively require the attributes of the call to match those of |
| // the return. Ignore noalias because it doesn't affect the call sequence. |
| AttributeList CallerAttrs = F.getAttributes(); |
| if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) |
| .removeAttribute(Attribute::NoAlias) |
| .hasAttributes()) |
| return false; |
| |
| // It's not safe to eliminate the sign / zero extension of the return value. |
| if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || |
| CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) |
| return false; |
| |
| // Check if the only use is a function return node. |
| return isUsedByReturnOnly(Node, Chain); |
| } |
| |
| bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, |
| const uint32_t *CallerPreservedMask, |
| const SmallVectorImpl<CCValAssign> &ArgLocs, |
| const SmallVectorImpl<SDValue> &OutVals) const { |
| for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
| const CCValAssign &ArgLoc = ArgLocs[I]; |
| if (!ArgLoc.isRegLoc()) |
| continue; |
| unsigned Reg = ArgLoc.getLocReg(); |
| // Only look at callee saved registers. |
| if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) |
| continue; |
| // Check that we pass the value used for the caller. |
| // (We look for a CopyFromReg reading a virtual register that is used |
| // for the function live-in value of register Reg) |
| SDValue Value = OutVals[I]; |
| if (Value->getOpcode() != ISD::CopyFromReg) |
| return false; |
| unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); |
| if (MRI.getLiveInPhysReg(ArgReg) != Reg) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Set CallLoweringInfo attribute flags based on a call instruction |
| /// and called function attributes. |
| void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, |
| unsigned ArgIdx) { |
| IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); |
| IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); |
| IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); |
| IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); |
| IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); |
| IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); |
| IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); |
| IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); |
| IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); |
| IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); |
| Alignment = CS->getParamAlignment(ArgIdx); |
| } |
| |
| /// Generate a libcall taking the given operands as arguments and returning a |
| /// result of type RetVT. |
| std::pair<SDValue, SDValue> |
| TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, |
| ArrayRef<SDValue> Ops, bool isSigned, |
| const SDLoc &dl, bool doesNotReturn, |
| bool isReturnValueUsed) const { |
| TargetLowering::ArgListTy Args; |
| Args.reserve(Ops.size()); |
| |
| TargetLowering::ArgListEntry Entry; |
| for (SDValue Op : Ops) { |
| Entry.Node = Op; |
| Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); |
| Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); |
| Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); |
| Args.push_back(Entry); |
| } |
| |
| if (LC == RTLIB::UNKNOWN_LIBCALL) |
| report_fatal_error("Unsupported library call operation!"); |
| SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), |
| getPointerTy(DAG.getDataLayout())); |
| |
| Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); |
| CLI.setDebugLoc(dl) |
| .setChain(DAG.getEntryNode()) |
| .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) |
| .setNoReturn(doesNotReturn) |
| .setDiscardResult(!isReturnValueUsed) |
| .setSExtResult(signExtend) |
| .setZExtResult(!signExtend); |
| return LowerCallTo(CLI); |
| } |
| |
| /// Soften the operands of a comparison. This code is shared among BR_CC, |
| /// SELECT_CC, and SETCC handlers. |
| void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, |
| SDValue &NewLHS, SDValue &NewRHS, |
| ISD::CondCode &CCCode, |
| const SDLoc &dl) const { |
| assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) |
| && "Unsupported setcc type!"); |
| |
| // Expand into one or more soft-fp libcall(s). |
| RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; |
| bool ShouldInvertCC = false; |
| switch (CCCode) { |
| case ISD::SETEQ: |
| case ISD::SETOEQ: |
| LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : |
| (VT == MVT::f64) ? RTLIB::OEQ_F64 : |
| (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; |
| break; |
| case ISD::SETNE: |
| case ISD::SETUNE: |
| LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : |
| (VT == MVT::f64) ? RTLIB::UNE_F64 : |
| (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; |
| break; |
| case ISD::SETGE: |
| case ISD::SETOGE: |
| LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : |
| (VT == MVT::f64) ? RTLIB::OGE_F64 : |
| (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; |
| break; |
| case ISD::SETLT: |
| case ISD::SETOLT: |
| LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : |
| (VT == MVT::f64) ? RTLIB::OLT_F64 : |
| (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; |
| break; |
| case ISD::SETLE: |
| case ISD::SETOLE: |
| LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : |
| (VT == MVT::f64) ? RTLIB::OLE_F64 : |
| (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; |
| break; |
| case ISD::SETGT: |
| case ISD::SETOGT: |
| LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : |
| (VT == MVT::f64) ? RTLIB::OGT_F64 : |
| (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; |
| break; |
| case ISD::SETUO: |
| LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : |
| (VT == MVT::f64) ? RTLIB::UO_F64 : |
| (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; |
| break; |
| case ISD::SETO: |
| LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : |
| (VT == MVT::f64) ? RTLIB::O_F64 : |
| (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; |
| break; |
| case ISD::SETONE: |
| // SETONE = SETOLT | SETOGT |
| LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : |
| (VT == MVT::f64) ? RTLIB::OLT_F64 : |
| (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; |
| LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : |
| (VT == MVT::f64) ? RTLIB::OGT_F64 : |
| (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; |
| break; |
| case ISD::SETUEQ: |
| LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : |
| (VT == MVT::f64) ? RTLIB::UO_F64 : |
| (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; |
| LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : |
| (VT == MVT::f64) ? RTLIB::OEQ_F64 : |
| (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; |
| break; |
| default: |
| // Invert CC for unordered comparisons |
| ShouldInvertCC = true; |
| switch (CCCode) { |
| case ISD::SETULT: |
| LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : |
| (VT == MVT::f64) ? RTLIB::OGE_F64 : |
| (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; |
| break; |
| case ISD::SETULE: |
| LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : |
| (VT == MVT::f64) ? RTLIB::OGT_F64 : |
| (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; |
| break; |
| case ISD::SETUGT: |
| LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : |
| (VT == MVT::f64) ? RTLIB::OLE_F64 : |
| (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; |
| break; |
| case ISD::SETUGE: |
| LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : |
| (VT == MVT::f64) ? RTLIB::OLT_F64 : |
| (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; |
| break; |
| default: llvm_unreachable("Do not know how to soften this setcc!"); |
| } |
| } |
| |
| // Use the target specific return value for comparions lib calls. |
| EVT RetVT = getCmpLibcallReturnType(); |
| SDValue Ops[2] = {NewLHS, NewRHS}; |
| NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, |
| dl).first; |
| NewRHS = DAG.getConstant(0, dl, RetVT); |
| |
| CCCode = getCmpLibcallCC(LC1); |
| if (ShouldInvertCC) |
| CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); |
| |
| if (LC2 != RTLIB::UNKNOWN_LIBCALL) { |
| SDValue Tmp = DAG.getNode( |
| ISD::SETCC, dl, |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), |
| NewLHS, NewRHS, DAG.getCondCode(CCCode)); |
| NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, |
| dl).first; |
| NewLHS = DAG.getNode( |
| ISD::SETCC, dl, |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), |
| NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); |
| NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); |
| NewRHS = SDValue(); |
| } |
| } |
| |
| /// Return the entry encoding for a jump table in the current function. The |
| /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. |
| unsigned TargetLowering::getJumpTableEncoding() const { |
| // In non-pic modes, just use the address of a block. |
| if (!isPositionIndependent()) |
| return MachineJumpTableInfo::EK_BlockAddress; |
| |
| // In PIC mode, if the target supports a GPRel32 directive, use it. |
| if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) |
| return MachineJumpTableInfo::EK_GPRel32BlockAddress; |
| |
| // Otherwise, use a label difference. |
| return MachineJumpTableInfo::EK_LabelDifference32; |
| } |
| |
| SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const { |
| // If our PIC model is GP relative, use the global offset table as the base. |
| unsigned JTEncoding = getJumpTableEncoding(); |
| |
| if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || |
| (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) |
| return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); |
| |
| return Table; |
| } |
| |
| /// This returns the relocation base for the given PIC jumptable, the same as |
| /// getPICJumpTableRelocBase, but as an MCExpr. |
| const MCExpr * |
| TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, |
| unsigned JTI,MCContext &Ctx) const{ |
| // The normal PIC reloc base is the label at the start of the jump table. |
| return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); |
| } |
| |
| bool |
| TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| const TargetMachine &TM = getTargetMachine(); |
| const GlobalValue *GV = GA->getGlobal(); |
| |
| // If the address is not even local to this DSO we will have to load it from |
| // a got and then add the offset. |
| if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) |
| return false; |
| |
| // If the code is position independent we will have to add a base register. |
| if (isPositionIndependent()) |
| return false; |
| |
| // Otherwise we can do it. |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Optimization Methods |
| //===----------------------------------------------------------------------===// |
| |
| /// If the specified instruction has a constant integer operand and there are |
| /// bits set in that constant that are not demanded, then clear those bits and |
| /// return true. |
| bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, |
| TargetLoweringOpt &TLO) const { |
| SelectionDAG &DAG = TLO.DAG; |
| SDLoc DL(Op); |
| unsigned Opcode = Op.getOpcode(); |
| |
| // Do target-specific constant optimization. |
| if (targetShrinkDemandedConstant(Op, Demanded, TLO)) |
| return TLO.New.getNode(); |
| |
| // FIXME: ISD::SELECT, ISD::SELECT_CC |
| switch (Opcode) { |
| default: |
| break; |
| case ISD::XOR: |
| case ISD::AND: |
| case ISD::OR: { |
| auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| if (!Op1C) |
| return false; |
| |
| // If this is a 'not' op, don't touch it because that's a canonical form. |
| const APInt &C = Op1C->getAPIntValue(); |
| if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) |
| return false; |
| |
| if (!C.isSubsetOf(Demanded)) { |
| EVT VT = Op.getValueType(); |
| SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); |
| SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); |
| return TLO.CombineTo(Op, NewOp); |
| } |
| |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. |
| /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be |
| /// generalized for targets with other types of implicit widening casts. |
| bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, |
| const APInt &Demanded, |
| TargetLoweringOpt &TLO) const { |
| assert(Op.getNumOperands() == 2 && |
| "ShrinkDemandedOp only supports binary operators!"); |
| assert(Op.getNode()->getNumValues() == 1 && |
| "ShrinkDemandedOp only supports nodes with one result!"); |
| |
| SelectionDAG &DAG = TLO.DAG; |
| SDLoc dl(Op); |
| |
| // Early return, as this function cannot handle vector types. |
| if (Op.getValueType().isVector()) |
| return false; |
| |
| // Don't do this if the node has another user, which may require the |
| // full value. |
| if (!Op.getNode()->hasOneUse()) |
| return false; |
| |
| // Search for the smallest integer type with free casts to and from |
| // Op's type. For expedience, just check power-of-2 integer types. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| unsigned DemandedSize = Demanded.getActiveBits(); |
| unsigned SmallVTBits = DemandedSize; |
| if (!isPowerOf2_32(SmallVTBits)) |
| SmallVTBits = NextPowerOf2(SmallVTBits); |
| for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { |
| EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); |
| if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && |
| TLI.isZExtFree(SmallVT, Op.getValueType())) { |
| // We found a type with free casts. |
| SDValue X = DAG.getNode( |
| Op.getOpcode(), dl, SmallVT, |
| DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), |
| DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); |
| assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); |
| SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); |
| return TLO.CombineTo(Op, Z); |
| } |
| } |
| return false; |
| } |
| |
| bool |
| TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx, |
| const APInt &Demanded, |
| DAGCombinerInfo &DCI, |
| TargetLoweringOpt &TLO) const { |
| SDValue Op = User->getOperand(OpIdx); |
| KnownBits Known; |
| |
| if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true)) |
| return false; |
| |
| |
| // Old will not always be the same as Op. For example: |
| // |
| // Demanded = 0xffffff |
| // Op = i64 truncate (i32 and x, 0xffffff) |
| // In this case simplify demand bits will want to replace the 'and' node |
| // with the value 'x', which will give us: |
| // Old = i32 and x, 0xffffff |
| // New = x |
| if (TLO.Old.hasOneUse()) { |
| // For the one use case, we just commit the change. |
| DCI.CommitTargetLoweringOpt(TLO); |
| return true; |
| } |
| |
| // If Old has more than one use then it must be Op, because the |
| // AssumeSingleUse flag is not propogated to recursive calls of |
| // SimplifyDemanded bits, so the only node with multiple use that |
| // it will attempt to combine will be Op. |
| assert(TLO.Old == Op); |
| |
| SmallVector <SDValue, 4> NewOps; |
| for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { |
| if (i == OpIdx) { |
| NewOps.push_back(TLO.New); |
| continue; |
| } |
| NewOps.push_back(User->getOperand(i)); |
| } |
| User = TLO.DAG.UpdateNodeOperands(User, NewOps); |
| // Op has less users now, so we may be able to perform additional combines |
| // with it. |
| DCI.AddToWorklist(Op.getNode()); |
| // User's operands have been updated, so we may be able to do new combines |
| // with it. |
| DCI.AddToWorklist(User); |
| return true; |
| } |
| |
| bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, |
| DAGCombinerInfo &DCI) const { |
| |
| SelectionDAG &DAG = DCI.DAG; |
| TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| !DCI.isBeforeLegalizeOps()); |
| KnownBits Known; |
| |
| bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO); |
| if (Simplified) |
| DCI.CommitTargetLoweringOpt(TLO); |
| return Simplified; |
| } |
| |
| /// Look at Op. At this point, we know that only the DemandedMask bits of the |
| /// result of Op are ever used downstream. If we can use this information to |
| /// simplify Op, create a new simplified DAG node and return true, returning the |
| /// original and new nodes in Old and New. Otherwise, analyze the expression and |
| /// return a mask of Known bits for the expression (used to simplify the |
| /// caller). The Known bits may only be accurate for those bits in the |
| /// DemandedMask. |
| bool TargetLowering::SimplifyDemandedBits(SDValue Op, |
| const APInt &DemandedMask, |
| KnownBits &Known, |
| TargetLoweringOpt &TLO, |
| unsigned Depth, |
| bool AssumeSingleUse) const { |
| unsigned BitWidth = DemandedMask.getBitWidth(); |
| assert(Op.getScalarValueSizeInBits() == BitWidth && |
| "Mask size mismatches value type size!"); |
| APInt NewMask = DemandedMask; |
| SDLoc dl(Op); |
| auto &DL = TLO.DAG.getDataLayout(); |
| |
| // Don't know anything. |
| Known = KnownBits(BitWidth); |
| |
| if (Op.getOpcode() == ISD::Constant) { |
| // We know all of the bits for a constant! |
| Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); |
| Known.Zero = ~Known.One; |
| return false; |
| } |
| |
| // Other users may use these bits. |
| EVT VT = Op.getValueType(); |
| if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { |
| if (Depth != 0) { |
| // If not at the root, Just compute the Known bits to |
| // simplify things downstream. |
| TLO.DAG.computeKnownBits(Op, Known, Depth); |
| return false; |
| } |
| // If this is the root being simplified, allow it to have multiple uses, |
| // just set the NewMask to all bits. |
| NewMask = APInt::getAllOnesValue(BitWidth); |
| } else if (DemandedMask == 0) { |
| // Not demanding any bits from Op. |
| if (!Op.isUndef()) |
| return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); |
| return false; |
| } else if (Depth == 6) { // Limit search depth. |
| return false; |
| } |
| |
| KnownBits Known2, KnownOut; |
| switch (Op.getOpcode()) { |
| case ISD::BUILD_VECTOR: |
| // Collect the known bits that are shared by every constant vector element. |
| Known.Zero.setAllBits(); Known.One.setAllBits(); |
| for (SDValue SrcOp : Op->ops()) { |
| if (!isa<ConstantSDNode>(SrcOp)) { |
| // We can only handle all constant values - bail out with no known bits. |
| Known = KnownBits(BitWidth); |
| return false; |
| } |
| Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); |
| Known2.Zero = ~Known2.One; |
| |
| // BUILD_VECTOR can implicitly truncate sources, we must handle this. |
| if (Known2.One.getBitWidth() != BitWidth) { |
| assert(Known2.getBitWidth() > BitWidth && |
| "Expected BUILD_VECTOR implicit truncation"); |
| Known2 = Known2.trunc(BitWidth); |
| } |
| |
| // Known bits are the values that are shared by every element. |
| // TODO: support per-element known bits. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| } |
| return false; // Don't fall through, will infinitely loop. |
| case ISD::AND: |
| // If the RHS is a constant, check to see if the LHS would be zero without |
| // using the bits from the RHS. Below, we use knowledge about the RHS to |
| // simplify the LHS, here we're using information from the LHS to simplify |
| // the RHS. |
| if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) { |
| SDValue Op0 = Op.getOperand(0); |
| KnownBits LHSKnown; |
| // Do not increment Depth here; that can cause an infinite loop. |
| TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth); |
| // If the LHS already has zeros where RHSC does, this 'and' is dead. |
| if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) |
| return TLO.CombineTo(Op, Op0); |
| |
| // If any of the set bits in the RHS are known zero on the LHS, shrink |
| // the constant. |
| if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO)) |
| return true; |
| |
| // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its |
| // constant, but if this 'and' is only clearing bits that were just set by |
| // the xor, then this 'and' can be eliminated by shrinking the mask of |
| // the xor. For example, for a 32-bit X: |
| // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 |
| if (isBitwiseNot(Op0) && Op0.hasOneUse() && |
| LHSKnown.One == ~RHSC->getAPIntValue()) { |
| SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), |
| Op.getOperand(1)); |
| return TLO.CombineTo(Op, Xor); |
| } |
| } |
| |
| if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask, |
| Known2, TLO, Depth+1)) |
| return true; |
| assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If all of the demanded bits are known one on one side, return the other. |
| // These bits cannot contribute to the result of the 'and'. |
| if (NewMask.isSubsetOf(Known2.Zero | Known.One)) |
| return TLO.CombineTo(Op, Op.getOperand(0)); |
| if (NewMask.isSubsetOf(Known.Zero | Known2.One)) |
| return TLO.CombineTo(Op, Op.getOperand(1)); |
| // If all of the demanded bits in the inputs are known zeros, return zero. |
| if (NewMask.isSubsetOf(Known.Zero | Known2.Zero)) |
| return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); |
| // If the RHS is a constant, see if we can simplify it. |
| if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO)) |
| return true; |
| // If the operation can be done in a smaller type, do so. |
| if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) |
| return true; |
| |
| // Output known-1 bits are only known if set in both the LHS & RHS. |
| Known.One &= Known2.One; |
| // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| Known.Zero |= Known2.Zero; |
| break; |
| case ISD::OR: |
| if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask, |
| Known2, TLO, Depth+1)) |
| return true; |
| assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If all of the demanded bits are known zero on one side, return the other. |
| // These bits cannot contribute to the result of the 'or'. |
| if (NewMask.isSubsetOf(Known2.One | Known.Zero)) |
| return TLO.CombineTo(Op, Op.getOperand(0)); |
| if (NewMask.isSubsetOf(Known.One | Known2.Zero)) |
| return TLO.CombineTo(Op, Op.getOperand(1)); |
| // If the RHS is a constant, see if we can simplify it. |
| if (ShrinkDemandedConstant(Op, NewMask, TLO)) |
| return true; |
| // If the operation can be done in a smaller type, do so. |
| if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) |
| return true; |
| |
| // Output known-0 bits are only known if clear in both the LHS & RHS. |
| Known.Zero &= Known2.Zero; |
| // Output known-1 are known to be set if set in either the LHS | RHS. |
| Known.One |= Known2.One; |
| break; |
| case ISD::XOR: { |
| if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1)) |
| return true; |
| assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If all of the demanded bits are known zero on one side, return the other. |
| // These bits cannot contribute to the result of the 'xor'. |
| if (NewMask.isSubsetOf(Known.Zero)) |
| return TLO.CombineTo(Op, Op.getOperand(0)); |
| if (NewMask.isSubsetOf(Known2.Zero)) |
| return TLO.CombineTo(Op, Op.getOperand(1)); |
| // If the operation can be done in a smaller type, do so. |
| if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) |
| return true; |
| |
| // If all of the unknown bits are known to be zero on one side or the other |
| // (but not both) turn this into an *inclusive* or. |
| // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0) |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, |
| Op.getOperand(0), |
| Op.getOperand(1))); |
| |
| // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); |
| // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); |
| |
| // If all of the demanded bits on one side are known, and all of the set |
| // bits on that side are also known to be set on the other side, turn this |
| // into an AND, as we know the bits will be cleared. |
| // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
| // NB: it is okay if more bits are known than are requested |
| if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side |
| if (Known.One == Known2.One) { // set bits are the same on both sides |
| SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, |
| Op.getOperand(0), ANDC)); |
| } |
| } |
| |
| // If the RHS is a constant, see if we can change it. Don't alter a -1 |
| // constant because that's a 'not' op, and that is better for combining and |
| // codegen. |
| ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1)); |
| if (C && !C->isAllOnesValue()) { |
| if (NewMask.isSubsetOf(C->getAPIntValue())) { |
| // We're flipping all demanded bits. Flip the undemanded bits too. |
| SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), VT); |
| return TLO.CombineTo(Op, New); |
| } |
| // If we can't turn this into a 'not', try to shrink the constant. |
| if (ShrinkDemandedConstant(Op, NewMask, TLO)) |
| return true; |
| } |
| |
| Known = std::move(KnownOut); |
| break; |
| } |
| case ISD::SELECT: |
| if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1)) |
| return true; |
| if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If the operands are constants, see if we can simplify them. |
| if (ShrinkDemandedConstant(Op, NewMask, TLO)) |
| return true; |
| |
| // Only known if known in both the LHS and RHS. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| break; |
| case ISD::SELECT_CC: |
| if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1)) |
| return true; |
| if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If the operands are constants, see if we can simplify them. |
| if (ShrinkDemandedConstant(Op, NewMask, TLO)) |
| return true; |
| |
| // Only known if known in both the LHS and RHS. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| break; |
| case ISD::SETCC: { |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| // If (1) we only need the sign-bit, (2) the setcc operands are the same |
| // width as the setcc result, and (3) the result of a setcc conforms to 0 or |
| // -1, we may be able to bypass the setcc. |
| if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth && |
| getBooleanContents(VT) == |
| BooleanContent::ZeroOrNegativeOneBooleanContent) { |
| // If we're testing X < 0, then this compare isn't needed - just use X! |
| // FIXME: We're limiting to integer types here, but this should also work |
| // if we don't care about FP signed-zero. The use of SETLT with FP means |
| // that we don't care about NaNs. |
| if (CC == ISD::SETLT && Op1.getValueType().isInteger() && |
| (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) |
| return TLO.CombineTo(Op, Op0); |
| |
| // TODO: Should we check for other forms of sign-bit comparisons? |
| // Examples: X <= -1, X >= 0 |
| } |
| if (getBooleanContents(Op0.getValueType()) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| BitWidth > 1) |
| Known.Zero.setBitsFrom(1); |
| break; |
| } |
| case ISD::SHL: |
| if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { |
| SDValue InOp = Op.getOperand(0); |
| |
| // If the shift count is an invalid immediate, don't do anything. |
| if (SA->getAPIntValue().uge(BitWidth)) |
| break; |
| |
| unsigned ShAmt = SA->getZExtValue(); |
| |
| // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a |
| // single shift. We can do this if the bottom bits (which are shifted |
| // out) are never demanded. |
| if (InOp.getOpcode() == ISD::SRL) { |
| if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { |
| if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { |
| if (SA2->getAPIntValue().ult(BitWidth)) { |
| unsigned C1 = SA2->getZExtValue(); |
| unsigned Opc = ISD::SHL; |
| int Diff = ShAmt-C1; |
| if (Diff < 0) { |
| Diff = -Diff; |
| Opc = ISD::SRL; |
| } |
| |
| SDValue NewSA = |
| TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, |
| InOp.getOperand(0), |
| NewSA)); |
| } |
| } |
| } |
| } |
| |
| if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1)) |
| return true; |
| |
| // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits |
| // are not demanded. This will likely allow the anyext to be folded away. |
| if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { |
| SDValue InnerOp = InOp.getOperand(0); |
| EVT InnerVT = InnerOp.getValueType(); |
| unsigned InnerBits = InnerVT.getScalarSizeInBits(); |
| if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits && |
| isTypeDesirableForOp(ISD::SHL, InnerVT)) { |
| EVT ShTy = getShiftAmountTy(InnerVT, DL); |
| if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) |
| ShTy = InnerVT; |
| SDValue NarrowShl = |
| TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, |
| TLO.DAG.getConstant(ShAmt, dl, ShTy)); |
| return |
| TLO.CombineTo(Op, |
| TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); |
| } |
| // Repeat the SHL optimization above in cases where an extension |
| // intervenes: (shl (anyext (shr x, c1)), c2) to |
| // (shl (anyext x), c2-c1). This requires that the bottom c1 bits |
| // aren't demanded (as above) and that the shifted upper c1 bits of |
| // x aren't demanded. |
| if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && |
| InnerOp.hasOneUse()) { |
| if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) { |
| unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); |
| if (InnerShAmt < ShAmt && |
| InnerShAmt < InnerBits && |
| NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) && |
| NewMask.countTrailingZeros() >= ShAmt) { |
| SDValue NewSA = |
| TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, |
| Op.getOperand(1).getValueType()); |
| SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, |
| InnerOp.getOperand(0)); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, |
| NewExt, NewSA)); |
| } |
| } |
| } |
| } |
| |
| Known.Zero <<= ShAmt; |
| Known.One <<= ShAmt; |
| // low bits known zero. |
| Known.Zero.setLowBits(ShAmt); |
| } |
| break; |
| case ISD::SRL: |
| if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { |
| SDValue InOp = Op.getOperand(0); |
| |
| // If the shift count is an invalid immediate, don't do anything. |
| if (SA->getAPIntValue().uge(BitWidth)) |
| break; |
| |
| unsigned ShAmt = SA->getZExtValue(); |
| APInt InDemandedMask = (NewMask << ShAmt); |
| |
| // If the shift is exact, then it does demand the low bits (and knows that |
| // they are zero). |
| if (Op->getFlags().hasExact()) |
| InDemandedMask.setLowBits(ShAmt); |
| |
| // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a |
| // single shift. We can do this if the top bits (which are shifted out) |
| // are never demanded. |
| if (InOp.getOpcode() == ISD::SHL) { |
| if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { |
| if (ShAmt && |
| (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { |
| if (SA2->getAPIntValue().ult(BitWidth)) { |
| unsigned C1 = SA2->getZExtValue(); |
| unsigned Opc = ISD::SRL; |
| int Diff = ShAmt-C1; |
| if (Diff < 0) { |
| Diff = -Diff; |
| Opc = ISD::SHL; |
| } |
| |
| SDValue NewSA = |
| TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, |
| InOp.getOperand(0), |
| NewSA)); |
| } |
| } |
| } |
| } |
| |
| // Compute the new bits that are at the top now. |
| if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| Known.Zero.lshrInPlace(ShAmt); |
| Known.One.lshrInPlace(ShAmt); |
| |
| Known.Zero.setHighBits(ShAmt); // High bits known zero. |
| } |
| break; |
| case ISD::SRA: |
| // If this is an arithmetic shift right and only the low-bit is set, we can |
| // always convert this into a logical shr, even if the shift amount is |
| // variable. The low bit of the shift cannot be an input sign bit unless |
| // the shift amount is >= the size of the datatype, which is undefined. |
| if (NewMask.isOneValue()) |
| return TLO.CombineTo(Op, |
| TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), |
| Op.getOperand(1))); |
| |
| if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { |
| // If the shift count is an invalid immediate, don't do anything. |
| if (SA->getAPIntValue().uge(BitWidth)) |
| break; |
| |
| unsigned ShAmt = SA->getZExtValue(); |
| APInt InDemandedMask = (NewMask << ShAmt); |
| |
| // If the shift is exact, then it does demand the low bits (and knows that |
| // they are zero). |
| if (Op->getFlags().hasExact()) |
| InDemandedMask.setLowBits(ShAmt); |
| |
| // If any of the demanded bits are produced by the sign extension, we also |
| // demand the input sign bit. |
| if (NewMask.countLeadingZeros() < ShAmt) |
| InDemandedMask.setSignBit(); |
| |
| if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO, |
| Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| Known.Zero.lshrInPlace(ShAmt); |
| Known.One.lshrInPlace(ShAmt); |
| |
| // If the input sign bit is known to be zero, or if none of the top bits |
| // are demanded, turn this into an unsigned shift right. |
| if (Known.Zero[BitWidth - ShAmt - 1] || |
| NewMask.countLeadingZeros() >= ShAmt) { |
| SDNodeFlags Flags; |
| Flags.setExact(Op->getFlags().hasExact()); |
| return TLO.CombineTo(Op, |
| TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), |
| Op.getOperand(1), Flags)); |
| } |
| |
| int Log2 = NewMask.exactLogBase2(); |
| if (Log2 >= 0) { |
| // The bit must come from the sign. |
| SDValue NewSA = |
| TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, |
| Op.getOperand(1).getValueType()); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, |
| Op.getOperand(0), NewSA)); |
| } |
| |
| if (Known.One[BitWidth - ShAmt - 1]) |
| // New bits are known one. |
| Known.One.setHighBits(ShAmt); |
| } |
| break; |
| case ISD::SIGN_EXTEND_INREG: { |
| EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| unsigned ExVTBits = ExVT.getScalarSizeInBits(); |
| |
| // If we only care about the highest bit, don't bother shifting right. |
| if (NewMask.isSignMask()) { |
| SDValue InOp = Op.getOperand(0); |
| bool AlreadySignExtended = |
| TLO.DAG.ComputeNumSignBits(InOp) >= BitWidth-ExVTBits+1; |
| // However if the input is already sign extended we expect the sign |
| // extension to be dropped altogether later and do not simplify. |
| if (!AlreadySignExtended) { |
| // Compute the correct shift amount type, which must be getShiftAmountTy |
| // for scalar types after legalization. |
| EVT ShiftAmtTy = VT; |
| if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) |
| ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); |
| |
| SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, |
| ShiftAmtTy); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, InOp, |
| ShiftAmt)); |
| } |
| } |
| |
| // If none of the extended bits are demanded, eliminate the sextinreg. |
| if (NewMask.getActiveBits() <= ExVTBits) |
| return TLO.CombineTo(Op, Op.getOperand(0)); |
| |
| APInt InputDemandedBits = NewMask.getLoBits(ExVTBits); |
| |
| // Since the sign extended bits are demanded, we know that the sign |
| // bit is demanded. |
| InputDemandedBits.setBit(ExVTBits - 1); |
| |
| if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, |
| Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If the sign bit of the input is known set or clear, then we know the |
| // top bits of the result. |
| |
| // If the input sign bit is known zero, convert this into a zero extension. |
| if (Known.Zero[ExVTBits - 1]) |
| return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( |
| Op.getOperand(0), dl, ExVT.getScalarType())); |
| |
| APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); |
| if (Known.One[ExVTBits - 1]) { // Input sign bit known set |
| Known.One.setBitsFrom(ExVTBits); |
| Known.Zero &= Mask; |
| } else { // Input sign bit unknown |
| Known.Zero &= Mask; |
| Known.One &= Mask; |
| } |
| break; |
| } |
| case ISD::BUILD_PAIR: { |
| EVT HalfVT = Op.getOperand(0).getValueType(); |
| unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); |
| |
| APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); |
| APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); |
| |
| KnownBits KnownLo, KnownHi; |
| |
| if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) |
| return true; |
| |
| if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) |
| return true; |
| |
| Known.Zero = KnownLo.Zero.zext(BitWidth) | |
| KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); |
| |
| Known.One = KnownLo.One.zext(BitWidth) | |
| KnownHi.One.zext(BitWidth).shl(HalfBitWidth); |
| break; |
| } |
| case ISD::ZERO_EXTEND: { |
| unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); |
| |
| // If none of the top bits are demanded, convert this into an any_extend. |
| if (NewMask.getActiveBits() <= OperandBitWidth) |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, |
| Op.getOperand(0))); |
| |
| APInt InMask = NewMask.trunc(OperandBitWidth); |
| if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| Known = Known.zext(BitWidth); |
| Known.Zero.setBitsFrom(OperandBitWidth); |
| break; |
| } |
| case ISD::SIGN_EXTEND: { |
| unsigned InBits = Op.getOperand(0).getValueType().getScalarSizeInBits(); |
| |
| // If none of the top bits are demanded, convert this into an any_extend. |
| if (NewMask.getActiveBits() <= InBits) |
| return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, |
| Op.getOperand(0))); |
| |
| // Since some of the sign extended bits are demanded, we know that the sign |
| // bit is demanded. |
| APInt InDemandedBits = NewMask.trunc(InBits); |
| InDemandedBits.setBit(InBits - 1); |
| |
| if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO, |
| Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| // If the sign bit is known one, the top bits match. |
| Known = Known.sext(BitWidth); |
| |
| // If the sign bit is known zero, convert this to a zero extend. |
| if (Known.isNonNegative()) |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, |
| Op.getOperand(0))); |
| break; |
| } |
| case ISD::ANY_EXTEND: { |
| unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); |
| APInt InMask = NewMask.trunc(OperandBitWidth); |
| if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| Known = Known.zext(BitWidth); |
| break; |
| } |
| case ISD::TRUNCATE: { |
| // Simplify the input, using demanded bit information, and compute the known |
| // zero/one bits live out. |
| unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); |
| APInt TruncMask = NewMask.zext(OperandBitWidth); |
| if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1)) |
| return true; |
| Known = Known.trunc(BitWidth); |
| |
| // If the input is only used by this truncate, see if we can shrink it based |
| // on the known demanded bits. |
| if (Op.getOperand(0).getNode()->hasOneUse()) { |
| SDValue In = Op.getOperand(0); |
| switch (In.getOpcode()) { |
| default: break; |
| case ISD::SRL: |
| // Shrink SRL by a constant if none of the high bits shifted in are |
| // demanded. |
| if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) |
| // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is |
| // undesirable. |
| break; |
| ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); |
| if (!ShAmt) |
| break; |
| SDValue Shift = In.getOperand(1); |
| if (TLO.LegalTypes()) { |
| uint64_t ShVal = ShAmt->getZExtValue(); |
| Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); |
| } |
| |
| if (ShAmt->getZExtValue() < BitWidth) { |
| APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, |
| OperandBitWidth - BitWidth); |
| HighBits.lshrInPlace(ShAmt->getZExtValue()); |
| HighBits = HighBits.trunc(BitWidth); |
| |
| if (!(HighBits & NewMask)) { |
| // None of the shifted in bits are needed. Add a truncate of the |
| // shift input, then shift it. |
| SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, |
| In.getOperand(0)); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, |
| Shift)); |
| } |
| } |
| break; |
| } |
| } |
| |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| break; |
| } |
| case ISD::AssertZext: { |
| // AssertZext demands all of the high bits, plus any of the low bits |
| // demanded by its users. |
| EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); |
| if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, |
| Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| |
| Known.Zero |= ~InMask; |
| break; |
| } |
| case ISD::BITCAST: |
| // If this is an FP->Int bitcast and if the sign bit is the only |
| // thing demanded, turn this into a FGETSIGN. |
| if (!TLO.LegalOperations() && !VT.isVector() && |
| !Op.getOperand(0).getValueType().isVector() && |
| NewMask == APInt::getSignMask(Op.getValueSizeInBits()) && |
| Op.getOperand(0).getValueType().isFloatingPoint()) { |
| bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); |
| bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); |
| if ((OpVTLegal || i32Legal) && VT.isSimple() && |
| Op.getOperand(0).getValueType() != MVT::f16 && |
| Op.getOperand(0).getValueType() != MVT::f128) { |
| // Cannot eliminate/lower SHL for f128 yet. |
| EVT Ty = OpVTLegal ? VT : MVT::i32; |
| // Make a FGETSIGN + SHL to move the sign bit into the appropriate |
| // place. We expect the SHL to be eliminated by other optimizations. |
| SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); |
| unsigned OpVTSizeInBits = Op.getValueSizeInBits(); |
| if (!OpVTLegal && OpVTSizeInBits > 32) |
| Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); |
| unsigned ShVal = Op.getValueSizeInBits() - 1; |
| SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); |
| } |
| } |
| // If this is a bitcast, let computeKnownBits handle it. Only do this on a |
| // recursive call where Known may be useful to the caller. |
| if (Depth > 0) { |
| TLO.DAG.computeKnownBits(Op, Known, Depth); |
| return false; |
| } |
| break; |
| case ISD::ADD: |
| case ISD::MUL: |
| case ISD::SUB: { |
| // Add, Sub, and Mul don't demand any bits in positions beyond that |
| // of the highest bit demanded of them. |
| SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); |
| unsigned NewMaskLZ = NewMask.countLeadingZeros(); |
| APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - NewMaskLZ); |
| if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) || |
| SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) || |
| // See if the operation should be performed at a smaller bit width. |
| ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) { |
| SDNodeFlags Flags = Op.getNode()->getFlags(); |
| if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { |
| // Disable the nsw and nuw flags. We can no longer guarantee that we |
| // won't wrap after simplification. |
| Flags.setNoSignedWrap(false); |
| Flags.setNoUnsignedWrap(false); |
| SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, |
| Flags); |
| return TLO.CombineTo(Op, NewOp); |
| } |
| return true; |
| } |
| |
| // If we have a constant operand, we may be able to turn it into -1 if we |
| // do not demand the high bits. This can make the constant smaller to |
| // encode, allow more general folding, or match specialized instruction |
| // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that |
| // is probably not useful (and could be detrimental). |
| ConstantSDNode *C = isConstOrConstSplat(Op1); |
| APInt HighMask = APInt::getHighBitsSet(NewMask.getBitWidth(), NewMaskLZ); |
| if (C && !C->isAllOnesValue() && !C->isOne() && |
| (C->getAPIntValue() | HighMask).isAllOnesValue()) { |
| SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); |
| // We can't guarantee that the new math op doesn't wrap, so explicitly |
| // clear those flags to prevent folding with a potential existing node |
| // that has those flags set. |
| SDNodeFlags Flags; |
| Flags.setNoSignedWrap(false); |
| Flags.setNoUnsignedWrap(false); |
| SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); |
| return TLO.CombineTo(Op, NewOp); |
| } |
| |
| LLVM_FALLTHROUGH; |
| } |
| default: |
| // Just use computeKnownBits to compute output bits. |
| TLO.DAG.computeKnownBits(Op, Known, Depth); |
| break; |
| } |
| |
| // If we know the value of all of the demanded bits, return this as a |
| // constant. |
| if (NewMask.isSubsetOf(Known.Zero|Known.One)) { |
| // Avoid folding to a constant if any OpaqueConstant is involved. |
| const SDNode *N = Op.getNode(); |
| for (SDNodeIterator I = SDNodeIterator::begin(N), |
| E = SDNodeIterator::end(N); I != E; ++I) { |
| SDNode *Op = *I; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) |
| if (C->isOpaque()) |
| return false; |
| } |
| return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); |
| } |
| |
| return false; |
| } |
| |
| bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, |
| const APInt &DemandedElts, |
| APInt &KnownUndef, |
| APInt &KnownZero, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| !DCI.isBeforeLegalizeOps()); |
| |
| bool Simplified = |
| SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); |
| if (Simplified) |
| DCI.CommitTargetLoweringOpt(TLO); |
| return Simplified; |
| } |
| |
| bool TargetLowering::SimplifyDemandedVectorElts( |
| SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, |
| APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, |
| bool AssumeSingleUse) const { |
| EVT VT = Op.getValueType(); |
| APInt DemandedElts = DemandedEltMask; |
| unsigned NumElts = DemandedElts.getBitWidth(); |
| assert(VT.isVector() && "Expected vector op"); |
| assert(VT.getVectorNumElements() == NumElts && |
| "Mask size mismatches value type element count!"); |
| |
| KnownUndef = KnownZero = APInt::getNullValue(NumElts); |
| |
| // Undef operand. |
| if (Op.isUndef()) { |
| KnownUndef.setAllBits(); |
| return false; |
| } |
| |
| // If Op has other users, assume that all elements are needed. |
| if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) |
| DemandedElts.setAllBits(); |
| |
| // Not demanding any elements from Op. |
| if (DemandedElts == 0) { |
| KnownUndef.setAllBits(); |
| return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); |
| } |
| |
| // Limit search depth. |
| if (Depth >= 6) |
| return false; |
| |
| SDLoc DL(Op); |
| unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| |
| switch (Op.getOpcode()) { |
| case ISD::SCALAR_TO_VECTOR: { |
| if (!DemandedElts[0]) { |
| KnownUndef.setAllBits(); |
| return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); |
| } |
| KnownUndef.setHighBits(NumElts - 1); |
| break; |
| } |
| case ISD::BITCAST: { |
| SDValue Src = Op.getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| |
| // We only handle vectors here. |
| // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? |
| if (!SrcVT.isVector()) |
| break; |
| |
| // Fast handling of 'identity' bitcasts. |
| unsigned NumSrcElts = SrcVT.getVectorNumElements(); |
| if (NumSrcElts == NumElts) |
| return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, |
| KnownZero, TLO, Depth + 1); |
| |
| APInt SrcZero, SrcUndef; |
| APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); |
| |
| // Bitcast from 'large element' src vector to 'small element' vector, we |
| // must demand a source element if any DemandedElt maps to it. |
| if ((NumElts % NumSrcElts) == 0) { |
| unsigned Scale = NumElts / NumSrcElts; |
| for (unsigned i = 0; i != NumElts; ++i) |
| if (DemandedElts[i]) |
| SrcDemandedElts.setBit(i / Scale); |
| |
| if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, |
| TLO, Depth + 1)) |
| return true; |
| |
| // If the src element is zero/undef then all the output elements will be - |
| // only demanded elements are guaranteed to be correct. |
| for (unsigned i = 0; i != NumSrcElts; ++i) { |
| if (SrcDemandedElts[i]) { |
| if (SrcZero[i]) |
| KnownZero.setBits(i * Scale, (i + 1) * Scale); |
| if (SrcUndef[i]) |
| KnownUndef.setBits(i * Scale, (i + 1) * Scale); |
| } |
| } |
| } |
| |
| // Bitcast from 'small element' src vector to 'large element' vector, we |
| // demand all smaller source elements covered by the larger demanded element |
| // of this vector. |
| if ((NumSrcElts % NumElts) == 0) { |
| unsigned Scale = NumSrcElts / NumElts; |
| for (unsigned i = 0; i != NumElts; ++i) |
| if (DemandedElts[i]) |
| SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); |
| |
| if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, |
| TLO, Depth + 1)) |
| return true; |
| |
| // If all the src elements covering an output element are zero/undef, then |
| // the output element will be as well, assuming it was demanded. |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (DemandedElts[i]) { |
| if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) |
| KnownZero.setBit(i); |
| if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) |
| KnownUndef.setBit(i); |
| } |
| } |
| } |
| break; |
| } |
| case ISD::BUILD_VECTOR: { |
| // Check all elements and simplify any unused elements with UNDEF. |
| if (!DemandedElts.isAllOnesValue()) { |
| // Don't simplify BROADCASTS. |
| if (llvm::any_of(Op->op_values(), |
| [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { |
| SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); |
| bool Updated = false; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (!DemandedElts[i] && !Ops[i].isUndef()) { |
| Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); |
| KnownUndef.setBit(i); |
| Updated = true; |
| } |
| } |
| if (Updated) |
| return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); |
| } |
| } |
| for (unsigned i = 0; i != NumElts; ++i) { |
| SDValue SrcOp = Op.getOperand(i); |
| if (SrcOp.isUndef()) { |
| KnownUndef.setBit(i); |
| } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && |
| (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { |
| KnownZero.setBit(i); |
| } |
| } |
| break; |
| } |
| case ISD::CONCAT_VECTORS: { |
| EVT SubVT = Op.getOperand(0).getValueType(); |
| unsigned NumSubVecs = Op.getNumOperands(); |
| unsigned NumSubElts = SubVT.getVectorNumElements(); |
| for (unsigned i = 0; i != NumSubVecs; ++i) { |
| SDValue SubOp = Op.getOperand(i); |
| APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); |
| APInt SubUndef, SubZero; |
| if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, |
| Depth + 1)) |
| return true; |
| KnownUndef.insertBits(SubUndef, i * NumSubElts); |
| KnownZero.insertBits(SubZero, i * NumSubElts); |
| } |
| break; |
| } |
| case ISD::INSERT_SUBVECTOR: { |
| if (!isa<ConstantSDNode>(Op.getOperand(2))) |
| break; |
| SDValue Base = Op.getOperand(0); |
| SDValue Sub = Op.getOperand(1); |
| EVT SubVT = Sub.getValueType(); |
| unsigned NumSubElts = SubVT.getVectorNumElements(); |
| const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue(); |
| if (Idx.uge(NumElts - NumSubElts)) |
| break; |
| unsigned SubIdx = Idx.getZExtValue(); |
| APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); |
| APInt SubUndef, SubZero; |
| if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, |
| Depth + 1)) |
| return true; |
| APInt BaseElts = DemandedElts; |
| BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); |
| if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, |
| Depth + 1)) |
| return true; |
| KnownUndef.insertBits(SubUndef, SubIdx); |
| KnownZero.insertBits(SubZero, SubIdx); |
| break; |
| } |
| case ISD::EXTRACT_SUBVECTOR: { |
| if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| break; |
| SDValue Src = Op.getOperand(0); |
| unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); |
| const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue(); |
| if (Idx.uge(NumSrcElts - NumElts)) |
| break; |
| // Offset the demanded elts by the subvector index. |
| uint64_t SubIdx = Idx.getZExtValue(); |
| APInt SrcElts = DemandedElts.zext(NumSrcElts).shl(SubIdx); |
| APInt SrcUndef, SrcZero; |
| if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, |
| Depth + 1)) |
| return true; |
| KnownUndef = SrcUndef.extractBits(NumElts, SubIdx); |
| KnownZero = SrcZero.extractBits(NumElts, SubIdx); |
| break; |
| } |
| case ISD::INSERT_VECTOR_ELT: { |
| SDValue Vec = Op.getOperand(0); |
| SDValue Scl = Op.getOperand(1); |
| auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| |
| // For a legal, constant insertion index, if we don't need this insertion |
| // then strip it, else remove it from the demanded elts. |
| if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { |
| unsigned Idx = CIdx->getZExtValue(); |
| if (!DemandedElts[Idx]) |
| return TLO.CombineTo(Op, Vec); |
| DemandedElts.clearBit(Idx); |
| |
| if (SimplifyDemandedVectorElts(Vec, DemandedElts, KnownUndef, |
| KnownZero, TLO, Depth + 1)) |
| return true; |
| |
| KnownUndef.clearBit(Idx); |
| if (Scl.isUndef()) |
| KnownUndef.setBit(Idx); |
| |
| KnownZero.clearBit(Idx); |
| if (isNullConstant(Scl) || isNullFPConstant(Scl)) |
| KnownZero.setBit(Idx); |
| break; |
| } |
| |
| APInt VecUndef, VecZero; |
| if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, |
| Depth + 1)) |
| return true; |
| // Without knowing the insertion index we can't set KnownUndef/KnownZero. |
| break; |
| } |
| case ISD::VSELECT: { |
| APInt DemandedLHS(DemandedElts); |
| APInt DemandedRHS(DemandedElts); |
| |
| // TODO - add support for constant vselect masks. |
| |
| // See if we can simplify either vselect operand. |
| APInt UndefLHS, ZeroLHS; |
| APInt UndefRHS, ZeroRHS; |
| if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, |
| ZeroLHS, TLO, Depth + 1)) |
| return true; |
| if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, |
| ZeroRHS, TLO, Depth + 1)) |
| return true; |
| |
| KnownUndef = UndefLHS & UndefRHS; |
| KnownZero = ZeroLHS & ZeroRHS; |
| break; |
| } |
| case ISD::VECTOR_SHUFFLE: { |
| ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); |
| |
| // Collect demanded elements from shuffle operands.. |
| APInt DemandedLHS(NumElts, 0); |
| APInt DemandedRHS(NumElts, 0); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int M = ShuffleMask[i]; |
| if (M < 0 || !DemandedElts[i]) |
| continue; |
| assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); |
| if (M < (int)NumElts) |
| DemandedLHS.setBit(M); |
| else |
| DemandedRHS.setBit(M - NumElts); |
| } |
| |
| // See if we can simplify either shuffle operand. |
| APInt UndefLHS, ZeroLHS; |
| APInt UndefRHS, ZeroRHS; |
| if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, |
| ZeroLHS, TLO, Depth + 1)) |
| return true; |
| if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, |
| ZeroRHS, TLO, Depth + 1)) |
| return true; |
| |
| // Simplify mask using undef elements from LHS/RHS. |
| bool Updated = false; |
| bool IdentityLHS = true, IdentityRHS = true; |
| SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int &M = NewMask[i]; |
| if (M < 0) |
| continue; |
| if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || |
| (M >= (int)NumElts && UndefRHS[M - NumElts])) { |
| Updated = true; |
| M = -1; |
| } |
| IdentityLHS &= (M < 0) || (M == (int)i); |
| IdentityRHS &= (M < 0) || ((M - NumElts) == i); |
| } |
| |
| // Update legal shuffle masks based on demanded elements if it won't reduce |
| // to Identity which can cause premature removal of the shuffle mask. |
| if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && |
| isShuffleMaskLegal(NewMask, VT)) |
| return TLO.CombineTo(Op, |
| TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), |
| Op.getOperand(1), NewMask)); |
| |
| // Propagate undef/zero elements from LHS/RHS. |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int M = ShuffleMask[i]; |
| if (M < 0) { |
| KnownUndef.setBit(i); |
| } else if (M < (int)NumElts) { |
| if (UndefLHS[M]) |
| KnownUndef.setBit(i); |
| if (ZeroLHS[M]) |
| KnownZero.setBit(i); |
| } else { |
| if (UndefRHS[M - NumElts]) |
| KnownUndef.setBit(i); |
| if (ZeroRHS[M - NumElts]) |
| KnownZero.setBit(i); |
| } |
| } |
| break; |
| } |
| case ISD::ADD: |
| case ISD::SUB: { |
| APInt SrcUndef, SrcZero; |
| if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, |
| SrcZero, TLO, Depth + 1)) |
| return true; |
| if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, |
| KnownZero, TLO, Depth + 1)) |
| return true; |
| KnownZero &= SrcZero; |
| KnownUndef &= SrcUndef; |
| break; |
| } |
| case ISD::TRUNCATE: |
| if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, |
| KnownZero, TLO, Depth + 1)) |
| return true; |
| break; |
| default: { |
| if (Op.getOpcode() >= ISD::BUILTIN_OP_END) |
| if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, |
| KnownZero, TLO, Depth)) |
| return true; |
| break; |
| } |
| } |
| |
| assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); |
| return false; |
| } |
| |
| /// Determine which of the bits specified in Mask are known to be either zero or |
| /// one and return them in the Known. |
| void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| "Should use MaskedValueIsZero if you don't know whether Op" |
| " is a target node!"); |
| Known.resetAll(); |
| } |
| |
| void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); |
| |
| if (unsigned Align = DAG.InferPtrAlignment(Op)) { |
| // The low bits are known zero if the pointer is aligned. |
| Known.Zero.setLowBits(Log2_32(Align)); |
| } |
| } |
| |
| /// This method can be implemented by targets that want to expose additional |
| /// information about sign bits to the DAG Combiner. |
| unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, |
| const APInt &, |
| const SelectionDAG &, |
| unsigned Depth) const { |
| assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| "Should use ComputeNumSignBits if you don't know whether Op" |
| " is a target node!"); |
| return 1; |
| } |
| |
| bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( |
| SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, |
| TargetLoweringOpt &TLO, unsigned Depth) const { |
| assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| "Should use SimplifyDemandedVectorElts if you don't know whether Op" |
| " is a target node!"); |
| return false; |
| } |
| |
| // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must |
| // work with truncating build vectors and vectors with elements of less than |
| // 8 bits. |
| bool TargetLowering::isConstTrueVal(const SDNode *N) const { |
| if (!N) |
| return false; |
| |
| APInt CVal; |
| if (auto *CN = dyn_cast<ConstantSDNode>(N)) { |
| CVal = CN->getAPIntValue(); |
| } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { |
| auto *CN = BV->getConstantSplatNode(); |
| if (!CN) |
| return false; |
| |
| // If this is a truncating build vector, truncate the splat value. |
| // Otherwise, we may fail to match the expected values below. |
| unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); |
| CVal = CN->getAPIntValue(); |
| if (BVEltWidth < CVal.getBitWidth()) |
| CVal = CVal.trunc(BVEltWidth); |
| } else { |
| return false; |
| } |
| |
| switch (getBooleanContents(N->getValueType(0))) { |
| case UndefinedBooleanContent: |
| return CVal[0]; |
| case ZeroOrOneBooleanContent: |
| return CVal.isOneValue(); |
| case ZeroOrNegativeOneBooleanContent: |
| return CVal.isAllOnesValue(); |
| } |
| |
| llvm_unreachable("Invalid boolean contents"); |
| } |
| |
| bool TargetLowering::isConstFalseVal(const SDNode *N) const { |
| if (!N) |
| return false; |
| |
| const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); |
| if (!CN) { |
| const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); |
| if (!BV) |
| return false; |
| |
| // Only interested in constant splats, we don't care about undef |
| // elements in identifying boolean constants and getConstantSplatNode |
| // returns NULL if all ops are undef; |
| CN = BV->getConstantSplatNode(); |
| if (!CN) |
| return false; |
| } |
| |
| if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) |
| return !CN->getAPIntValue()[0]; |
| |
| return CN->isNullValue(); |
| } |
| |
| bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, |
| bool SExt) const { |
| if (VT == MVT::i1) |
| return N->isOne(); |
| |
| TargetLowering::BooleanContent Cnt = getBooleanContents(VT); |
| switch (Cnt) { |
| case TargetLowering::ZeroOrOneBooleanContent: |
| // An extended value of 1 is always true, unless its original type is i1, |
| // in which case it will be sign extended to -1. |
| return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); |
| case TargetLowering::UndefinedBooleanContent: |
| case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| return N->isAllOnesValue() && SExt; |
| } |
| llvm_unreachable("Unexpected enumeration."); |
| } |
| |
| /// This helper function of SimplifySetCC tries to optimize the comparison when |
| /// either operand of the SetCC node is a bitwise-and instruction. |
| SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, |
| ISD::CondCode Cond, |
| DAGCombinerInfo &DCI, |
| const SDLoc &DL) const { |
| // Match these patterns in any of their permutations: |
| // (X & Y) == Y |
| // (X & Y) != Y |
| if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) |
| std::swap(N0, N1); |
| |
| EVT OpVT = N0.getValueType(); |
| if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || |
| (Cond != ISD::SETEQ && Cond != ISD::SETNE)) |
| return SDValue(); |
| |
| SDValue X, Y; |
| if (N0.getOperand(0) == N1) { |
| X = N0.getOperand(1); |
| Y = N0.getOperand(0); |
| } else if (N0.getOperand(1) == N1) { |
| X = N0.getOperand(0); |
| Y = N0.getOperand(1); |
| } else { |
| return SDValue(); |
| } |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue Zero = DAG.getConstant(0, DL, OpVT); |
| if (DAG.isKnownToBeAPowerOfTwo(Y)) { |
| // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. |
| // Note that where Y is variable and is known to have at most one bit set |
| // (for example, if it is Z & 1) we cannot do this; the expressions are not |
| // equivalent when Y == 0. |
| Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); |
| if (DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(Cond, N0.getSimpleValueType())) |
| return DAG.getSetCC(DL, VT, N0, Zero, Cond); |
| } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { |
| // If the target supports an 'and-not' or 'and-complement' logic operation, |
| // try to use that to make a comparison operation more efficient. |
| // But don't do this transform if the mask is a single bit because there are |
| // more efficient ways to deal with that case (for example, 'bt' on x86 or |
| // 'rlwinm' on PPC). |
| |
| // Bail out if the compare operand that we want to turn into a zero is |
| // already a zero (otherwise, infinite loop). |
| auto *YConst = dyn_cast<ConstantSDNode>(Y); |
| if (YConst && YConst->isNullValue()) |
| return SDValue(); |
| |
| // Transform this into: ~X & Y == 0. |
| SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); |
| SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); |
| return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// There are multiple IR patterns that could be checking whether certain |
| /// truncation of a signed number would be lossy or not. The pattern which is |
| /// best at IR level, may not lower optimally. Thus, we want to unfold it. |
| /// We are looking for the following pattern: (KeptBits is a constant) |
| /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) |
| /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. |
| /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 |
| /// We will unfold it into the natural trunc+sext pattern: |
| /// ((%x << C) a>> C) dstcond %x |
| /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) |
| SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( |
| EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, |
| const SDLoc &DL) const { |
| // We must be comparing with a constant. |
| ConstantSDNode *C1; |
| if (!(C1 = dyn_cast<ConstantSDNode>(N1))) |
| return SDValue(); |
| |
| // N0 should be: add %x, (1 << (KeptBits-1)) |
| if (N0->getOpcode() != ISD::ADD) |
| return SDValue(); |
| |
| // And we must be 'add'ing a constant. |
| ConstantSDNode *C01; |
| if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) |
| return SDValue(); |
| |
| SDValue X = N0->getOperand(0); |
| EVT XVT = X.getValueType(); |
| |
| // Validate constants ... |
| |
| APInt I1 = C1->getAPIntValue(); |
| |
| ISD::CondCode NewCond; |
| if (Cond == ISD::CondCode::SETULT) { |
| NewCond = ISD::CondCode::SETEQ; |
| } else if (Cond == ISD::CondCode::SETULE) { |
| NewCond = ISD::CondCode::SETEQ; |
| // But need to 'canonicalize' the constant. |
| I1 += 1; |
| } else if (Cond == ISD::CondCode::SETUGT) { |
| NewCond = ISD::CondCode::SETNE; |
| // But need to 'canonicalize' the constant. |
| I1 += 1; |
| } else if (Cond == ISD::CondCode::SETUGE) { |
| NewCond = ISD::CondCode::SETNE; |
| } else |
| return SDValue(); |
| |
| const APInt &I01 = C01->getAPIntValue(); |
| // Both of them must be power-of-two, and the constant from setcc is bigger. |
| if (!(I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2())) |
| return SDValue(); |
| |
| // They are power-of-two, so which bit is set? |
| const unsigned KeptBits = I1.logBase2(); |
| const unsigned KeptBitsMinusOne = I01.logBase2(); |
| |
| // Magic! |
| if (KeptBits != (KeptBitsMinusOne + 1)) |
| return SDValue(); |
| assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); |
| |
| // We don't want to do this in every single case. |
| SelectionDAG &DAG = DCI.DAG; |
| if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( |
| XVT, KeptBits)) |
| return SDValue(); |
| |
| const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; |
| assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); |
| |
| // Unfold into: ((%x << C) a>> C) cond %x |
| // Where 'cond' will be either 'eq' or 'ne'. |
| SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); |
| SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); |
| SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); |
| SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); |
| |
| return T2; |
| } |
| |
| /// Try to simplify a setcc built with the specified operands and cc. If it is |
| /// unable to simplify it, return a null SDValue. |
| SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, |
| ISD::CondCode Cond, bool foldBooleans, |
| DAGCombinerInfo &DCI, |
| const SDLoc &dl) const { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT OpVT = N0.getValueType(); |
| |
| // These setcc operations always fold. |
| switch (Cond) { |
| default: break; |
| case ISD::SETFALSE: |
| case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT); |
| case ISD::SETTRUE: |
| case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT); |
| } |
| |
| // Ensure that the constant occurs on the RHS and fold constant comparisons. |
| // TODO: Handle non-splat vector constants. All undef causes trouble. |
| ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); |
| if (isConstOrConstSplat(N0) && |
| (DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) |
| return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); |
| |
| if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { |
| const APInt &C1 = N1C->getAPIntValue(); |
| |
| // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an |
| // equality comparison, then we're just comparing whether X itself is |
| // zero. |
| if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && |
| N0.getOperand(0).getOpcode() == ISD::CTLZ && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| const APInt &ShAmt |
| = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| ShAmt == Log2_32(N0.getValueSizeInBits())) { |
| if ((C1 == 0) == (Cond == ISD::SETEQ)) { |
| // (srl (ctlz x), 5) == 0 -> X != 0 |
| // (srl (ctlz x), 5) != 1 -> X != 0 |
| Cond = ISD::SETNE; |
| } else { |
| // (srl (ctlz x), 5) != 0 -> X == 0 |
| // (srl (ctlz x), 5) == 1 -> X == 0 |
| Cond = ISD::SETEQ; |
| } |
| SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); |
| return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), |
| Zero, Cond); |
| } |
| } |
| |
| SDValue CTPOP = N0; |
| // Look through truncs that don't change the value of a ctpop. |
| if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) |
| CTPOP = N0.getOperand(0); |
| |
| if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && |
| (N0 == CTPOP || |
| N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { |
| EVT CTVT = CTPOP.getValueType(); |
| SDValue CTOp = CTPOP.getOperand(0); |
| |
| // (ctpop x) u< 2 -> (x & x-1) == 0 |
| // (ctpop x) u> 1 -> (x & x-1) != 0 |
| if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ |
| SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, |
| DAG.getConstant(1, dl, CTVT)); |
| SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); |
| ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; |
| return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); |
| } |
| |
| // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. |
| } |
| |
| // (zext x) == C --> x == (trunc C) |
| // (sext x) == C --> x == (trunc C) |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| DCI.isBeforeLegalize() && N0->hasOneUse()) { |
| unsigned MinBits = N0.getValueSizeInBits(); |
| SDValue PreExt; |
| bool Signed = false; |
| if (N0->getOpcode() == ISD::ZERO_EXTEND) { |
| // ZExt |
| MinBits = N0->getOperand(0).getValueSizeInBits(); |
| PreExt = N0->getOperand(0); |
| } else if (N0->getOpcode() == ISD::AND) { |
| // DAGCombine turns costly ZExts into ANDs |
| if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) |
| if ((C->getAPIntValue()+1).isPowerOf2()) { |
| MinBits = C->getAPIntValue().countTrailingOnes(); |
| PreExt = N0->getOperand(0); |
| } |
| } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { |
| // SExt |
| MinBits = N0->getOperand(0).getValueSizeInBits(); |
| PreExt = N0->getOperand(0); |
| Signed = true; |
| } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { |
| // ZEXTLOAD / SEXTLOAD |
| if (LN0->getExtensionType() == ISD::ZEXTLOAD) { |
| MinBits = LN0->getMemoryVT().getSizeInBits(); |
| PreExt = N0; |
| } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { |
| Signed = true; |
| MinBits = LN0->getMemoryVT().getSizeInBits(); |
| PreExt = N0; |
| } |
| } |
| |
| // Figure out how many bits we need to preserve this constant. |
| unsigned ReqdBits = Signed ? |
| C1.getBitWidth() - C1.getNumSignBits() + 1 : |
| C1.getActiveBits(); |
| |
| // Make sure we're not losing bits from the constant. |
| if (MinBits > 0 && |
| MinBits < C1.getBitWidth() && |
| MinBits >= ReqdBits) { |
| EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); |
| if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { |
| // Will get folded away. |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); |
| if (MinBits == 1 && C1 == 1) |
| // Invert the condition. |
| return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), |
| Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); |
| return DAG.getSetCC(dl, VT, Trunc, C, Cond); |
| } |
| |
| // If truncating the setcc operands is not desirable, we can still |
| // simplify the expression in some cases: |
| // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) |
| // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) |
| // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) |
| // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) |
| // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) |
| // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) |
| SDValue TopSetCC = N0->getOperand(0); |
| unsigned N0Opc = N0->getOpcode(); |
| bool SExt = (N0Opc == ISD::SIGN_EXTEND); |
| if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && |
| TopSetCC.getOpcode() == ISD::SETCC && |
| (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && |
| (isConstFalseVal(N1C) || |
| isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { |
| |
| bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || |
| (!N1C->isNullValue() && Cond == ISD::SETNE); |
| |
| if (!Inverse) |
| return TopSetCC; |
| |
| ISD::CondCode InvCond = ISD::getSetCCInverse( |
| cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), |
| TopSetCC.getOperand(0).getValueType().isInteger()); |
| return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), |
| TopSetCC.getOperand(1), |
| InvCond); |
| } |
| } |
| } |
| |
| // If the LHS is '(and load, const)', the RHS is 0, the test is for |
| // equality or unsigned, and all 1 bits of the const are in the same |
| // partial word, see if we can shorten the load. |
| if (DCI.isBeforeLegalize() && |
| !ISD::isSignedIntSetCC(Cond) && |
| N0.getOpcode() == ISD::AND && C1 == 0 && |
| N0.getNode()->hasOneUse() && |
| isa<LoadSDNode>(N0.getOperand(0)) && |
| N0.getOperand(0).getNode()->hasOneUse() && |
| isa<ConstantSDNode>(N0.getOperand(1))) { |
| LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); |
| APInt bestMask; |
| unsigned bestWidth = 0, bestOffset = 0; |
| if (!Lod->isVolatile() && Lod->isUnindexed()) { |
| unsigned origWidth = N0.getValueSizeInBits(); |
| unsigned maskWidth = origWidth; |
| // We can narrow (e.g.) 16-bit extending loads on 32-bit target to |
| // 8 bits, but have to be careful... |
| if (Lod->getExtensionType() != ISD::NON_EXTLOAD) |
| origWidth = Lod->getMemoryVT().getSizeInBits(); |
| const APInt &Mask = |
| cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| for (unsigned width = origWidth / 2; width>=8; width /= 2) { |
| APInt newMask = APInt::getLowBitsSet(maskWidth, width); |
| for (unsigned offset=0; offset<origWidth/width; offset++) { |
| if (Mask.isSubsetOf(newMask)) { |
| if (DAG.getDataLayout().isLittleEndian()) |
| bestOffset = (uint64_t)offset * (width/8); |
| else |
| bestOffset = (origWidth/width - offset - 1) * (width/8); |
| bestMask = Mask.lshr(offset * (width/8) * 8); |
| bestWidth = width; |
| break; |
| } |
| newMask <<= width; |
| } |
| } |
| } |
| if (bestWidth) { |
| EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); |
| if (newVT.isRound()) { |
| EVT PtrType = Lod->getOperand(1).getValueType(); |
| SDValue Ptr = Lod->getBasePtr(); |
| if (bestOffset != 0) |
| Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), |
| DAG.getConstant(bestOffset, dl, PtrType)); |
| unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); |
| SDValue NewLoad = DAG.getLoad( |
| newVT, dl, Lod->getChain(), Ptr, |
| Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); |
| return DAG.getSetCC(dl, VT, |
| DAG.getNode(ISD::AND, dl, newVT, NewLoad, |
| DAG.getConstant(bestMask.trunc(bestWidth), |
| dl, newVT)), |
| DAG.getConstant(0LL, dl, newVT), Cond); |
| } |
| } |
| } |
| |
| // If the LHS is a ZERO_EXTEND, perform the comparison on the input. |
| if (N0.getOpcode() == ISD::ZERO_EXTEND) { |
| unsigned InSize = N0.getOperand(0).getValueSizeInBits(); |
| |
| // If the comparison constant has bits in the upper part, the |
| // zero-extended value could never match. |
| if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), |
| C1.getBitWidth() - InSize))) { |
| switch (Cond) { |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| case ISD::SETEQ: |
| return DAG.getConstant(0, dl, VT); |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETNE: |
| return DAG.getConstant(1, dl, VT); |
| case ISD::SETGT: |
| case ISD::SETGE: |
| // True if the sign bit of C1 is set. |
| return DAG.getConstant(C1.isNegative(), dl, VT); |
| case ISD::SETLT: |
| case ISD::SETLE: |
| // True if the sign bit of C1 isn't set. |
| return DAG.getConstant(C1.isNonNegative(), dl, VT); |
| default: |
| break; |
| } |
| } |
| |
| // Otherwise, we can perform the comparison with the low bits. |
| switch (Cond) { |
| case ISD::SETEQ: |
| case ISD::SETNE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| case ISD::SETULT: |
| case ISD::SETULE: { |
| EVT newVT = N0.getOperand(0).getValueType(); |
| if (DCI.isBeforeLegalizeOps() || |
| (isOperationLegal(ISD::SETCC, newVT) && |
| isCondCodeLegal(Cond, newVT.getSimpleVT()))) { |
| EVT NewSetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); |
| SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); |
| |
| SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), |
| NewConst, Cond); |
| return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); |
| } |
| break; |
| } |
| default: |
| break; // todo, be more careful with signed comparisons |
| } |
| } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
| EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); |
| unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); |
| EVT ExtDstTy = N0.getValueType(); |
| unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); |
| |
| // If the constant doesn't fit into the number of bits for the source of |
| // the sign extension, it is impossible for both sides to be equal. |
| if (C1.getMinSignedBits() > ExtSrcTyBits) |
| return DAG.getConstant(Cond == ISD::SETNE, dl, VT); |
| |
| SDValue ZextOp; |
| EVT Op0Ty = N0.getOperand(0).getValueType(); |
| if (Op0Ty == ExtSrcTy) { |
| ZextOp = N0.getOperand(0); |
| } else { |
| APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); |
| ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), |
| DAG.getConstant(Imm, dl, Op0Ty)); |
| } |
| if (!DCI.isCalledByLegalizer()) |
| DCI.AddToWorklist(ZextOp.getNode()); |
| // Otherwise, make this a use of a zext. |
| return DAG.getSetCC(dl, VT, ZextOp, |
| DAG.getConstant(C1 & APInt::getLowBitsSet( |
| ExtDstTyBits, |
| ExtSrcTyBits), |
| dl, ExtDstTy), |
| Cond); |
| } else if ((N1C->isNullValue() || N1C->isOne()) && |
| (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
| // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC |
| if (N0.getOpcode() == ISD::SETCC && |
| isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { |
| bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); |
| if (TrueWhenTrue) |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); |
| // Invert the condition. |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); |
| CC = ISD::getSetCCInverse(CC, |
| N0.getOperand(0).getValueType().isInteger()); |
| if (DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); |
| } |
| |
| if ((N0.getOpcode() == ISD::XOR || |
| (N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::XOR && |
| N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && |
| isa<ConstantSDNode>(N0.getOperand(1)) && |
| cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { |
| // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We |
| // can only do this if the top bits are known zero. |
| unsigned BitWidth = N0.getValueSizeInBits(); |
| if (DAG.MaskedValueIsZero(N0, |
| APInt::getHighBitsSet(BitWidth, |
| BitWidth-1))) { |
| // Okay, get the un-inverted input value. |
| SDValue Val; |
| if (N0.getOpcode() == ISD::XOR) { |
| Val = N0.getOperand(0); |
| } else { |
| assert(N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::XOR); |
| // ((X^1)&1)^1 -> X & 1 |
| Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), |
| N0.getOperand(0).getOperand(0), |
| N0.getOperand(1)); |
| } |
| |
| return DAG.getSetCC(dl, VT, Val, N1, |
| Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| } |
| } else if (N1C->isOne() && |
| (VT == MVT::i1 || |
| getBooleanContents(N0->getValueType(0)) == |
| ZeroOrOneBooleanContent)) { |
| SDValue Op0 = N0; |
| if (Op0.getOpcode() == ISD::TRUNCATE) |
| Op0 = Op0.getOperand(0); |
| |
| if ((Op0.getOpcode() == ISD::XOR) && |
| Op0.getOperand(0).getOpcode() == ISD::SETCC && |
| Op0.getOperand(1).getOpcode() == ISD::SETCC) { |
| // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) |
| Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; |
| return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), |
| Cond); |
| } |
| if (Op0.getOpcode() == ISD::AND && |
| isa<ConstantSDNode>(Op0.getOperand(1)) && |
| cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { |
| // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. |
| if (Op0.getValueType().bitsGT(VT)) |
| Op0 = DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), |
| DAG.getConstant(1, dl, VT)); |
| else if (Op0.getValueType().bitsLT(VT)) |
| Op0 = DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), |
| DAG.getConstant(1, dl, VT)); |
| |
| return DAG.getSetCC(dl, VT, Op0, |
| DAG.getConstant(0, dl, Op0.getValueType()), |
| Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| } |
| if (Op0.getOpcode() == ISD::AssertZext && |
| cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) |
| return DAG.getSetCC(dl, VT, Op0, |
| DAG.getConstant(0, dl, Op0.getValueType()), |
| Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| } |
| } |
| |
| if (SDValue V = |
| optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) |
| return V; |
| } |
| |
| // These simplifications apply to splat vectors as well. |
| // TODO: Handle more splat vector cases. |
| if (auto *N1C = isConstOrConstSplat(N1)) { |
| const APInt &C1 = N1C->getAPIntValue(); |
| |
| APInt MinVal, MaxVal; |
| unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); |
| if (ISD::isSignedIntSetCC(Cond)) { |
| MinVal = APInt::getSignedMinValue(OperandBitSize); |
| MaxVal = APInt::getSignedMaxValue(OperandBitSize); |
| } else { |
| MinVal = APInt::getMinValue(OperandBitSize); |
| MaxVal = APInt::getMaxValue(OperandBitSize); |
| } |
| |
| // Canonicalize GE/LE comparisons to use GT/LT comparisons. |
| if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { |
| // X >= MIN --> true |
| if (C1 == MinVal) |
| return DAG.getBoolConstant(true, dl, VT, OpVT); |
| |
| if (!VT.isVector()) { // TODO: Support this for vectors. |
| // X >= C0 --> X > (C0 - 1) |
| APInt C = C1 - 1; |
| ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; |
| if ((DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(NewCC, VT.getSimpleVT())) && |
| (!N1C->isOpaque() || (C.getBitWidth() <= 64 && |
| isLegalICmpImmediate(C.getSExtValue())))) { |
| return DAG.getSetCC(dl, VT, N0, |
| DAG.getConstant(C, dl, N1.getValueType()), |
| NewCC); |
| } |
| } |
| } |
| |
| if (Cond == ISD::SETLE || Cond == ISD::SETULE) { |
| // X <= MAX --> true |
| if (C1 == MaxVal) |
| return DAG.getBoolConstant(true, dl, VT, OpVT); |
| |
| // X <= C0 --> X < (C0 + 1) |
| if (!VT.isVector()) { // TODO: Support this for vectors. |
| APInt C = C1 + 1; |
| ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; |
| if ((DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(NewCC, VT.getSimpleVT())) && |
| (!N1C->isOpaque() || (C.getBitWidth() <= 64 && |
| isLegalICmpImmediate(C.getSExtValue())))) { |
| return DAG.getSetCC(dl, VT, N0, |
| DAG.getConstant(C, dl, N1.getValueType()), |
| NewCC); |
| } |
| } |
| } |
| |
| if (Cond == ISD::SETLT || Cond == ISD::SETULT) { |
| if (C1 == MinVal) |
| return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false |
| |
| // TODO: Support this for vectors after legalize ops. |
| if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { |
| // Canonicalize setlt X, Max --> setne X, Max |
| if (C1 == MaxVal) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); |
| |
| // If we have setult X, 1, turn it into seteq X, 0 |
| if (C1 == MinVal+1) |
| return DAG.getSetCC(dl, VT, N0, |
| DAG.getConstant(MinVal, dl, N0.getValueType()), |
| ISD::SETEQ); |
| } |
| } |
| |
| if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { |
| if (C1 == MaxVal) |
| return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false |
| |
| // TODO: Support this for vectors after legalize ops. |
| if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { |
| // Canonicalize setgt X, Min --> setne X, Min |
| if (C1 == MinVal) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); |
| |
| // If we have setugt X, Max-1, turn it into seteq X, Max |
| if (C1 == MaxVal-1) |
| return DAG.getSetCC(dl, VT, N0, |
| DAG.getConstant(MaxVal, dl, N0.getValueType()), |
| ISD::SETEQ); |
| } |
| } |
| |
| // If we have "setcc X, C0", check to see if we can shrink the immediate |
| // by changing cc. |
| // TODO: Support this for vectors after legalize ops. |
| if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { |
| // SETUGT X, SINTMAX -> SETLT X, 0 |
| if (Cond == ISD::SETUGT && |
| C1 == APInt::getSignedMaxValue(OperandBitSize)) |
| return DAG.getSetCC(dl, VT, N0, |
| DAG.getConstant(0, dl, N1.getValueType()), |
| ISD::SETLT); |
| |
| // SETULT X, SINTMIN -> SETGT X, -1 |
| if (Cond == ISD::SETULT && |
| C1 == APInt::getSignedMinValue(OperandBitSize)) { |
| SDValue ConstMinusOne = |
| DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, |
| N1.getValueType()); |
| return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); |
| } |
| } |
| } |
| |
| // Back to non-vector simplifications. |
| // TODO: Can we do these for vector splats? |
| if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { |
| const APInt &C1 = N1C->getAPIntValue(); |
| |
| // Fold bit comparisons when we can. |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| (VT == N0.getValueType() || |
| (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && |
| N0.getOpcode() == ISD::AND) { |
| auto &DL = DAG.getDataLayout(); |
| if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, |
| !DCI.isBeforeLegalize()); |
| if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 |
| // Perform the xform if the AND RHS is a single bit. |
| if (AndRHS->getAPIntValue().isPowerOf2()) { |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, |
| DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, |
| DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, |
| ShiftTy))); |
| } |
| } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { |
| // (X & 8) == 8 --> (X & 8) >> 3 |
| // Perform the xform if C1 is a single bit. |
| if (C1.isPowerOf2()) { |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, |
| DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, |
| DAG.getConstant(C1.logBase2(), dl, |
| ShiftTy))); |
| } |
| } |
| } |
| } |
| |
| if (C1.getMinSignedBits() <= 64 && |
| !isLegalICmpImmediate(C1.getSExtValue())) { |
| // (X & -256) == 256 -> (X >> 8) == 1 |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| N0.getOpcode() == ISD::AND && N0.hasOneUse()) { |
| if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| const APInt &AndRHSC = AndRHS->getAPIntValue(); |
| if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { |
| unsigned ShiftBits = AndRHSC.countTrailingZeros(); |
| auto &DL = DAG.getDataLayout(); |
| EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, |
| !DCI.isBeforeLegalize()); |
| EVT CmpTy = N0.getValueType(); |
| SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), |
| DAG.getConstant(ShiftBits, dl, |
| ShiftTy)); |
| SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); |
| return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); |
| } |
| } |
| } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || |
| Cond == ISD::SETULE || Cond == ISD::SETUGT) { |
| bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); |
| // X < 0x100000000 -> (X >> 32) < 1 |
| // X >= 0x100000000 -> (X >> 32) >= 1 |
| // X <= 0x0ffffffff -> (X >> 32) < 1 |
| // X > 0x0ffffffff -> (X >> 32) >= 1 |
| unsigned ShiftBits; |
| APInt NewC = C1; |
| ISD::CondCode NewCond = Cond; |
| if (AdjOne) { |
| ShiftBits = C1.countTrailingOnes(); |
| NewC = NewC + 1; |
| NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
| } else { |
| ShiftBits = C1.countTrailingZeros(); |
| } |
| NewC.lshrInPlace(ShiftBits); |
| if (ShiftBits && NewC.getMinSignedBits() <= 64 && |
| isLegalICmpImmediate(NewC.getSExtValue())) { |
| auto &DL = DAG.getDataLayout(); |
| EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, |
| !DCI.isBeforeLegalize()); |
| EVT CmpTy = N0.getValueType(); |
| SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, |
| DAG.getConstant(ShiftBits, dl, ShiftTy)); |
| SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); |
| return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); |
| } |
| } |
| } |
| } |
| |
| if (isa<ConstantFPSDNode>(N0.getNode())) { |
| // Constant fold or commute setcc. |
| SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); |
| if (O.getNode()) return O; |
| } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { |
| // If the RHS of an FP comparison is a constant, simplify it away in |
| // some cases. |
| if (CFP->getValueAPF().isNaN()) { |
| // If an operand is known to be a nan, we can fold it. |
| switch (ISD::getUnorderedFlavor(Cond)) { |
| default: llvm_unreachable("Unknown flavor!"); |
| case 0: // Known false. |
| return DAG.getBoolConstant(false, dl, VT, OpVT); |
| case 1: // Known true. |
| return DAG.getBoolConstant(true, dl, VT, OpVT); |
| case 2: // Undefined. |
| return DAG.getUNDEF(VT); |
| } |
| } |
| |
| // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the |
| // constant if knowing that the operand is non-nan is enough. We prefer to |
| // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to |
| // materialize 0.0. |
| if (Cond == ISD::SETO || Cond == ISD::SETUO) |
| return DAG.getSetCC(dl, VT, N0, N0, Cond); |
| |
| // setcc (fneg x), C -> setcc swap(pred) x, -C |
| if (N0.getOpcode() == ISD::FNEG) { |
| ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); |
| if (DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { |
| SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); |
| } |
| } |
| |
| // If the condition is not legal, see if we can find an equivalent one |
| // which is legal. |
| if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { |
| // If the comparison was an awkward floating-point == or != and one of |
| // the comparison operands is infinity or negative infinity, convert the |
| // condition to a less-awkward <= or >=. |
| if (CFP->getValueAPF().isInfinity()) { |
| if (CFP->getValueAPF().isNegative()) { |
| if (Cond == ISD::SETOEQ && |
| isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); |
| if (Cond == ISD::SETUEQ && |
| isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); |
| if (Cond == ISD::SETUNE && |
| isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); |
| if (Cond == ISD::SETONE && |
| isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); |
| } else { |
| if (Cond == ISD::SETOEQ && |
| isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); |
| if (Cond == ISD::SETUEQ && |
| isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); |
| if (Cond == ISD::SETUNE && |
| isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); |
| if (Cond == ISD::SETONE && |
| isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); |
| } |
| } |
| } |
| } |
| |
| if (N0 == N1) { |
| // The sext(setcc()) => setcc() optimization relies on the appropriate |
| // constant being emitted. |
| |
| bool EqTrue = ISD::isTrueWhenEqual(Cond); |
| |
| // We can always fold X == X for integer setcc's. |
| if (N0.getValueType().isInteger()) |
| return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); |
| |
| unsigned UOF = ISD::getUnorderedFlavor(Cond); |
| if (UOF == 2) // FP operators that are undefined on NaNs. |
| return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); |
| if (UOF == unsigned(EqTrue)) |
| return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); |
| // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO |
| // if it is not already. |
| ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; |
| if (NewCond != Cond && |
| (DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(NewCond, N0.getSimpleValueType()))) |
| return DAG.getSetCC(dl, VT, N0, N1, NewCond); |
| } |
| |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| N0.getValueType().isInteger()) { |
| if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || |
| N0.getOpcode() == ISD::XOR) { |
| // Simplify (X+Y) == (X+Z) --> Y == Z |
| if (N0.getOpcode() == N1.getOpcode()) { |
| if (N0.getOperand(0) == N1.getOperand(0)) |
| return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); |
| if (N0.getOperand(1) == N1.getOperand(1)) |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); |
| if (isCommutativeBinOp(N0.getOpcode())) { |
| // If X op Y == Y op X, try other combinations. |
| if (N0.getOperand(0) == N1.getOperand(1)) |
| return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), |
| Cond); |
| if (N0.getOperand(1) == N1.getOperand(0)) |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), |
| Cond); |
| } |
| } |
| |
| // If RHS is a legal immediate value for a compare instruction, we need |
| // to be careful about increasing register pressure needlessly. |
| bool LegalRHSImm = false; |
| |
| if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { |
| if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| // Turn (X+C1) == C2 --> X == C2-C1 |
| if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), |
| DAG.getConstant(RHSC->getAPIntValue()- |
| LHSR->getAPIntValue(), |
| dl, N0.getValueType()), Cond); |
| } |
| |
| // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. |
| if (N0.getOpcode() == ISD::XOR) |
| // If we know that all of the inverted bits are zero, don't bother |
| // performing the inversion. |
| if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) |
| return |
| DAG.getSetCC(dl, VT, N0.getOperand(0), |
| DAG.getConstant(LHSR->getAPIntValue() ^ |
| RHSC->getAPIntValue(), |
| dl, N0.getValueType()), |
| Cond); |
| } |
| |
| // Turn (C1-X) == C2 --> X == C1-C2 |
| if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { |
| if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { |
| return |
| DAG.getSetCC(dl, VT, N0.getOperand(1), |
| DAG.getConstant(SUBC->getAPIntValue() - |
| RHSC->getAPIntValue(), |
| dl, N0.getValueType()), |
| Cond); |
| } |
| } |
| |
| // Could RHSC fold directly into a compare? |
| if (RHSC->getValueType(0).getSizeInBits() <= 64) |
| LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); |
| } |
| |
| // Simplify (X+Z) == X --> Z == 0 |
| // Don't do this if X is an immediate that can fold into a cmp |
| // instruction and X+Z has other uses. It could be an induction variable |
| // chain, and the transform would increase register pressure. |
| if (!LegalRHSImm || N0.getNode()->hasOneUse()) { |
| if (N0.getOperand(0) == N1) |
| return DAG.getSetCC(dl, VT, N0.getOperand(1), |
| DAG.getConstant(0, dl, N0.getValueType()), Cond); |
| if (N0.getOperand(1) == N1) { |
| if (isCommutativeBinOp(N0.getOpcode())) |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), |
| DAG.getConstant(0, dl, N0.getValueType()), |
| Cond); |
| if (N0.getNode()->hasOneUse()) { |
| assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); |
| auto &DL = DAG.getDataLayout(); |
| // (Z-X) == X --> Z == X<<1 |
| SDValue SH = DAG.getNode( |
| ISD::SHL, dl, N1.getValueType(), N1, |
| DAG.getConstant(1, dl, |
| getShiftAmountTy(N1.getValueType(), DL, |
| !DCI.isBeforeLegalize()))); |
| if (!DCI.isCalledByLegalizer()) |
| DCI.AddToWorklist(SH.getNode()); |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); |
| } |
| } |
| } |
| } |
| |
| if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || |
| N1.getOpcode() == ISD::XOR) { |
| // Simplify X == (X+Z) --> Z == 0 |
| if (N1.getOperand(0) == N0) |
| return DAG.getSetCC(dl, VT, N1.getOperand(1), |
| DAG.getConstant(0, dl, N1.getValueType()), Cond); |
| if (N1.getOperand(1) == N0) { |
| if (isCommutativeBinOp(N1.getOpcode())) |
| return DAG.getSetCC(dl, VT, N1.getOperand(0), |
| DAG.getConstant(0, dl, N1.getValueType()), Cond); |
| if (N1.getNode()->hasOneUse()) { |
| assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); |
| auto &DL = DAG.getDataLayout(); |
| // X == (Z-X) --> X<<1 == Z |
| SDValue SH = DAG.getNode( |
| ISD::SHL, dl, N1.getValueType(), N0, |
| DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL, |
| !DCI.isBeforeLegalize()))); |
| if (!DCI.isCalledByLegalizer()) |
| DCI.AddToWorklist(SH.getNode()); |
| return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); |
| } |
| } |
| } |
| |
| if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) |
| return V; |
| } |
| |
| // Fold away ALL boolean setcc's. |
| SDValue Temp; |
| if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { |
| EVT OpVT = N0.getValueType(); |
| switch (Cond) { |
| default: llvm_unreachable("Unknown integer setcc!"); |
| case ISD::SETEQ: // X == Y -> ~(X^Y) |
| Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); |
| N0 = DAG.getNOT(dl, Temp, OpVT); |
| if (!DCI.isCalledByLegalizer()) |
| DCI.AddToWorklist(Temp.getNode()); |
| break; |
| case ISD::SETNE: // X != Y --> (X^Y) |
| N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); |
| break; |
| case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y |
| case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y |
| Temp = DAG.getNOT(dl, N0, OpVT); |
| N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); |
| if (!DCI.isCalledByLegalizer()) |
| DCI.AddToWorklist(Temp.getNode()); |
| break; |
| case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X |
| case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X |
| Temp = DAG.getNOT(dl, N1, OpVT); |
| N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); |
| if (!DCI.isCalledByLegalizer()) |
| DCI.AddToWorklist(Temp.getNode()); |
| break; |
| case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y |
| case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y |
| Temp = DAG.getNOT(dl, N0, OpVT); |
| N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); |
| if (!DCI.isCalledByLegalizer()) |
| DCI.AddToWorklist(Temp.getNode()); |
| break; |
| case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X |
| case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X |
| Temp = DAG.getNOT(dl, N1, OpVT); |
| N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); |
| break; |
| } |
| if (VT.getScalarType() != MVT::i1) { |
| if (!DCI.isCalledByLegalizer()) |
| DCI.AddToWorklist(N0.getNode()); |
| // FIXME: If running after legalize, we probably can't do this. |
| ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); |
| N0 = DAG.getNode(ExtendCode, dl, VT, N0); |
| } |
| return N0; |
| } |
| |
| // Could not fold it. |
| return SDValue(); |
| } |
| |
| /// Returns true (and the GlobalValue and the offset) if the node is a |
| /// GlobalAddress + offset. |
| bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, |
| int64_t &Offset) const { |
| if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { |
| GA = GASD->getGlobal(); |
| Offset += GASD->getOffset(); |
| return true; |
| } |
| |
| if (N->getOpcode() == ISD::ADD) { |
| SDValue N1 = N->getOperand(0); |
| SDValue N2 = N->getOperand(1); |
| if (isGAPlusOffset(N1.getNode(), GA, Offset)) { |
| if (auto *V = dyn_cast<ConstantSDNode>(N2)) { |
| Offset += V->getSExtValue(); |
| return true; |
| } |
| } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { |
| if (auto *V = dyn_cast<ConstantSDNode>(N1)) { |
| Offset += V->getSExtValue(); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| SDValue TargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| // Default implementation: no optimization. |
| return SDValue(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Inline Assembler Implementation Methods |
| //===----------------------------------------------------------------------===// |
| |
| TargetLowering::ConstraintType |
| TargetLowering::getConstraintType(StringRef Constraint) const { |
| unsigned S = Constraint.size(); |
| |
| if (S == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 'r': return C_RegisterClass; |
| case 'm': // memory |
| case 'o': // offsetable |
| case 'V': // not offsetable |
| return C_Memory; |
| case 'i': // Simple Integer or Relocatable Constant |
| case 'n': // Simple Integer |
| case 'E': // Floating Point Constant |
| case 'F': // Floating Point Constant |
| case 's': // Relocatable Constant |
| case 'p': // Address. |
| case 'X': // Allow ANY value. |
| case 'I': // Target registers. |
| case 'J': |
| case 'K': |
| case 'L': |
| case 'M': |
| case 'N': |
| case 'O': |
| case 'P': |
| case '<': |
| case '>': |
| return C_Other; |
| } |
| } |
| |
| if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { |
| if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" |
| return C_Memory; |
| return C_Register; |
| } |
| return C_Unknown; |
| } |
| |
| /// Try to replace an X constraint, which matches anything, with another that |
| /// has more specific requirements based on the type of the corresponding |
| /// operand. |
| const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ |
| if (ConstraintVT.isInteger()) |
| return "r"; |
| if (ConstraintVT.isFloatingPoint()) |
| return "f"; // works for many targets |
| return nullptr; |
| } |
| |
| /// Lower the specified operand into the Ops vector. |
| /// If it is invalid, don't add anything to Ops. |
| void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| |
| if (Constraint.length() > 1) return; |
| |
| char ConstraintLetter = Constraint[0]; |
| switch (ConstraintLetter) { |
| default: break; |
| case 'X': // Allows any operand; labels (basic block) use this. |
| if (Op.getOpcode() == ISD::BasicBlock) { |
| Ops.push_back(Op); |
| return; |
| } |
| LLVM_FALLTHROUGH; |
| case 'i': // Simple Integer or Relocatable Constant |
| case 'n': // Simple Integer |
| case 's': { // Relocatable Constant |
| // These operands are interested in values of the form (GV+C), where C may |
| // be folded in as an offset of GV, or it may be explicitly added. Also, it |
| // is possible and fine if either GV or C are missing. |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); |
| |
| // If we have "(add GV, C)", pull out GV/C |
| if (Op.getOpcode() == ISD::ADD) { |
| C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); |
| if (!C || !GA) { |
| C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); |
| GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); |
| } |
| if (!C || !GA) { |
| C = nullptr; |
| GA = nullptr; |
| } |
| } |
| |
| // If we find a valid operand, map to the TargetXXX version so that the |
| // value itself doesn't get selected. |
| if (GA) { // Either &GV or &GV+C |
| if (ConstraintLetter != 'n') { |
| int64_t Offs = GA->getOffset(); |
| if (C) Offs += C->getZExtValue(); |
| Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), |
| C ? SDLoc(C) : SDLoc(), |
| Op.getValueType(), Offs)); |
| } |
| return; |
| } |
| if (C) { // just C, no GV. |
| // Simple constants are not allowed for 's'. |
| if (ConstraintLetter != 's') { |
| // gcc prints these as sign extended. Sign extend value to 64 bits |
| // now; without this it would get ZExt'd later in |
| // ScheduleDAGSDNodes::EmitNode, which is very generic. |
| Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), |
| SDLoc(C), MVT::i64)); |
| } |
| return; |
| } |
| break; |
| } |
| } |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, |
| StringRef Constraint, |
| MVT VT) const { |
| if (Constraint.empty() || Constraint[0] != '{') |
| return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); |
| assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); |
| |
| // Remove the braces from around the name. |
| StringRef RegName(Constraint.data()+1, Constraint.size()-2); |
| |
| std::pair<unsigned, const TargetRegisterClass*> R = |
| std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); |
| |
| // Figure out which register class contains this reg. |
| for (const TargetRegisterClass *RC : RI->regclasses()) { |
| // If none of the value types for this register class are valid, we |
| // can't use it. For example, 64-bit reg classes on 32-bit targets. |
| if (!isLegalRC(*RI, *RC)) |
| continue; |
| |
| for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); |
| I != E; ++I) { |
| if (RegName.equals_lower(RI->getRegAsmName(*I))) { |
| std::pair<unsigned, const TargetRegisterClass*> S = |
| std::make_pair(*I, RC); |
| |
| // If this register class has the requested value type, return it, |
| // otherwise keep searching and return the first class found |
| // if no other is found which explicitly has the requested type. |
| if (RI->isTypeLegalForClass(*RC, VT)) |
| return S; |
| if (!R.second) |
| R = S; |
| } |
| } |
| } |
| |
| return R; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constraint Selection. |
| |
| /// Return true of this is an input operand that is a matching constraint like |
| /// "4". |
| bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { |
| assert(!ConstraintCode.empty() && "No known constraint!"); |
| return isdigit(static_cast<unsigned char>(ConstraintCode[0])); |
| } |
| |
| /// If this is an input matching constraint, this method returns the output |
| /// operand it matches. |
| unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { |
| assert(!ConstraintCode.empty() && "No known constraint!"); |
| return atoi(ConstraintCode.c_str()); |
| } |
| |
| /// Split up the constraint string from the inline assembly value into the |
| /// specific constraints and their prefixes, and also tie in the associated |
| /// operand values. |
| /// If this returns an empty vector, and if the constraint string itself |
| /// isn't empty, there was an error parsing. |
| TargetLowering::AsmOperandInfoVector |
| TargetLowering::ParseConstraints(const DataLayout &DL, |
| const TargetRegisterInfo *TRI, |
| ImmutableCallSite CS) const { |
| /// Information about all of the constraints. |
| AsmOperandInfoVector ConstraintOperands; |
| const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); |
| unsigned maCount = 0; // Largest number of multiple alternative constraints. |
| |
| // Do a prepass over the constraints, canonicalizing them, and building up the |
| // ConstraintOperands list. |
| unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. |
| unsigned ResNo = 0; // ResNo - The result number of the next output. |
| |
| for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { |
| ConstraintOperands.emplace_back(std::move(CI)); |
| AsmOperandInfo &OpInfo = ConstraintOperands.back(); |
| |
| // Update multiple alternative constraint count. |
| if (OpInfo.multipleAlternatives.size() > maCount) |
| maCount = OpInfo.multipleAlternatives.size(); |
| |
| OpInfo.ConstraintVT = MVT::Other; |
| |
| // Compute the value type for each operand. |
| switch (OpInfo.Type) { |
| case InlineAsm::isOutput: |
| // Indirect outputs just consume an argument. |
| if (OpInfo.isIndirect) { |
| OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); |
| break; |
| } |
| |
| // The return value of the call is this value. As such, there is no |
| // corresponding argument. |
| assert(!CS.getType()->isVoidTy() && |
| "Bad inline asm!"); |
| if (StructType *STy = dyn_cast<StructType>(CS.getType())) { |
| OpInfo.ConstraintVT = |
| getSimpleValueType(DL, STy->getElementType(ResNo)); |
| } else { |
| assert(ResNo == 0 && "Asm only has one result!"); |
| OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); |
| } |
| ++ResNo; |
| break; |
| case InlineAsm::isInput: |
| OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); |
| break; |
| case InlineAsm::isClobber: |
| // Nothing to do. |
| break; |
| } |
| |
| if (OpInfo.CallOperandVal) { |
| llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); |
| if (OpInfo.isIndirect) { |
| llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); |
| if (!PtrTy) |
| report_fatal_error("Indirect operand for inline asm not a pointer!"); |
| OpTy = PtrTy->getElementType(); |
| } |
| |
| // Look for vector wrapped in a struct. e.g. { <16 x i8> }. |
| if (StructType *STy = dyn_cast<StructType>(OpTy)) |
| if (STy->getNumElements() == 1) |
| OpTy = STy->getElementType(0); |
| |
| // If OpTy is not a single value, it may be a struct/union that we |
| // can tile with integers. |
| if (!OpTy->isSingleValueType() && OpTy->isSized()) { |
| unsigned BitSize = DL.getTypeSizeInBits(OpTy); |
| switch (BitSize) { |
| default: break; |
| case 1: |
| case 8: |
| case 16: |
| case 32: |
| case 64: |
| case 128: |
| OpInfo.ConstraintVT = |
| MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); |
| break; |
| } |
| } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { |
| unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); |
| OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); |
| } else { |
| OpInfo.ConstraintVT = MVT::getVT(OpTy, true); |
| } |
| } |
| } |
| |
| // If we have multiple alternative constraints, select the best alternative. |
| if (!ConstraintOperands.empty()) { |
| if (maCount) { |
| unsigned bestMAIndex = 0; |
| int bestWeight = -1; |
| // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. |
| int weight = -1; |
| unsigned maIndex; |
| // Compute the sums of the weights for each alternative, keeping track |
| // of the best (highest weight) one so far. |
| for (maIndex = 0; maIndex < maCount; ++maIndex) { |
| int weightSum = 0; |
| for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); |
| cIndex != eIndex; ++cIndex) { |
| AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; |
| if (OpInfo.Type == InlineAsm::isClobber) |
| continue; |
| |
| // If this is an output operand with a matching input operand, |
| // look up the matching input. If their types mismatch, e.g. one |
| // is an integer, the other is floating point, or their sizes are |
| // different, flag it as an maCantMatch. |
| if (OpInfo.hasMatchingInput()) { |
| AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; |
| if (OpInfo.ConstraintVT != Input.ConstraintVT) { |
| if ((OpInfo.ConstraintVT.isInteger() != |
| Input.ConstraintVT.isInteger()) || |
| (OpInfo.ConstraintVT.getSizeInBits() != |
| Input.ConstraintVT.getSizeInBits())) { |
| weightSum = -1; // Can't match. |
| break; |
| } |
| } |
| } |
| weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); |
| if (weight == -1) { |
| weightSum = -1; |
| break; |
| } |
| weightSum += weight; |
| } |
| // Update best. |
| if (weightSum > bestWeight) { |
| bestWeight = weightSum; |
| bestMAIndex = maIndex; |
| } |
| } |
| |
| // Now select chosen alternative in each constraint. |
| for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); |
| cIndex != eIndex; ++cIndex) { |
| AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; |
| if (cInfo.Type == InlineAsm::isClobber) |
| continue; |
| cInfo.selectAlternative(bestMAIndex); |
| } |
| } |
| } |
| |
| // Check and hook up tied operands, choose constraint code to use. |
| for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); |
| cIndex != eIndex; ++cIndex) { |
| AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; |
| |
| // If this is an output operand with a matching input operand, look up the |
| // matching input. If their types mismatch, e.g. one is an integer, the |
| // other is floating point, or their sizes are different, flag it as an |
| // error. |
| if (OpInfo.hasMatchingInput()) { |
| AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; |
| |
| if (OpInfo.ConstraintVT != Input.ConstraintVT) { |
| std::pair<unsigned, const TargetRegisterClass *> MatchRC = |
| getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, |
| OpInfo.ConstraintVT); |
| std::pair<unsigned, const TargetRegisterClass *> InputRC = |
| getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, |
| Input.ConstraintVT); |
| if ((OpInfo.ConstraintVT.isInteger() != |
| Input.ConstraintVT.isInteger()) || |
| (MatchRC.second != InputRC.second)) { |
| report_fatal_error("Unsupported asm: input constraint" |
| " with a matching output constraint of" |
| " incompatible type!"); |
| } |
| } |
| } |
| } |
| |
| return ConstraintOperands; |
| } |
| |
| /// Return an integer indicating how general CT is. |
| static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { |
| switch (CT) { |
| case TargetLowering::C_Other: |
| case TargetLowering::C_Unknown: |
| return 0; |
| case TargetLowering::C_Register: |
| return 1; |
| case TargetLowering::C_RegisterClass: |
| return 2; |
| case TargetLowering::C_Memory: |
| return 3; |
| } |
| llvm_unreachable("Invalid constraint type"); |
| } |
| |
| /// Examine constraint type and operand type and determine a weight value. |
| /// This object must already have been set up with the operand type |
| /// and the current alternative constraint selected. |
| TargetLowering::ConstraintWeight |
| TargetLowering::getMultipleConstraintMatchWeight( |
| AsmOperandInfo &info, int maIndex) const { |
| InlineAsm::ConstraintCodeVector *rCodes; |
| if (maIndex >= (int)info.multipleAlternatives.size()) |
| rCodes = &info.Codes; |
| else |
| rCodes = &info.multipleAlternatives[maIndex].Codes; |
| ConstraintWeight BestWeight = CW_Invalid; |
| |
| // Loop over the options, keeping track of the most general one. |
| for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { |
| ConstraintWeight weight = |
| getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); |
| if (weight > BestWeight) |
| BestWeight = weight; |
| } |
| |
| return BestWeight; |
| } |
| |
| /// Examine constraint type and operand type and determine a weight value. |
| /// This object must already have been set up with the operand type |
| /// and the current alternative constraint selected. |
| TargetLowering::ConstraintWeight |
| TargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (!CallOperandVal) |
| return CW_Default; |
| // Look at the constraint type. |
| switch (*constraint) { |
| case 'i': // immediate integer. |
| case 'n': // immediate integer with a known value. |
| if (isa<ConstantInt>(CallOperandVal)) |
| weight = CW_Constant; |
| break; |
| case 's': // non-explicit intregal immediate. |
| if (isa<GlobalValue>(CallOperandVal)) |
| weight = CW_Constant; |
| break; |
| case 'E': // immediate float if host format. |
| case 'F': // immediate float. |
| if (isa<ConstantFP>(CallOperandVal)) |
| weight = CW_Constant; |
| break; |
| case '<': // memory operand with autodecrement. |
| case '>': // memory operand with autoincrement. |
| case 'm': // memory operand. |
| case 'o': // offsettable memory operand |
| case 'V': // non-offsettable memory operand |
| weight = CW_Memory; |
| break; |
| case 'r': // general register. |
| case 'g': // general register, memory operand or immediate integer. |
| // note: Clang converts "g" to "imr". |
| if (CallOperandVal->getType()->isIntegerTy()) |
| weight = CW_Register; |
| break; |
| case 'X': // any operand. |
| default: |
| weight = CW_Default; |
| break; |
| } |
| return weight; |
| } |
| |
| /// If there are multiple different constraints that we could pick for this |
| /// operand (e.g. "imr") try to pick the 'best' one. |
| /// This is somewhat tricky: constraints fall into four classes: |
| /// Other -> immediates and magic values |
| /// Register -> one specific register |
| /// RegisterClass -> a group of regs |
| /// Memory -> memory |
| /// Ideally, we would pick the most specific constraint possible: if we have |
| /// something that fits into a register, we would pick it. The problem here |
| /// is that if we have something that could either be in a register or in |
| /// memory that use of the register could cause selection of *other* |
| /// operands to fail: they might only succeed if we pick memory. Because of |
| /// this the heuristic we use is: |
| /// |
| /// 1) If there is an 'other' constraint, and if the operand is valid for |
| /// that constraint, use it. This makes us take advantage of 'i' |
| /// constraints when available. |
| /// 2) Otherwise, pick the most general constraint present. This prefers |
| /// 'm' over 'r', for example. |
| /// |
| static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, |
| const TargetLowering &TLI, |
| SDValue Op, SelectionDAG *DAG) { |
| assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); |
| unsigned BestIdx = 0; |
| TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; |
| int BestGenerality = -1; |
| |
| // Loop over the options, keeping track of the most general one. |
| for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { |
| TargetLowering::ConstraintType CType = |
| TLI.getConstraintType(OpInfo.Codes[i]); |
| |
| // If this is an 'other' constraint, see if the operand is valid for it. |
| // For example, on X86 we might have an 'rI' constraint. If the operand |
| // is an integer in the range [0..31] we want to use I (saving a load |
| // of a register), otherwise we must use 'r'. |
| if (CType == TargetLowering::C_Other && Op.getNode()) { |
| assert(OpInfo.Codes[i].size() == 1 && |
| "Unhandled multi-letter 'other' constraint"); |
| std::vector<SDValue> ResultOps; |
| TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], |
| ResultOps, *DAG); |
| if (!ResultOps.empty()) { |
| BestType = CType; |
| BestIdx = i; |
| break; |
| } |
| } |
| |
| // Things with matching constraints can only be registers, per gcc |
| // documentation. This mainly affects "g" constraints. |
| if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) |
| continue; |
| |
| // This constraint letter is more general than the previous one, use it. |
| int Generality = getConstraintGenerality(CType); |
| if (Generality > BestGenerality) { |
| BestType = CType; |
| BestIdx = i; |
| BestGenerality = Generality; |
| } |
| } |
| |
| OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; |
| OpInfo.ConstraintType = BestType; |
| } |
| |
| /// Determines the constraint code and constraint type to use for the specific |
| /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. |
| void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, |
| SDValue Op, |
| SelectionDAG *DAG) const { |
| assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); |
| |
| // Single-letter constraints ('r') are very common. |
| if (OpInfo.Codes.size() == 1) { |
| OpInfo.ConstraintCode = OpInfo.Codes[0]; |
| OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); |
| } else { |
| ChooseConstraint(OpInfo, *this, Op, DAG); |
| } |
| |
| // 'X' matches anything. |
| if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { |
| // Labels and constants are handled elsewhere ('X' is the only thing |
| // that matches labels). For Functions, the type here is the type of |
| // the result, which is not what we want to look at; leave them alone. |
| Value *v = OpInfo.CallOperandVal; |
| if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { |
| OpInfo.CallOperandVal = v; |
| return; |
| } |
| |
| // Otherwise, try to resolve it to something we know about by looking at |
| // the actual operand type. |
| if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { |
| OpInfo.ConstraintCode = Repl; |
| OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); |
| } |
| } |
| } |
| |
| /// Given an exact SDIV by a constant, create a multiplication |
| /// with the multiplicative inverse of the constant. |
| static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, |
| const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDNode *> &Created) { |
| assert(d != 0 && "Division by zero!"); |
| |
| // Shift the value upfront if it is even, so the LSB is one. |
| unsigned ShAmt = d.countTrailingZeros(); |
| if (ShAmt) { |
| // TODO: For UDIV use SRL instead of SRA. |
| SDValue Amt = |
| DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), |
| DAG.getDataLayout())); |
| SDNodeFlags Flags; |
| Flags.setExact(true); |
| Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags); |
| Created.push_back(Op1.getNode()); |
| d.ashrInPlace(ShAmt); |
| } |
| |
| // Calculate the multiplicative inverse, using Newton's method. |
| APInt t, xn = d; |
| while ((t = d*xn) != 1) |
| xn *= APInt(d.getBitWidth(), 2) - t; |
| |
| SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); |
| SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); |
| Created.push_back(Mul.getNode()); |
| return Mul; |
| } |
| |
| SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, |
| SelectionDAG &DAG, |
| SmallVectorImpl<SDNode *> &Created) const { |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| return SDValue(N,0); // Lower SDIV as SDIV |
| return SDValue(); |
| } |
| |
| /// Given an ISD::SDIV node expressing a divide by constant, |
| /// return a DAG expression to select that will generate the same value by |
| /// multiplying by a magic number. |
| /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". |
| SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, |
| SelectionDAG &DAG, bool IsAfterLegalization, |
| SmallVectorImpl<SDNode *> &Created) const { |
| EVT VT = N->getValueType(0); |
| SDLoc dl(N); |
| |
| // Check to see if we can do this. |
| // FIXME: We should be more aggressive here. |
| if (!isTypeLegal(VT)) |
| return SDValue(); |
| |
| // If the sdiv has an 'exact' bit we can use a simpler lowering. |
| if (N->getFlags().hasExact()) |
| return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, Created); |
| |
| APInt::ms magics = Divisor.magic(); |
| |
| // Multiply the numerator (operand 0) by the magic value |
| // FIXME: We should support doing a MUL in a wider type |
| SDValue Q; |
| if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : |
| isOperationLegalOrCustom(ISD::MULHS, VT)) |
| Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), |
| DAG.getConstant(magics.m, dl, VT)); |
| else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : |
| isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) |
| Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), |
| N->getOperand(0), |
| DAG.getConstant(magics.m, dl, VT)).getNode(), 1); |
| else |
| return SDValue(); // No mulhs or equvialent |
| |
| Created.push_back(Q.getNode()); |
| |
| // If d > 0 and m < 0, add the numerator |
| if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { |
| Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); |
| Created.push_back(Q.getNode()); |
| } |
| // If d < 0 and m > 0, subtract the numerator. |
| if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { |
| Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); |
| Created.push_back(Q.getNode()); |
| } |
| auto &DL = DAG.getDataLayout(); |
| // Shift right algebraic if shift value is nonzero |
| if (magics.s > 0) { |
| Q = DAG.getNode( |
| ISD::SRA, dl, VT, Q, |
| DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); |
| Created.push_back(Q.getNode()); |
| } |
| // Extract the sign bit and add it to the quotient |
| SDValue T = |
| DAG.getNode(ISD::SRL, dl, VT, Q, |
| DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, |
| getShiftAmountTy(Q.getValueType(), DL))); |
| Created.push_back(T.getNode()); |
| return DAG.getNode(ISD::ADD, dl, VT, Q, T); |
| } |
| |
| /// Given an ISD::UDIV node expressing a divide by constant, |
| /// return a DAG expression to select that will generate the same value by |
| /// multiplying by a magic number. |
| /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". |
| SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, |
| SelectionDAG &DAG, bool IsAfterLegalization, |
| SmallVectorImpl<SDNode *> &Created) const { |
| EVT VT = N->getValueType(0); |
| SDLoc dl(N); |
| auto &DL = DAG.getDataLayout(); |
| |
| // Check to see if we can do this. |
| // FIXME: We should be more aggressive here. |
| if (!isTypeLegal(VT)) |
| return SDValue(); |
| |
| // FIXME: We should use a narrower constant when the upper |
| // bits are known to be zero. |
| APInt::mu magics = Divisor.magicu(); |
| |
| SDValue Q = N->getOperand(0); |
| |
| // If the divisor is even, we can avoid using the expensive fixup by shifting |
| // the divided value upfront. |
| if (magics.a != 0 && !Divisor[0]) { |
| unsigned Shift = Divisor.countTrailingZeros(); |
| Q = DAG.getNode( |
| ISD::SRL, dl, VT, Q, |
| DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); |
| Created.push_back(Q.getNode()); |
| |
| // Get magic number for the shifted divisor. |
| magics = Divisor.lshr(Shift).magicu(Shift); |
| assert(magics.a == 0 && "Should use cheap fixup now"); |
| } |
| |
| // Multiply the numerator (operand 0) by the magic value |
| // FIXME: We should support doing a MUL in a wider type |
| if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : |
| isOperationLegalOrCustom(ISD::MULHU, VT)) |
| Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); |
| else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : |
| isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) |
| Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, |
| DAG.getConstant(magics.m, dl, VT)).getNode(), 1); |
| else |
| return SDValue(); // No mulhu or equivalent |
| |
| Created.push_back(Q.getNode()); |
| |
| if (magics.a == 0) { |
| assert(magics.s < Divisor.getBitWidth() && |
| "We shouldn't generate an undefined shift!"); |
| return DAG.getNode( |
| ISD::SRL, dl, VT, Q, |
| DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); |
| } else { |
| SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); |
| Created.push_back(NPQ.getNode()); |
| NPQ = DAG.getNode( |
| ISD::SRL, dl, VT, NPQ, |
| DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); |
| Created.push_back(NPQ.getNode()); |
| NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); |
| Created.push_back(NPQ.getNode()); |
| return DAG.getNode( |
| ISD::SRL, dl, VT, NPQ, |
| DAG.getConstant(magics.s - 1, dl, |
| getShiftAmountTy(NPQ.getValueType(), DL))); |
| } |
| } |
| |
| bool TargetLowering:: |
| verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { |
| if (!isa<ConstantSDNode>(Op.getOperand(0))) { |
| DAG.getContext()->emitError("argument to '__builtin_return_address' must " |
| "be a constant integer"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Legalization Utilities |
| //===----------------------------------------------------------------------===// |
| |
| bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, |
| SDValue LHS, SDValue RHS, |
| SmallVectorImpl<SDValue> &Result, |
| EVT HiLoVT, SelectionDAG &DAG, |
| MulExpansionKind Kind, SDValue LL, |
| SDValue LH, SDValue RL, SDValue RH) const { |
| assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || |
| Opcode == ISD::SMUL_LOHI); |
| |
| bool HasMULHS = (Kind == MulExpansionKind::Always) || |
| isOperationLegalOrCustom(ISD::MULHS, HiLoVT); |
| bool HasMULHU = (Kind == MulExpansionKind::Always) || |
| isOperationLegalOrCustom(ISD::MULHU, HiLoVT); |
| bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || |
| isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); |
| bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || |
| isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); |
| |
| if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) |
| return false; |
| |
| unsigned OuterBitSize = VT.getScalarSizeInBits(); |
| unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); |
| unsigned LHSSB = DAG.ComputeNumSignBits(LHS); |
| unsigned RHSSB = DAG.ComputeNumSignBits(RHS); |
| |
| // LL, LH, RL, and RH must be either all NULL or all set to a value. |
| assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || |
| (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); |
| |
| SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); |
| auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, |
| bool Signed) -> bool { |
| if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { |
| Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); |
| Hi = SDValue(Lo.getNode(), 1); |
| return true; |
| } |
| if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { |
| Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); |
| Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); |
| return true; |
| } |
| return false; |
| }; |
| |
| SDValue Lo, Hi; |
| |
| if (!LL.getNode() && !RL.getNode() && |
| isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { |
| LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); |
| RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); |
| } |
| |
| if (!LL.getNode()) |
| return false; |
| |
| APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); |
| if (DAG.MaskedValueIsZero(LHS, HighMask) && |
| DAG.MaskedValueIsZero(RHS, HighMask)) { |
| // The inputs are both zero-extended. |
| if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { |
| Result.push_back(Lo); |
| Result.push_back(Hi); |
| if (Opcode != ISD::MUL) { |
| SDValue Zero = DAG.getConstant(0, dl, HiLoVT); |
| Result.push_back(Zero); |
| Result.push_back(Zero); |
| } |
| return true; |
| } |
| } |
| |
| if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && |
| RHSSB > InnerBitSize) { |
| // The input values are both sign-extended. |
| // TODO non-MUL case? |
| if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { |
| Result.push_back(Lo); |
| Result.push_back(Hi); |
| return true; |
| } |
| } |
| |
| unsigned ShiftAmount = OuterBitSize - InnerBitSize; |
| EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); |
| if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { |
| // FIXME getShiftAmountTy does not always return a sensible result when VT |
| // is an illegal type, and so the type may be too small to fit the shift |
| // amount. Override it with i32. The shift will have to be legalized. |
| ShiftAmountTy = MVT::i32; |
| } |
| SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); |
| |
| if (!LH.getNode() && !RH.getNode() && |
| isOperationLegalOrCustom(ISD::SRL, VT) && |
| isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { |
| LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); |
| LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); |
| RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); |
| RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); |
| } |
| |
| if (!LH.getNode()) |
| return false; |
| |
| if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) |
| return false; |
| |
| Result.push_back(Lo); |
| |
| if (Opcode == ISD::MUL) { |
| RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); |
| LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); |
| Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); |
| Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); |
| Result.push_back(Hi); |
| return true; |
| } |
| |
| // Compute the full width result. |
| auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { |
| Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); |
| Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); |
| Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); |
| return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); |
| }; |
| |
| SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); |
| if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) |
| return false; |
| |
| // This is effectively the add part of a multiply-add of half-sized operands, |
| // so it cannot overflow. |
| Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); |
| |
| if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) |
| return false; |
| |
| Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, |
| Merge(Lo, Hi)); |
| |
| SDValue Carry = Next.getValue(1); |
| Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); |
| Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); |
| |
| if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) |
| return false; |
| |
| SDValue Zero = DAG.getConstant(0, dl, HiLoVT); |
| Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, |
| Carry); |
| Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); |
| |
| if (Opcode == ISD::SMUL_LOHI) { |
| SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, |
| DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); |
| Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); |
| |
| NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, |
| DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); |
| Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); |
| } |
| |
| Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); |
| Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); |
| Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); |
| return true; |
| } |
| |
| bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, |
| SelectionDAG &DAG, MulExpansionKind Kind, |
| SDValue LL, SDValue LH, SDValue RL, |
| SDValue RH) const { |
| SmallVector<SDValue, 2> Result; |
| bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, |
| N->getOperand(0), N->getOperand(1), Result, HiLoVT, |
| DAG, Kind, LL, LH, RL, RH); |
| if (Ok) { |
| assert(Result.size() == 2); |
| Lo = Result[0]; |
| Hi = Result[1]; |
| } |
| return Ok; |
| } |
| |
| bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, |
| SelectionDAG &DAG) const { |
| EVT VT = Node->getOperand(0).getValueType(); |
| EVT NVT = Node->getValueType(0); |
| SDLoc dl(SDValue(Node, 0)); |
| |
| // FIXME: Only f32 to i64 conversions are supported. |
| if (VT != MVT::f32 || NVT != MVT::i64) |
| return false; |
| |
| // Expand f32 -> i64 conversion |
| // This algorithm comes from compiler-rt's implementation of fixsfdi: |
| // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c |
| EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), |
| VT.getSizeInBits()); |
| SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); |
| SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); |
| SDValue Bias = DAG.getConstant(127, dl, IntVT); |
| SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl, |
| IntVT); |
| SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); |
| SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); |
| |
| SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); |
| |
| auto &DL = DAG.getDataLayout(); |
| SDValue ExponentBits = DAG.getNode( |
| ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), |
| DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); |
| SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); |
| |
| SDValue Sign = DAG.getNode( |
| ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), |
| DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); |
| Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); |
| |
| SDValue R = DAG.getNode(ISD::OR, dl, IntVT, |
| DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), |
| DAG.getConstant(0x00800000, dl, IntVT)); |
| |
| R = DAG.getZExtOrTrunc(R, dl, NVT); |
| |
| R = DAG.getSelectCC( |
| dl, Exponent, ExponentLoBit, |
| DAG.getNode(ISD::SHL, dl, NVT, R, |
| DAG.getZExtOrTrunc( |
| DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), |
| dl, getShiftAmountTy(IntVT, DL))), |
| DAG.getNode(ISD::SRL, dl, NVT, R, |
| DAG.getZExtOrTrunc( |
| DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), |
| dl, getShiftAmountTy(IntVT, DL))), |
| ISD::SETGT); |
| |
| SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, |
| DAG.getNode(ISD::XOR, dl, NVT, R, Sign), |
| Sign); |
| |
| Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), |
| DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); |
| return true; |
| } |
| |
| SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, |
| SelectionDAG &DAG) const { |
| SDLoc SL(LD); |
| SDValue Chain = LD->getChain(); |
| SDValue BasePTR = LD->getBasePtr(); |
| EVT SrcVT = LD->getMemoryVT(); |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| |
| unsigned NumElem = SrcVT.getVectorNumElements(); |
| |
| EVT SrcEltVT = SrcVT.getScalarType(); |
| EVT DstEltVT = LD->getValueType(0).getScalarType(); |
| |
| unsigned Stride = SrcEltVT.getSizeInBits() / 8; |
| assert(SrcEltVT.isByteSized()); |
| |
| EVT PtrVT = BasePTR.getValueType(); |
| |
| SmallVector<SDValue, 8> Vals; |
| SmallVector<SDValue, 8> LoadChains; |
| |
| for (unsigned Idx = 0; Idx < NumElem; ++Idx) { |
| SDValue ScalarLoad = |
| DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, |
| LD->getPointerInfo().getWithOffset(Idx * Stride), |
| SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), |
| LD->getMemOperand()->getFlags(), LD->getAAInfo()); |
| |
| BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, |
| DAG.getConstant(Stride, SL, PtrVT)); |
| |
| Vals.push_back(ScalarLoad.getValue(0)); |
| LoadChains.push_back(ScalarLoad.getValue(1)); |
| } |
| |
| SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); |
| SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); |
| |
| return DAG.getMergeValues({ Value, NewChain }, SL); |
| } |
| |
| SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, |
| SelectionDAG &DAG) const { |
| SDLoc SL(ST); |
| |
| SDValue Chain = ST->getChain(); |
| SDValue BasePtr = ST->getBasePtr(); |
| SDValue Value = ST->getValue(); |
| EVT StVT = ST->getMemoryVT(); |
| |
| // The type of the data we want to save |
| EVT RegVT = Value.getValueType(); |
| EVT RegSclVT = RegVT.getScalarType(); |
| |
| // The type of data as saved in memory. |
| EVT MemSclVT = StVT.getScalarType(); |
| |
| EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); |
| unsigned NumElem = StVT.getVectorNumElements(); |
| |
| // A vector must always be stored in memory as-is, i.e. without any padding |
| // between the elements, since various code depend on it, e.g. in the |
| // handling of a bitcast of a vector type to int, which may be done with a |
| // vector store followed by an integer load. A vector that does not have |
| // elements that are byte-sized must therefore be stored as an integer |
| // built out of the extracted vector elements. |
| if (!MemSclVT.isByteSized()) { |
| unsigned NumBits = StVT.getSizeInBits(); |
| EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); |
| |
| SDValue CurrVal = DAG.getConstant(0, SL, IntVT); |
| |
| for (unsigned Idx = 0; Idx < NumElem; ++Idx) { |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, |
| DAG.getConstant(Idx, SL, IdxVT)); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); |
| SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); |
| unsigned ShiftIntoIdx = |
| (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); |
| SDValue ShiftAmount = |
| DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); |
| SDValue ShiftedElt = |
| DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); |
| CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); |
| } |
| |
| return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), |
| ST->getAlignment(), ST->getMemOperand()->getFlags(), |
| ST->getAAInfo()); |
| } |
| |
| // Store Stride in bytes |
| unsigned Stride = MemSclVT.getSizeInBits() / 8; |
| assert (Stride && "Zero stride!"); |
| // Extract each of the elements from the original vector and save them into |
| // memory individually. |
| SmallVector<SDValue, 8> Stores; |
| for (unsigned Idx = 0; Idx < NumElem; ++Idx) { |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, |
| DAG.getConstant(Idx, SL, IdxVT)); |
| |
| SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); |
| |
| // This scalar TruncStore may be illegal, but we legalize it later. |
| SDValue Store = DAG.getTruncStore( |
| Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), |
| MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), |
| ST->getMemOperand()->getFlags(), ST->getAAInfo()); |
| |
| Stores.push_back(Store); |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); |
| } |
| |
| std::pair<SDValue, SDValue> |
| TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { |
| assert(LD->getAddressingMode() == ISD::UNINDEXED && |
| "unaligned indexed loads not implemented!"); |
| SDValue Chain = LD->getChain(); |
| SDValue Ptr = LD->getBasePtr(); |
| EVT VT = LD->getValueType(0); |
| EVT LoadedVT = LD->getMemoryVT(); |
| SDLoc dl(LD); |
| auto &MF = DAG.getMachineFunction(); |
| |
| if (VT.isFloatingPoint() || VT.isVector()) { |
| EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); |
| if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { |
| if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { |
| // Scalarize the load and let the individual components be handled. |
| SDValue Scalarized = scalarizeVectorLoad(LD, DAG); |
| if (Scalarized->getOpcode() == ISD::MERGE_VALUES) |
| return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); |
| return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); |
| } |
| |
| // Expand to a (misaligned) integer load of the same size, |
| // then bitconvert to floating point or vector. |
| SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, |
| LD->getMemOperand()); |
| SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); |
| if (LoadedVT != VT) |
| Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : |
| ISD::ANY_EXTEND, dl, VT, Result); |
| |
| return std::make_pair(Result, newLoad.getValue(1)); |
| } |
| |
| // Copy the value to a (aligned) stack slot using (unaligned) integer |
| // loads and stores, then do a (aligned) load from the stack slot. |
| MVT RegVT = getRegisterType(*DAG.getContext(), intVT); |
| unsigned LoadedBytes = LoadedVT.getStoreSize(); |
| unsigned RegBytes = RegVT.getSizeInBits() / 8; |
| unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; |
| |
| // Make sure the stack slot is also aligned for the register type. |
| SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); |
| auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); |
| SmallVector<SDValue, 8> Stores; |
| SDValue StackPtr = StackBase; |
| unsigned Offset = 0; |
| |
| EVT PtrVT = Ptr.getValueType(); |
| EVT StackPtrVT = StackPtr.getValueType(); |
| |
| SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); |
| SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); |
| |
| // Do all but one copies using the full register width. |
| for (unsigned i = 1; i < NumRegs; i++) { |
| // Load one integer register's worth from the original location. |
| SDValue Load = DAG.getLoad( |
| RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), |
| MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), |
| LD->getAAInfo()); |
| // Follow the load with a store to the stack slot. Remember the store. |
| Stores.push_back(DAG.getStore( |
| Load.getValue(1), dl, Load, StackPtr, |
| MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); |
| // Increment the pointers. |
| Offset += RegBytes; |
| |
| Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); |
| StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); |
| } |
| |
| // The last copy may be partial. Do an extending load. |
| EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), |
| 8 * (LoadedBytes - Offset)); |
| SDValue Load = |
| DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, |
| LD->getPointerInfo().getWithOffset(Offset), MemVT, |
| MinAlign(LD->getAlignment(), Offset), |
| LD->getMemOperand()->getFlags(), LD->getAAInfo()); |
| // Follow the load with a store to the stack slot. Remember the store. |
| // On big-endian machines this requires a truncating store to ensure |
| // that the bits end up in the right place. |
| Stores.push_back(DAG.getTruncStore( |
| Load.getValue(1), dl, Load, StackPtr, |
| MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); |
| |
| // The order of the stores doesn't matter - say it with a TokenFactor. |
| SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); |
| |
| // Finally, perform the original load only redirected to the stack slot. |
| Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, |
| MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), |
| LoadedVT); |
| |
| // Callers expect a MERGE_VALUES node. |
| return std::make_pair(Load, TF); |
| } |
| |
| assert(LoadedVT.isInteger() && !LoadedVT.isVector() && |
| "Unaligned load of unsupported type."); |
| |
| // Compute the new VT that is half the size of the old one. This is an |
| // integer MVT. |
| unsigned NumBits = LoadedVT.getSizeInBits(); |
| EVT NewLoadedVT; |
| NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); |
| NumBits >>= 1; |
| |
| unsigned Alignment = LD->getAlignment(); |
| unsigned IncrementSize = NumBits / 8; |
| ISD::LoadExtType HiExtType = LD->getExtensionType(); |
| |
| // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. |
| if (HiExtType == ISD::NON_EXTLOAD) |
| HiExtType = ISD::ZEXTLOAD; |
| |
| // Load the value in two parts |
| SDValue Lo, Hi; |
| if (DAG.getDataLayout().isLittleEndian()) { |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), |
| NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), |
| LD->getAAInfo()); |
| |
| Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); |
| Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, |
| LD->getPointerInfo().getWithOffset(IncrementSize), |
| NewLoadedVT, MinAlign(Alignment, IncrementSize), |
| LD->getMemOperand()->getFlags(), LD->getAAInfo()); |
| } else { |
| Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), |
| NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), |
| LD->getAAInfo()); |
| |
| Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, |
| LD->getPointerInfo().getWithOffset(IncrementSize), |
| NewLoadedVT, MinAlign(Alignment, IncrementSize), |
| LD->getMemOperand()->getFlags(), LD->getAAInfo()); |
| } |
| |
| // aggregate the two parts |
| SDValue ShiftAmount = |
| DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), |
| DAG.getDataLayout())); |
| SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); |
| Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); |
| |
| SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| return std::make_pair(Result, TF); |
| } |
| |
| SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, |
| SelectionDAG &DAG) const { |
| assert(ST->getAddressingMode() == ISD::UNINDEXED && |
| "unaligned indexed stores not implemented!"); |
| SDValue Chain = ST->getChain(); |
| SDValue Ptr = ST->getBasePtr(); |
| SDValue Val = ST->getValue(); |
| EVT VT = Val.getValueType(); |
| int Alignment = ST->getAlignment(); |
| auto &MF = DAG.getMachineFunction(); |
| |
| SDLoc dl(ST); |
| if (ST->getMemoryVT().isFloatingPoint() || |
| ST->getMemoryVT().isVector()) { |
| EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); |
| if (isTypeLegal(intVT)) { |
| if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { |
| // Scalarize the store and let the individual components be handled. |
| SDValue Result = scalarizeVectorStore(ST, DAG); |
| |
| return Result; |
| } |
| // Expand to a bitconvert of the value to the integer type of the |
| // same size, then a (misaligned) int store. |
| // FIXME: Does not handle truncating floating point stores! |
| SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); |
| Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), |
| Alignment, ST->getMemOperand()->getFlags()); |
| return Result; |
| } |
| // Do a (aligned) store to a stack slot, then copy from the stack slot |
| // to the final destination using (unaligned) integer loads and stores. |
| EVT StoredVT = ST->getMemoryVT(); |
| MVT RegVT = |
| getRegisterType(*DAG.getContext(), |
| EVT::getIntegerVT(*DAG.getContext(), |
| StoredVT.getSizeInBits())); |
| EVT PtrVT = Ptr.getValueType(); |
| unsigned StoredBytes = StoredVT.getStoreSize(); |
| unsigned RegBytes = RegVT.getSizeInBits() / 8; |
| unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; |
| |
| // Make sure the stack slot is also aligned for the register type. |
| SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); |
| auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); |
| |
| // Perform the original store, only redirected to the stack slot. |
| SDValue Store = DAG.getTruncStore( |
| Chain, dl, Val, StackPtr, |
| MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); |
| |
| EVT StackPtrVT = StackPtr.getValueType(); |
| |
| SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); |
| SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); |
| SmallVector<SDValue, 8> Stores; |
| unsigned Offset = 0; |
| |
| // Do all but one copies using the full register width. |
| for (unsigned i = 1; i < NumRegs; i++) { |
| // Load one integer register's worth from the stack slot. |
| SDValue Load = DAG.getLoad( |
| RegVT, dl, Store, StackPtr, |
| MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); |
| // Store it to the final location. Remember the store. |
| Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, |
| ST->getPointerInfo().getWithOffset(Offset), |
| MinAlign(ST->getAlignment(), Offset), |
| ST->getMemOperand()->getFlags())); |
| // Increment the pointers. |
| Offset += RegBytes; |
| StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); |
| Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); |
| } |
| |
| // The last store may be partial. Do a truncating store. On big-endian |
| // machines this requires an extending load from the stack slot to ensure |
| // that the bits are in the right place. |
| EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), |
| 8 * (StoredBytes - Offset)); |
| |
| // Load from the stack slot. |
| SDValue Load = DAG.getExtLoad( |
| ISD::EXTLOAD, dl, RegVT, Store, StackPtr, |
| MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); |
| |
| Stores.push_back( |
| DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, |
| ST->getPointerInfo().getWithOffset(Offset), MemVT, |
| MinAlign(ST->getAlignment(), Offset), |
| ST->getMemOperand()->getFlags(), ST->getAAInfo())); |
| // The order of the stores doesn't matter - say it with a TokenFactor. |
| SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); |
| return Result; |
| } |
| |
| assert(ST->getMemoryVT().isInteger() && |
| !ST->getMemoryVT().isVector() && |
| "Unaligned store of unknown type."); |
| // Get the half-size VT |
| EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); |
| int NumBits = NewStoredVT.getSizeInBits(); |
| int IncrementSize = NumBits / 8; |
| |
| // Divide the stored value in two parts. |
| SDValue ShiftAmount = |
| DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), |
| DAG.getDataLayout())); |
| SDValue Lo = Val; |
| SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); |
| |
| // Store the two parts |
| SDValue Store1, Store2; |
| Store1 = DAG.getTruncStore(Chain, dl, |
| DAG.getDataLayout().isLittleEndian() ? Lo : Hi, |
| Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, |
| ST->getMemOperand()->getFlags()); |
| |
| Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); |
| Alignment = MinAlign(Alignment, IncrementSize); |
| Store2 = DAG.getTruncStore( |
| Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, |
| ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, |
| ST->getMemOperand()->getFlags(), ST->getAAInfo()); |
| |
| SDValue Result = |
| DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); |
| return Result; |
| } |
| |
| SDValue |
| TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, |
| const SDLoc &DL, EVT DataVT, |
| SelectionDAG &DAG, |
| bool IsCompressedMemory) const { |
| SDValue Increment; |
| EVT AddrVT = Addr.getValueType(); |
| EVT MaskVT = Mask.getValueType(); |
| assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && |
| "Incompatible types of Data and Mask"); |
| if (IsCompressedMemory) { |
| // Incrementing the pointer according to number of '1's in the mask. |
| EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); |
| SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); |
| if (MaskIntVT.getSizeInBits() < 32) { |
| MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); |
| MaskIntVT = MVT::i32; |
| } |
| |
| // Count '1's with POPCNT. |
| Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); |
| Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); |
| // Scale is an element size in bytes. |
| SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, |
| AddrVT); |
| Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); |
| } else |
| Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); |
| |
| return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); |
| } |
| |
| static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, |
| SDValue Idx, |
| EVT VecVT, |
| const SDLoc &dl) { |
| if (isa<ConstantSDNode>(Idx)) |
| return Idx; |
| |
| EVT IdxVT = Idx.getValueType(); |
| unsigned NElts = VecVT.getVectorNumElements(); |
| if (isPowerOf2_32(NElts)) { |
| APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), |
| Log2_32(NElts)); |
| return DAG.getNode(ISD::AND, dl, IdxVT, Idx, |
| DAG.getConstant(Imm, dl, IdxVT)); |
| } |
| |
| return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, |
| DAG.getConstant(NElts - 1, dl, IdxVT)); |
| } |
| |
| SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, |
| SDValue VecPtr, EVT VecVT, |
| SDValue Index) const { |
| SDLoc dl(Index); |
| // Make sure the index type is big enough to compute in. |
| Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); |
| |
| EVT EltVT = VecVT.getVectorElementType(); |
| |
| // Calculate the element offset and add it to the pointer. |
| unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. |
| assert(EltSize * 8 == EltVT.getSizeInBits() && |
| "Converting bits to bytes lost precision"); |
| |
| Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); |
| |
| EVT IdxVT = Index.getValueType(); |
| |
| Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, |
| DAG.getConstant(EltSize, dl, IdxVT)); |
| return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of Emulated TLS Model |
| //===----------------------------------------------------------------------===// |
| |
| SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, |
| SelectionDAG &DAG) const { |
| // Access to address of TLS varialbe xyz is lowered to a function call: |
| // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); |
| SDLoc dl(GA); |
| |
| ArgListTy Args; |
| ArgListEntry Entry; |
| std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); |
| Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); |
| StringRef EmuTlsVarName(NameString); |
| GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); |
| assert(EmuTlsVar && "Cannot find EmuTlsVar "); |
| Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); |
| Entry.Ty = VoidPtrType; |
| Args.push_back(Entry); |
| |
| SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); |
| CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); |
| std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
| |
| // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. |
| // At last for X86 targets, maybe good for other targets too? |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI.setAdjustsStack(true); // Is this only for X86 target? |
| MFI.setHasCalls(true); |
| |
| assert((GA->getOffset() == 0) && |
| "Emulated TLS must have zero offset in GlobalAddressSDNode"); |
| return CallResult.first; |
| } |
| |
| SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); |
| if (!isCtlzFast()) |
| return SDValue(); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| SDLoc dl(Op); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| if (C->isNullValue() && CC == ISD::SETEQ) { |
| EVT VT = Op.getOperand(0).getValueType(); |
| SDValue Zext = Op.getOperand(0); |
| if (VT.bitsLT(MVT::i32)) { |
| VT = MVT::i32; |
| Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); |
| } |
| unsigned Log2b = Log2_32(VT.getSizeInBits()); |
| SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); |
| SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, |
| DAG.getConstant(Log2b, dl, MVT::i32)); |
| return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); |
| } |
| } |
| return SDValue(); |
| } |