| //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run |
| // both before and after the DAG is legalized. |
| // |
| // This pass is not a substitute for the LLVM IR instcombine pass. This pass is |
| // primarily intended to handle simplification opportunities that are implicit |
| // in the LLVM IR and exposed by the various codegen lowering phases. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/CodeGen/DAGCombine.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/SelectionDAGTargetInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <iterator> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "dagcombine" |
| |
| STATISTIC(NodesCombined , "Number of dag nodes combined"); |
| STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); |
| STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); |
| STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); |
| STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); |
| STATISTIC(SlicedLoads, "Number of load sliced"); |
| |
| static cl::opt<bool> |
| CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, |
| cl::desc("Enable DAG combiner's use of IR alias analysis")); |
| |
| static cl::opt<bool> |
| UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), |
| cl::desc("Enable DAG combiner's use of TBAA")); |
| |
| #ifndef NDEBUG |
| static cl::opt<std::string> |
| CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, |
| cl::desc("Only use DAG-combiner alias analysis in this" |
| " function")); |
| #endif |
| |
| /// Hidden option to stress test load slicing, i.e., when this option |
| /// is enabled, load slicing bypasses most of its profitability guards. |
| static cl::opt<bool> |
| StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, |
| cl::desc("Bypass the profitability model of load slicing"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), |
| cl::desc("DAG combiner may split indexing from loads")); |
| |
| namespace { |
| |
| class DAGCombiner { |
| SelectionDAG &DAG; |
| const TargetLowering &TLI; |
| CombineLevel Level; |
| CodeGenOpt::Level OptLevel; |
| bool LegalOperations = false; |
| bool LegalTypes = false; |
| bool ForCodeSize; |
| |
| /// Worklist of all of the nodes that need to be simplified. |
| /// |
| /// This must behave as a stack -- new nodes to process are pushed onto the |
| /// back and when processing we pop off of the back. |
| /// |
| /// The worklist will not contain duplicates but may contain null entries |
| /// due to nodes being deleted from the underlying DAG. |
| SmallVector<SDNode *, 64> Worklist; |
| |
| /// Mapping from an SDNode to its position on the worklist. |
| /// |
| /// This is used to find and remove nodes from the worklist (by nulling |
| /// them) when they are deleted from the underlying DAG. It relies on |
| /// stable indices of nodes within the worklist. |
| DenseMap<SDNode *, unsigned> WorklistMap; |
| |
| /// Set of nodes which have been combined (at least once). |
| /// |
| /// This is used to allow us to reliably add any operands of a DAG node |
| /// which have not yet been combined to the worklist. |
| SmallPtrSet<SDNode *, 32> CombinedNodes; |
| |
| // AA - Used for DAG load/store alias analysis. |
| AliasAnalysis *AA; |
| |
| /// When an instruction is simplified, add all users of the instruction to |
| /// the work lists because they might get more simplified now. |
| void AddUsersToWorklist(SDNode *N) { |
| for (SDNode *Node : N->uses()) |
| AddToWorklist(Node); |
| } |
| |
| /// Call the node-specific routine that folds each particular type of node. |
| SDValue visit(SDNode *N); |
| |
| public: |
| DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) |
| : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), |
| OptLevel(OL), AA(AA) { |
| ForCodeSize = DAG.getMachineFunction().getFunction().optForSize(); |
| |
| MaximumLegalStoreInBits = 0; |
| for (MVT VT : MVT::all_valuetypes()) |
| if (EVT(VT).isSimple() && VT != MVT::Other && |
| TLI.isTypeLegal(EVT(VT)) && |
| VT.getSizeInBits() >= MaximumLegalStoreInBits) |
| MaximumLegalStoreInBits = VT.getSizeInBits(); |
| } |
| |
| /// Add to the worklist making sure its instance is at the back (next to be |
| /// processed.) |
| void AddToWorklist(SDNode *N) { |
| assert(N->getOpcode() != ISD::DELETED_NODE && |
| "Deleted Node added to Worklist"); |
| |
| // Skip handle nodes as they can't usefully be combined and confuse the |
| // zero-use deletion strategy. |
| if (N->getOpcode() == ISD::HANDLENODE) |
| return; |
| |
| if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) |
| Worklist.push_back(N); |
| } |
| |
| /// Remove all instances of N from the worklist. |
| void removeFromWorklist(SDNode *N) { |
| CombinedNodes.erase(N); |
| |
| auto It = WorklistMap.find(N); |
| if (It == WorklistMap.end()) |
| return; // Not in the worklist. |
| |
| // Null out the entry rather than erasing it to avoid a linear operation. |
| Worklist[It->second] = nullptr; |
| WorklistMap.erase(It); |
| } |
| |
| void deleteAndRecombine(SDNode *N); |
| bool recursivelyDeleteUnusedNodes(SDNode *N); |
| |
| /// Replaces all uses of the results of one DAG node with new values. |
| SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, |
| bool AddTo = true); |
| |
| /// Replaces all uses of the results of one DAG node with new values. |
| SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { |
| return CombineTo(N, &Res, 1, AddTo); |
| } |
| |
| /// Replaces all uses of the results of one DAG node with new values. |
| SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, |
| bool AddTo = true) { |
| SDValue To[] = { Res0, Res1 }; |
| return CombineTo(N, To, 2, AddTo); |
| } |
| |
| void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); |
| |
| private: |
| unsigned MaximumLegalStoreInBits; |
| |
| /// Check the specified integer node value to see if it can be simplified or |
| /// if things it uses can be simplified by bit propagation. |
| /// If so, return true. |
| bool SimplifyDemandedBits(SDValue Op) { |
| unsigned BitWidth = Op.getScalarValueSizeInBits(); |
| APInt Demanded = APInt::getAllOnesValue(BitWidth); |
| return SimplifyDemandedBits(Op, Demanded); |
| } |
| |
| /// Check the specified vector node value to see if it can be simplified or |
| /// if things it uses can be simplified as it only uses some of the |
| /// elements. If so, return true. |
| bool SimplifyDemandedVectorElts(SDValue Op) { |
| unsigned NumElts = Op.getValueType().getVectorNumElements(); |
| APInt Demanded = APInt::getAllOnesValue(NumElts); |
| return SimplifyDemandedVectorElts(Op, Demanded); |
| } |
| |
| bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); |
| bool SimplifyDemandedVectorElts(SDValue Op, const APInt &Demanded, |
| bool AssumeSingleUse = false); |
| |
| bool CombineToPreIndexedLoadStore(SDNode *N); |
| bool CombineToPostIndexedLoadStore(SDNode *N); |
| SDValue SplitIndexingFromLoad(LoadSDNode *LD); |
| bool SliceUpLoad(SDNode *N); |
| |
| /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed |
| /// load. |
| /// |
| /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. |
| /// \param InVecVT type of the input vector to EVE with bitcasts resolved. |
| /// \param EltNo index of the vector element to load. |
| /// \param OriginalLoad load that EVE came from to be replaced. |
| /// \returns EVE on success SDValue() on failure. |
| SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( |
| SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); |
| void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); |
| SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); |
| SDValue SExtPromoteOperand(SDValue Op, EVT PVT); |
| SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); |
| SDValue PromoteIntBinOp(SDValue Op); |
| SDValue PromoteIntShiftOp(SDValue Op); |
| SDValue PromoteExtend(SDValue Op); |
| bool PromoteLoad(SDValue Op); |
| |
| /// Call the node-specific routine that knows how to fold each |
| /// particular type of node. If that doesn't do anything, try the |
| /// target-specific DAG combines. |
| SDValue combine(SDNode *N); |
| |
| // Visitation implementation - Implement dag node combining for different |
| // node types. The semantics are as follows: |
| // Return Value: |
| // SDValue.getNode() == 0 - No change was made |
| // SDValue.getNode() == N - N was replaced, is dead and has been handled. |
| // otherwise - N should be replaced by the returned Operand. |
| // |
| SDValue visitTokenFactor(SDNode *N); |
| SDValue visitMERGE_VALUES(SDNode *N); |
| SDValue visitADD(SDNode *N); |
| SDValue visitADDLike(SDValue N0, SDValue N1, SDNode *LocReference); |
| SDValue visitSUB(SDNode *N); |
| SDValue visitADDC(SDNode *N); |
| SDValue visitUADDO(SDNode *N); |
| SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitSUBC(SDNode *N); |
| SDValue visitUSUBO(SDNode *N); |
| SDValue visitADDE(SDNode *N); |
| SDValue visitADDCARRY(SDNode *N); |
| SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); |
| SDValue visitSUBE(SDNode *N); |
| SDValue visitSUBCARRY(SDNode *N); |
| SDValue visitMUL(SDNode *N); |
| SDValue useDivRem(SDNode *N); |
| SDValue visitSDIV(SDNode *N); |
| SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitUDIV(SDNode *N); |
| SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitREM(SDNode *N); |
| SDValue visitMULHU(SDNode *N); |
| SDValue visitMULHS(SDNode *N); |
| SDValue visitSMUL_LOHI(SDNode *N); |
| SDValue visitUMUL_LOHI(SDNode *N); |
| SDValue visitSMULO(SDNode *N); |
| SDValue visitUMULO(SDNode *N); |
| SDValue visitIMINMAX(SDNode *N); |
| SDValue visitAND(SDNode *N); |
| SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitOR(SDNode *N); |
| SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); |
| SDValue visitXOR(SDNode *N); |
| SDValue SimplifyVBinOp(SDNode *N); |
| SDValue visitSHL(SDNode *N); |
| SDValue visitSRA(SDNode *N); |
| SDValue visitSRL(SDNode *N); |
| SDValue visitRotate(SDNode *N); |
| SDValue visitABS(SDNode *N); |
| SDValue visitBSWAP(SDNode *N); |
| SDValue visitBITREVERSE(SDNode *N); |
| SDValue visitCTLZ(SDNode *N); |
| SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); |
| SDValue visitCTTZ(SDNode *N); |
| SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); |
| SDValue visitCTPOP(SDNode *N); |
| SDValue visitSELECT(SDNode *N); |
| SDValue visitVSELECT(SDNode *N); |
| SDValue visitSELECT_CC(SDNode *N); |
| SDValue visitSETCC(SDNode *N); |
| SDValue visitSETCCCARRY(SDNode *N); |
| SDValue visitSIGN_EXTEND(SDNode *N); |
| SDValue visitZERO_EXTEND(SDNode *N); |
| SDValue visitANY_EXTEND(SDNode *N); |
| SDValue visitAssertExt(SDNode *N); |
| SDValue visitSIGN_EXTEND_INREG(SDNode *N); |
| SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); |
| SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); |
| SDValue visitTRUNCATE(SDNode *N); |
| SDValue visitBITCAST(SDNode *N); |
| SDValue visitBUILD_PAIR(SDNode *N); |
| SDValue visitFADD(SDNode *N); |
| SDValue visitFSUB(SDNode *N); |
| SDValue visitFMUL(SDNode *N); |
| SDValue visitFMA(SDNode *N); |
| SDValue visitFDIV(SDNode *N); |
| SDValue visitFREM(SDNode *N); |
| SDValue visitFSQRT(SDNode *N); |
| SDValue visitFCOPYSIGN(SDNode *N); |
| SDValue visitSINT_TO_FP(SDNode *N); |
| SDValue visitUINT_TO_FP(SDNode *N); |
| SDValue visitFP_TO_SINT(SDNode *N); |
| SDValue visitFP_TO_UINT(SDNode *N); |
| SDValue visitFP_ROUND(SDNode *N); |
| SDValue visitFP_ROUND_INREG(SDNode *N); |
| SDValue visitFP_EXTEND(SDNode *N); |
| SDValue visitFNEG(SDNode *N); |
| SDValue visitFABS(SDNode *N); |
| SDValue visitFCEIL(SDNode *N); |
| SDValue visitFTRUNC(SDNode *N); |
| SDValue visitFFLOOR(SDNode *N); |
| SDValue visitFMINNUM(SDNode *N); |
| SDValue visitFMAXNUM(SDNode *N); |
| SDValue visitBRCOND(SDNode *N); |
| SDValue visitBR_CC(SDNode *N); |
| SDValue visitLOAD(SDNode *N); |
| |
| SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); |
| SDValue replaceStoreOfFPConstant(StoreSDNode *ST); |
| |
| SDValue visitSTORE(SDNode *N); |
| SDValue visitINSERT_VECTOR_ELT(SDNode *N); |
| SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); |
| SDValue visitBUILD_VECTOR(SDNode *N); |
| SDValue visitCONCAT_VECTORS(SDNode *N); |
| SDValue visitEXTRACT_SUBVECTOR(SDNode *N); |
| SDValue visitVECTOR_SHUFFLE(SDNode *N); |
| SDValue visitSCALAR_TO_VECTOR(SDNode *N); |
| SDValue visitINSERT_SUBVECTOR(SDNode *N); |
| SDValue visitMLOAD(SDNode *N); |
| SDValue visitMSTORE(SDNode *N); |
| SDValue visitMGATHER(SDNode *N); |
| SDValue visitMSCATTER(SDNode *N); |
| SDValue visitFP_TO_FP16(SDNode *N); |
| SDValue visitFP16_TO_FP(SDNode *N); |
| |
| SDValue visitFADDForFMACombine(SDNode *N); |
| SDValue visitFSUBForFMACombine(SDNode *N); |
| SDValue visitFMULForFMADistributiveCombine(SDNode *N); |
| |
| SDValue XformToShuffleWithZero(SDNode *N); |
| SDValue ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, |
| SDValue N1); |
| |
| SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); |
| |
| SDValue foldSelectOfConstants(SDNode *N); |
| SDValue foldVSelectOfConstants(SDNode *N); |
| SDValue foldBinOpIntoSelect(SDNode *BO); |
| bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); |
| SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); |
| SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); |
| SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, |
| SDValue N2, SDValue N3, ISD::CondCode CC, |
| bool NotExtCompare = false); |
| SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, |
| SDValue N2, SDValue N3, ISD::CondCode CC); |
| SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, |
| const SDLoc &DL); |
| SDValue unfoldMaskedMerge(SDNode *N); |
| SDValue unfoldExtremeBitClearingToShifts(SDNode *N); |
| SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, |
| const SDLoc &DL, bool foldBooleans); |
| SDValue rebuildSetCC(SDValue N); |
| |
| bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, |
| SDValue &CC) const; |
| bool isOneUseSetCC(SDValue N) const; |
| |
| SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, |
| unsigned HiOp); |
| SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); |
| SDValue CombineExtLoad(SDNode *N); |
| SDValue CombineZExtLogicopShiftLoad(SDNode *N); |
| SDValue combineRepeatedFPDivisors(SDNode *N); |
| SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); |
| SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); |
| SDValue BuildSDIV(SDNode *N); |
| SDValue BuildSDIVPow2(SDNode *N); |
| SDValue BuildUDIV(SDNode *N); |
| SDValue BuildLogBase2(SDValue V, const SDLoc &DL); |
| SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags); |
| SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); |
| SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); |
| SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); |
| SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, |
| SDNodeFlags Flags, bool Reciprocal); |
| SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, |
| SDNodeFlags Flags, bool Reciprocal); |
| SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, |
| bool DemandHighBits = true); |
| SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); |
| SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, |
| SDValue InnerPos, SDValue InnerNeg, |
| unsigned PosOpcode, unsigned NegOpcode, |
| const SDLoc &DL); |
| SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); |
| SDValue MatchLoadCombine(SDNode *N); |
| SDValue ReduceLoadWidth(SDNode *N); |
| SDValue ReduceLoadOpStoreWidth(SDNode *N); |
| SDValue splitMergedValStore(StoreSDNode *ST); |
| SDValue TransformFPLoadStorePair(SDNode *N); |
| SDValue convertBuildVecZextToZext(SDNode *N); |
| SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); |
| SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); |
| SDValue reduceBuildVecToShuffle(SDNode *N); |
| SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, |
| ArrayRef<int> VectorMask, SDValue VecIn1, |
| SDValue VecIn2, unsigned LeftIdx); |
| SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); |
| |
| /// Walk up chain skipping non-aliasing memory nodes, |
| /// looking for aliasing nodes and adding them to the Aliases vector. |
| void GatherAllAliases(SDNode *N, SDValue OriginalChain, |
| SmallVectorImpl<SDValue> &Aliases); |
| |
| /// Return true if there is any possibility that the two addresses overlap. |
| bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; |
| |
| /// Walk up chain skipping non-aliasing memory nodes, looking for a better |
| /// chain (aliasing node.) |
| SDValue FindBetterChain(SDNode *N, SDValue Chain); |
| |
| /// Try to replace a store and any possibly adjacent stores on |
| /// consecutive chains with better chains. Return true only if St is |
| /// replaced. |
| /// |
| /// Notice that other chains may still be replaced even if the function |
| /// returns false. |
| bool findBetterNeighborChains(StoreSDNode *St); |
| |
| /// Holds a pointer to an LSBaseSDNode as well as information on where it |
| /// is located in a sequence of memory operations connected by a chain. |
| struct MemOpLink { |
| // Ptr to the mem node. |
| LSBaseSDNode *MemNode; |
| |
| // Offset from the base ptr. |
| int64_t OffsetFromBase; |
| |
| MemOpLink(LSBaseSDNode *N, int64_t Offset) |
| : MemNode(N), OffsetFromBase(Offset) {} |
| }; |
| |
| /// This is a helper function for visitMUL to check the profitability |
| /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). |
| /// MulNode is the original multiply, AddNode is (add x, c1), |
| /// and ConstNode is c2. |
| bool isMulAddWithConstProfitable(SDNode *MulNode, |
| SDValue &AddNode, |
| SDValue &ConstNode); |
| |
| /// This is a helper function for visitAND and visitZERO_EXTEND. Returns |
| /// true if the (and (load x) c) pattern matches an extload. ExtVT returns |
| /// the type of the loaded value to be extended. |
| bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, |
| EVT LoadResultTy, EVT &ExtVT); |
| |
| /// Helper function to calculate whether the given Load/Store can have its |
| /// width reduced to ExtVT. |
| bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, |
| EVT &MemVT, unsigned ShAmt = 0); |
| |
| /// Used by BackwardsPropagateMask to find suitable loads. |
| bool SearchForAndLoads(SDNode *N, SmallPtrSetImpl<LoadSDNode*> &Loads, |
| SmallPtrSetImpl<SDNode*> &NodesWithConsts, |
| ConstantSDNode *Mask, SDNode *&NodeToMask); |
| /// Attempt to propagate a given AND node back to load leaves so that they |
| /// can be combined into narrow loads. |
| bool BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG); |
| |
| /// Helper function for MergeConsecutiveStores which merges the |
| /// component store chains. |
| SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, |
| unsigned NumStores); |
| |
| /// This is a helper function for MergeConsecutiveStores. When the |
| /// source elements of the consecutive stores are all constants or |
| /// all extracted vector elements, try to merge them into one |
| /// larger store introducing bitcasts if necessary. \return True |
| /// if a merged store was created. |
| bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, |
| EVT MemVT, unsigned NumStores, |
| bool IsConstantSrc, bool UseVector, |
| bool UseTrunc); |
| |
| /// This is a helper function for MergeConsecutiveStores. Stores |
| /// that potentially may be merged with St are placed in |
| /// StoreNodes. RootNode is a chain predecessor to all store |
| /// candidates. |
| void getStoreMergeCandidates(StoreSDNode *St, |
| SmallVectorImpl<MemOpLink> &StoreNodes, |
| SDNode *&Root); |
| |
| /// Helper function for MergeConsecutiveStores. Checks if |
| /// candidate stores have indirect dependency through their |
| /// operands. RootNode is the predecessor to all stores calculated |
| /// by getStoreMergeCandidates and is used to prune the dependency check. |
| /// \return True if safe to merge. |
| bool checkMergeStoreCandidatesForDependencies( |
| SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, |
| SDNode *RootNode); |
| |
| /// Merge consecutive store operations into a wide store. |
| /// This optimization uses wide integers or vectors when possible. |
| /// \return number of stores that were merged into a merged store (the |
| /// affected nodes are stored as a prefix in \p StoreNodes). |
| bool MergeConsecutiveStores(StoreSDNode *St); |
| |
| /// Try to transform a truncation where C is a constant: |
| /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) |
| /// |
| /// \p N needs to be a truncation and its first operand an AND. Other |
| /// requirements are checked by the function (e.g. that trunc is |
| /// single-use) and if missed an empty SDValue is returned. |
| SDValue distributeTruncateThroughAnd(SDNode *N); |
| |
| /// Helper function to determine whether the target supports operation |
| /// given by \p Opcode for type \p VT, that is, whether the operation |
| /// is legal or custom before legalizing operations, and whether is |
| /// legal (but not custom) after legalization. |
| bool hasOperation(unsigned Opcode, EVT VT) { |
| if (LegalOperations) |
| return TLI.isOperationLegal(Opcode, VT); |
| return TLI.isOperationLegalOrCustom(Opcode, VT); |
| } |
| |
| public: |
| /// Runs the dag combiner on all nodes in the work list |
| void Run(CombineLevel AtLevel); |
| |
| SelectionDAG &getDAG() const { return DAG; } |
| |
| /// Returns a type large enough to hold any valid shift amount - before type |
| /// legalization these can be huge. |
| EVT getShiftAmountTy(EVT LHSTy) { |
| assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); |
| return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); |
| } |
| |
| /// This method returns true if we are running before type legalization or |
| /// if the specified VT is legal. |
| bool isTypeLegal(const EVT &VT) { |
| if (!LegalTypes) return true; |
| return TLI.isTypeLegal(VT); |
| } |
| |
| /// Convenience wrapper around TargetLowering::getSetCCResultType |
| EVT getSetCCResultType(EVT VT) const { |
| return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| } |
| |
| void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, |
| SDValue OrigLoad, SDValue ExtLoad, |
| ISD::NodeType ExtType); |
| }; |
| |
| /// This class is a DAGUpdateListener that removes any deleted |
| /// nodes from the worklist. |
| class WorklistRemover : public SelectionDAG::DAGUpdateListener { |
| DAGCombiner &DC; |
| |
| public: |
| explicit WorklistRemover(DAGCombiner &dc) |
| : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} |
| |
| void NodeDeleted(SDNode *N, SDNode *E) override { |
| DC.removeFromWorklist(N); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // TargetLowering::DAGCombinerInfo implementation |
| //===----------------------------------------------------------------------===// |
| |
| void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { |
| ((DAGCombiner*)DC)->AddToWorklist(N); |
| } |
| |
| SDValue TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { |
| return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); |
| } |
| |
| SDValue TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, SDValue Res, bool AddTo) { |
| return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); |
| } |
| |
| SDValue TargetLowering::DAGCombinerInfo:: |
| CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { |
| return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); |
| } |
| |
| void TargetLowering::DAGCombinerInfo:: |
| CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { |
| return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Functions |
| //===----------------------------------------------------------------------===// |
| |
| void DAGCombiner::deleteAndRecombine(SDNode *N) { |
| removeFromWorklist(N); |
| |
| // If the operands of this node are only used by the node, they will now be |
| // dead. Make sure to re-visit them and recursively delete dead nodes. |
| for (const SDValue &Op : N->ops()) |
| // For an operand generating multiple values, one of the values may |
| // become dead allowing further simplification (e.g. split index |
| // arithmetic from an indexed load). |
| if (Op->hasOneUse() || Op->getNumValues() > 1) |
| AddToWorklist(Op.getNode()); |
| |
| DAG.DeleteNode(N); |
| } |
| |
| /// Return 1 if we can compute the negated form of the specified expression for |
| /// the same cost as the expression itself, or 2 if we can compute the negated |
| /// form more cheaply than the expression itself. |
| static char isNegatibleForFree(SDValue Op, bool LegalOperations, |
| const TargetLowering &TLI, |
| const TargetOptions *Options, |
| unsigned Depth = 0) { |
| // fneg is removable even if it has multiple uses. |
| if (Op.getOpcode() == ISD::FNEG) return 2; |
| |
| // Don't allow anything with multiple uses unless we know it is free. |
| EVT VT = Op.getValueType(); |
| const SDNodeFlags Flags = Op->getFlags(); |
| if (!Op.hasOneUse()) |
| if (!(Op.getOpcode() == ISD::FP_EXTEND && |
| TLI.isFPExtFree(VT, Op.getOperand(0).getValueType()))) |
| return 0; |
| |
| // Don't recurse exponentially. |
| if (Depth > 6) return 0; |
| |
| switch (Op.getOpcode()) { |
| default: return false; |
| case ISD::ConstantFP: { |
| if (!LegalOperations) |
| return 1; |
| |
| // Don't invert constant FP values after legalization unless the target says |
| // the negated constant is legal. |
| return TLI.isOperationLegal(ISD::ConstantFP, VT) || |
| TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT); |
| } |
| case ISD::FADD: |
| if (!Options->UnsafeFPMath && !Flags.hasNoSignedZeros()) |
| return 0; |
| |
| // After operation legalization, it might not be legal to create new FSUBs. |
| if (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) |
| return 0; |
| |
| // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) |
| if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, |
| Options, Depth + 1)) |
| return V; |
| // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) |
| return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, |
| Depth + 1); |
| case ISD::FSUB: |
| // We can't turn -(A-B) into B-A when we honor signed zeros. |
| if (!Options->NoSignedZerosFPMath && |
| !Flags.hasNoSignedZeros()) |
| return 0; |
| |
| // fold (fneg (fsub A, B)) -> (fsub B, A) |
| return 1; |
| |
| case ISD::FMUL: |
| case ISD::FDIV: |
| // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) |
| if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, |
| Options, Depth + 1)) |
| return V; |
| |
| return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, |
| Depth + 1); |
| |
| case ISD::FP_EXTEND: |
| case ISD::FP_ROUND: |
| case ISD::FSIN: |
| return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, |
| Depth + 1); |
| } |
| } |
| |
| /// If isNegatibleForFree returns true, return the newly negated expression. |
| static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, |
| bool LegalOperations, unsigned Depth = 0) { |
| const TargetOptions &Options = DAG.getTarget().Options; |
| // fneg is removable even if it has multiple uses. |
| if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); |
| |
| assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); |
| |
| const SDNodeFlags Flags = Op.getNode()->getFlags(); |
| |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Unknown code"); |
| case ISD::ConstantFP: { |
| APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); |
| V.changeSign(); |
| return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); |
| } |
| case ISD::FADD: |
| assert(Options.UnsafeFPMath || Flags.hasNoSignedZeros()); |
| |
| // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) |
| if (isNegatibleForFree(Op.getOperand(0), LegalOperations, |
| DAG.getTargetLoweringInfo(), &Options, Depth+1)) |
| return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), |
| GetNegatedExpression(Op.getOperand(0), DAG, |
| LegalOperations, Depth+1), |
| Op.getOperand(1), Flags); |
| // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) |
| return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), |
| GetNegatedExpression(Op.getOperand(1), DAG, |
| LegalOperations, Depth+1), |
| Op.getOperand(0), Flags); |
| case ISD::FSUB: |
| // fold (fneg (fsub 0, B)) -> B |
| if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) |
| if (N0CFP->isZero()) |
| return Op.getOperand(1); |
| |
| // fold (fneg (fsub A, B)) -> (fsub B, A) |
| return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(0), Flags); |
| |
| case ISD::FMUL: |
| case ISD::FDIV: |
| // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) |
| if (isNegatibleForFree(Op.getOperand(0), LegalOperations, |
| DAG.getTargetLoweringInfo(), &Options, Depth+1)) |
| return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), |
| GetNegatedExpression(Op.getOperand(0), DAG, |
| LegalOperations, Depth+1), |
| Op.getOperand(1), Flags); |
| |
| // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) |
| return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), |
| Op.getOperand(0), |
| GetNegatedExpression(Op.getOperand(1), DAG, |
| LegalOperations, Depth+1), Flags); |
| |
| case ISD::FP_EXTEND: |
| case ISD::FSIN: |
| return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), |
| GetNegatedExpression(Op.getOperand(0), DAG, |
| LegalOperations, Depth+1)); |
| case ISD::FP_ROUND: |
| return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), |
| GetNegatedExpression(Op.getOperand(0), DAG, |
| LegalOperations, Depth+1), |
| Op.getOperand(1)); |
| } |
| } |
| |
| // APInts must be the same size for most operations, this helper |
| // function zero extends the shorter of the pair so that they match. |
| // We provide an Offset so that we can create bitwidths that won't overflow. |
| static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { |
| unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); |
| LHS = LHS.zextOrSelf(Bits); |
| RHS = RHS.zextOrSelf(Bits); |
| } |
| |
| // Return true if this node is a setcc, or is a select_cc |
| // that selects between the target values used for true and false, making it |
| // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to |
| // the appropriate nodes based on the type of node we are checking. This |
| // simplifies life a bit for the callers. |
| bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, |
| SDValue &CC) const { |
| if (N.getOpcode() == ISD::SETCC) { |
| LHS = N.getOperand(0); |
| RHS = N.getOperand(1); |
| CC = N.getOperand(2); |
| return true; |
| } |
| |
| if (N.getOpcode() != ISD::SELECT_CC || |
| !TLI.isConstTrueVal(N.getOperand(2).getNode()) || |
| !TLI.isConstFalseVal(N.getOperand(3).getNode())) |
| return false; |
| |
| if (TLI.getBooleanContents(N.getValueType()) == |
| TargetLowering::UndefinedBooleanContent) |
| return false; |
| |
| LHS = N.getOperand(0); |
| RHS = N.getOperand(1); |
| CC = N.getOperand(4); |
| return true; |
| } |
| |
| /// Return true if this is a SetCC-equivalent operation with only one use. |
| /// If this is true, it allows the users to invert the operation for free when |
| /// it is profitable to do so. |
| bool DAGCombiner::isOneUseSetCC(SDValue N) const { |
| SDValue N0, N1, N2; |
| if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) |
| return true; |
| return false; |
| } |
| |
| static SDValue peekThroughBitcast(SDValue V) { |
| while (V.getOpcode() == ISD::BITCAST) |
| V = V.getOperand(0); |
| return V; |
| } |
| |
| // Returns the SDNode if it is a constant float BuildVector |
| // or constant float. |
| static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { |
| if (isa<ConstantFPSDNode>(N)) |
| return N.getNode(); |
| if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) |
| return N.getNode(); |
| return nullptr; |
| } |
| |
| // Determines if it is a constant integer or a build vector of constant |
| // integers (and undefs). |
| // Do not permit build vector implicit truncation. |
| static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { |
| if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) |
| return !(Const->isOpaque() && NoOpaques); |
| if (N.getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| unsigned BitWidth = N.getScalarValueSizeInBits(); |
| for (const SDValue &Op : N->op_values()) { |
| if (Op.isUndef()) |
| continue; |
| ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); |
| if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || |
| (Const->isOpaque() && NoOpaques)) |
| return false; |
| } |
| return true; |
| } |
| |
| // Determines if it is a constant null integer or a splatted vector of a |
| // constant null integer (with no undefs). |
| // Build vector implicit truncation is not an issue for null values. |
| static bool isNullConstantOrNullSplatConstant(SDValue N) { |
| // TODO: may want to use peekThroughBitcast() here. |
| if (ConstantSDNode *Splat = isConstOrConstSplat(N)) |
| return Splat->isNullValue(); |
| return false; |
| } |
| |
| // Determines if it is a constant integer of one or a splatted vector of a |
| // constant integer of one (with no undefs). |
| // Do not permit build vector implicit truncation. |
| static bool isOneConstantOrOneSplatConstant(SDValue N) { |
| // TODO: may want to use peekThroughBitcast() here. |
| unsigned BitWidth = N.getScalarValueSizeInBits(); |
| if (ConstantSDNode *Splat = isConstOrConstSplat(N)) |
| return Splat->isOne() && Splat->getAPIntValue().getBitWidth() == BitWidth; |
| return false; |
| } |
| |
| // Determines if it is a constant integer of all ones or a splatted vector of a |
| // constant integer of all ones (with no undefs). |
| // Do not permit build vector implicit truncation. |
| static bool isAllOnesConstantOrAllOnesSplatConstant(SDValue N) { |
| N = peekThroughBitcast(N); |
| unsigned BitWidth = N.getScalarValueSizeInBits(); |
| if (ConstantSDNode *Splat = isConstOrConstSplat(N)) |
| return Splat->isAllOnesValue() && |
| Splat->getAPIntValue().getBitWidth() == BitWidth; |
| return false; |
| } |
| |
| // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with |
| // undef's. |
| static bool isAnyConstantBuildVector(const SDNode *N) { |
| return ISD::isBuildVectorOfConstantSDNodes(N) || |
| ISD::isBuildVectorOfConstantFPSDNodes(N); |
| } |
| |
| SDValue DAGCombiner::ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, |
| SDValue N1) { |
| EVT VT = N0.getValueType(); |
| if (N0.getOpcode() == Opc) { |
| if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { |
| if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { |
| // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) |
| if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) |
| return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); |
| return SDValue(); |
| } |
| if (N0.hasOneUse()) { |
| // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one |
| // use |
| SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); |
| if (!OpNode.getNode()) |
| return SDValue(); |
| AddToWorklist(OpNode.getNode()); |
| return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); |
| } |
| } |
| } |
| |
| if (N1.getOpcode() == Opc) { |
| if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { |
| if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) { |
| // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) |
| if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) |
| return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); |
| return SDValue(); |
| } |
| if (N1.hasOneUse()) { |
| // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one |
| // use |
| SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0)); |
| if (!OpNode.getNode()) |
| return SDValue(); |
| AddToWorklist(OpNode.getNode()); |
| return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, |
| bool AddTo) { |
| assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); |
| ++NodesCombined; |
| LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; |
| To[0].getNode()->dump(&DAG); |
| dbgs() << " and " << NumTo - 1 << " other values\n"); |
| for (unsigned i = 0, e = NumTo; i != e; ++i) |
| assert((!To[i].getNode() || |
| N->getValueType(i) == To[i].getValueType()) && |
| "Cannot combine value to value of different type!"); |
| |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesWith(N, To); |
| if (AddTo) { |
| // Push the new nodes and any users onto the worklist |
| for (unsigned i = 0, e = NumTo; i != e; ++i) { |
| if (To[i].getNode()) { |
| AddToWorklist(To[i].getNode()); |
| AddUsersToWorklist(To[i].getNode()); |
| } |
| } |
| } |
| |
| // Finally, if the node is now dead, remove it from the graph. The node |
| // may not be dead if the replacement process recursively simplified to |
| // something else needing this node. |
| if (N->use_empty()) |
| deleteAndRecombine(N); |
| return SDValue(N, 0); |
| } |
| |
| void DAGCombiner:: |
| CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { |
| // Replace all uses. If any nodes become isomorphic to other nodes and |
| // are deleted, make sure to remove them from our worklist. |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); |
| |
| // Push the new node and any (possibly new) users onto the worklist. |
| AddToWorklist(TLO.New.getNode()); |
| AddUsersToWorklist(TLO.New.getNode()); |
| |
| // Finally, if the node is now dead, remove it from the graph. The node |
| // may not be dead if the replacement process recursively simplified to |
| // something else needing this node. |
| if (TLO.Old.getNode()->use_empty()) |
| deleteAndRecombine(TLO.Old.getNode()); |
| } |
| |
| /// Check the specified integer node value to see if it can be simplified or if |
| /// things it uses can be simplified by bit propagation. If so, return true. |
| bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { |
| TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); |
| KnownBits Known; |
| if (!TLI.SimplifyDemandedBits(Op, Demanded, Known, TLO)) |
| return false; |
| |
| // Revisit the node. |
| AddToWorklist(Op.getNode()); |
| |
| // Replace the old value with the new one. |
| ++NodesCombined; |
| LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); |
| dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); |
| dbgs() << '\n'); |
| |
| CommitTargetLoweringOpt(TLO); |
| return true; |
| } |
| |
| /// Check the specified vector node value to see if it can be simplified or |
| /// if things it uses can be simplified as it only uses some of the elements. |
| /// If so, return true. |
| bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, const APInt &Demanded, |
| bool AssumeSingleUse) { |
| TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); |
| APInt KnownUndef, KnownZero; |
| if (!TLI.SimplifyDemandedVectorElts(Op, Demanded, KnownUndef, KnownZero, TLO, |
| 0, AssumeSingleUse)) |
| return false; |
| |
| // Revisit the node. |
| AddToWorklist(Op.getNode()); |
| |
| // Replace the old value with the new one. |
| ++NodesCombined; |
| LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); |
| dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); |
| dbgs() << '\n'); |
| |
| CommitTargetLoweringOpt(TLO); |
| return true; |
| } |
| |
| void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { |
| SDLoc DL(Load); |
| EVT VT = Load->getValueType(0); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); |
| |
| LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; |
| Trunc.getNode()->dump(&DAG); dbgs() << '\n'); |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); |
| deleteAndRecombine(Load); |
| AddToWorklist(Trunc.getNode()); |
| } |
| |
| SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { |
| Replace = false; |
| SDLoc DL(Op); |
| if (ISD::isUNINDEXEDLoad(Op.getNode())) { |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| EVT MemVT = LD->getMemoryVT(); |
| ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD |
| : LD->getExtensionType(); |
| Replace = true; |
| return DAG.getExtLoad(ExtType, DL, PVT, |
| LD->getChain(), LD->getBasePtr(), |
| MemVT, LD->getMemOperand()); |
| } |
| |
| unsigned Opc = Op.getOpcode(); |
| switch (Opc) { |
| default: break; |
| case ISD::AssertSext: |
| if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) |
| return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); |
| break; |
| case ISD::AssertZext: |
| if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) |
| return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); |
| break; |
| case ISD::Constant: { |
| unsigned ExtOpc = |
| Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| return DAG.getNode(ExtOpc, DL, PVT, Op); |
| } |
| } |
| |
| if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) |
| return SDValue(); |
| return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); |
| } |
| |
| SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { |
| if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) |
| return SDValue(); |
| EVT OldVT = Op.getValueType(); |
| SDLoc DL(Op); |
| bool Replace = false; |
| SDValue NewOp = PromoteOperand(Op, PVT, Replace); |
| if (!NewOp.getNode()) |
| return SDValue(); |
| AddToWorklist(NewOp.getNode()); |
| |
| if (Replace) |
| ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, |
| DAG.getValueType(OldVT)); |
| } |
| |
| SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { |
| EVT OldVT = Op.getValueType(); |
| SDLoc DL(Op); |
| bool Replace = false; |
| SDValue NewOp = PromoteOperand(Op, PVT, Replace); |
| if (!NewOp.getNode()) |
| return SDValue(); |
| AddToWorklist(NewOp.getNode()); |
| |
| if (Replace) |
| ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); |
| return DAG.getZeroExtendInReg(NewOp, DL, OldVT); |
| } |
| |
| /// Promote the specified integer binary operation if the target indicates it is |
| /// beneficial. e.g. On x86, it's usually better to promote i16 operations to |
| /// i32 since i16 instructions are longer. |
| SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector() || !VT.isInteger()) |
| return SDValue(); |
| |
| // If operation type is 'undesirable', e.g. i16 on x86, consider |
| // promoting it. |
| unsigned Opc = Op.getOpcode(); |
| if (TLI.isTypeDesirableForOp(Opc, VT)) |
| return SDValue(); |
| |
| EVT PVT = VT; |
| // Consult target whether it is a good idea to promote this operation and |
| // what's the right type to promote it to. |
| if (TLI.IsDesirableToPromoteOp(Op, PVT)) { |
| assert(PVT != VT && "Don't know what type to promote to!"); |
| |
| LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); |
| |
| bool Replace0 = false; |
| SDValue N0 = Op.getOperand(0); |
| SDValue NN0 = PromoteOperand(N0, PVT, Replace0); |
| |
| bool Replace1 = false; |
| SDValue N1 = Op.getOperand(1); |
| SDValue NN1 = PromoteOperand(N1, PVT, Replace1); |
| SDLoc DL(Op); |
| |
| SDValue RV = |
| DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); |
| |
| // We are always replacing N0/N1's use in N and only need |
| // additional replacements if there are additional uses. |
| Replace0 &= !N0->hasOneUse(); |
| Replace1 &= (N0 != N1) && !N1->hasOneUse(); |
| |
| // Combine Op here so it is preserved past replacements. |
| CombineTo(Op.getNode(), RV); |
| |
| // If operands have a use ordering, make sure we deal with |
| // predecessor first. |
| if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { |
| std::swap(N0, N1); |
| std::swap(NN0, NN1); |
| } |
| |
| if (Replace0) { |
| AddToWorklist(NN0.getNode()); |
| ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); |
| } |
| if (Replace1) { |
| AddToWorklist(NN1.getNode()); |
| ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); |
| } |
| return Op; |
| } |
| return SDValue(); |
| } |
| |
| /// Promote the specified integer shift operation if the target indicates it is |
| /// beneficial. e.g. On x86, it's usually better to promote i16 operations to |
| /// i32 since i16 instructions are longer. |
| SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector() || !VT.isInteger()) |
| return SDValue(); |
| |
| // If operation type is 'undesirable', e.g. i16 on x86, consider |
| // promoting it. |
| unsigned Opc = Op.getOpcode(); |
| if (TLI.isTypeDesirableForOp(Opc, VT)) |
| return SDValue(); |
| |
| EVT PVT = VT; |
| // Consult target whether it is a good idea to promote this operation and |
| // what's the right type to promote it to. |
| if (TLI.IsDesirableToPromoteOp(Op, PVT)) { |
| assert(PVT != VT && "Don't know what type to promote to!"); |
| |
| LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); |
| |
| bool Replace = false; |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| if (Opc == ISD::SRA) |
| N0 = SExtPromoteOperand(N0, PVT); |
| else if (Opc == ISD::SRL) |
| N0 = ZExtPromoteOperand(N0, PVT); |
| else |
| N0 = PromoteOperand(N0, PVT, Replace); |
| |
| if (!N0.getNode()) |
| return SDValue(); |
| |
| SDLoc DL(Op); |
| SDValue RV = |
| DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); |
| |
| AddToWorklist(N0.getNode()); |
| if (Replace) |
| ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); |
| |
| // Deal with Op being deleted. |
| if (Op && Op.getOpcode() != ISD::DELETED_NODE) |
| return RV; |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::PromoteExtend(SDValue Op) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector() || !VT.isInteger()) |
| return SDValue(); |
| |
| // If operation type is 'undesirable', e.g. i16 on x86, consider |
| // promoting it. |
| unsigned Opc = Op.getOpcode(); |
| if (TLI.isTypeDesirableForOp(Opc, VT)) |
| return SDValue(); |
| |
| EVT PVT = VT; |
| // Consult target whether it is a good idea to promote this operation and |
| // what's the right type to promote it to. |
| if (TLI.IsDesirableToPromoteOp(Op, PVT)) { |
| assert(PVT != VT && "Don't know what type to promote to!"); |
| // fold (aext (aext x)) -> (aext x) |
| // fold (aext (zext x)) -> (zext x) |
| // fold (aext (sext x)) -> (sext x) |
| LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); |
| return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); |
| } |
| return SDValue(); |
| } |
| |
| bool DAGCombiner::PromoteLoad(SDValue Op) { |
| if (!LegalOperations) |
| return false; |
| |
| if (!ISD::isUNINDEXEDLoad(Op.getNode())) |
| return false; |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector() || !VT.isInteger()) |
| return false; |
| |
| // If operation type is 'undesirable', e.g. i16 on x86, consider |
| // promoting it. |
| unsigned Opc = Op.getOpcode(); |
| if (TLI.isTypeDesirableForOp(Opc, VT)) |
| return false; |
| |
| EVT PVT = VT; |
| // Consult target whether it is a good idea to promote this operation and |
| // what's the right type to promote it to. |
| if (TLI.IsDesirableToPromoteOp(Op, PVT)) { |
| assert(PVT != VT && "Don't know what type to promote to!"); |
| |
| SDLoc DL(Op); |
| SDNode *N = Op.getNode(); |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| EVT MemVT = LD->getMemoryVT(); |
| ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD |
| : LD->getExtensionType(); |
| SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, |
| LD->getChain(), LD->getBasePtr(), |
| MemVT, LD->getMemOperand()); |
| SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); |
| |
| LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; |
| Result.getNode()->dump(&DAG); dbgs() << '\n'); |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); |
| deleteAndRecombine(N); |
| AddToWorklist(Result.getNode()); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Recursively delete a node which has no uses and any operands for |
| /// which it is the only use. |
| /// |
| /// Note that this both deletes the nodes and removes them from the worklist. |
| /// It also adds any nodes who have had a user deleted to the worklist as they |
| /// may now have only one use and subject to other combines. |
| bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { |
| if (!N->use_empty()) |
| return false; |
| |
| SmallSetVector<SDNode *, 16> Nodes; |
| Nodes.insert(N); |
| do { |
| N = Nodes.pop_back_val(); |
| if (!N) |
| continue; |
| |
| if (N->use_empty()) { |
| for (const SDValue &ChildN : N->op_values()) |
| Nodes.insert(ChildN.getNode()); |
| |
| removeFromWorklist(N); |
| DAG.DeleteNode(N); |
| } else { |
| AddToWorklist(N); |
| } |
| } while (!Nodes.empty()); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main DAG Combiner implementation |
| //===----------------------------------------------------------------------===// |
| |
| void DAGCombiner::Run(CombineLevel AtLevel) { |
| // set the instance variables, so that the various visit routines may use it. |
| Level = AtLevel; |
| LegalOperations = Level >= AfterLegalizeVectorOps; |
| LegalTypes = Level >= AfterLegalizeTypes; |
| |
| // Add all the dag nodes to the worklist. |
| for (SDNode &Node : DAG.allnodes()) |
| AddToWorklist(&Node); |
| |
| // Create a dummy node (which is not added to allnodes), that adds a reference |
| // to the root node, preventing it from being deleted, and tracking any |
| // changes of the root. |
| HandleSDNode Dummy(DAG.getRoot()); |
| |
| // While the worklist isn't empty, find a node and try to combine it. |
| while (!WorklistMap.empty()) { |
| SDNode *N; |
| // The Worklist holds the SDNodes in order, but it may contain null entries. |
| do { |
| N = Worklist.pop_back_val(); |
| } while (!N); |
| |
| bool GoodWorklistEntry = WorklistMap.erase(N); |
| (void)GoodWorklistEntry; |
| assert(GoodWorklistEntry && |
| "Found a worklist entry without a corresponding map entry!"); |
| |
| // If N has no uses, it is dead. Make sure to revisit all N's operands once |
| // N is deleted from the DAG, since they too may now be dead or may have a |
| // reduced number of uses, allowing other xforms. |
| if (recursivelyDeleteUnusedNodes(N)) |
| continue; |
| |
| WorklistRemover DeadNodes(*this); |
| |
| // If this combine is running after legalizing the DAG, re-legalize any |
| // nodes pulled off the worklist. |
| if (Level == AfterLegalizeDAG) { |
| SmallSetVector<SDNode *, 16> UpdatedNodes; |
| bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); |
| |
| for (SDNode *LN : UpdatedNodes) { |
| AddToWorklist(LN); |
| AddUsersToWorklist(LN); |
| } |
| if (!NIsValid) |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); |
| |
| // Add any operands of the new node which have not yet been combined to the |
| // worklist as well. Because the worklist uniques things already, this |
| // won't repeatedly process the same operand. |
| CombinedNodes.insert(N); |
| for (const SDValue &ChildN : N->op_values()) |
| if (!CombinedNodes.count(ChildN.getNode())) |
| AddToWorklist(ChildN.getNode()); |
| |
| SDValue RV = combine(N); |
| |
| if (!RV.getNode()) |
| continue; |
| |
| ++NodesCombined; |
| |
| // If we get back the same node we passed in, rather than a new node or |
| // zero, we know that the node must have defined multiple values and |
| // CombineTo was used. Since CombineTo takes care of the worklist |
| // mechanics for us, we have no work to do in this case. |
| if (RV.getNode() == N) |
| continue; |
| |
| assert(N->getOpcode() != ISD::DELETED_NODE && |
| RV.getOpcode() != ISD::DELETED_NODE && |
| "Node was deleted but visit returned new node!"); |
| |
| LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); |
| |
| if (N->getNumValues() == RV.getNode()->getNumValues()) |
| DAG.ReplaceAllUsesWith(N, RV.getNode()); |
| else { |
| assert(N->getValueType(0) == RV.getValueType() && |
| N->getNumValues() == 1 && "Type mismatch"); |
| DAG.ReplaceAllUsesWith(N, &RV); |
| } |
| |
| // Push the new node and any users onto the worklist |
| AddToWorklist(RV.getNode()); |
| AddUsersToWorklist(RV.getNode()); |
| |
| // Finally, if the node is now dead, remove it from the graph. The node |
| // may not be dead if the replacement process recursively simplified to |
| // something else needing this node. This will also take care of adding any |
| // operands which have lost a user to the worklist. |
| recursivelyDeleteUnusedNodes(N); |
| } |
| |
| // If the root changed (e.g. it was a dead load, update the root). |
| DAG.setRoot(Dummy.getValue()); |
| DAG.RemoveDeadNodes(); |
| } |
| |
| SDValue DAGCombiner::visit(SDNode *N) { |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::TokenFactor: return visitTokenFactor(N); |
| case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); |
| case ISD::ADD: return visitADD(N); |
| case ISD::SUB: return visitSUB(N); |
| case ISD::ADDC: return visitADDC(N); |
| case ISD::UADDO: return visitUADDO(N); |
| case ISD::SUBC: return visitSUBC(N); |
| case ISD::USUBO: return visitUSUBO(N); |
| case ISD::ADDE: return visitADDE(N); |
| case ISD::ADDCARRY: return visitADDCARRY(N); |
| case ISD::SUBE: return visitSUBE(N); |
| case ISD::SUBCARRY: return visitSUBCARRY(N); |
| case ISD::MUL: return visitMUL(N); |
| case ISD::SDIV: return visitSDIV(N); |
| case ISD::UDIV: return visitUDIV(N); |
| case ISD::SREM: |
| case ISD::UREM: return visitREM(N); |
| case ISD::MULHU: return visitMULHU(N); |
| case ISD::MULHS: return visitMULHS(N); |
| case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); |
| case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); |
| case ISD::SMULO: return visitSMULO(N); |
| case ISD::UMULO: return visitUMULO(N); |
| case ISD::SMIN: |
| case ISD::SMAX: |
| case ISD::UMIN: |
| case ISD::UMAX: return visitIMINMAX(N); |
| case ISD::AND: return visitAND(N); |
| case ISD::OR: return visitOR(N); |
| case ISD::XOR: return visitXOR(N); |
| case ISD::SHL: return visitSHL(N); |
| case ISD::SRA: return visitSRA(N); |
| case ISD::SRL: return visitSRL(N); |
| case ISD::ROTR: |
| case ISD::ROTL: return visitRotate(N); |
| case ISD::ABS: return visitABS(N); |
| case ISD::BSWAP: return visitBSWAP(N); |
| case ISD::BITREVERSE: return visitBITREVERSE(N); |
| case ISD::CTLZ: return visitCTLZ(N); |
| case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); |
| case ISD::CTTZ: return visitCTTZ(N); |
| case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); |
| case ISD::CTPOP: return visitCTPOP(N); |
| case ISD::SELECT: return visitSELECT(N); |
| case ISD::VSELECT: return visitVSELECT(N); |
| case ISD::SELECT_CC: return visitSELECT_CC(N); |
| case ISD::SETCC: return visitSETCC(N); |
| case ISD::SETCCCARRY: return visitSETCCCARRY(N); |
| case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); |
| case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); |
| case ISD::ANY_EXTEND: return visitANY_EXTEND(N); |
| case ISD::AssertSext: |
| case ISD::AssertZext: return visitAssertExt(N); |
| case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); |
| case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); |
| case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); |
| case ISD::TRUNCATE: return visitTRUNCATE(N); |
| case ISD::BITCAST: return visitBITCAST(N); |
| case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); |
| case ISD::FADD: return visitFADD(N); |
| case ISD::FSUB: return visitFSUB(N); |
| case ISD::FMUL: return visitFMUL(N); |
| case ISD::FMA: return visitFMA(N); |
| case ISD::FDIV: return visitFDIV(N); |
| case ISD::FREM: return visitFREM(N); |
| case ISD::FSQRT: return visitFSQRT(N); |
| case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); |
| case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); |
| case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); |
| case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); |
| case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); |
| case ISD::FP_ROUND: return visitFP_ROUND(N); |
| case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); |
| case ISD::FP_EXTEND: return visitFP_EXTEND(N); |
| case ISD::FNEG: return visitFNEG(N); |
| case ISD::FABS: return visitFABS(N); |
| case ISD::FFLOOR: return visitFFLOOR(N); |
| case ISD::FMINNUM: return visitFMINNUM(N); |
| case ISD::FMAXNUM: return visitFMAXNUM(N); |
| case ISD::FCEIL: return visitFCEIL(N); |
| case ISD::FTRUNC: return visitFTRUNC(N); |
| case ISD::BRCOND: return visitBRCOND(N); |
| case ISD::BR_CC: return visitBR_CC(N); |
| case ISD::LOAD: return visitLOAD(N); |
| case ISD::STORE: return visitSTORE(N); |
| case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); |
| case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); |
| case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); |
| case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); |
| case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); |
| case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); |
| case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); |
| case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); |
| case ISD::MGATHER: return visitMGATHER(N); |
| case ISD::MLOAD: return visitMLOAD(N); |
| case ISD::MSCATTER: return visitMSCATTER(N); |
| case ISD::MSTORE: return visitMSTORE(N); |
| case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); |
| case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::combine(SDNode *N) { |
| SDValue RV = visit(N); |
| |
| // If nothing happened, try a target-specific DAG combine. |
| if (!RV.getNode()) { |
| assert(N->getOpcode() != ISD::DELETED_NODE && |
| "Node was deleted but visit returned NULL!"); |
| |
| if (N->getOpcode() >= ISD::BUILTIN_OP_END || |
| TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { |
| |
| // Expose the DAG combiner to the target combiner impls. |
| TargetLowering::DAGCombinerInfo |
| DagCombineInfo(DAG, Level, false, this); |
| |
| RV = TLI.PerformDAGCombine(N, DagCombineInfo); |
| } |
| } |
| |
| // If nothing happened still, try promoting the operation. |
| if (!RV.getNode()) { |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| RV = PromoteIntBinOp(SDValue(N, 0)); |
| break; |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| RV = PromoteIntShiftOp(SDValue(N, 0)); |
| break; |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| RV = PromoteExtend(SDValue(N, 0)); |
| break; |
| case ISD::LOAD: |
| if (PromoteLoad(SDValue(N, 0))) |
| RV = SDValue(N, 0); |
| break; |
| } |
| } |
| |
| // If N is a commutative binary node, try eliminate it if the commuted |
| // version is already present in the DAG. |
| if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && |
| N->getNumValues() == 1) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // Constant operands are canonicalized to RHS. |
| if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { |
| SDValue Ops[] = {N1, N0}; |
| SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, |
| N->getFlags()); |
| if (CSENode) |
| return SDValue(CSENode, 0); |
| } |
| } |
| |
| return RV; |
| } |
| |
| /// Given a node, return its input chain if it has one, otherwise return a null |
| /// sd operand. |
| static SDValue getInputChainForNode(SDNode *N) { |
| if (unsigned NumOps = N->getNumOperands()) { |
| if (N->getOperand(0).getValueType() == MVT::Other) |
| return N->getOperand(0); |
| if (N->getOperand(NumOps-1).getValueType() == MVT::Other) |
| return N->getOperand(NumOps-1); |
| for (unsigned i = 1; i < NumOps-1; ++i) |
| if (N->getOperand(i).getValueType() == MVT::Other) |
| return N->getOperand(i); |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitTokenFactor(SDNode *N) { |
| // If N has two operands, where one has an input chain equal to the other, |
| // the 'other' chain is redundant. |
| if (N->getNumOperands() == 2) { |
| if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) |
| return N->getOperand(0); |
| if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) |
| return N->getOperand(1); |
| } |
| |
| // Don't simplify token factors if optnone. |
| if (OptLevel == CodeGenOpt::None) |
| return SDValue(); |
| |
| SmallVector<SDNode *, 8> TFs; // List of token factors to visit. |
| SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. |
| SmallPtrSet<SDNode*, 16> SeenOps; |
| bool Changed = false; // If we should replace this token factor. |
| |
| // Start out with this token factor. |
| TFs.push_back(N); |
| |
| // Iterate through token factors. The TFs grows when new token factors are |
| // encountered. |
| for (unsigned i = 0; i < TFs.size(); ++i) { |
| SDNode *TF = TFs[i]; |
| |
| // Check each of the operands. |
| for (const SDValue &Op : TF->op_values()) { |
| switch (Op.getOpcode()) { |
| case ISD::EntryToken: |
| // Entry tokens don't need to be added to the list. They are |
| // redundant. |
| Changed = true; |
| break; |
| |
| case ISD::TokenFactor: |
| if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { |
| // Queue up for processing. |
| TFs.push_back(Op.getNode()); |
| // Clean up in case the token factor is removed. |
| AddToWorklist(Op.getNode()); |
| Changed = true; |
| break; |
| } |
| LLVM_FALLTHROUGH; |
| |
| default: |
| // Only add if it isn't already in the list. |
| if (SeenOps.insert(Op.getNode()).second) |
| Ops.push_back(Op); |
| else |
| Changed = true; |
| break; |
| } |
| } |
| } |
| |
| // Remove Nodes that are chained to another node in the list. Do so |
| // by walking up chains breath-first stopping when we've seen |
| // another operand. In general we must climb to the EntryNode, but we can exit |
| // early if we find all remaining work is associated with just one operand as |
| // no further pruning is possible. |
| |
| // List of nodes to search through and original Ops from which they originate. |
| SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; |
| SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. |
| SmallPtrSet<SDNode *, 16> SeenChains; |
| bool DidPruneOps = false; |
| |
| unsigned NumLeftToConsider = 0; |
| for (const SDValue &Op : Ops) { |
| Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); |
| OpWorkCount.push_back(1); |
| } |
| |
| auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { |
| // If this is an Op, we can remove the op from the list. Remark any |
| // search associated with it as from the current OpNumber. |
| if (SeenOps.count(Op) != 0) { |
| Changed = true; |
| DidPruneOps = true; |
| unsigned OrigOpNumber = 0; |
| while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) |
| OrigOpNumber++; |
| assert((OrigOpNumber != Ops.size()) && |
| "expected to find TokenFactor Operand"); |
| // Re-mark worklist from OrigOpNumber to OpNumber |
| for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { |
| if (Worklist[i].second == OrigOpNumber) { |
| Worklist[i].second = OpNumber; |
| } |
| } |
| OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; |
| OpWorkCount[OrigOpNumber] = 0; |
| NumLeftToConsider--; |
| } |
| // Add if it's a new chain |
| if (SeenChains.insert(Op).second) { |
| OpWorkCount[OpNumber]++; |
| Worklist.push_back(std::make_pair(Op, OpNumber)); |
| } |
| }; |
| |
| for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { |
| // We need at least be consider at least 2 Ops to prune. |
| if (NumLeftToConsider <= 1) |
| break; |
| auto CurNode = Worklist[i].first; |
| auto CurOpNumber = Worklist[i].second; |
| assert((OpWorkCount[CurOpNumber] > 0) && |
| "Node should not appear in worklist"); |
| switch (CurNode->getOpcode()) { |
| case ISD::EntryToken: |
| // Hitting EntryToken is the only way for the search to terminate without |
| // hitting |
| // another operand's search. Prevent us from marking this operand |
| // considered. |
| NumLeftToConsider++; |
| break; |
| case ISD::TokenFactor: |
| for (const SDValue &Op : CurNode->op_values()) |
| AddToWorklist(i, Op.getNode(), CurOpNumber); |
| break; |
| case ISD::CopyFromReg: |
| case ISD::CopyToReg: |
| AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); |
| break; |
| default: |
| if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) |
| AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); |
| break; |
| } |
| OpWorkCount[CurOpNumber]--; |
| if (OpWorkCount[CurOpNumber] == 0) |
| NumLeftToConsider--; |
| } |
| |
| // If we've changed things around then replace token factor. |
| if (Changed) { |
| SDValue Result; |
| if (Ops.empty()) { |
| // The entry token is the only possible outcome. |
| Result = DAG.getEntryNode(); |
| } else { |
| if (DidPruneOps) { |
| SmallVector<SDValue, 8> PrunedOps; |
| // |
| for (const SDValue &Op : Ops) { |
| if (SeenChains.count(Op.getNode()) == 0) |
| PrunedOps.push_back(Op); |
| } |
| Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, PrunedOps); |
| } else { |
| Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); |
| } |
| } |
| return Result; |
| } |
| return SDValue(); |
| } |
| |
| /// MERGE_VALUES can always be eliminated. |
| SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { |
| WorklistRemover DeadNodes(*this); |
| // Replacing results may cause a different MERGE_VALUES to suddenly |
| // be CSE'd with N, and carry its uses with it. Iterate until no |
| // uses remain, to ensure that the node can be safely deleted. |
| // First add the users of this node to the work list so that they |
| // can be tried again once they have new operands. |
| AddUsersToWorklist(N); |
| do { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); |
| } while (!N->use_empty()); |
| deleteAndRecombine(N); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a |
| /// ConstantSDNode pointer else nullptr. |
| static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { |
| ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); |
| return Const != nullptr && !Const->isOpaque() ? Const : nullptr; |
| } |
| |
| SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { |
| auto BinOpcode = BO->getOpcode(); |
| assert((BinOpcode == ISD::ADD || BinOpcode == ISD::SUB || |
| BinOpcode == ISD::MUL || BinOpcode == ISD::SDIV || |
| BinOpcode == ISD::UDIV || BinOpcode == ISD::SREM || |
| BinOpcode == ISD::UREM || BinOpcode == ISD::AND || |
| BinOpcode == ISD::OR || BinOpcode == ISD::XOR || |
| BinOpcode == ISD::SHL || BinOpcode == ISD::SRL || |
| BinOpcode == ISD::SRA || BinOpcode == ISD::FADD || |
| BinOpcode == ISD::FSUB || BinOpcode == ISD::FMUL || |
| BinOpcode == ISD::FDIV || BinOpcode == ISD::FREM) && |
| "Unexpected binary operator"); |
| |
| // Don't do this unless the old select is going away. We want to eliminate the |
| // binary operator, not replace a binop with a select. |
| // TODO: Handle ISD::SELECT_CC. |
| unsigned SelOpNo = 0; |
| SDValue Sel = BO->getOperand(0); |
| if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { |
| SelOpNo = 1; |
| Sel = BO->getOperand(1); |
| } |
| |
| if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) |
| return SDValue(); |
| |
| SDValue CT = Sel.getOperand(1); |
| if (!isConstantOrConstantVector(CT, true) && |
| !isConstantFPBuildVectorOrConstantFP(CT)) |
| return SDValue(); |
| |
| SDValue CF = Sel.getOperand(2); |
| if (!isConstantOrConstantVector(CF, true) && |
| !isConstantFPBuildVectorOrConstantFP(CF)) |
| return SDValue(); |
| |
| // Bail out if any constants are opaque because we can't constant fold those. |
| // The exception is "and" and "or" with either 0 or -1 in which case we can |
| // propagate non constant operands into select. I.e.: |
| // and (select Cond, 0, -1), X --> select Cond, 0, X |
| // or X, (select Cond, -1, 0) --> select Cond, -1, X |
| bool CanFoldNonConst = (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && |
| (isNullConstantOrNullSplatConstant(CT) || |
| isAllOnesConstantOrAllOnesSplatConstant(CT)) && |
| (isNullConstantOrNullSplatConstant(CF) || |
| isAllOnesConstantOrAllOnesSplatConstant(CF)); |
| |
| SDValue CBO = BO->getOperand(SelOpNo ^ 1); |
| if (!CanFoldNonConst && |
| !isConstantOrConstantVector(CBO, true) && |
| !isConstantFPBuildVectorOrConstantFP(CBO)) |
| return SDValue(); |
| |
| EVT VT = Sel.getValueType(); |
| |
| // In case of shift value and shift amount may have different VT. For instance |
| // on x86 shift amount is i8 regardles of LHS type. Bail out if we have |
| // swapped operands and value types do not match. NB: x86 is fine if operands |
| // are not swapped with shift amount VT being not bigger than shifted value. |
| // TODO: that is possible to check for a shift operation, correct VTs and |
| // still perform optimization on x86 if needed. |
| if (SelOpNo && VT != CBO.getValueType()) |
| return SDValue(); |
| |
| // We have a select-of-constants followed by a binary operator with a |
| // constant. Eliminate the binop by pulling the constant math into the select. |
| // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO |
| SDLoc DL(Sel); |
| SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) |
| : DAG.getNode(BinOpcode, DL, VT, CT, CBO); |
| if (!CanFoldNonConst && !NewCT.isUndef() && |
| !isConstantOrConstantVector(NewCT, true) && |
| !isConstantFPBuildVectorOrConstantFP(NewCT)) |
| return SDValue(); |
| |
| SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) |
| : DAG.getNode(BinOpcode, DL, VT, CF, CBO); |
| if (!CanFoldNonConst && !NewCF.isUndef() && |
| !isConstantOrConstantVector(NewCF, true) && |
| !isConstantFPBuildVectorOrConstantFP(NewCF)) |
| return SDValue(); |
| |
| return DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); |
| } |
| |
| static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { |
| assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && |
| "Expecting add or sub"); |
| |
| // Match a constant operand and a zext operand for the math instruction: |
| // add Z, C |
| // sub C, Z |
| bool IsAdd = N->getOpcode() == ISD::ADD; |
| SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); |
| SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); |
| auto *CN = dyn_cast<ConstantSDNode>(C); |
| if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) |
| return SDValue(); |
| |
| // Match the zext operand as a setcc of a boolean. |
| if (Z.getOperand(0).getOpcode() != ISD::SETCC || |
| Z.getOperand(0).getValueType() != MVT::i1) |
| return SDValue(); |
| |
| // Match the compare as: setcc (X & 1), 0, eq. |
| SDValue SetCC = Z.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); |
| if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || |
| SetCC.getOperand(0).getOpcode() != ISD::AND || |
| !isOneConstant(SetCC.getOperand(0).getOperand(1))) |
| return SDValue(); |
| |
| // We are adding/subtracting a constant and an inverted low bit. Turn that |
| // into a subtract/add of the low bit with incremented/decremented constant: |
| // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) |
| // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) |
| EVT VT = C.getValueType(); |
| SDLoc DL(N); |
| SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); |
| SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : |
| DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); |
| return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); |
| } |
| |
| /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into |
| /// a shift and add with a different constant. |
| static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { |
| assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && |
| "Expecting add or sub"); |
| |
| // We need a constant operand for the add/sub, and the other operand is a |
| // logical shift right: add (srl), C or sub C, (srl). |
| bool IsAdd = N->getOpcode() == ISD::ADD; |
| SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); |
| SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); |
| ConstantSDNode *C = isConstOrConstSplat(ConstantOp); |
| if (!C || ShiftOp.getOpcode() != ISD::SRL) |
| return SDValue(); |
| |
| // The shift must be of a 'not' value. |
| // TODO: Use isBitwiseNot() if it works with vectors. |
| SDValue Not = ShiftOp.getOperand(0); |
| if (!Not.hasOneUse() || Not.getOpcode() != ISD::XOR || |
| !isAllOnesConstantOrAllOnesSplatConstant(Not.getOperand(1))) |
| return SDValue(); |
| |
| // The shift must be moving the sign bit to the least-significant-bit. |
| EVT VT = ShiftOp.getValueType(); |
| SDValue ShAmt = ShiftOp.getOperand(1); |
| ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); |
| if (!ShAmtC || ShAmtC->getZExtValue() != VT.getScalarSizeInBits() - 1) |
| return SDValue(); |
| |
| // Eliminate the 'not' by adjusting the shift and add/sub constant: |
| // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) |
| // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) |
| SDLoc DL(N); |
| auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; |
| SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); |
| APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1; |
| return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT)); |
| } |
| |
| SDValue DAGCombiner::visitADD(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (add x, 0) -> x, vector edition |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| return N0; |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| return N1; |
| } |
| |
| // fold (add x, undef) -> undef |
| if (N0.isUndef()) |
| return N0; |
| |
| if (N1.isUndef()) |
| return N1; |
| |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { |
| // canonicalize constant to RHS |
| if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::ADD, DL, VT, N1, N0); |
| // fold (add c1, c2) -> c1+c2 |
| return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(), |
| N1.getNode()); |
| } |
| |
| // fold (add x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| |
| if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { |
| // fold ((c1-A)+c2) -> (c1+c2)-A |
| if (N0.getOpcode() == ISD::SUB && |
| isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { |
| // FIXME: Adding 2 constants should be handled by FoldConstantArithmetic. |
| return DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)), |
| N0.getOperand(1)); |
| } |
| |
| // add (sext i1 X), 1 -> zext (not i1 X) |
| // We don't transform this pattern: |
| // add (zext i1 X), -1 -> sext (not i1 X) |
| // because most (?) targets generate better code for the zext form. |
| if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && |
| isOneConstantOrOneSplatConstant(N1)) { |
| SDValue X = N0.getOperand(0); |
| if ((!LegalOperations || |
| (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && |
| TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && |
| X.getScalarValueSizeInBits() == 1) { |
| SDValue Not = DAG.getNOT(DL, X, X.getValueType()); |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); |
| } |
| } |
| |
| // Undo the add -> or combine to merge constant offsets from a frame index. |
| if (N0.getOpcode() == ISD::OR && |
| isa<FrameIndexSDNode>(N0.getOperand(0)) && |
| isa<ConstantSDNode>(N0.getOperand(1)) && |
| DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { |
| SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); |
| } |
| } |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // reassociate add |
| if (SDValue RADD = ReassociateOps(ISD::ADD, DL, N0, N1)) |
| return RADD; |
| |
| // fold ((0-A) + B) -> B-A |
| if (N0.getOpcode() == ISD::SUB && |
| isNullConstantOrNullSplatConstant(N0.getOperand(0))) |
| return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); |
| |
| // fold (A + (0-B)) -> A-B |
| if (N1.getOpcode() == ISD::SUB && |
| isNullConstantOrNullSplatConstant(N1.getOperand(0))) |
| return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); |
| |
| // fold (A+(B-A)) -> B |
| if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) |
| return N1.getOperand(0); |
| |
| // fold ((B-A)+A) -> B |
| if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) |
| return N0.getOperand(0); |
| |
| // fold (A+(B-(A+C))) to (B-C) |
| if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && |
| N0 == N1.getOperand(1).getOperand(0)) |
| return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), |
| N1.getOperand(1).getOperand(1)); |
| |
| // fold (A+(B-(C+A))) to (B-C) |
| if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && |
| N0 == N1.getOperand(1).getOperand(1)) |
| return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), |
| N1.getOperand(1).getOperand(0)); |
| |
| // fold (A+((B-A)+or-C)) to (B+or-C) |
| if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && |
| N1.getOperand(0).getOpcode() == ISD::SUB && |
| N0 == N1.getOperand(0).getOperand(1)) |
| return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), |
| N1.getOperand(1)); |
| |
| // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant |
| if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| SDValue N10 = N1.getOperand(0); |
| SDValue N11 = N1.getOperand(1); |
| |
| if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) |
| return DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), |
| DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); |
| } |
| |
| if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) |
| return V; |
| |
| if (SDValue V = foldAddSubOfSignBit(N, DAG)) |
| return V; |
| |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // fold (a+b) -> (a|b) iff a and b share no bits. |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && |
| DAG.haveNoCommonBitsSet(N0, N1)) |
| return DAG.getNode(ISD::OR, DL, VT, N0, N1); |
| |
| // fold (add (xor a, -1), 1) -> (sub 0, a) |
| if (isBitwiseNot(N0) && isOneConstantOrOneSplatConstant(N1)) |
| return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), |
| N0.getOperand(0)); |
| |
| if (SDValue Combined = visitADDLike(N0, N1, N)) |
| return Combined; |
| |
| if (SDValue Combined = visitADDLike(N1, N0, N)) |
| return Combined; |
| |
| return SDValue(); |
| } |
| |
| static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { |
| bool Masked = false; |
| |
| // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. |
| while (true) { |
| if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { |
| V = V.getOperand(0); |
| continue; |
| } |
| |
| if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { |
| Masked = true; |
| V = V.getOperand(0); |
| continue; |
| } |
| |
| break; |
| } |
| |
| // If this is not a carry, return. |
| if (V.getResNo() != 1) |
| return SDValue(); |
| |
| if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && |
| V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) |
| return SDValue(); |
| |
| // If the result is masked, then no matter what kind of bool it is we can |
| // return. If it isn't, then we need to make sure the bool type is either 0 or |
| // 1 and not other values. |
| if (Masked || |
| TLI.getBooleanContents(V.getValueType()) == |
| TargetLoweringBase::ZeroOrOneBooleanContent) |
| return V; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDLike(SDValue N0, SDValue N1, SDNode *LocReference) { |
| EVT VT = N0.getValueType(); |
| SDLoc DL(LocReference); |
| |
| // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) |
| if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && |
| isNullConstantOrNullSplatConstant(N1.getOperand(0).getOperand(0))) |
| return DAG.getNode(ISD::SUB, DL, VT, N0, |
| DAG.getNode(ISD::SHL, DL, VT, |
| N1.getOperand(0).getOperand(1), |
| N1.getOperand(1))); |
| |
| if (N1.getOpcode() == ISD::AND) { |
| SDValue AndOp0 = N1.getOperand(0); |
| unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); |
| unsigned DestBits = VT.getScalarSizeInBits(); |
| |
| // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) |
| // and similar xforms where the inner op is either ~0 or 0. |
| if (NumSignBits == DestBits && |
| isOneConstantOrOneSplatConstant(N1->getOperand(1))) |
| return DAG.getNode(ISD::SUB, DL, VT, N0, AndOp0); |
| } |
| |
| // add (sext i1), X -> sub X, (zext i1) |
| if (N0.getOpcode() == ISD::SIGN_EXTEND && |
| N0.getOperand(0).getValueType() == MVT::i1 && |
| !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { |
| SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); |
| return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); |
| } |
| |
| // add X, (sextinreg Y i1) -> sub X, (and Y 1) |
| if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); |
| if (TN->getVT() == MVT::i1) { |
| SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), |
| DAG.getConstant(1, DL, VT)); |
| return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); |
| } |
| } |
| |
| // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) |
| if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && |
| N1.getResNo() == 0) |
| return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), |
| N0, N1.getOperand(0), N1.getOperand(2)); |
| |
| // (add X, Carry) -> (addcarry X, 0, Carry) |
| if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) |
| if (SDValue Carry = getAsCarry(TLI, N1)) |
| return DAG.getNode(ISD::ADDCARRY, DL, |
| DAG.getVTList(VT, Carry.getValueType()), N0, |
| DAG.getConstant(0, DL, VT), Carry); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDC(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // If the flag result is dead, turn this into an ADD. |
| if (!N->hasAnyUseOfValue(1)) |
| return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| // canonicalize constant to RHS. |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); |
| |
| // fold (addc x, 0) -> x + no carry out |
| if (isNullConstant(N1)) |
| return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, |
| DL, MVT::Glue)); |
| |
| // If it cannot overflow, transform into an add. |
| if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) |
| return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| return SDValue(); |
| } |
| |
| static SDValue flipBoolean(SDValue V, const SDLoc &DL, EVT VT, |
| SelectionDAG &DAG, const TargetLowering &TLI) { |
| SDValue Cst; |
| switch (TLI.getBooleanContents(VT)) { |
| case TargetLowering::ZeroOrOneBooleanContent: |
| case TargetLowering::UndefinedBooleanContent: |
| Cst = DAG.getConstant(1, DL, VT); |
| break; |
| case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| Cst = DAG.getConstant(-1, DL, VT); |
| break; |
| } |
| |
| return DAG.getNode(ISD::XOR, DL, VT, V, Cst); |
| } |
| |
| static bool isBooleanFlip(SDValue V, EVT VT, const TargetLowering &TLI) { |
| if (V.getOpcode() != ISD::XOR) return false; |
| ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V.getOperand(1)); |
| if (!Const) return false; |
| |
| switch(TLI.getBooleanContents(VT)) { |
| case TargetLowering::ZeroOrOneBooleanContent: |
| return Const->isOne(); |
| case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| return Const->isAllOnesValue(); |
| case TargetLowering::UndefinedBooleanContent: |
| return (Const->getAPIntValue() & 0x01) == 1; |
| } |
| llvm_unreachable("Unsupported boolean content"); |
| } |
| |
| SDValue DAGCombiner::visitUADDO(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| if (VT.isVector()) |
| return SDValue(); |
| |
| EVT CarryVT = N->getValueType(1); |
| SDLoc DL(N); |
| |
| // If the flag result is dead, turn this into an ADD. |
| if (!N->hasAnyUseOfValue(1)) |
| return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), |
| DAG.getUNDEF(CarryVT)); |
| |
| // canonicalize constant to RHS. |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N1, N0); |
| |
| // fold (uaddo x, 0) -> x + no carry out |
| if (isNullConstant(N1)) |
| return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); |
| |
| // If it cannot overflow, transform into an add. |
| if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) |
| return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), |
| DAG.getConstant(0, DL, CarryVT)); |
| |
| // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. |
| if (isBitwiseNot(N0) && isOneConstantOrOneSplatConstant(N1)) { |
| SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), |
| DAG.getConstant(0, DL, VT), |
| N0.getOperand(0)); |
| return CombineTo(N, Sub, |
| flipBoolean(Sub.getValue(1), DL, CarryVT, DAG, TLI)); |
| } |
| |
| if (SDValue Combined = visitUADDOLike(N0, N1, N)) |
| return Combined; |
| |
| if (SDValue Combined = visitUADDOLike(N1, N0, N)) |
| return Combined; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { |
| auto VT = N0.getValueType(); |
| |
| // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) |
| // If Y + 1 cannot overflow. |
| if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { |
| SDValue Y = N1.getOperand(0); |
| SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); |
| if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) |
| return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, |
| N1.getOperand(2)); |
| } |
| |
| // (uaddo X, Carry) -> (addcarry X, 0, Carry) |
| if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) |
| if (SDValue Carry = getAsCarry(TLI, N1)) |
| return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, |
| DAG.getConstant(0, SDLoc(N), VT), Carry); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| |
| // canonicalize constant to RHS |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), |
| N1, N0, CarryIn); |
| |
| // fold (adde x, y, false) -> (addc x, y) |
| if (CarryIn.getOpcode() == ISD::CARRY_FALSE) |
| return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDCARRY(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| SDLoc DL(N); |
| |
| // canonicalize constant to RHS |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); |
| |
| // fold (addcarry x, y, false) -> (uaddo x, y) |
| if (isNullConstant(CarryIn)) { |
| if (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) |
| return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); |
| } |
| |
| EVT CarryVT = CarryIn.getValueType(); |
| |
| // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. |
| if (isNullConstant(N0) && isNullConstant(N1)) { |
| EVT VT = N0.getValueType(); |
| SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); |
| AddToWorklist(CarryExt.getNode()); |
| return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, |
| DAG.getConstant(1, DL, VT)), |
| DAG.getConstant(0, DL, CarryVT)); |
| } |
| |
| // fold (addcarry (xor a, -1), 0, !b) -> (subcarry 0, a, b) and flip carry. |
| if (isBitwiseNot(N0) && isNullConstant(N1) && |
| isBooleanFlip(CarryIn, CarryVT, TLI)) { |
| SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), |
| DAG.getConstant(0, DL, N0.getValueType()), |
| N0.getOperand(0), CarryIn.getOperand(0)); |
| return CombineTo(N, Sub, |
| flipBoolean(Sub.getValue(1), DL, CarryVT, DAG, TLI)); |
| } |
| |
| if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) |
| return Combined; |
| |
| if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) |
| return Combined; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, |
| SDNode *N) { |
| // Iff the flag result is dead: |
| // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) |
| if ((N0.getOpcode() == ISD::ADD || |
| (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0)) && |
| isNullConstant(N1) && !N->hasAnyUseOfValue(1)) |
| return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), |
| N0.getOperand(0), N0.getOperand(1), CarryIn); |
| |
| /** |
| * When one of the addcarry argument is itself a carry, we may be facing |
| * a diamond carry propagation. In which case we try to transform the DAG |
| * to ensure linear carry propagation if that is possible. |
| * |
| * We are trying to get: |
| * (addcarry X, 0, (addcarry A, B, Z):Carry) |
| */ |
| if (auto Y = getAsCarry(TLI, N1)) { |
| /** |
| * (uaddo A, B) |
| * / \ |
| * Carry Sum |
| * | \ |
| * | (addcarry *, 0, Z) |
| * | / |
| * \ Carry |
| * | / |
| * (addcarry X, *, *) |
| */ |
| if (Y.getOpcode() == ISD::UADDO && |
| CarryIn.getResNo() == 1 && |
| CarryIn.getOpcode() == ISD::ADDCARRY && |
| isNullConstant(CarryIn.getOperand(1)) && |
| CarryIn.getOperand(0) == Y.getValue(0)) { |
| auto NewY = DAG.getNode(ISD::ADDCARRY, SDLoc(N), Y->getVTList(), |
| Y.getOperand(0), Y.getOperand(1), |
| CarryIn.getOperand(2)); |
| AddToWorklist(NewY.getNode()); |
| return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, |
| DAG.getConstant(0, SDLoc(N), N0.getValueType()), |
| NewY.getValue(1)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Since it may not be valid to emit a fold to zero for vector initializers |
| // check if we can before folding. |
| static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, |
| SelectionDAG &DAG, bool LegalOperations, |
| bool LegalTypes) { |
| if (!VT.isVector()) |
| return DAG.getConstant(0, DL, VT); |
| if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) |
| return DAG.getConstant(0, DL, VT); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUB(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (sub x, 0) -> x, vector edition |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| return N0; |
| } |
| |
| // fold (sub x, x) -> 0 |
| // FIXME: Refactor this and xor and other similar operations together. |
| if (N0 == N1) |
| return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations, LegalTypes); |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| DAG.isConstantIntBuildVectorOrConstantInt(N1)) { |
| // fold (sub c1, c2) -> c1-c2 |
| return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), |
| N1.getNode()); |
| } |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); |
| |
| // fold (sub x, c) -> (add x, -c) |
| if (N1C) { |
| return DAG.getNode(ISD::ADD, DL, VT, N0, |
| DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); |
| } |
| |
| if (isNullConstantOrNullSplatConstant(N0)) { |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| // Right-shifting everything out but the sign bit followed by negation is |
| // the same as flipping arithmetic/logical shift type without the negation: |
| // -(X >>u 31) -> (X >>s 31) |
| // -(X >>s 31) -> (X >>u 31) |
| if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { |
| ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); |
| if (ShiftAmt && ShiftAmt->getZExtValue() == BitWidth - 1) { |
| auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; |
| if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) |
| return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); |
| } |
| } |
| |
| // 0 - X --> 0 if the sub is NUW. |
| if (N->getFlags().hasNoUnsignedWrap()) |
| return N0; |
| |
| if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { |
| // N1 is either 0 or the minimum signed value. If the sub is NSW, then |
| // N1 must be 0 because negating the minimum signed value is undefined. |
| if (N->getFlags().hasNoSignedWrap()) |
| return N0; |
| |
| // 0 - X --> X if X is 0 or the minimum signed value. |
| return N1; |
| } |
| } |
| |
| // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) |
| if (isAllOnesConstantOrAllOnesSplatConstant(N0)) |
| return DAG.getNode(ISD::XOR, DL, VT, N1, N0); |
| |
| // fold (A - (0-B)) -> A+B |
| if (N1.getOpcode() == ISD::SUB && |
| isNullConstantOrNullSplatConstant(N1.getOperand(0))) |
| return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); |
| |
| // fold A-(A-B) -> B |
| if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) |
| return N1.getOperand(1); |
| |
| // fold (A+B)-A -> B |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) |
| return N0.getOperand(1); |
| |
| // fold (A+B)-B -> A |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) |
| return N0.getOperand(0); |
| |
| // fold C2-(A+C1) -> (C2-C1)-A |
| if (N1.getOpcode() == ISD::ADD) { |
| SDValue N11 = N1.getOperand(1); |
| if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && |
| isConstantOrConstantVector(N11, /* NoOpaques */ true)) { |
| SDValue NewC = DAG.getNode(ISD::SUB, DL, VT, N0, N11); |
| return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); |
| } |
| } |
| |
| // fold ((A+(B+or-C))-B) -> A+or-C |
| if (N0.getOpcode() == ISD::ADD && |
| (N0.getOperand(1).getOpcode() == ISD::SUB || |
| N0.getOperand(1).getOpcode() == ISD::ADD) && |
| N0.getOperand(1).getOperand(0) == N1) |
| return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), |
| N0.getOperand(1).getOperand(1)); |
| |
| // fold ((A+(C+B))-B) -> A+C |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && |
| N0.getOperand(1).getOperand(1) == N1) |
| return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), |
| N0.getOperand(1).getOperand(0)); |
| |
| // fold ((A-(B-C))-C) -> A-B |
| if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && |
| N0.getOperand(1).getOperand(1) == N1) |
| return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), |
| N0.getOperand(1).getOperand(0)); |
| |
| // fold (A-(B-C)) -> A+(C-B) |
| if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) |
| return DAG.getNode(ISD::ADD, DL, VT, N0, |
| DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), |
| N1.getOperand(0))); |
| |
| // fold (X - (-Y * Z)) -> (X + (Y * Z)) |
| if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { |
| if (N1.getOperand(0).getOpcode() == ISD::SUB && |
| isNullConstantOrNullSplatConstant(N1.getOperand(0).getOperand(0))) { |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, |
| N1.getOperand(0).getOperand(1), |
| N1.getOperand(1)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); |
| } |
| if (N1.getOperand(1).getOpcode() == ISD::SUB && |
| isNullConstantOrNullSplatConstant(N1.getOperand(1).getOperand(0))) { |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, |
| N1.getOperand(0), |
| N1.getOperand(1).getOperand(1)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); |
| } |
| } |
| |
| // If either operand of a sub is undef, the result is undef |
| if (N0.isUndef()) |
| return N0; |
| if (N1.isUndef()) |
| return N1; |
| |
| if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) |
| return V; |
| |
| if (SDValue V = foldAddSubOfSignBit(N, DAG)) |
| return V; |
| |
| // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) |
| if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { |
| if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { |
| SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); |
| SDValue S0 = N1.getOperand(0); |
| if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) { |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) |
| if (C->getAPIntValue() == (OpSizeInBits - 1)) |
| return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); |
| } |
| } |
| } |
| |
| // If the relocation model supports it, consider symbol offsets. |
| if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) |
| if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { |
| // fold (sub Sym, c) -> Sym-c |
| if (N1C && GA->getOpcode() == ISD::GlobalAddress) |
| return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, |
| GA->getOffset() - |
| (uint64_t)N1C->getSExtValue()); |
| // fold (sub Sym+c1, Sym+c2) -> c1-c2 |
| if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) |
| if (GA->getGlobal() == GB->getGlobal()) |
| return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), |
| DL, VT); |
| } |
| |
| // sub X, (sextinreg Y i1) -> add X, (and Y 1) |
| if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); |
| if (TN->getVT() == MVT::i1) { |
| SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), |
| DAG.getConstant(1, DL, VT)); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); |
| } |
| } |
| |
| // Prefer an add for more folding potential and possibly better codegen: |
| // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) |
| if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { |
| SDValue ShAmt = N1.getOperand(1); |
| ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); |
| if (ShAmtC && ShAmtC->getZExtValue() == N1.getScalarValueSizeInBits() - 1) { |
| SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); |
| return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBC(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // If the flag result is dead, turn this into an SUB. |
| if (!N->hasAnyUseOfValue(1)) |
| return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| // fold (subc x, x) -> 0 + no borrow |
| if (N0 == N1) |
| return CombineTo(N, DAG.getConstant(0, DL, VT), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| // fold (subc x, 0) -> x + no borrow |
| if (isNullConstant(N1)) |
| return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow |
| if (isAllOnesConstant(N0)) |
| return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), |
| DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUSUBO(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| if (VT.isVector()) |
| return SDValue(); |
| |
| EVT CarryVT = N->getValueType(1); |
| SDLoc DL(N); |
| |
| // If the flag result is dead, turn this into an SUB. |
| if (!N->hasAnyUseOfValue(1)) |
| return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), |
| DAG.getUNDEF(CarryVT)); |
| |
| // fold (usubo x, x) -> 0 + no borrow |
| if (N0 == N1) |
| return CombineTo(N, DAG.getConstant(0, DL, VT), |
| DAG.getConstant(0, DL, CarryVT)); |
| |
| // fold (usubo x, 0) -> x + no borrow |
| if (isNullConstant(N1)) |
| return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); |
| |
| // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow |
| if (isAllOnesConstant(N0)) |
| return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), |
| DAG.getConstant(0, DL, CarryVT)); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| |
| // fold (sube x, y, false) -> (subc x, y) |
| if (CarryIn.getOpcode() == ISD::CARRY_FALSE) |
| return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CarryIn = N->getOperand(2); |
| |
| // fold (subcarry x, y, false) -> (usubo x, y) |
| if (isNullConstant(CarryIn)) { |
| if (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) |
| return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMUL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| |
| // fold (mul x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| bool N0IsConst = false; |
| bool N1IsConst = false; |
| bool N1IsOpaqueConst = false; |
| bool N0IsOpaqueConst = false; |
| APInt ConstValue0, ConstValue1; |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0); |
| N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); |
| assert((!N0IsConst || |
| ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) && |
| "Splat APInt should be element width"); |
| assert((!N1IsConst || |
| ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && |
| "Splat APInt should be element width"); |
| } else { |
| N0IsConst = isa<ConstantSDNode>(N0); |
| if (N0IsConst) { |
| ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); |
| N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); |
| } |
| N1IsConst = isa<ConstantSDNode>(N1); |
| if (N1IsConst) { |
| ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); |
| N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); |
| } |
| } |
| |
| // fold (mul c1, c2) -> c1*c2 |
| if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) |
| return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, |
| N0.getNode(), N1.getNode()); |
| |
| // canonicalize constant to RHS (vector doesn't have to splat) |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); |
| // fold (mul x, 0) -> 0 |
| if (N1IsConst && ConstValue1.isNullValue()) |
| return N1; |
| // fold (mul x, 1) -> x |
| if (N1IsConst && ConstValue1.isOneValue()) |
| return N0; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // fold (mul x, -1) -> 0-x |
| if (N1IsConst && ConstValue1.isAllOnesValue()) { |
| SDLoc DL(N); |
| return DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getConstant(0, DL, VT), N0); |
| } |
| // fold (mul x, (1 << c)) -> x << c |
| if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && |
| DAG.isKnownToBeAPowerOfTwo(N1) && |
| (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { |
| SDLoc DL(N); |
| SDValue LogBase2 = BuildLogBase2(N1, DL); |
| EVT ShiftVT = getShiftAmountTy(N0.getValueType()); |
| SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); |
| return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); |
| } |
| // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c |
| if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { |
| unsigned Log2Val = (-ConstValue1).logBase2(); |
| SDLoc DL(N); |
| // FIXME: If the input is something that is easily negated (e.g. a |
| // single-use add), we should put the negate there. |
| return DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getConstant(0, DL, VT), |
| DAG.getNode(ISD::SHL, DL, VT, N0, |
| DAG.getConstant(Log2Val, DL, |
| getShiftAmountTy(N0.getValueType())))); |
| } |
| |
| // (mul (shl X, c1), c2) -> (mul X, c2 << c1) |
| if (N0.getOpcode() == ISD::SHL && |
| isConstantOrConstantVector(N1, /* NoOpaques */ true) && |
| isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { |
| SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); |
| if (isConstantOrConstantVector(C3)) |
| return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); |
| } |
| |
| // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one |
| // use. |
| { |
| SDValue Sh(nullptr, 0), Y(nullptr, 0); |
| |
| // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). |
| if (N0.getOpcode() == ISD::SHL && |
| isConstantOrConstantVector(N0.getOperand(1)) && |
| N0.getNode()->hasOneUse()) { |
| Sh = N0; Y = N1; |
| } else if (N1.getOpcode() == ISD::SHL && |
| isConstantOrConstantVector(N1.getOperand(1)) && |
| N1.getNode()->hasOneUse()) { |
| Sh = N1; Y = N0; |
| } |
| |
| if (Sh.getNode()) { |
| SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); |
| return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); |
| } |
| } |
| |
| // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && |
| N0.getOpcode() == ISD::ADD && |
| DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && |
| isMulAddWithConstProfitable(N, N0, N1)) |
| return DAG.getNode(ISD::ADD, SDLoc(N), VT, |
| DAG.getNode(ISD::MUL, SDLoc(N0), VT, |
| N0.getOperand(0), N1), |
| DAG.getNode(ISD::MUL, SDLoc(N1), VT, |
| N0.getOperand(1), N1)); |
| |
| // reassociate mul |
| if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1)) |
| return RMUL; |
| |
| return SDValue(); |
| } |
| |
| /// Return true if divmod libcall is available. |
| static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, |
| const TargetLowering &TLI) { |
| RTLIB::Libcall LC; |
| EVT NodeType = Node->getValueType(0); |
| if (!NodeType.isSimple()) |
| return false; |
| switch (NodeType.getSimpleVT().SimpleTy) { |
| default: return false; // No libcall for vector types. |
| case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; |
| case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; |
| case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; |
| case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; |
| case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; |
| } |
| |
| return TLI.getLibcallName(LC) != nullptr; |
| } |
| |
| /// Issue divrem if both quotient and remainder are needed. |
| SDValue DAGCombiner::useDivRem(SDNode *Node) { |
| if (Node->use_empty()) |
| return SDValue(); // This is a dead node, leave it alone. |
| |
| unsigned Opcode = Node->getOpcode(); |
| bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); |
| unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; |
| |
| // DivMod lib calls can still work on non-legal types if using lib-calls. |
| EVT VT = Node->getValueType(0); |
| if (VT.isVector() || !VT.isInteger()) |
| return SDValue(); |
| |
| if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) |
| return SDValue(); |
| |
| // If DIVREM is going to get expanded into a libcall, |
| // but there is no libcall available, then don't combine. |
| if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && |
| !isDivRemLibcallAvailable(Node, isSigned, TLI)) |
| return SDValue(); |
| |
| // If div is legal, it's better to do the normal expansion |
| unsigned OtherOpcode = 0; |
| if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { |
| OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; |
| if (TLI.isOperationLegalOrCustom(Opcode, VT)) |
| return SDValue(); |
| } else { |
| OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; |
| if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) |
| return SDValue(); |
| } |
| |
| SDValue Op0 = Node->getOperand(0); |
| SDValue Op1 = Node->getOperand(1); |
| SDValue combined; |
| for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), |
| UE = Op0.getNode()->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (User == Node || User->getOpcode() == ISD::DELETED_NODE || |
| User->use_empty()) |
| continue; |
| // Convert the other matching node(s), too; |
| // otherwise, the DIVREM may get target-legalized into something |
| // target-specific that we won't be able to recognize. |
| unsigned UserOpc = User->getOpcode(); |
| if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && |
| User->getOperand(0) == Op0 && |
| User->getOperand(1) == Op1) { |
| if (!combined) { |
| if (UserOpc == OtherOpcode) { |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); |
| } else if (UserOpc == DivRemOpc) { |
| combined = SDValue(User, 0); |
| } else { |
| assert(UserOpc == Opcode); |
| continue; |
| } |
| } |
| if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) |
| CombineTo(User, combined); |
| else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) |
| CombineTo(User, combined.getValue(1)); |
| } |
| } |
| return combined; |
| } |
| |
| static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| if (DAG.isUndef(N->getOpcode(), {N0, N1})) |
| return DAG.getUNDEF(VT); |
| |
| // undef / X -> 0 |
| // undef % X -> 0 |
| if (N0.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSDIV(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT CCVT = getSetCCResultType(VT); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| SDLoc DL(N); |
| |
| // fold (sdiv c1, c2) -> c1/c2 |
| ConstantSDNode *N0C = isConstOrConstSplat(N0); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) |
| return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); |
| // fold (sdiv X, 1) -> X |
| if (N1C && N1C->isOne()) |
| return N0; |
| // fold (sdiv X, -1) -> 0-X |
| if (N1C && N1C->isAllOnesValue()) |
| return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); |
| // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) |
| if (N1C && N1C->getAPIntValue().isMinSignedValue()) |
| return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), |
| DAG.getConstant(1, DL, VT), |
| DAG.getConstant(0, DL, VT)); |
| |
| if (SDValue V = simplifyDivRem(N, DAG)) |
| return V; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // If we know the sign bits of both operands are zero, strength reduce to a |
| // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 |
| if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); |
| |
| if (SDValue V = visitSDIVLike(N0, N1, N)) |
| return V; |
| |
| // sdiv, srem -> sdivrem |
| // If the divisor is constant, then return DIVREM only if isIntDivCheap() is |
| // true. Otherwise, we break the simplification logic in visitREM(). |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| if (SDValue DivRem = useDivRem(N)) |
| return DivRem; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| EVT CCVT = getSetCCResultType(VT); |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| |
| // Helper for determining whether a value is a power-2 constant scalar or a |
| // vector of such elements. |
| auto IsPowerOfTwo = [](ConstantSDNode *C) { |
| if (C->isNullValue() || C->isOpaque()) |
| return false; |
| if (C->getAPIntValue().isPowerOf2()) |
| return true; |
| if ((-C->getAPIntValue()).isPowerOf2()) |
| return true; |
| return false; |
| }; |
| |
| // fold (sdiv X, pow2) -> simple ops after legalize |
| // FIXME: We check for the exact bit here because the generic lowering gives |
| // better results in that case. The target-specific lowering should learn how |
| // to handle exact sdivs efficiently. |
| if (!N->getFlags().hasExact() && |
| ISD::matchUnaryPredicate(N1C ? SDValue(N1C, 0) : N1, IsPowerOfTwo)) { |
| // Target-specific implementation of sdiv x, pow2. |
| if (SDValue Res = BuildSDIVPow2(N)) |
| return Res; |
| |
| // Create constants that are functions of the shift amount value. |
| EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); |
| SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); |
| SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); |
| C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); |
| SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); |
| if (!isConstantOrConstantVector(Inexact)) |
| return SDValue(); |
| |
| // Splat the sign bit into the register |
| SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, |
| DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); |
| AddToWorklist(Sign.getNode()); |
| |
| // Add (N0 < 0) ? abs2 - 1 : 0; |
| SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); |
| AddToWorklist(Srl.getNode()); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); |
| AddToWorklist(Add.getNode()); |
| SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); |
| AddToWorklist(Sra.getNode()); |
| |
| // Special case: (sdiv X, 1) -> X |
| // Special Case: (sdiv X, -1) -> 0-X |
| SDValue One = DAG.getConstant(1, DL, VT); |
| SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); |
| SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); |
| SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); |
| SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); |
| Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); |
| |
| // If dividing by a positive value, we're done. Otherwise, the result must |
| // be negated. |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); |
| |
| // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. |
| SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); |
| SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); |
| return Res; |
| } |
| |
| // If integer divide is expensive and we satisfy the requirements, emit an |
| // alternate sequence. Targets may check function attributes for size/speed |
| // trade-offs. |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| if (SDValue Op = BuildSDIV(N)) |
| return Op; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUDIV(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT CCVT = getSetCCResultType(VT); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| SDLoc DL(N); |
| |
| // fold (udiv c1, c2) -> c1/c2 |
| ConstantSDNode *N0C = isConstOrConstSplat(N0); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N0C && N1C) |
| if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, |
| N0C, N1C)) |
| return Folded; |
| // fold (udiv X, 1) -> X |
| if (N1C && N1C->isOne()) |
| return N0; |
| // fold (udiv X, -1) -> select(X == -1, 1, 0) |
| if (N1C && N1C->getAPIntValue().isAllOnesValue()) |
| return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), |
| DAG.getConstant(1, DL, VT), |
| DAG.getConstant(0, DL, VT)); |
| |
| if (SDValue V = simplifyDivRem(N, DAG)) |
| return V; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| if (SDValue V = visitUDIVLike(N0, N1, N)) |
| return V; |
| |
| // sdiv, srem -> sdivrem |
| // If the divisor is constant, then return DIVREM only if isIntDivCheap() is |
| // true. Otherwise, we break the simplification logic in visitREM(). |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| if (SDValue DivRem = useDivRem(N)) |
| return DivRem; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| |
| // fold (udiv x, (1 << c)) -> x >>u c |
| if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && |
| DAG.isKnownToBeAPowerOfTwo(N1)) { |
| SDValue LogBase2 = BuildLogBase2(N1, DL); |
| AddToWorklist(LogBase2.getNode()); |
| |
| EVT ShiftVT = getShiftAmountTy(N0.getValueType()); |
| SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); |
| AddToWorklist(Trunc.getNode()); |
| return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); |
| } |
| |
| // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 |
| if (N1.getOpcode() == ISD::SHL) { |
| SDValue N10 = N1.getOperand(0); |
| if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && |
| DAG.isKnownToBeAPowerOfTwo(N10)) { |
| SDValue LogBase2 = BuildLogBase2(N10, DL); |
| AddToWorklist(LogBase2.getNode()); |
| |
| EVT ADDVT = N1.getOperand(1).getValueType(); |
| SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); |
| AddToWorklist(Trunc.getNode()); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::SRL, DL, VT, N0, Add); |
| } |
| } |
| |
| // fold (udiv x, c) -> alternate |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) |
| if (SDValue Op = BuildUDIV(N)) |
| return Op; |
| |
| return SDValue(); |
| } |
| |
| // handles ISD::SREM and ISD::UREM |
| SDValue DAGCombiner::visitREM(SDNode *N) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT CCVT = getSetCCResultType(VT); |
| |
| bool isSigned = (Opcode == ISD::SREM); |
| SDLoc DL(N); |
| |
| // fold (rem c1, c2) -> c1%c2 |
| ConstantSDNode *N0C = isConstOrConstSplat(N0); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N0C && N1C) |
| if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) |
| return Folded; |
| // fold (urem X, -1) -> select(X == -1, 0, x) |
| if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue()) |
| return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), |
| DAG.getConstant(0, DL, VT), N0); |
| |
| if (SDValue V = simplifyDivRem(N, DAG)) |
| return V; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| if (isSigned) { |
| // If we know the sign bits of both operands are zero, strength reduce to a |
| // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 |
| if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::UREM, DL, VT, N0, N1); |
| } else { |
| SDValue NegOne = DAG.getAllOnesConstant(DL, VT); |
| if (DAG.isKnownToBeAPowerOfTwo(N1)) { |
| // fold (urem x, pow2) -> (and x, pow2-1) |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::AND, DL, VT, N0, Add); |
| } |
| if (N1.getOpcode() == ISD::SHL && |
| DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { |
| // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::AND, DL, VT, N0, Add); |
| } |
| } |
| |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| |
| // If X/C can be simplified by the division-by-constant logic, lower |
| // X%C to the equivalent of X-X/C*C. |
| // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the |
| // speculative DIV must not cause a DIVREM conversion. We guard against this |
| // by skipping the simplification if isIntDivCheap(). When div is not cheap, |
| // combine will not return a DIVREM. Regardless, checking cheapness here |
| // makes sense since the simplification results in fatter code. |
| if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { |
| SDValue OptimizedDiv = |
| isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); |
| if (OptimizedDiv.getNode() && OptimizedDiv.getOpcode() != ISD::UDIVREM && |
| OptimizedDiv.getOpcode() != ISD::SDIVREM) { |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); |
| AddToWorklist(OptimizedDiv.getNode()); |
| AddToWorklist(Mul.getNode()); |
| return Sub; |
| } |
| } |
| |
| // sdiv, srem -> sdivrem |
| if (SDValue DivRem = useDivRem(N)) |
| return DivRem.getValue(1); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMULHS(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| if (VT.isVector()) { |
| // fold (mulhs x, 0) -> 0 |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| return N1; |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| return N0; |
| } |
| |
| // fold (mulhs x, 0) -> 0 |
| if (isNullConstant(N1)) |
| return N1; |
| // fold (mulhs x, 1) -> (sra x, size(x)-1) |
| if (isOneConstant(N1)) |
| return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, |
| DAG.getConstant(N0.getValueSizeInBits() - 1, DL, |
| getShiftAmountTy(N0.getValueType()))); |
| |
| // fold (mulhs x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| // If the type twice as wide is legal, transform the mulhs to a wider multiply |
| // plus a shift. |
| if (VT.isSimple() && !VT.isVector()) { |
| MVT Simple = VT.getSimpleVT(); |
| unsigned SimpleSize = Simple.getSizeInBits(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); |
| if (TLI.isOperationLegal(ISD::MUL, NewVT)) { |
| N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); |
| N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); |
| N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); |
| N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, |
| DAG.getConstant(SimpleSize, DL, |
| getShiftAmountTy(N1.getValueType()))); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMULHU(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| if (VT.isVector()) { |
| // fold (mulhu x, 0) -> 0 |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| return N1; |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| return N0; |
| } |
| |
| // fold (mulhu x, 0) -> 0 |
| if (isNullConstant(N1)) |
| return N1; |
| // fold (mulhu x, 1) -> 0 |
| if (isOneConstant(N1)) |
| return DAG.getConstant(0, DL, N0.getValueType()); |
| // fold (mulhu x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| // If the type twice as wide is legal, transform the mulhu to a wider multiply |
| // plus a shift. |
| if (VT.isSimple() && !VT.isVector()) { |
| MVT Simple = VT.getSimpleVT(); |
| unsigned SimpleSize = Simple.getSizeInBits(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); |
| if (TLI.isOperationLegal(ISD::MUL, NewVT)) { |
| N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); |
| N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); |
| N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); |
| N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, |
| DAG.getConstant(SimpleSize, DL, |
| getShiftAmountTy(N1.getValueType()))); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Perform optimizations common to nodes that compute two values. LoOp and HiOp |
| /// give the opcodes for the two computations that are being performed. Return |
| /// true if a simplification was made. |
| SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, |
| unsigned HiOp) { |
| // If the high half is not needed, just compute the low half. |
| bool HiExists = N->hasAnyUseOfValue(1); |
| if (!HiExists && |
| (!LegalOperations || |
| TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { |
| SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); |
| return CombineTo(N, Res, Res); |
| } |
| |
| // If the low half is not needed, just compute the high half. |
| bool LoExists = N->hasAnyUseOfValue(0); |
| if (!LoExists && |
| (!LegalOperations || |
| TLI.isOperationLegal(HiOp, N->getValueType(1)))) { |
| SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); |
| return CombineTo(N, Res, Res); |
| } |
| |
| // If both halves are used, return as it is. |
| if (LoExists && HiExists) |
| return SDValue(); |
| |
| // If the two computed results can be simplified separately, separate them. |
| if (LoExists) { |
| SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); |
| AddToWorklist(Lo.getNode()); |
| SDValue LoOpt = combine(Lo.getNode()); |
| if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && |
| (!LegalOperations || |
| TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) |
| return CombineTo(N, LoOpt, LoOpt); |
| } |
| |
| if (HiExists) { |
| SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); |
| AddToWorklist(Hi.getNode()); |
| SDValue HiOpt = combine(Hi.getNode()); |
| if (HiOpt.getNode() && HiOpt != Hi && |
| (!LegalOperations || |
| TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) |
| return CombineTo(N, HiOpt, HiOpt); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { |
| if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) |
| return Res; |
| |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| // If the type is twice as wide is legal, transform the mulhu to a wider |
| // multiply plus a shift. |
| if (VT.isSimple() && !VT.isVector()) { |
| MVT Simple = VT.getSimpleVT(); |
| unsigned SimpleSize = Simple.getSizeInBits(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); |
| if (TLI.isOperationLegal(ISD::MUL, NewVT)) { |
| SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); |
| SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); |
| Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); |
| // Compute the high part as N1. |
| Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, |
| DAG.getConstant(SimpleSize, DL, |
| getShiftAmountTy(Lo.getValueType()))); |
| Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); |
| // Compute the low part as N0. |
| Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); |
| return CombineTo(N, Lo, Hi); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { |
| if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) |
| return Res; |
| |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| // If the type is twice as wide is legal, transform the mulhu to a wider |
| // multiply plus a shift. |
| if (VT.isSimple() && !VT.isVector()) { |
| MVT Simple = VT.getSimpleVT(); |
| unsigned SimpleSize = Simple.getSizeInBits(); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); |
| if (TLI.isOperationLegal(ISD::MUL, NewVT)) { |
| SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); |
| SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); |
| Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); |
| // Compute the high part as N1. |
| Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, |
| DAG.getConstant(SimpleSize, DL, |
| getShiftAmountTy(Lo.getValueType()))); |
| Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); |
| // Compute the low part as N0. |
| Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); |
| return CombineTo(N, Lo, Hi); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSMULO(SDNode *N) { |
| // (smulo x, 2) -> (saddo x, x) |
| if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) |
| if (C2->getAPIntValue() == 2) |
| return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), |
| N->getOperand(0), N->getOperand(0)); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUMULO(SDNode *N) { |
| // (umulo x, 2) -> (uaddo x, x) |
| if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) |
| if (C2->getAPIntValue() == 2) |
| return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), |
| N->getOperand(0), N->getOperand(0)); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitIMINMAX(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold operation with constant operands. |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); |
| if (N0C && N1C) |
| return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); |
| |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); |
| |
| // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. |
| // Only do this if the current op isn't legal and the flipped is. |
| unsigned Opcode = N->getOpcode(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!TLI.isOperationLegal(Opcode, VT) && |
| (N0.isUndef() || DAG.SignBitIsZero(N0)) && |
| (N1.isUndef() || DAG.SignBitIsZero(N1))) { |
| unsigned AltOpcode; |
| switch (Opcode) { |
| case ISD::SMIN: AltOpcode = ISD::UMIN; break; |
| case ISD::SMAX: AltOpcode = ISD::UMAX; break; |
| case ISD::UMIN: AltOpcode = ISD::SMIN; break; |
| case ISD::UMAX: AltOpcode = ISD::SMAX; break; |
| default: llvm_unreachable("Unknown MINMAX opcode"); |
| } |
| if (TLI.isOperationLegal(AltOpcode, VT)) |
| return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// If this is a binary operator with two operands of the same opcode, try to |
| /// simplify it. |
| SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { |
| SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); |
| |
| // Bail early if none of these transforms apply. |
| if (N0.getNumOperands() == 0) return SDValue(); |
| |
| // For each of OP in AND/OR/XOR: |
| // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) |
| // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) |
| // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) |
| // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y)) |
| // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) |
| // |
| // do not sink logical op inside of a vector extend, since it may combine |
| // into a vsetcc. |
| EVT Op0VT = N0.getOperand(0).getValueType(); |
| if ((N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND || |
| N0.getOpcode() == ISD::BSWAP || |
| // Avoid infinite looping with PromoteIntBinOp. |
| (N0.getOpcode() == ISD::ANY_EXTEND && |
| (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || |
| (N0.getOpcode() == ISD::TRUNCATE && |
| (!TLI.isZExtFree(VT, Op0VT) || |
| !TLI.isTruncateFree(Op0VT, VT)) && |
| TLI.isTypeLegal(Op0VT))) && |
| !VT.isVector() && |
| Op0VT == N1.getOperand(0).getValueType() && |
| (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { |
| SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), |
| N0.getOperand(0).getValueType(), |
| N0.getOperand(0), N1.getOperand(0)); |
| AddToWorklist(ORNode.getNode()); |
| return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); |
| } |
| |
| // For each of OP in SHL/SRL/SRA/AND... |
| // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) |
| // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) |
| // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) |
| if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || |
| N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && |
| N0.getOperand(1) == N1.getOperand(1)) { |
| SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), |
| N0.getOperand(0).getValueType(), |
| N0.getOperand(0), N1.getOperand(0)); |
| AddToWorklist(ORNode.getNode()); |
| return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, |
| ORNode, N0.getOperand(1)); |
| } |
| |
| // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) |
| // Only perform this optimization up until type legalization, before |
| // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by |
| // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and |
| // we don't want to undo this promotion. |
| // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper |
| // on scalars. |
| if ((N0.getOpcode() == ISD::BITCAST || |
| N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && |
| Level <= AfterLegalizeTypes) { |
| SDValue In0 = N0.getOperand(0); |
| SDValue In1 = N1.getOperand(0); |
| EVT In0Ty = In0.getValueType(); |
| EVT In1Ty = In1.getValueType(); |
| SDLoc DL(N); |
| // If both incoming values are integers, and the original types are the |
| // same. |
| if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { |
| SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); |
| SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); |
| AddToWorklist(Op.getNode()); |
| return BC; |
| } |
| } |
| |
| // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). |
| // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) |
| // If both shuffles use the same mask, and both shuffle within a single |
| // vector, then it is worthwhile to move the swizzle after the operation. |
| // The type-legalizer generates this pattern when loading illegal |
| // vector types from memory. In many cases this allows additional shuffle |
| // optimizations. |
| // There are other cases where moving the shuffle after the xor/and/or |
| // is profitable even if shuffles don't perform a swizzle. |
| // If both shuffles use the same mask, and both shuffles have the same first |
| // or second operand, then it might still be profitable to move the shuffle |
| // after the xor/and/or operation. |
| if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { |
| ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0); |
| ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1); |
| |
| assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && |
| "Inputs to shuffles are not the same type"); |
| |
| // Check that both shuffles use the same mask. The masks are known to be of |
| // the same length because the result vector type is the same. |
| // Check also that shuffles have only one use to avoid introducing extra |
| // instructions. |
| if (SVN0->hasOneUse() && SVN1->hasOneUse() && |
| SVN0->getMask().equals(SVN1->getMask())) { |
| SDValue ShOp = N0->getOperand(1); |
| |
| // Don't try to fold this node if it requires introducing a |
| // build vector of all zeros that might be illegal at this stage. |
| if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { |
| if (!LegalTypes) |
| ShOp = DAG.getConstant(0, SDLoc(N), VT); |
| else |
| ShOp = SDValue(); |
| } |
| |
| // (AND (shuf (A, C), shuf (B, C))) -> shuf (AND (A, B), C) |
| // (OR (shuf (A, C), shuf (B, C))) -> shuf (OR (A, B), C) |
| // (XOR (shuf (A, C), shuf (B, C))) -> shuf (XOR (A, B), V_0) |
| if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { |
| SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, |
| N0->getOperand(0), N1->getOperand(0)); |
| AddToWorklist(NewNode.getNode()); |
| return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, |
| SVN0->getMask()); |
| } |
| |
| // Don't try to fold this node if it requires introducing a |
| // build vector of all zeros that might be illegal at this stage. |
| ShOp = N0->getOperand(0); |
| if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { |
| if (!LegalTypes) |
| ShOp = DAG.getConstant(0, SDLoc(N), VT); |
| else |
| ShOp = SDValue(); |
| } |
| |
| // (AND (shuf (C, A), shuf (C, B))) -> shuf (C, AND (A, B)) |
| // (OR (shuf (C, A), shuf (C, B))) -> shuf (C, OR (A, B)) |
| // (XOR (shuf (C, A), shuf (C, B))) -> shuf (V_0, XOR (A, B)) |
| if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { |
| SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, |
| N0->getOperand(1), N1->getOperand(1)); |
| AddToWorklist(NewNode.getNode()); |
| return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, |
| SVN0->getMask()); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. |
| SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, |
| const SDLoc &DL) { |
| SDValue LL, LR, RL, RR, N0CC, N1CC; |
| if (!isSetCCEquivalent(N0, LL, LR, N0CC) || |
| !isSetCCEquivalent(N1, RL, RR, N1CC)) |
| return SDValue(); |
| |
| assert(N0.getValueType() == N1.getValueType() && |
| "Unexpected operand types for bitwise logic op"); |
| assert(LL.getValueType() == LR.getValueType() && |
| RL.getValueType() == RR.getValueType() && |
| "Unexpected operand types for setcc"); |
| |
| // If we're here post-legalization or the logic op type is not i1, the logic |
| // op type must match a setcc result type. Also, all folds require new |
| // operations on the left and right operands, so those types must match. |
| EVT VT = N0.getValueType(); |
| EVT OpVT = LL.getValueType(); |
| if (LegalOperations || VT.getScalarType() != MVT::i1) |
| if (VT != getSetCCResultType(OpVT)) |
| return SDValue(); |
| if (OpVT != RL.getValueType()) |
| return SDValue(); |
| |
| ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); |
| ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); |
| bool IsInteger = OpVT.isInteger(); |
| if (LR == RR && CC0 == CC1 && IsInteger) { |
| bool IsZero = isNullConstantOrNullSplatConstant(LR); |
| bool IsNeg1 = isAllOnesConstantOrAllOnesSplatConstant(LR); |
| |
| // All bits clear? |
| bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; |
| // All sign bits clear? |
| bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; |
| // Any bits set? |
| bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; |
| // Any sign bits set? |
| bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; |
| |
| // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) |
| // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) |
| // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) |
| // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) |
| if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { |
| SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); |
| AddToWorklist(Or.getNode()); |
| return DAG.getSetCC(DL, VT, Or, LR, CC1); |
| } |
| |
| // All bits set? |
| bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; |
| // All sign bits set? |
| bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; |
| // Any bits clear? |
| bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; |
| // Any sign bits clear? |
| bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; |
| |
| // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) |
| // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) |
| // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) |
| // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) |
| if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { |
| SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); |
| AddToWorklist(And.getNode()); |
| return DAG.getSetCC(DL, VT, And, LR, CC1); |
| } |
| } |
| |
| // TODO: What is the 'or' equivalent of this fold? |
| // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) |
| if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && |
| IsInteger && CC0 == ISD::SETNE && |
| ((isNullConstant(LR) && isAllOnesConstant(RR)) || |
| (isAllOnesConstant(LR) && isNullConstant(RR)))) { |
| SDValue One = DAG.getConstant(1, DL, OpVT); |
| SDValue Two = DAG.getConstant(2, DL, OpVT); |
| SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); |
| AddToWorklist(Add.getNode()); |
| return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); |
| } |
| |
| // Try more general transforms if the predicates match and the only user of |
| // the compares is the 'and' or 'or'. |
| if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && |
| N0.hasOneUse() && N1.hasOneUse()) { |
| // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 |
| // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 |
| if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { |
| SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); |
| SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); |
| SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); |
| SDValue Zero = DAG.getConstant(0, DL, OpVT); |
| return DAG.getSetCC(DL, VT, Or, Zero, CC1); |
| } |
| } |
| |
| // Canonicalize equivalent operands to LL == RL. |
| if (LL == RR && LR == RL) { |
| CC1 = ISD::getSetCCSwappedOperands(CC1); |
| std::swap(RL, RR); |
| } |
| |
| // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) |
| // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) |
| if (LL == RL && LR == RR) { |
| ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger) |
| : ISD::getSetCCOrOperation(CC0, CC1, IsInteger); |
| if (NewCC != ISD::SETCC_INVALID && |
| (!LegalOperations || |
| (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && |
| TLI.isOperationLegal(ISD::SETCC, OpVT)))) |
| return DAG.getSetCC(DL, VT, LL, LR, NewCC); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// This contains all DAGCombine rules which reduce two values combined by |
| /// an And operation to a single value. This makes them reusable in the context |
| /// of visitSELECT(). Rules involving constants are not included as |
| /// visitSELECT() already handles those cases. |
| SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { |
| EVT VT = N1.getValueType(); |
| SDLoc DL(N); |
| |
| // fold (and x, undef) -> 0 |
| if (N0.isUndef() || N1.isUndef()) |
| return DAG.getConstant(0, DL, VT); |
| |
| if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) |
| return V; |
| |
| if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && |
| VT.getSizeInBits() <= 64) { |
| if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { |
| // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal |
| // immediate for an add, but it is legal if its top c2 bits are set, |
| // transform the ADD so the immediate doesn't need to be materialized |
| // in a register. |
| APInt ADDC = ADDI->getAPIntValue(); |
| APInt SRLC = SRLI->getAPIntValue(); |
| if (ADDC.getMinSignedBits() <= 64 && |
| SRLC.ult(VT.getSizeInBits()) && |
| !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { |
| APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), |
| SRLC.getZExtValue()); |
| if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { |
| ADDC |= Mask; |
| if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { |
| SDLoc DL0(N0); |
| SDValue NewAdd = |
| DAG.getNode(ISD::ADD, DL0, VT, |
| N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); |
| CombineTo(N0.getNode(), NewAdd); |
| // Return N so it doesn't get rechecked! |
| return SDValue(N, 0); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Reduce bit extract of low half of an integer to the narrower type. |
| // (and (srl i64:x, K), KMask) -> |
| // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) |
| if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { |
| if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { |
| if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| unsigned Size = VT.getSizeInBits(); |
| const APInt &AndMask = CAnd->getAPIntValue(); |
| unsigned ShiftBits = CShift->getZExtValue(); |
| |
| // Bail out, this node will probably disappear anyway. |
| if (ShiftBits == 0) |
| return SDValue(); |
| |
| unsigned MaskBits = AndMask.countTrailingOnes(); |
| EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); |
| |
| if (AndMask.isMask() && |
| // Required bits must not span the two halves of the integer and |
| // must fit in the half size type. |
| (ShiftBits + MaskBits <= Size / 2) && |
| TLI.isNarrowingProfitable(VT, HalfVT) && |
| TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && |
| TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && |
| TLI.isTruncateFree(VT, HalfVT) && |
| TLI.isZExtFree(HalfVT, VT)) { |
| // The isNarrowingProfitable is to avoid regressions on PPC and |
| // AArch64 which match a few 64-bit bit insert / bit extract patterns |
| // on downstream users of this. Those patterns could probably be |
| // extended to handle extensions mixed in. |
| |
| SDValue SL(N0); |
| assert(MaskBits <= Size); |
| |
| // Extracting the highest bit of the low half. |
| EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, |
| N0.getOperand(0)); |
| |
| SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); |
| SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); |
| SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); |
| SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); |
| return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); |
| } |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, |
| EVT LoadResultTy, EVT &ExtVT) { |
| if (!AndC->getAPIntValue().isMask()) |
| return false; |
| |
| unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); |
| |
| ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); |
| EVT LoadedVT = LoadN->getMemoryVT(); |
| |
| if (ExtVT == LoadedVT && |
| (!LegalOperations || |
| TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { |
| // ZEXTLOAD will match without needing to change the size of the value being |
| // loaded. |
| return true; |
| } |
| |
| // Do not change the width of a volatile load. |
| if (LoadN->isVolatile()) |
| return false; |
| |
| // Do not generate loads of non-round integer types since these can |
| // be expensive (and would be wrong if the type is not byte sized). |
| if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) |
| return false; |
| |
| if (LegalOperations && |
| !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) |
| return false; |
| |
| if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) |
| return false; |
| |
| return true; |
| } |
| |
| bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, |
| ISD::LoadExtType ExtType, EVT &MemVT, |
| unsigned ShAmt) { |
| if (!LDST) |
| return false; |
| // Only allow byte offsets. |
| if (ShAmt % 8) |
| return false; |
| |
| // Do not generate loads of non-round integer types since these can |
| // be expensive (and would be wrong if the type is not byte sized). |
| if (!MemVT.isRound()) |
| return false; |
| |
| // Don't change the width of a volatile load. |
| if (LDST->isVolatile()) |
| return false; |
| |
| // Verify that we are actually reducing a load width here. |
| if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits()) |
| return false; |
| |
| // Ensure that this isn't going to produce an unsupported unaligned access. |
| if (ShAmt && |
| !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, |
| LDST->getAddressSpace(), ShAmt / 8)) |
| return false; |
| |
| // It's not possible to generate a constant of extended or untyped type. |
| EVT PtrType = LDST->getBasePtr().getValueType(); |
| if (PtrType == MVT::Untyped || PtrType.isExtended()) |
| return false; |
| |
| if (isa<LoadSDNode>(LDST)) { |
| LoadSDNode *Load = cast<LoadSDNode>(LDST); |
| // Don't transform one with multiple uses, this would require adding a new |
| // load. |
| if (!SDValue(Load, 0).hasOneUse()) |
| return false; |
| |
| if (LegalOperations && |
| !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) |
| return false; |
| |
| // For the transform to be legal, the load must produce only two values |
| // (the value loaded and the chain). Don't transform a pre-increment |
| // load, for example, which produces an extra value. Otherwise the |
| // transformation is not equivalent, and the downstream logic to replace |
| // uses gets things wrong. |
| if (Load->getNumValues() > 2) |
| return false; |
| |
| // If the load that we're shrinking is an extload and we're not just |
| // discarding the extension we can't simply shrink the load. Bail. |
| // TODO: It would be possible to merge the extensions in some cases. |
| if (Load->getExtensionType() != ISD::NON_EXTLOAD && |
| Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) |
| return false; |
| |
| if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) |
| return false; |
| } else { |
| assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); |
| StoreSDNode *Store = cast<StoreSDNode>(LDST); |
| // Can't write outside the original store |
| if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) |
| return false; |
| |
| if (LegalOperations && |
| !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool DAGCombiner::SearchForAndLoads(SDNode *N, |
| SmallPtrSetImpl<LoadSDNode*> &Loads, |
| SmallPtrSetImpl<SDNode*> &NodesWithConsts, |
| ConstantSDNode *Mask, |
| SDNode *&NodeToMask) { |
| // Recursively search for the operands, looking for loads which can be |
| // narrowed. |
| for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) { |
| SDValue Op = N->getOperand(i); |
| |
| if (Op.getValueType().isVector()) |
| return false; |
| |
| // Some constants may need fixing up later if they are too large. |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) { |
| if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && |
| (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) |
| NodesWithConsts.insert(N); |
| continue; |
| } |
| |
| if (!Op.hasOneUse()) |
| return false; |
| |
| switch(Op.getOpcode()) { |
| case ISD::LOAD: { |
| auto *Load = cast<LoadSDNode>(Op); |
| EVT ExtVT; |
| if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && |
| isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { |
| |
| // ZEXTLOAD is already small enough. |
| if (Load->getExtensionType() == ISD::ZEXTLOAD && |
| ExtVT.bitsGE(Load->getMemoryVT())) |
| continue; |
| |
| // Use LE to convert equal sized loads to zext. |
| if (ExtVT.bitsLE(Load->getMemoryVT())) |
| Loads.insert(Load); |
| |
| continue; |
| } |
| return false; |
| } |
| case ISD::ZERO_EXTEND: |
| case ISD::AssertZext: { |
| unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); |
| EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); |
| EVT VT = Op.getOpcode() == ISD::AssertZext ? |
| cast<VTSDNode>(Op.getOperand(1))->getVT() : |
| Op.getOperand(0).getValueType(); |
| |
| // We can accept extending nodes if the mask is wider or an equal |
| // width to the original type. |
| if (ExtVT.bitsGE(VT)) |
| continue; |
| break; |
| } |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::AND: |
| if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, |
| NodeToMask)) |
| return false; |
| continue; |
| } |
| |
| // Allow one node which will masked along with any loads found. |
| if (NodeToMask) |
| return false; |
| |
| // Also ensure that the node to be masked only produces one data result. |
| NodeToMask = Op.getNode(); |
| if (NodeToMask->getNumValues() > 1) { |
| bool HasValue = false; |
| for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { |
| MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); |
| if (VT != MVT::Glue && VT != MVT::Other) { |
| if (HasValue) { |
| NodeToMask = nullptr; |
| return false; |
| } |
| HasValue = true; |
| } |
| } |
| assert(HasValue && "Node to be masked has no data result?"); |
| } |
| } |
| return true; |
| } |
| |
| bool DAGCombiner::BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG) { |
| auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!Mask) |
| return false; |
| |
| if (!Mask->getAPIntValue().isMask()) |
| return false; |
| |
| // No need to do anything if the and directly uses a load. |
| if (isa<LoadSDNode>(N->getOperand(0))) |
| return false; |
| |
| SmallPtrSet<LoadSDNode*, 8> Loads; |
| SmallPtrSet<SDNode*, 2> NodesWithConsts; |
| SDNode *FixupNode = nullptr; |
| if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { |
| if (Loads.size() == 0) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); |
| SDValue MaskOp = N->getOperand(1); |
| |
| // If it exists, fixup the single node we allow in the tree that needs |
| // masking. |
| if (FixupNode) { |
| LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); |
| SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), |
| FixupNode->getValueType(0), |
| SDValue(FixupNode, 0), MaskOp); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); |
| if (And.getOpcode() == ISD ::AND) |
| DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); |
| } |
| |
| // Narrow any constants that need it. |
| for (auto *LogicN : NodesWithConsts) { |
| SDValue Op0 = LogicN->getOperand(0); |
| SDValue Op1 = LogicN->getOperand(1); |
| |
| if (isa<ConstantSDNode>(Op0)) |
| std::swap(Op0, Op1); |
| |
| SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), |
| Op1, MaskOp); |
| |
| DAG.UpdateNodeOperands(LogicN, Op0, And); |
| } |
| |
| // Create narrow loads. |
| for (auto *Load : Loads) { |
| LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); |
| SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), |
| SDValue(Load, 0), MaskOp); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); |
| if (And.getOpcode() == ISD ::AND) |
| And = SDValue( |
| DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); |
| SDValue NewLoad = ReduceLoadWidth(And.getNode()); |
| assert(NewLoad && |
| "Shouldn't be masking the load if it can't be narrowed"); |
| CombineTo(Load, NewLoad, NewLoad.getValue(1)); |
| } |
| DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); |
| return true; |
| } |
| return false; |
| } |
| |
| // Unfold |
| // x & (-1 'logical shift' y) |
| // To |
| // (x 'opposite logical shift' y) 'logical shift' y |
| // if it is better for performance. |
| SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { |
| assert(N->getOpcode() == ISD::AND); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // Do we actually prefer shifts over mask? |
| if (!TLI.preferShiftsToClearExtremeBits(N0)) |
| return SDValue(); |
| |
| // Try to match (-1 '[outer] logical shift' y) |
| unsigned OuterShift; |
| unsigned InnerShift; // The opposite direction to the OuterShift. |
| SDValue Y; // Shift amount. |
| auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { |
| if (!M.hasOneUse()) |
| return false; |
| OuterShift = M->getOpcode(); |
| if (OuterShift == ISD::SHL) |
| InnerShift = ISD::SRL; |
| else if (OuterShift == ISD::SRL) |
| InnerShift = ISD::SHL; |
| else |
| return false; |
| if (!isAllOnesConstant(M->getOperand(0))) |
| return false; |
| Y = M->getOperand(1); |
| return true; |
| }; |
| |
| SDValue X; |
| if (matchMask(N1)) |
| X = N0; |
| else if (matchMask(N0)) |
| X = N1; |
| else |
| return SDValue(); |
| |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| // tmp = x 'opposite logical shift' y |
| SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); |
| // ret = tmp 'logical shift' y |
| SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); |
| |
| return T1; |
| } |
| |
| SDValue DAGCombiner::visitAND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N1.getValueType(); |
| |
| // x & x --> x |
| if (N0 == N1) |
| return N0; |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (and x, 0) -> 0, vector edition |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| // do not return N0, because undef node may exist in N0 |
| return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), |
| SDLoc(N), N0.getValueType()); |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| // do not return N1, because undef node may exist in N1 |
| return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), |
| SDLoc(N), N1.getValueType()); |
| |
| // fold (and x, -1) -> x, vector edition |
| if (ISD::isBuildVectorAllOnes(N0.getNode())) |
| return N1; |
| if (ISD::isBuildVectorAllOnes(N1.getNode())) |
| return N0; |
| } |
| |
| // fold (and c1, c2) -> c1&c2 |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| if (N0C && N1C && !N1C->isOpaque()) |
| return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); |
| // fold (and x, -1) -> x |
| if (isAllOnesConstant(N1)) |
| return N0; |
| // if (and x, c) is known to be zero, return 0 |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), |
| APInt::getAllOnesValue(BitWidth))) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // reassociate and |
| if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1)) |
| return RAND; |
| |
| // Try to convert a constant mask AND into a shuffle clear mask. |
| if (VT.isVector()) |
| if (SDValue Shuffle = XformToShuffleWithZero(N)) |
| return Shuffle; |
| |
| // fold (and (or x, C), D) -> D if (C & D) == D |
| auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { |
| return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); |
| }; |
| if (N0.getOpcode() == ISD::OR && |
| ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) |
| return N1; |
| // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. |
| if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { |
| SDValue N0Op0 = N0.getOperand(0); |
| APInt Mask = ~N1C->getAPIntValue(); |
| Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); |
| if (DAG.MaskedValueIsZero(N0Op0, Mask)) { |
| SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), |
| N0.getValueType(), N0Op0); |
| |
| // Replace uses of the AND with uses of the Zero extend node. |
| CombineTo(N, Zext); |
| |
| // We actually want to replace all uses of the any_extend with the |
| // zero_extend, to avoid duplicating things. This will later cause this |
| // AND to be folded. |
| CombineTo(N0.getNode(), Zext); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> |
| // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must |
| // already be zero by virtue of the width of the base type of the load. |
| // |
| // the 'X' node here can either be nothing or an extract_vector_elt to catch |
| // more cases. |
| if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && |
| N0.getOperand(0).getOpcode() == ISD::LOAD && |
| N0.getOperand(0).getResNo() == 0) || |
| (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { |
| LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? |
| N0 : N0.getOperand(0) ); |
| |
| // Get the constant (if applicable) the zero'th operand is being ANDed with. |
| // This can be a pure constant or a vector splat, in which case we treat the |
| // vector as a scalar and use the splat value. |
| APInt Constant = APInt::getNullValue(1); |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { |
| Constant = C->getAPIntValue(); |
| } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { |
| APInt SplatValue, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, |
| SplatBitSize, HasAnyUndefs); |
| if (IsSplat) { |
| // Undef bits can contribute to a possible optimisation if set, so |
| // set them. |
| SplatValue |= SplatUndef; |
| |
| // The splat value may be something like "0x00FFFFFF", which means 0 for |
| // the first vector value and FF for the rest, repeating. We need a mask |
| // that will apply equally to all members of the vector, so AND all the |
| // lanes of the constant together. |
| EVT VT = Vector->getValueType(0); |
| unsigned BitWidth = VT.getScalarSizeInBits(); |
| |
| // If the splat value has been compressed to a bitlength lower |
| // than the size of the vector lane, we need to re-expand it to |
| // the lane size. |
| if (BitWidth > SplatBitSize) |
| for (SplatValue = SplatValue.zextOrTrunc(BitWidth); |
| SplatBitSize < BitWidth; |
| SplatBitSize = SplatBitSize * 2) |
| SplatValue |= SplatValue.shl(SplatBitSize); |
| |
| // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a |
| // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. |
| if (SplatBitSize % BitWidth == 0) { |
| Constant = APInt::getAllOnesValue(BitWidth); |
| for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) |
| Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); |
| } |
| } |
| } |
| |
| // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is |
| // actually legal and isn't going to get expanded, else this is a false |
| // optimisation. |
| bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, |
| Load->getValueType(0), |
| Load->getMemoryVT()); |
| |
| // Resize the constant to the same size as the original memory access before |
| // extension. If it is still the AllOnesValue then this AND is completely |
| // unneeded. |
| Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); |
| |
| bool B; |
| switch (Load->getExtensionType()) { |
| default: B = false; break; |
| case ISD::EXTLOAD: B = CanZextLoadProfitably; break; |
| case ISD::ZEXTLOAD: |
| case ISD::NON_EXTLOAD: B = true; break; |
| } |
| |
| if (B && Constant.isAllOnesValue()) { |
| // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to |
| // preserve semantics once we get rid of the AND. |
| SDValue NewLoad(Load, 0); |
| |
| // Fold the AND away. NewLoad may get replaced immediately. |
| CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); |
| |
| if (Load->getExtensionType() == ISD::EXTLOAD) { |
| NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, |
| Load->getValueType(0), SDLoc(Load), |
| Load->getChain(), Load->getBasePtr(), |
| Load->getOffset(), Load->getMemoryVT(), |
| Load->getMemOperand()); |
| // Replace uses of the EXTLOAD with the new ZEXTLOAD. |
| if (Load->getNumValues() == 3) { |
| // PRE/POST_INC loads have 3 values. |
| SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), |
| NewLoad.getValue(2) }; |
| CombineTo(Load, To, 3, true); |
| } else { |
| CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); |
| } |
| } |
| |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (and (load x), 255) -> (zextload x, i8) |
| // fold (and (extload x, i16), 255) -> (zextload x, i8) |
| // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) |
| if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || |
| (N0.getOpcode() == ISD::ANY_EXTEND && |
| N0.getOperand(0).getOpcode() == ISD::LOAD))) { |
| if (SDValue Res = ReduceLoadWidth(N)) { |
| LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND |
| ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); |
| |
| AddToWorklist(N); |
| CombineTo(LN0, Res, Res.getValue(1)); |
| return SDValue(N, 0); |
| } |
| } |
| |
| if (Level >= AfterLegalizeTypes) { |
| // Attempt to propagate the AND back up to the leaves which, if they're |
| // loads, can be combined to narrow loads and the AND node can be removed. |
| // Perform after legalization so that extend nodes will already be |
| // combined into the loads. |
| if (BackwardsPropagateMask(N, DAG)) { |
| return SDValue(N, 0); |
| } |
| } |
| |
| if (SDValue Combined = visitANDLike(N0, N1, N)) |
| return Combined; |
| |
| // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) |
| if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) |
| return Tmp; |
| |
| // Masking the negated extension of a boolean is just the zero-extended |
| // boolean: |
| // and (sub 0, zext(bool X)), 1 --> zext(bool X) |
| // and (sub 0, sext(bool X)), 1 --> zext(bool X) |
| // |
| // Note: the SimplifyDemandedBits fold below can make an information-losing |
| // transform, and then we have no way to find this better fold. |
| if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { |
| if (isNullConstantOrNullSplatConstant(N0.getOperand(0))) { |
| SDValue SubRHS = N0.getOperand(1); |
| if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && |
| SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) |
| return SubRHS; |
| if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && |
| SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); |
| } |
| } |
| |
| // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) |
| // fold (and (sra)) -> (and (srl)) when possible. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // fold (zext_inreg (extload x)) -> (zextload x) |
| if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| EVT MemVT = LN0->getMemoryVT(); |
| // If we zero all the possible extended bits, then we can turn this into |
| // a zextload if we are running before legalize or the operation is legal. |
| unsigned BitWidth = N1.getScalarValueSizeInBits(); |
| if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, |
| BitWidth - MemVT.getScalarSizeInBits())) && |
| ((!LegalOperations && !LN0->isVolatile()) || |
| TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { |
| SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, |
| LN0->getChain(), LN0->getBasePtr(), |
| MemVT, LN0->getMemOperand()); |
| AddToWorklist(N); |
| CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use |
| if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && |
| N0.hasOneUse()) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| EVT MemVT = LN0->getMemoryVT(); |
| // If we zero all the possible extended bits, then we can turn this into |
| // a zextload if we are running before legalize or the operation is legal. |
| unsigned BitWidth = N1.getScalarValueSizeInBits(); |
| if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, |
| BitWidth - MemVT.getScalarSizeInBits())) && |
| ((!LegalOperations && !LN0->isVolatile()) || |
| TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { |
| SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, |
| LN0->getChain(), LN0->getBasePtr(), |
| MemVT, LN0->getMemOperand()); |
| AddToWorklist(N); |
| CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) |
| if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { |
| if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), |
| N0.getOperand(1), false)) |
| return BSwap; |
| } |
| |
| if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) |
| return Shifts; |
| |
| return SDValue(); |
| } |
| |
| /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. |
| SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, |
| bool DemandHighBits) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) |
| return SDValue(); |
| if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) |
| return SDValue(); |
| |
| // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) |
| bool LookPassAnd0 = false; |
| bool LookPassAnd1 = false; |
| if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) |
| std::swap(N0, N1); |
| if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) |
| std::swap(N0, N1); |
| if (N0.getOpcode() == ISD::AND) { |
| if (!N0.getNode()->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| // Also handle 0xffff since the LHS is guaranteed to have zeros there. |
| // This is needed for X86. |
| if (!N01C || (N01C->getZExtValue() != 0xFF00 && |
| N01C->getZExtValue() != 0xFFFF)) |
| return SDValue(); |
| N0 = N0.getOperand(0); |
| LookPassAnd0 = true; |
| } |
| |
| if (N1.getOpcode() == ISD::AND) { |
| if (!N1.getNode()->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); |
| if (!N11C || N11C->getZExtValue() != 0xFF) |
| return SDValue(); |
| N1 = N1.getOperand(0); |
| LookPassAnd1 = true; |
| } |
| |
| if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) |
| std::swap(N0, N1); |
| if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) |
| return SDValue(); |
| if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) |
| return SDValue(); |
| |
| ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); |
| if (!N01C || !N11C) |
| return SDValue(); |
| if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) |
| return SDValue(); |
| |
| // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) |
| SDValue N00 = N0->getOperand(0); |
| if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { |
| if (!N00.getNode()->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); |
| if (!N001C || N001C->getZExtValue() != 0xFF) |
| return SDValue(); |
| N00 = N00.getOperand(0); |
| LookPassAnd0 = true; |
| } |
| |
| SDValue N10 = N1->getOperand(0); |
| if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { |
| if (!N10.getNode()->hasOneUse()) |
| return SDValue(); |
| ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); |
| // Also allow 0xFFFF since the bits will be shifted out. This is needed |
| // for X86. |
| if (!N101C || (N101C->getZExtValue() != 0xFF00 && |
| N101C->getZExtValue() != 0xFFFF)) |
| return SDValue(); |
| N10 = N10.getOperand(0); |
| LookPassAnd1 = true; |
| } |
| |
| if (N00 != N10) |
| return SDValue(); |
| |
| // Make sure everything beyond the low halfword gets set to zero since the SRL |
| // 16 will clear the top bits. |
| unsigned OpSizeInBits = VT.getSizeInBits(); |
| if (DemandHighBits && OpSizeInBits > 16) { |
| // If the left-shift isn't masked out then the only way this is a bswap is |
| // if all bits beyond the low 8 are 0. In that case the entire pattern |
| // reduces to a left shift anyway: leave it for other parts of the combiner. |
| if (!LookPassAnd0) |
| return SDValue(); |
| |
| // However, if the right shift isn't masked out then it might be because |
| // it's not needed. See if we can spot that too. |
| if (!LookPassAnd1 && |
| !DAG.MaskedValueIsZero( |
| N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) |
| return SDValue(); |
| } |
| |
| SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); |
| if (OpSizeInBits > 16) { |
| SDLoc DL(N); |
| Res = DAG.getNode(ISD::SRL, DL, VT, Res, |
| DAG.getConstant(OpSizeInBits - 16, DL, |
| getShiftAmountTy(VT))); |
| } |
| return Res; |
| } |
| |
| /// Return true if the specified node is an element that makes up a 32-bit |
| /// packed halfword byteswap. |
| /// ((x & 0x000000ff) << 8) | |
| /// ((x & 0x0000ff00) >> 8) | |
| /// ((x & 0x00ff0000) << 8) | |
| /// ((x & 0xff000000) >> 8) |
| static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { |
| if (!N.getNode()->hasOneUse()) |
| return false; |
| |
| unsigned Opc = N.getOpcode(); |
| if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) |
| return false; |
| |
| SDValue N0 = N.getOperand(0); |
| unsigned Opc0 = N0.getOpcode(); |
| if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) |
| return false; |
| |
| ConstantSDNode *N1C = nullptr; |
| // SHL or SRL: look upstream for AND mask operand |
| if (Opc == ISD::AND) |
| N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| else if (Opc0 == ISD::AND) |
| N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!N1C) |
| return false; |
| |
| unsigned MaskByteOffset; |
| switch (N1C->getZExtValue()) { |
| default: |
| return false; |
| case 0xFF: MaskByteOffset = 0; break; |
| case 0xFF00: MaskByteOffset = 1; break; |
| case 0xFFFF: |
| // In case demanded bits didn't clear the bits that will be shifted out. |
| // This is needed for X86. |
| if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { |
| MaskByteOffset = 1; |
| break; |
| } |
| return false; |
| case 0xFF0000: MaskByteOffset = 2; break; |
| case 0xFF000000: MaskByteOffset = 3; break; |
| } |
| |
| // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). |
| if (Opc == ISD::AND) { |
| if (MaskByteOffset == 0 || MaskByteOffset == 2) { |
| // (x >> 8) & 0xff |
| // (x >> 8) & 0xff0000 |
| if (Opc0 != ISD::SRL) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!C || C->getZExtValue() != 8) |
| return false; |
| } else { |
| // (x << 8) & 0xff00 |
| // (x << 8) & 0xff000000 |
| if (Opc0 != ISD::SHL) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!C || C->getZExtValue() != 8) |
| return false; |
| } |
| } else if (Opc == ISD::SHL) { |
| // (x & 0xff) << 8 |
| // (x & 0xff0000) << 8 |
| if (MaskByteOffset != 0 && MaskByteOffset != 2) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (!C || C->getZExtValue() != 8) |
| return false; |
| } else { // Opc == ISD::SRL |
| // (x & 0xff00) >> 8 |
| // (x & 0xff000000) >> 8 |
| if (MaskByteOffset != 1 && MaskByteOffset != 3) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (!C || C->getZExtValue() != 8) |
| return false; |
| } |
| |
| if (Parts[MaskByteOffset]) |
| return false; |
| |
| Parts[MaskByteOffset] = N0.getOperand(0).getNode(); |
| return true; |
| } |
| |
| /// Match a 32-bit packed halfword bswap. That is |
| /// ((x & 0x000000ff) << 8) | |
| /// ((x & 0x0000ff00) >> 8) | |
| /// ((x & 0x00ff0000) << 8) | |
| /// ((x & 0xff000000) >> 8) |
| /// => (rotl (bswap x), 16) |
| SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { |
| if (!LegalOperations) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32) |
| return SDValue(); |
| if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) |
| return SDValue(); |
| |
| // Look for either |
| // (or (or (and), (and)), (or (and), (and))) |
| // (or (or (or (and), (and)), (and)), (and)) |
| if (N0.getOpcode() != ISD::OR) |
| return SDValue(); |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| SDNode *Parts[4] = {}; |
| |
| if (N1.getOpcode() == ISD::OR && |
| N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { |
| // (or (or (and), (and)), (or (and), (and))) |
| if (!isBSwapHWordElement(N00, Parts)) |
| return SDValue(); |
| |
| if (!isBSwapHWordElement(N01, Parts)) |
| return SDValue(); |
| SDValue N10 = N1.getOperand(0); |
| if (!isBSwapHWordElement(N10, Parts)) |
| return SDValue(); |
| SDValue N11 = N1.getOperand(1); |
| if (!isBSwapHWordElement(N11, Parts)) |
| return SDValue(); |
| } else { |
| // (or (or (or (and), (and)), (and)), (and)) |
| if (!isBSwapHWordElement(N1, Parts)) |
| return SDValue(); |
| if (!isBSwapHWordElement(N01, Parts)) |
| return SDValue(); |
| if (N00.getOpcode() != ISD::OR) |
| return SDValue(); |
| SDValue N000 = N00.getOperand(0); |
| if (!isBSwapHWordElement(N000, Parts)) |
| return SDValue(); |
| SDValue N001 = N00.getOperand(1); |
| if (!isBSwapHWordElement(N001, Parts)) |
| return SDValue(); |
| } |
| |
| // Make sure the parts are all coming from the same node. |
| if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, |
| SDValue(Parts[0], 0)); |
| |
| // Result of the bswap should be rotated by 16. If it's not legal, then |
| // do (x << 16) | (x >> 16). |
| SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); |
| if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) |
| return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); |
| if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) |
| return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); |
| return DAG.getNode(ISD::OR, DL, VT, |
| DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), |
| DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); |
| } |
| |
| /// This contains all DAGCombine rules which reduce two values combined by |
| /// an Or operation to a single value \see visitANDLike(). |
| SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { |
| EVT VT = N1.getValueType(); |
| SDLoc DL(N); |
| |
| // fold (or x, undef) -> -1 |
| if (!LegalOperations && (N0.isUndef() || N1.isUndef())) |
| return DAG.getAllOnesConstant(DL, VT); |
| |
| if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) |
| return V; |
| |
| // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. |
| if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && |
| // Don't increase # computations. |
| (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { |
| // We can only do this xform if we know that bits from X that are set in C2 |
| // but not in C1 are already zero. Likewise for Y. |
| if (const ConstantSDNode *N0O1C = |
| getAsNonOpaqueConstant(N0.getOperand(1))) { |
| if (const ConstantSDNode *N1O1C = |
| getAsNonOpaqueConstant(N1.getOperand(1))) { |
| // We can only do this xform if we know that bits from X that are set in |
| // C2 but not in C1 are already zero. Likewise for Y. |
| const APInt &LHSMask = N0O1C->getAPIntValue(); |
| const APInt &RHSMask = N1O1C->getAPIntValue(); |
| |
| if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && |
| DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { |
| SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, |
| N0.getOperand(0), N1.getOperand(0)); |
| return DAG.getNode(ISD::AND, DL, VT, X, |
| DAG.getConstant(LHSMask | RHSMask, DL, VT)); |
| } |
| } |
| } |
| } |
| |
| // (or (and X, M), (and X, N)) -> (and X, (or M, N)) |
| if (N0.getOpcode() == ISD::AND && |
| N1.getOpcode() == ISD::AND && |
| N0.getOperand(0) == N1.getOperand(0) && |
| // Don't increase # computations. |
| (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { |
| SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, |
| N0.getOperand(1), N1.getOperand(1)); |
| return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitOR(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N1.getValueType(); |
| |
| // x | x --> x |
| if (N0 == N1) |
| return N0; |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (or x, 0) -> x, vector edition |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| return N1; |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| return N0; |
| |
| // fold (or x, -1) -> -1, vector edition |
| if (ISD::isBuildVectorAllOnes(N0.getNode())) |
| // do not return N0, because undef node may exist in N0 |
| return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); |
| if (ISD::isBuildVectorAllOnes(N1.getNode())) |
| // do not return N1, because undef node may exist in N1 |
| return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); |
| |
| // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) |
| // Do this only if the resulting shuffle is legal. |
| if (isa<ShuffleVectorSDNode>(N0) && |
| isa<ShuffleVectorSDNode>(N1) && |
| // Avoid folding a node with illegal type. |
| TLI.isTypeLegal(VT)) { |
| bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); |
| bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); |
| bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); |
| bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); |
| // Ensure both shuffles have a zero input. |
| if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { |
| assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); |
| assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); |
| const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); |
| const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); |
| bool CanFold = true; |
| int NumElts = VT.getVectorNumElements(); |
| SmallVector<int, 4> Mask(NumElts); |
| |
| for (int i = 0; i != NumElts; ++i) { |
| int M0 = SV0->getMaskElt(i); |
| int M1 = SV1->getMaskElt(i); |
| |
| // Determine if either index is pointing to a zero vector. |
| bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); |
| bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); |
| |
| // If one element is zero and the otherside is undef, keep undef. |
| // This also handles the case that both are undef. |
| if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { |
| Mask[i] = -1; |
| continue; |
| } |
| |
| // Make sure only one of the elements is zero. |
| if (M0Zero == M1Zero) { |
| CanFold = false; |
| break; |
| } |
| |
| assert((M0 >= 0 || M1 >= 0) && "Undef index!"); |
| |
| // We have a zero and non-zero element. If the non-zero came from |
| // SV0 make the index a LHS index. If it came from SV1, make it |
| // a RHS index. We need to mod by NumElts because we don't care |
| // which operand it came from in the original shuffles. |
| Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; |
| } |
| |
| if (CanFold) { |
| SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); |
| SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); |
| |
| bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT); |
| if (!LegalMask) { |
| std::swap(NewLHS, NewRHS); |
| ShuffleVectorSDNode::commuteMask(Mask); |
| LegalMask = TLI.isShuffleMaskLegal(Mask, VT); |
| } |
| |
| if (LegalMask) |
| return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask); |
| } |
| } |
| } |
| } |
| |
| // fold (or c1, c2) -> c1|c2 |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N0C && N1C && !N1C->isOpaque()) |
| return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); |
| // fold (or x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| // fold (or x, -1) -> -1 |
| if (isAllOnesConstant(N1)) |
| return N1; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // fold (or x, c) -> c iff (x & ~c) == 0 |
| if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) |
| return N1; |
| |
| if (SDValue Combined = visitORLike(N0, N1, N)) |
| return Combined; |
| |
| // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) |
| if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) |
| return BSwap; |
| if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) |
| return BSwap; |
| |
| // reassociate or |
| if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1)) |
| return ROR; |
| |
| // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) |
| // iff (c1 & c2) != 0. |
| auto MatchIntersect = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { |
| return LHS->getAPIntValue().intersects(RHS->getAPIntValue()); |
| }; |
| if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && |
| ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect)) { |
| if (SDValue COR = DAG.FoldConstantArithmetic( |
| ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) { |
| SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); |
| AddToWorklist(IOR.getNode()); |
| return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); |
| } |
| } |
| |
| // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) |
| if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) |
| return Tmp; |
| |
| // See if this is some rotate idiom. |
| if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) |
| return SDValue(Rot, 0); |
| |
| if (SDValue Load = MatchLoadCombine(N)) |
| return Load; |
| |
| // Simplify the operands using demanded-bits information. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { |
| if (Op.getOpcode() == ISD::AND && |
| DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { |
| Mask = Op.getOperand(1); |
| return Op.getOperand(0); |
| } |
| return Op; |
| } |
| |
| /// Match "(X shl/srl V1) & V2" where V2 may not be present. |
| static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, |
| SDValue &Mask) { |
| Op = stripConstantMask(DAG, Op, Mask); |
| if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { |
| Shift = Op; |
| return true; |
| } |
| return false; |
| } |
| |
| /// Helper function for visitOR to extract the needed side of a rotate idiom |
| /// from a shl/srl/mul/udiv. This is meant to handle cases where |
| /// InstCombine merged some outside op with one of the shifts from |
| /// the rotate pattern. |
| /// \returns An empty \c SDValue if the needed shift couldn't be extracted. |
| /// Otherwise, returns an expansion of \p ExtractFrom based on the following |
| /// patterns: |
| /// |
| /// (or (mul v c0) (shrl (mul v c1) c2)): |
| /// expands (mul v c0) -> (shl (mul v c1) c3) |
| /// |
| /// (or (udiv v c0) (shl (udiv v c1) c2)): |
| /// expands (udiv v c0) -> (shrl (udiv v c1) c3) |
| /// |
| /// (or (shl v c0) (shrl (shl v c1) c2)): |
| /// expands (shl v c0) -> (shl (shl v c1) c3) |
| /// |
| /// (or (shrl v c0) (shl (shrl v c1) c2)): |
| /// expands (shrl v c0) -> (shrl (shrl v c1) c3) |
| /// |
| /// Such that in all cases, c3+c2==bitwidth(op v c1). |
| static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, |
| SDValue ExtractFrom, SDValue &Mask, |
| const SDLoc &DL) { |
| assert(OppShift && ExtractFrom && "Empty SDValue"); |
| assert( |
| (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && |
| "Existing shift must be valid as a rotate half"); |
| |
| ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); |
| // Preconditions: |
| // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) |
| // |
| // Find opcode of the needed shift to be extracted from (op0 v c0). |
| unsigned Opcode = ISD::DELETED_NODE; |
| bool IsMulOrDiv = false; |
| // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift |
| // opcode or its arithmetic (mul or udiv) variant. |
| auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { |
| IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; |
| if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) |
| return false; |
| Opcode = NeededShift; |
| return true; |
| }; |
| // op0 must be either the needed shift opcode or the mul/udiv equivalent |
| // that the needed shift can be extracted from. |
| if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && |
| (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) |
| return SDValue(); |
| |
| // op0 must be the same opcode on both sides, have the same LHS argument, |
| // and produce the same value type. |
| SDValue OppShiftLHS = OppShift.getOperand(0); |
| EVT ShiftedVT = OppShiftLHS.getValueType(); |
| if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || |
| OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || |
| ShiftedVT != ExtractFrom.getValueType()) |
| return SDValue(); |
| |
| // Amount of the existing shift. |
| ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); |
| // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. |
| ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); |
| // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. |
| ConstantSDNode *ExtractFromCst = |
| isConstOrConstSplat(ExtractFrom.getOperand(1)); |
| // TODO: We should be able to handle non-uniform constant vectors for these values |
| // Check that we have constant values. |
| if (!OppShiftCst || !OppShiftCst->getAPIntValue() || |
| !OppLHSCst || !OppLHSCst->getAPIntValue() || |
| !ExtractFromCst || !ExtractFromCst->getAPIntValue()) |
| return SDValue(); |
| |
| // Compute the shift amount we need to extract to complete the rotate. |
| const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); |
| APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); |
| if (NeededShiftAmt.isNegative()) |
| return SDValue(); |
| // Normalize the bitwidth of the two mul/udiv/shift constant operands. |
| APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); |
| APInt OppLHSAmt = OppLHSCst->getAPIntValue(); |
| zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); |
| |
| // Now try extract the needed shift from the ExtractFrom op and see if the |
| // result matches up with the existing shift's LHS op. |
| if (IsMulOrDiv) { |
| // Op to extract from is a mul or udiv by a constant. |
| // Check: |
| // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 |
| // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 |
| const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), |
| NeededShiftAmt.getZExtValue()); |
| APInt ResultAmt; |
| APInt Rem; |
| APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); |
| if (Rem != 0 || ResultAmt != OppLHSAmt) |
| return SDValue(); |
| } else { |
| // Op to extract from is a shift by a constant. |
| // Check: |
| // c2 - (bitwidth(op0 v c0) - c1) == c0 |
| if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( |
| ExtractFromAmt.getBitWidth())) |
| return SDValue(); |
| } |
| |
| // Return the expanded shift op that should allow a rotate to be formed. |
| EVT ShiftVT = OppShift.getOperand(1).getValueType(); |
| EVT ResVT = ExtractFrom.getValueType(); |
| SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); |
| return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); |
| } |
| |
| // Return true if we can prove that, whenever Neg and Pos are both in the |
| // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that |
| // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: |
| // |
| // (or (shift1 X, Neg), (shift2 X, Pos)) |
| // |
| // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate |
| // in direction shift1 by Neg. The range [0, EltSize) means that we only need |
| // to consider shift amounts with defined behavior. |
| static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, |
| SelectionDAG &DAG) { |
| // If EltSize is a power of 2 then: |
| // |
| // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) |
| // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). |
| // |
| // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check |
| // for the stronger condition: |
| // |
| // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] |
| // |
| // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) |
| // we can just replace Neg with Neg' for the rest of the function. |
| // |
| // In other cases we check for the even stronger condition: |
| // |
| // Neg == EltSize - Pos [B] |
| // |
| // for all Neg and Pos. Note that the (or ...) then invokes undefined |
| // behavior if Pos == 0 (and consequently Neg == EltSize). |
| // |
| // We could actually use [A] whenever EltSize is a power of 2, but the |
| // only extra cases that it would match are those uninteresting ones |
| // where Neg and Pos are never in range at the same time. E.g. for |
| // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) |
| // as well as (sub 32, Pos), but: |
| // |
| // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) |
| // |
| // always invokes undefined behavior for 32-bit X. |
| // |
| // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. |
| unsigned MaskLoBits = 0; |
| if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { |
| if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { |
| KnownBits Known; |
| DAG.computeKnownBits(Neg.getOperand(0), Known); |
| unsigned Bits = Log2_64(EltSize); |
| if (NegC->getAPIntValue().getActiveBits() <= Bits && |
| ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { |
| Neg = Neg.getOperand(0); |
| MaskLoBits = Bits; |
| } |
| } |
| } |
| |
| // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. |
| if (Neg.getOpcode() != ISD::SUB) |
| return false; |
| ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); |
| if (!NegC) |
| return false; |
| SDValue NegOp1 = Neg.getOperand(1); |
| |
| // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with |
| // Pos'. The truncation is redundant for the purpose of the equality. |
| if (MaskLoBits && Pos.getOpcode() == ISD::AND) { |
| if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { |
| KnownBits Known; |
| DAG.computeKnownBits(Pos.getOperand(0), Known); |
| if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && |
| ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= |
| MaskLoBits)) |
| Pos = Pos.getOperand(0); |
| } |
| } |
| |
| // The condition we need is now: |
| // |
| // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask |
| // |
| // If NegOp1 == Pos then we need: |
| // |
| // EltSize & Mask == NegC & Mask |
| // |
| // (because "x & Mask" is a truncation and distributes through subtraction). |
| APInt Width; |
| if (Pos == NegOp1) |
| Width = NegC->getAPIntValue(); |
| |
| // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. |
| // Then the condition we want to prove becomes: |
| // |
| // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask |
| // |
| // which, again because "x & Mask" is a truncation, becomes: |
| // |
| // NegC & Mask == (EltSize - PosC) & Mask |
| // EltSize & Mask == (NegC + PosC) & Mask |
| else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { |
| if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) |
| Width = PosC->getAPIntValue() + NegC->getAPIntValue(); |
| else |
| return false; |
| } else |
| return false; |
| |
| // Now we just need to check that EltSize & Mask == Width & Mask. |
| if (MaskLoBits) |
| // EltSize & Mask is 0 since Mask is EltSize - 1. |
| return Width.getLoBits(MaskLoBits) == 0; |
| return Width == EltSize; |
| } |
| |
| // A subroutine of MatchRotate used once we have found an OR of two opposite |
| // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces |
| // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the |
| // former being preferred if supported. InnerPos and InnerNeg are Pos and |
| // Neg with outer conversions stripped away. |
| SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, |
| SDValue Neg, SDValue InnerPos, |
| SDValue InnerNeg, unsigned PosOpcode, |
| unsigned NegOpcode, const SDLoc &DL) { |
| // fold (or (shl x, (*ext y)), |
| // (srl x, (*ext (sub 32, y)))) -> |
| // (rotl x, y) or (rotr x, (sub 32, y)) |
| // |
| // fold (or (shl x, (*ext (sub 32, y))), |
| // (srl x, (*ext y))) -> |
| // (rotr x, y) or (rotl x, (sub 32, y)) |
| EVT VT = Shifted.getValueType(); |
| if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) { |
| bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); |
| return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, |
| HasPos ? Pos : Neg).getNode(); |
| } |
| |
| return nullptr; |
| } |
| |
| // MatchRotate - Handle an 'or' of two operands. If this is one of the many |
| // idioms for rotate, and if the target supports rotation instructions, generate |
| // a rot[lr]. |
| SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { |
| // Must be a legal type. Expanded 'n promoted things won't work with rotates. |
| EVT VT = LHS.getValueType(); |
| if (!TLI.isTypeLegal(VT)) return nullptr; |
| |
| // The target must have at least one rotate flavor. |
| bool HasROTL = hasOperation(ISD::ROTL, VT); |
| bool HasROTR = hasOperation(ISD::ROTR, VT); |
| if (!HasROTL && !HasROTR) return nullptr; |
| |
| // Check for truncated rotate. |
| if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && |
| LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { |
| assert(LHS.getValueType() == RHS.getValueType()); |
| if (SDNode *Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), |
| SDValue(Rot, 0)).getNode(); |
| } |
| } |
| |
| // Match "(X shl/srl V1) & V2" where V2 may not be present. |
| SDValue LHSShift; // The shift. |
| SDValue LHSMask; // AND value if any. |
| matchRotateHalf(DAG, LHS, LHSShift, LHSMask); |
| |
| SDValue RHSShift; // The shift. |
| SDValue RHSMask; // AND value if any. |
| matchRotateHalf(DAG, RHS, RHSShift, RHSMask); |
| |
| // If neither side matched a rotate half, bail |
| if (!LHSShift && !RHSShift) |
| return nullptr; |
| |
| // InstCombine may have combined a constant shl, srl, mul, or udiv with one |
| // side of the rotate, so try to handle that here. In all cases we need to |
| // pass the matched shift from the opposite side to compute the opcode and |
| // needed shift amount to extract. We still want to do this if both sides |
| // matched a rotate half because one half may be a potential overshift that |
| // can be broken down (ie if InstCombine merged two shl or srl ops into a |
| // single one). |
| |
| // Have LHS side of the rotate, try to extract the needed shift from the RHS. |
| if (LHSShift) |
| if (SDValue NewRHSShift = |
| extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) |
| RHSShift = NewRHSShift; |
| // Have RHS side of the rotate, try to extract the needed shift from the LHS. |
| if (RHSShift) |
| if (SDValue NewLHSShift = |
| extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) |
| LHSShift = NewLHSShift; |
| |
| // If a side is still missing, nothing else we can do. |
| if (!RHSShift || !LHSShift) |
| return nullptr; |
| |
| // At this point we've matched or extracted a shift op on each side. |
| |
| if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) |
| return nullptr; // Not shifting the same value. |
| |
| if (LHSShift.getOpcode() == RHSShift.getOpcode()) |
| return nullptr; // Shifts must disagree. |
| |
| // Canonicalize shl to left side in a shl/srl pair. |
| if (RHSShift.getOpcode() == ISD::SHL) { |
| std::swap(LHS, RHS); |
| std::swap(LHSShift, RHSShift); |
| std::swap(LHSMask, RHSMask); |
| } |
| |
| unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| SDValue LHSShiftArg = LHSShift.getOperand(0); |
| SDValue LHSShiftAmt = LHSShift.getOperand(1); |
| SDValue RHSShiftArg = RHSShift.getOperand(0); |
| SDValue RHSShiftAmt = RHSShift.getOperand(1); |
| |
| // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) |
| // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) |
| auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; |
| }; |
| if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { |
| SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, |
| LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); |
| |
| // If there is an AND of either shifted operand, apply it to the result. |
| if (LHSMask.getNode() || RHSMask.getNode()) { |
| SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); |
| SDValue Mask = AllOnes; |
| |
| if (LHSMask.getNode()) { |
| SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); |
| Mask = DAG.getNode(ISD::AND, DL, VT, Mask, |
| DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); |
| } |
| if (RHSMask.getNode()) { |
| SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); |
| Mask = DAG.getNode(ISD::AND, DL, VT, Mask, |
| DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); |
| } |
| |
| Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); |
| } |
| |
| return Rot.getNode(); |
| } |
| |
| // If there is a mask here, and we have a variable shift, we can't be sure |
| // that we're masking out the right stuff. |
| if (LHSMask.getNode() || RHSMask.getNode()) |
| return nullptr; |
| |
| // If the shift amount is sign/zext/any-extended just peel it off. |
| SDValue LExtOp0 = LHSShiftAmt; |
| SDValue RExtOp0 = RHSShiftAmt; |
| if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || |
| LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || |
| LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || |
| LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && |
| (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || |
| RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || |
| RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || |
| RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { |
| LExtOp0 = LHSShiftAmt.getOperand(0); |
| RExtOp0 = RHSShiftAmt.getOperand(0); |
| } |
| |
| SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, |
| LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); |
| if (TryL) |
| return TryL; |
| |
| SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, |
| RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); |
| if (TryR) |
| return TryR; |
| |
| return nullptr; |
| } |
| |
| namespace { |
| |
| /// Represents known origin of an individual byte in load combine pattern. The |
| /// value of the byte is either constant zero or comes from memory. |
| struct ByteProvider { |
| // For constant zero providers Load is set to nullptr. For memory providers |
| // Load represents the node which loads the byte from memory. |
| // ByteOffset is the offset of the byte in the value produced by the load. |
| LoadSDNode *Load = nullptr; |
| unsigned ByteOffset = 0; |
| |
| ByteProvider() = default; |
| |
| static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { |
| return ByteProvider(Load, ByteOffset); |
| } |
| |
| static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } |
| |
| bool isConstantZero() const { return !Load; } |
| bool isMemory() const { return Load; } |
| |
| bool operator==(const ByteProvider &Other) const { |
| return Other.Load == Load && Other.ByteOffset == ByteOffset; |
| } |
| |
| private: |
| ByteProvider(LoadSDNode *Load, unsigned ByteOffset) |
| : Load(Load), ByteOffset(ByteOffset) {} |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Recursively traverses the expression calculating the origin of the requested |
| /// byte of the given value. Returns None if the provider can't be calculated. |
| /// |
| /// For all the values except the root of the expression verifies that the value |
| /// has exactly one use and if it's not true return None. This way if the origin |
| /// of the byte is returned it's guaranteed that the values which contribute to |
| /// the byte are not used outside of this expression. |
| /// |
| /// Because the parts of the expression are not allowed to have more than one |
| /// use this function iterates over trees, not DAGs. So it never visits the same |
| /// node more than once. |
| static const Optional<ByteProvider> |
| calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, |
| bool Root = false) { |
| // Typical i64 by i8 pattern requires recursion up to 8 calls depth |
| if (Depth == 10) |
| return None; |
| |
| if (!Root && !Op.hasOneUse()) |
| return None; |
| |
| assert(Op.getValueType().isScalarInteger() && "can't handle other types"); |
| unsigned BitWidth = Op.getValueSizeInBits(); |
| if (BitWidth % 8 != 0) |
| return None; |
| unsigned ByteWidth = BitWidth / 8; |
| assert(Index < ByteWidth && "invalid index requested"); |
| (void) ByteWidth; |
| |
| switch (Op.getOpcode()) { |
| case ISD::OR: { |
| auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); |
| if (!LHS) |
| return None; |
| auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); |
| if (!RHS) |
| return None; |
| |
| if (LHS->isConstantZero()) |
| return RHS; |
| if (RHS->isConstantZero()) |
| return LHS; |
| return None; |
| } |
| case ISD::SHL: { |
| auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); |
| if (!ShiftOp) |
| return None; |
| |
| uint64_t BitShift = ShiftOp->getZExtValue(); |
| if (BitShift % 8 != 0) |
| return None; |
| uint64_t ByteShift = BitShift / 8; |
| |
| return Index < ByteShift |
| ? ByteProvider::getConstantZero() |
| : calculateByteProvider(Op->getOperand(0), Index - ByteShift, |
| Depth + 1); |
| } |
| case ISD::ANY_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: { |
| SDValue NarrowOp = Op->getOperand(0); |
| unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); |
| if (NarrowBitWidth % 8 != 0) |
| return None; |
| uint64_t NarrowByteWidth = NarrowBitWidth / 8; |
| |
| if (Index >= NarrowByteWidth) |
| return Op.getOpcode() == ISD::ZERO_EXTEND |
| ? Optional<ByteProvider>(ByteProvider::getConstantZero()) |
| : None; |
| return calculateByteProvider(NarrowOp, Index, Depth + 1); |
| } |
| case ISD::BSWAP: |
| return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, |
| Depth + 1); |
| case ISD::LOAD: { |
| auto L = cast<LoadSDNode>(Op.getNode()); |
| if (L->isVolatile() || L->isIndexed()) |
| return None; |
| |
| unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); |
| if (NarrowBitWidth % 8 != 0) |
| return None; |
| uint64_t NarrowByteWidth = NarrowBitWidth / 8; |
| |
| if (Index >= NarrowByteWidth) |
| return L->getExtensionType() == ISD::ZEXTLOAD |
| ? Optional<ByteProvider>(ByteProvider::getConstantZero()) |
| : None; |
| return ByteProvider::getMemory(L, Index); |
| } |
| } |
| |
| return None; |
| } |
| |
| /// Match a pattern where a wide type scalar value is loaded by several narrow |
| /// loads and combined by shifts and ors. Fold it into a single load or a load |
| /// and a BSWAP if the targets supports it. |
| /// |
| /// Assuming little endian target: |
| /// i8 *a = ... |
| /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) |
| /// => |
| /// i32 val = *((i32)a) |
| /// |
| /// i8 *a = ... |
| /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] |
| /// => |
| /// i32 val = BSWAP(*((i32)a)) |
| /// |
| /// TODO: This rule matches complex patterns with OR node roots and doesn't |
| /// interact well with the worklist mechanism. When a part of the pattern is |
| /// updated (e.g. one of the loads) its direct users are put into the worklist, |
| /// but the root node of the pattern which triggers the load combine is not |
| /// necessarily a direct user of the changed node. For example, once the address |
| /// of t28 load is reassociated load combine won't be triggered: |
| /// t25: i32 = add t4, Constant:i32<2> |
| /// t26: i64 = sign_extend t25 |
| /// t27: i64 = add t2, t26 |
| /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 |
| /// t29: i32 = zero_extend t28 |
| /// t32: i32 = shl t29, Constant:i8<8> |
| /// t33: i32 = or t23, t32 |
| /// As a possible fix visitLoad can check if the load can be a part of a load |
| /// combine pattern and add corresponding OR roots to the worklist. |
| SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { |
| assert(N->getOpcode() == ISD::OR && |
| "Can only match load combining against OR nodes"); |
| |
| // Handles simple types only |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| unsigned ByteWidth = VT.getSizeInBits() / 8; |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| // Before legalize we can introduce too wide illegal loads which will be later |
| // split into legal sized loads. This enables us to combine i64 load by i8 |
| // patterns to a couple of i32 loads on 32 bit targets. |
| if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT)) |
| return SDValue(); |
| |
| std::function<unsigned(unsigned, unsigned)> LittleEndianByteAt = []( |
| unsigned BW, unsigned i) { return i; }; |
| std::function<unsigned(unsigned, unsigned)> BigEndianByteAt = []( |
| unsigned BW, unsigned i) { return BW - i - 1; }; |
| |
| bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); |
| auto MemoryByteOffset = [&] (ByteProvider P) { |
| assert(P.isMemory() && "Must be a memory byte provider"); |
| unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); |
| assert(LoadBitWidth % 8 == 0 && |
| "can only analyze providers for individual bytes not bit"); |
| unsigned LoadByteWidth = LoadBitWidth / 8; |
| return IsBigEndianTarget |
| ? BigEndianByteAt(LoadByteWidth, P.ByteOffset) |
| : LittleEndianByteAt(LoadByteWidth, P.ByteOffset); |
| }; |
| |
| Optional<BaseIndexOffset> Base; |
| SDValue Chain; |
| |
| SmallPtrSet<LoadSDNode *, 8> Loads; |
| Optional<ByteProvider> FirstByteProvider; |
| int64_t FirstOffset = INT64_MAX; |
| |
| // Check if all the bytes of the OR we are looking at are loaded from the same |
| // base address. Collect bytes offsets from Base address in ByteOffsets. |
| SmallVector<int64_t, 4> ByteOffsets(ByteWidth); |
| for (unsigned i = 0; i < ByteWidth; i++) { |
| auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); |
| if (!P || !P->isMemory()) // All the bytes must be loaded from memory |
| return SDValue(); |
| |
| LoadSDNode *L = P->Load; |
| assert(L->hasNUsesOfValue(1, 0) && !L->isVolatile() && !L->isIndexed() && |
| "Must be enforced by calculateByteProvider"); |
| assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); |
| |
| // All loads must share the same chain |
| SDValue LChain = L->getChain(); |
| if (!Chain) |
| Chain = LChain; |
| else if (Chain != LChain) |
| return SDValue(); |
| |
| // Loads must share the same base address |
| BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); |
| int64_t ByteOffsetFromBase = 0; |
| if (!Base) |
| Base = Ptr; |
| else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) |
| return SDValue(); |
| |
| // Calculate the offset of the current byte from the base address |
| ByteOffsetFromBase += MemoryByteOffset(*P); |
| ByteOffsets[i] = ByteOffsetFromBase; |
| |
| // Remember the first byte load |
| if (ByteOffsetFromBase < FirstOffset) { |
| FirstByteProvider = P; |
| FirstOffset = ByteOffsetFromBase; |
| } |
| |
| Loads.insert(L); |
| } |
| assert(!Loads.empty() && "All the bytes of the value must be loaded from " |
| "memory, so there must be at least one load which produces the value"); |
| assert(Base && "Base address of the accessed memory location must be set"); |
| assert(FirstOffset != INT64_MAX && "First byte offset must be set"); |
| |
| // Check if the bytes of the OR we are looking at match with either big or |
| // little endian value load |
| bool BigEndian = true, LittleEndian = true; |
| for (unsigned i = 0; i < ByteWidth; i++) { |
| int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; |
| LittleEndian &= CurrentByteOffset == LittleEndianByteAt(ByteWidth, i); |
| BigEndian &= CurrentByteOffset == BigEndianByteAt(ByteWidth, i); |
| if (!BigEndian && !LittleEndian) |
| return SDValue(); |
| } |
| assert((BigEndian != LittleEndian) && "should be either or"); |
| assert(FirstByteProvider && "must be set"); |
| |
| // Ensure that the first byte is loaded from zero offset of the first load. |
| // So the combined value can be loaded from the first load address. |
| if (MemoryByteOffset(*FirstByteProvider) != 0) |
| return SDValue(); |
| LoadSDNode *FirstLoad = FirstByteProvider->Load; |
| |
| // The node we are looking at matches with the pattern, check if we can |
| // replace it with a single load and bswap if needed. |
| |
| // If the load needs byte swap check if the target supports it |
| bool NeedsBswap = IsBigEndianTarget != BigEndian; |
| |
| // Before legalize we can introduce illegal bswaps which will be later |
| // converted to an explicit bswap sequence. This way we end up with a single |
| // load and byte shuffling instead of several loads and byte shuffling. |
| if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT)) |
| return SDValue(); |
| |
| // Check that a load of the wide type is both allowed and fast on the target |
| bool Fast = false; |
| bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), |
| VT, FirstLoad->getAddressSpace(), |
| FirstLoad->getAlignment(), &Fast); |
| if (!Allowed || !Fast) |
| return SDValue(); |
| |
| SDValue NewLoad = |
| DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(), |
| FirstLoad->getPointerInfo(), FirstLoad->getAlignment()); |
| |
| // Transfer chain users from old loads to the new load. |
| for (LoadSDNode *L : Loads) |
| DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); |
| |
| return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad; |
| } |
| |
| // If the target has andn, bsl, or a similar bit-select instruction, |
| // we want to unfold masked merge, with canonical pattern of: |
| // | A | |B| |
| // ((x ^ y) & m) ^ y |
| // | D | |
| // Into: |
| // (x & m) | (y & ~m) |
| // If y is a constant, and the 'andn' does not work with immediates, |
| // we unfold into a different pattern: |
| // ~(~x & m) & (m | y) |
| // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at |
| // the very least that breaks andnpd / andnps patterns, and because those |
| // patterns are simplified in IR and shouldn't be created in the DAG |
| SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { |
| assert(N->getOpcode() == ISD::XOR); |
| |
| // Don't touch 'not' (i.e. where y = -1). |
| if (isAllOnesConstantOrAllOnesSplatConstant(N->getOperand(1))) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| |
| // There are 3 commutable operators in the pattern, |
| // so we have to deal with 8 possible variants of the basic pattern. |
| SDValue X, Y, M; |
| auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { |
| if (And.getOpcode() != ISD::AND || !And.hasOneUse()) |
| return false; |
| SDValue Xor = And.getOperand(XorIdx); |
| if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) |
| return false; |
| SDValue Xor0 = Xor.getOperand(0); |
| SDValue Xor1 = Xor.getOperand(1); |
| // Don't touch 'not' (i.e. where y = -1). |
| if (isAllOnesConstantOrAllOnesSplatConstant(Xor1)) |
| return false; |
| if (Other == Xor0) |
| std::swap(Xor0, Xor1); |
| if (Other != Xor1) |
| return false; |
| X = Xor0; |
| Y = Xor1; |
| M = And.getOperand(XorIdx ? 0 : 1); |
| return true; |
| }; |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && |
| !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) |
| return SDValue(); |
| |
| // Don't do anything if the mask is constant. This should not be reachable. |
| // InstCombine should have already unfolded this pattern, and DAGCombiner |
| // probably shouldn't produce it, too. |
| if (isa<ConstantSDNode>(M.getNode())) |
| return SDValue(); |
| |
| // We can transform if the target has AndNot |
| if (!TLI.hasAndNot(M)) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| |
| // If Y is a constant, check that 'andn' works with immediates. |
| if (!TLI.hasAndNot(Y)) { |
| assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); |
| // If not, we need to do a bit more work to make sure andn is still used. |
| SDValue NotX = DAG.getNOT(DL, X, VT); |
| SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); |
| SDValue NotLHS = DAG.getNOT(DL, LHS, VT); |
| SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); |
| return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); |
| } |
| |
| SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); |
| SDValue NotM = DAG.getNOT(DL, M, VT); |
| SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); |
| |
| return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); |
| } |
| |
| SDValue DAGCombiner::visitXOR(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (xor x, 0) -> x, vector edition |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| return N1; |
| if (ISD::isBuildVectorAllZeros(N1.getNode())) |
| return N0; |
| } |
| |
| // fold (xor undef, undef) -> 0. This is a common idiom (misuse). |
| if (N0.isUndef() && N1.isUndef()) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| // fold (xor x, undef) -> undef |
| if (N0.isUndef()) |
| return N0; |
| if (N1.isUndef()) |
| return N1; |
| // fold (xor c1, c2) -> c1^c2 |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); |
| if (N0C && N1C) |
| return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C); |
| // canonicalize constant to RHS |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| !DAG.isConstantIntBuildVectorOrConstantInt(N1)) |
| return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); |
| // fold (xor x, 0) -> x |
| if (isNullConstant(N1)) |
| return N0; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // reassociate xor |
| if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1)) |
| return RXOR; |
| |
| // fold !(x cc y) -> (x !cc y) |
| SDValue LHS, RHS, CC; |
| if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { |
| bool isInt = LHS.getValueType().isInteger(); |
| ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), |
| isInt); |
| |
| if (!LegalOperations || |
| TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { |
| switch (N0.getOpcode()) { |
| default: |
| llvm_unreachable("Unhandled SetCC Equivalent!"); |
| case ISD::SETCC: |
| return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); |
| case ISD::SELECT_CC: |
| return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), |
| N0.getOperand(3), NotCC); |
| } |
| } |
| } |
| |
| // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) |
| if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND && |
| N0.getNode()->hasOneUse() && |
| isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ |
| SDValue V = N0.getOperand(0); |
| SDLoc DL(N0); |
| V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V, |
| DAG.getConstant(1, DL, V.getValueType())); |
| AddToWorklist(V.getNode()); |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); |
| } |
| |
| // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc |
| if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && |
| (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { |
| SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); |
| if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { |
| unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; |
| LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS |
| RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS |
| AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); |
| return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); |
| } |
| } |
| // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants |
| if (isAllOnesConstant(N1) && N0.hasOneUse() && |
| (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { |
| SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); |
| if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { |
| unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; |
| LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS |
| RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS |
| AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); |
| return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); |
| } |
| } |
| // fold (xor (and x, y), y) -> (and (not x), y) |
| if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && |
| N0->getOperand(1) == N1) { |
| SDValue X = N0->getOperand(0); |
| SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); |
| AddToWorklist(NotX.getNode()); |
| return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); |
| } |
| |
| // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) |
| if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { |
| SDValue A = N0.getOpcode() == ISD::ADD ? N0 : N1; |
| SDValue S = N0.getOpcode() == ISD::SRA ? N0 : N1; |
| if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { |
| SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); |
| SDValue S0 = S.getOperand(0); |
| if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) { |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) |
| if (C->getAPIntValue() == (OpSizeInBits - 1)) |
| return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); |
| } |
| } |
| } |
| |
| // fold (xor x, x) -> 0 |
| if (N0 == N1) |
| return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); |
| |
| // fold (xor (shl 1, x), -1) -> (rotl ~1, x) |
| // Here is a concrete example of this equivalence: |
| // i16 x == 14 |
| // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 |
| // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 |
| // |
| // => |
| // |
| // i16 ~1 == 0b1111111111111110 |
| // i16 rol(~1, 14) == 0b1011111111111111 |
| // |
| // Some additional tips to help conceptualize this transform: |
| // - Try to see the operation as placing a single zero in a value of all ones. |
| // - There exists no value for x which would allow the result to contain zero. |
| // - Values of x larger than the bitwidth are undefined and do not require a |
| // consistent result. |
| // - Pushing the zero left requires shifting one bits in from the right. |
| // A rotate left of ~1 is a nice way of achieving the desired result. |
| if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL |
| && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { |
| SDLoc DL(N); |
| return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), |
| N0.getOperand(1)); |
| } |
| |
| // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) |
| if (N0.getOpcode() == N1.getOpcode()) |
| if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) |
| return Tmp; |
| |
| // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable |
| if (SDValue MM = unfoldMaskedMerge(N)) |
| return MM; |
| |
| // Simplify the expression using non-local knowledge. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| /// Handle transforms common to the three shifts, when the shift amount is a |
| /// constant. |
| SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { |
| SDNode *LHS = N->getOperand(0).getNode(); |
| if (!LHS->hasOneUse()) return SDValue(); |
| |
| // We want to pull some binops through shifts, so that we have (and (shift)) |
| // instead of (shift (and)), likewise for add, or, xor, etc. This sort of |
| // thing happens with address calculations, so it's important to canonicalize |
| // it. |
| bool HighBitSet = false; // Can we transform this if the high bit is set? |
| |
| switch (LHS->getOpcode()) { |
| default: return SDValue(); |
| case ISD::OR: |
| case ISD::XOR: |
| HighBitSet = false; // We can only transform sra if the high bit is clear. |
| break; |
| case ISD::AND: |
| HighBitSet = true; // We can only transform sra if the high bit is set. |
| break; |
| case ISD::ADD: |
| if (N->getOpcode() != ISD::SHL) |
| return SDValue(); // only shl(add) not sr[al](add). |
| HighBitSet = false; // We can only transform sra if the high bit is clear. |
| break; |
| } |
| |
| // We require the RHS of the binop to be a constant and not opaque as well. |
| ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); |
| if (!BinOpCst) return SDValue(); |
| |
| // FIXME: disable this unless the input to the binop is a shift by a constant |
| // or is copy/select.Enable this in other cases when figure out it's exactly profitable. |
| SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); |
| bool isShift = BinOpLHSVal->getOpcode() == ISD::SHL || |
| BinOpLHSVal->getOpcode() == ISD::SRA || |
| BinOpLHSVal->getOpcode() == ISD::SRL; |
| bool isCopyOrSelect = BinOpLHSVal->getOpcode() == ISD::CopyFromReg || |
| BinOpLHSVal->getOpcode() == ISD::SELECT; |
| |
| if ((!isShift || !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) && |
| !isCopyOrSelect) |
| return SDValue(); |
| |
| if (isCopyOrSelect && N->hasOneUse()) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| |
| // If this is a signed shift right, and the high bit is modified by the |
| // logical operation, do not perform the transformation. The highBitSet |
| // boolean indicates the value of the high bit of the constant which would |
| // cause it to be modified for this operation. |
| if (N->getOpcode() == ISD::SRA) { |
| bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); |
| if (BinOpRHSSignSet != HighBitSet) |
| return SDValue(); |
| } |
| |
| if (!TLI.isDesirableToCommuteWithShift(LHS)) |
| return SDValue(); |
| |
| // Fold the constants, shifting the binop RHS by the shift amount. |
| SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), |
| N->getValueType(0), |
| LHS->getOperand(1), N->getOperand(1)); |
| assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); |
| |
| // Create the new shift. |
| SDValue NewShift = DAG.getNode(N->getOpcode(), |
| SDLoc(LHS->getOperand(0)), |
| VT, LHS->getOperand(0), N->getOperand(1)); |
| |
| // Create the new binop. |
| return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); |
| } |
| |
| SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { |
| assert(N->getOpcode() == ISD::TRUNCATE); |
| assert(N->getOperand(0).getOpcode() == ISD::AND); |
| |
| // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) |
| if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { |
| SDValue N01 = N->getOperand(0).getOperand(1); |
| if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { |
| SDLoc DL(N); |
| EVT TruncVT = N->getValueType(0); |
| SDValue N00 = N->getOperand(0).getOperand(0); |
| SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); |
| SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); |
| AddToWorklist(Trunc00.getNode()); |
| AddToWorklist(Trunc01.getNode()); |
| return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitRotate(SDNode *N) { |
| SDLoc dl(N); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| unsigned Bitsize = VT.getScalarSizeInBits(); |
| |
| // fold (rot x, 0) -> x |
| if (isNullConstantOrNullSplatConstant(N1)) |
| return N0; |
| |
| // fold (rot x, c) -> (rot x, c % BitSize) |
| if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) { |
| if (Cst->getAPIntValue().uge(Bitsize)) { |
| uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize); |
| return DAG.getNode(N->getOpcode(), dl, VT, N0, |
| DAG.getConstant(RotAmt, dl, N1.getValueType())); |
| } |
| } |
| |
| // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). |
| if (N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getOpcode() == ISD::AND) { |
| if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) |
| return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); |
| } |
| |
| unsigned NextOp = N0.getOpcode(); |
| // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) |
| if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { |
| SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); |
| SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); |
| if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { |
| EVT ShiftVT = C1->getValueType(0); |
| bool SameSide = (N->getOpcode() == NextOp); |
| unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; |
| if (SDValue CombinedShift = |
| DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) { |
| SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); |
| SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( |
| ISD::SREM, dl, ShiftVT, CombinedShift.getNode(), |
| BitsizeC.getNode()); |
| return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), |
| CombinedShiftNorm); |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSHL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); |
| // If setcc produces all-one true value then: |
| // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) |
| if (N1CV && N1CV->isConstant()) { |
| if (N0.getOpcode() == ISD::AND) { |
| SDValue N00 = N0->getOperand(0); |
| SDValue N01 = N0->getOperand(1); |
| BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); |
| |
| if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && |
| TLI.getBooleanContents(N00.getOperand(0).getValueType()) == |
| TargetLowering::ZeroOrNegativeOneBooleanContent) { |
| if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, |
| N01CV, N1CV)) |
| return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); |
| } |
| } |
| } |
| } |
| |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| |
| // fold (shl c1, c2) -> c1<<c2 |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| if (N0C && N1C && !N1C->isOpaque()) |
| return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); |
| // fold (shl 0, x) -> 0 |
| if (isNullConstantOrNullSplatConstant(N0)) |
| return N0; |
| // fold (shl x, c >= size(x)) -> undef |
| // NOTE: ALL vector elements must be too big to avoid partial UNDEFs. |
| auto MatchShiftTooBig = [OpSizeInBits](ConstantSDNode *Val) { |
| return Val->getAPIntValue().uge(OpSizeInBits); |
| }; |
| if (ISD::matchUnaryPredicate(N1, MatchShiftTooBig)) |
| return DAG.getUNDEF(VT); |
| // fold (shl x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // fold (shl undef, x) -> 0 |
| if (N0.isUndef()) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // if (shl x, c) is known to be zero, return 0 |
| if (DAG.MaskedValueIsZero(SDValue(N, 0), |
| APInt::getAllOnesValue(OpSizeInBits))) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). |
| if (N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getOpcode() == ISD::AND) { |
| if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) |
| return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); |
| } |
| |
| if (N1C && SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) |
| if (N0.getOpcode() == ISD::SHL) { |
| auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).uge(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).ult(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { |
| SDLoc DL(N); |
| EVT ShiftVT = N1.getValueType(); |
| SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); |
| return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); |
| } |
| } |
| |
| // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) |
| // For this to be valid, the second form must not preserve any of the bits |
| // that are shifted out by the inner shift in the first form. This means |
| // the outer shift size must be >= the number of bits added by the ext. |
| // As a corollary, we don't care what kind of ext it is. |
| if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::ANY_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND) && |
| N0.getOperand(0).getOpcode() == ISD::SHL) { |
| SDValue N0Op0 = N0.getOperand(0); |
| if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { |
| APInt c1 = N0Op0C1->getAPIntValue(); |
| APInt c2 = N1C->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| |
| EVT InnerShiftVT = N0Op0.getValueType(); |
| uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); |
| if (c2.uge(OpSizeInBits - InnerShiftSize)) { |
| SDLoc DL(N0); |
| APInt Sum = c1 + c2; |
| if (Sum.uge(OpSizeInBits)) |
| return DAG.getConstant(0, DL, VT); |
| |
| return DAG.getNode( |
| ISD::SHL, DL, VT, |
| DAG.getNode(N0.getOpcode(), DL, VT, N0Op0->getOperand(0)), |
| DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); |
| } |
| } |
| } |
| |
| // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) |
| // Only fold this if the inner zext has no other uses to avoid increasing |
| // the total number of instructions. |
| if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && |
| N0.getOperand(0).getOpcode() == ISD::SRL) { |
| SDValue N0Op0 = N0.getOperand(0); |
| if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { |
| if (N0Op0C1->getAPIntValue().ult(VT.getScalarSizeInBits())) { |
| uint64_t c1 = N0Op0C1->getZExtValue(); |
| uint64_t c2 = N1C->getZExtValue(); |
| if (c1 == c2) { |
| SDValue NewOp0 = N0.getOperand(0); |
| EVT CountVT = NewOp0.getOperand(1).getValueType(); |
| SDLoc DL(N); |
| SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), |
| NewOp0, |
| DAG.getConstant(c2, DL, CountVT)); |
| AddToWorklist(NewSHL.getNode()); |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); |
| } |
| } |
| } |
| } |
| |
| // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 |
| // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 |
| if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && |
| N0->getFlags().hasExact()) { |
| if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { |
| uint64_t C1 = N0C1->getZExtValue(); |
| uint64_t C2 = N1C->getZExtValue(); |
| SDLoc DL(N); |
| if (C1 <= C2) |
| return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), |
| DAG.getConstant(C2 - C1, DL, N1.getValueType())); |
| return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), |
| DAG.getConstant(C1 - C2, DL, N1.getValueType())); |
| } |
| } |
| |
| // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or |
| // (and (srl x, (sub c1, c2), MASK) |
| // Only fold this if the inner shift has no other uses -- if it does, folding |
| // this will increase the total number of instructions. |
| if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { |
| if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { |
| uint64_t c1 = N0C1->getZExtValue(); |
| if (c1 < OpSizeInBits) { |
| uint64_t c2 = N1C->getZExtValue(); |
| APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); |
| SDValue Shift; |
| if (c2 > c1) { |
| Mask <<= c2 - c1; |
| SDLoc DL(N); |
| Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), |
| DAG.getConstant(c2 - c1, DL, N1.getValueType())); |
| } else { |
| Mask.lshrInPlace(c1 - c2); |
| SDLoc DL(N); |
| Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), |
| DAG.getConstant(c1 - c2, DL, N1.getValueType())); |
| } |
| SDLoc DL(N0); |
| return DAG.getNode(ISD::AND, DL, VT, Shift, |
| DAG.getConstant(Mask, DL, VT)); |
| } |
| } |
| } |
| |
| // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) |
| if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && |
| isConstantOrConstantVector(N1, /* No Opaques */ true)) { |
| SDLoc DL(N); |
| SDValue AllBits = DAG.getAllOnesConstant(DL, VT); |
| SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); |
| return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); |
| } |
| |
| // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) |
| // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) |
| // Variant of version done on multiply, except mul by a power of 2 is turned |
| // into a shift. |
| if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && |
| N0.getNode()->hasOneUse() && |
| isConstantOrConstantVector(N1, /* No Opaques */ true) && |
| isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { |
| SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); |
| SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); |
| AddToWorklist(Shl0.getNode()); |
| AddToWorklist(Shl1.getNode()); |
| return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); |
| } |
| |
| // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) |
| if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && |
| isConstantOrConstantVector(N1, /* No Opaques */ true) && |
| isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { |
| SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); |
| if (isConstantOrConstantVector(Shl)) |
| return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); |
| } |
| |
| if (N1C && !N1C->isOpaque()) |
| if (SDValue NewSHL = visitShiftByConstant(N, N1C)) |
| return NewSHL; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSRA(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| |
| // Arithmetic shifting an all-sign-bit value is a no-op. |
| // fold (sra 0, x) -> 0 |
| // fold (sra -1, x) -> -1 |
| if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) |
| return N0; |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| |
| // fold (sra c1, c2) -> (sra c1, c2) |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| if (N0C && N1C && !N1C->isOpaque()) |
| return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); |
| // fold (sra x, c >= size(x)) -> undef |
| // NOTE: ALL vector elements must be too big to avoid partial UNDEFs. |
| auto MatchShiftTooBig = [OpSizeInBits](ConstantSDNode *Val) { |
| return Val->getAPIntValue().uge(OpSizeInBits); |
| }; |
| if (ISD::matchUnaryPredicate(N1, MatchShiftTooBig)) |
| return DAG.getUNDEF(VT); |
| // fold (sra x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports |
| // sext_inreg. |
| if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { |
| unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); |
| EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); |
| if (VT.isVector()) |
| ExtVT = EVT::getVectorVT(*DAG.getContext(), |
| ExtVT, VT.getVectorNumElements()); |
| if ((!LegalOperations || |
| TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, |
| N0.getOperand(0), DAG.getValueType(ExtVT)); |
| } |
| |
| // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) |
| if (N0.getOpcode() == ISD::SRA) { |
| SDLoc DL(N); |
| EVT ShiftVT = N1.getValueType(); |
| |
| auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).uge(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) |
| return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), |
| DAG.getConstant(OpSizeInBits - 1, DL, ShiftVT)); |
| |
| auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).ult(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { |
| SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); |
| return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), Sum); |
| } |
| } |
| |
| // fold (sra (shl X, m), (sub result_size, n)) |
| // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for |
| // result_size - n != m. |
| // If truncate is free for the target sext(shl) is likely to result in better |
| // code. |
| if (N0.getOpcode() == ISD::SHL && N1C) { |
| // Get the two constanst of the shifts, CN0 = m, CN = n. |
| const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); |
| if (N01C) { |
| LLVMContext &Ctx = *DAG.getContext(); |
| // Determine what the truncate's result bitsize and type would be. |
| EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); |
| |
| if (VT.isVector()) |
| TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); |
| |
| // Determine the residual right-shift amount. |
| int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); |
| |
| // If the shift is not a no-op (in which case this should be just a sign |
| // extend already), the truncated to type is legal, sign_extend is legal |
| // on that type, and the truncate to that type is both legal and free, |
| // perform the transform. |
| if ((ShiftAmt > 0) && |
| TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && |
| TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && |
| TLI.isTruncateFree(VT, TruncVT)) { |
| SDLoc DL(N); |
| SDValue Amt = DAG.getConstant(ShiftAmt, DL, |
| getShiftAmountTy(N0.getOperand(0).getValueType())); |
| SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, |
| N0.getOperand(0), Amt); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, |
| Shift); |
| return DAG.getNode(ISD::SIGN_EXTEND, DL, |
| N->getValueType(0), Trunc); |
| } |
| } |
| } |
| |
| // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). |
| if (N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getOpcode() == ISD::AND) { |
| if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) |
| return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); |
| } |
| |
| // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) |
| // if c1 is equal to the number of bits the trunc removes |
| if (N0.getOpcode() == ISD::TRUNCATE && |
| (N0.getOperand(0).getOpcode() == ISD::SRL || |
| N0.getOperand(0).getOpcode() == ISD::SRA) && |
| N0.getOperand(0).hasOneUse() && |
| N0.getOperand(0).getOperand(1).hasOneUse() && |
| N1C) { |
| SDValue N0Op0 = N0.getOperand(0); |
| if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { |
| unsigned LargeShiftVal = LargeShift->getZExtValue(); |
| EVT LargeVT = N0Op0.getValueType(); |
| |
| if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { |
| SDLoc DL(N); |
| SDValue Amt = |
| DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, |
| getShiftAmountTy(N0Op0.getOperand(0).getValueType())); |
| SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, |
| N0Op0.getOperand(0), Amt); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); |
| } |
| } |
| } |
| |
| // Simplify, based on bits shifted out of the LHS. |
| if (N1C && SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // If the sign bit is known to be zero, switch this to a SRL. |
| if (DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); |
| |
| if (N1C && !N1C->isOpaque()) |
| if (SDValue NewSRA = visitShiftByConstant(N, N1C)) |
| return NewSRA; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSRL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| ConstantSDNode *N1C = isConstOrConstSplat(N1); |
| |
| // fold (srl c1, c2) -> c1 >>u c2 |
| ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); |
| if (N0C && N1C && !N1C->isOpaque()) |
| return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); |
| // fold (srl 0, x) -> 0 |
| if (isNullConstantOrNullSplatConstant(N0)) |
| return N0; |
| // fold (srl x, c >= size(x)) -> undef |
| // NOTE: ALL vector elements must be too big to avoid partial UNDEFs. |
| auto MatchShiftTooBig = [OpSizeInBits](ConstantSDNode *Val) { |
| return Val->getAPIntValue().uge(OpSizeInBits); |
| }; |
| if (ISD::matchUnaryPredicate(N1, MatchShiftTooBig)) |
| return DAG.getUNDEF(VT); |
| // fold (srl x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // if (srl x, c) is known to be zero, return 0 |
| if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), |
| APInt::getAllOnesValue(OpSizeInBits))) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) |
| if (N0.getOpcode() == ISD::SRL) { |
| auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).uge(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) |
| return DAG.getConstant(0, SDLoc(N), VT); |
| |
| auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, |
| ConstantSDNode *RHS) { |
| APInt c1 = LHS->getAPIntValue(); |
| APInt c2 = RHS->getAPIntValue(); |
| zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); |
| return (c1 + c2).ult(OpSizeInBits); |
| }; |
| if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { |
| SDLoc DL(N); |
| EVT ShiftVT = N1.getValueType(); |
| SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); |
| return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); |
| } |
| } |
| |
| // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) |
| if (N1C && N0.getOpcode() == ISD::TRUNCATE && |
| N0.getOperand(0).getOpcode() == ISD::SRL) { |
| if (auto N001C = isConstOrConstSplat(N0.getOperand(0).getOperand(1))) { |
| uint64_t c1 = N001C->getZExtValue(); |
| uint64_t c2 = N1C->getZExtValue(); |
| EVT InnerShiftVT = N0.getOperand(0).getValueType(); |
| EVT ShiftCountVT = N0.getOperand(0).getOperand(1).getValueType(); |
| uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); |
| // This is only valid if the OpSizeInBits + c1 = size of inner shift. |
| if (c1 + OpSizeInBits == InnerShiftSize) { |
| SDLoc DL(N0); |
| if (c1 + c2 >= InnerShiftSize) |
| return DAG.getConstant(0, DL, VT); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, |
| DAG.getNode(ISD::SRL, DL, InnerShiftVT, |
| N0.getOperand(0).getOperand(0), |
| DAG.getConstant(c1 + c2, DL, |
| ShiftCountVT))); |
| } |
| } |
| } |
| |
| // fold (srl (shl x, c), c) -> (and x, cst2) |
| if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && |
| isConstantOrConstantVector(N1, /* NoOpaques */ true)) { |
| SDLoc DL(N); |
| SDValue Mask = |
| DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); |
| AddToWorklist(Mask.getNode()); |
| return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); |
| } |
| |
| // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) |
| if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { |
| // Shifting in all undef bits? |
| EVT SmallVT = N0.getOperand(0).getValueType(); |
| unsigned BitSize = SmallVT.getScalarSizeInBits(); |
| if (N1C->getZExtValue() >= BitSize) |
| return DAG.getUNDEF(VT); |
| |
| if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { |
| uint64_t ShiftAmt = N1C->getZExtValue(); |
| SDLoc DL0(N0); |
| SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, |
| N0.getOperand(0), |
| DAG.getConstant(ShiftAmt, DL0, |
| getShiftAmountTy(SmallVT))); |
| AddToWorklist(SmallShift.getNode()); |
| APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); |
| SDLoc DL(N); |
| return DAG.getNode(ISD::AND, DL, VT, |
| DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), |
| DAG.getConstant(Mask, DL, VT)); |
| } |
| } |
| |
| // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign |
| // bit, which is unmodified by sra. |
| if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { |
| if (N0.getOpcode() == ISD::SRA) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); |
| } |
| |
| // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). |
| if (N1C && N0.getOpcode() == ISD::CTLZ && |
| N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { |
| KnownBits Known; |
| DAG.computeKnownBits(N0.getOperand(0), Known); |
| |
| // If any of the input bits are KnownOne, then the input couldn't be all |
| // zeros, thus the result of the srl will always be zero. |
| if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); |
| |
| // If all of the bits input the to ctlz node are known to be zero, then |
| // the result of the ctlz is "32" and the result of the shift is one. |
| APInt UnknownBits = ~Known.Zero; |
| if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); |
| |
| // Otherwise, check to see if there is exactly one bit input to the ctlz. |
| if (UnknownBits.isPowerOf2()) { |
| // Okay, we know that only that the single bit specified by UnknownBits |
| // could be set on input to the CTLZ node. If this bit is set, the SRL |
| // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair |
| // to an SRL/XOR pair, which is likely to simplify more. |
| unsigned ShAmt = UnknownBits.countTrailingZeros(); |
| SDValue Op = N0.getOperand(0); |
| |
| if (ShAmt) { |
| SDLoc DL(N0); |
| Op = DAG.getNode(ISD::SRL, DL, VT, Op, |
| DAG.getConstant(ShAmt, DL, |
| getShiftAmountTy(Op.getValueType()))); |
| AddToWorklist(Op.getNode()); |
| } |
| |
| SDLoc DL(N); |
| return DAG.getNode(ISD::XOR, DL, VT, |
| Op, DAG.getConstant(1, DL, VT)); |
| } |
| } |
| |
| // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). |
| if (N1.getOpcode() == ISD::TRUNCATE && |
| N1.getOperand(0).getOpcode() == ISD::AND) { |
| if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) |
| return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); |
| } |
| |
| // fold operands of srl based on knowledge that the low bits are not |
| // demanded. |
| if (N1C && SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| if (N1C && !N1C->isOpaque()) |
| if (SDValue NewSRL = visitShiftByConstant(N, N1C)) |
| return NewSRL; |
| |
| // Attempt to convert a srl of a load into a narrower zero-extending load. |
| if (SDValue NarrowLoad = ReduceLoadWidth(N)) |
| return NarrowLoad; |
| |
| // Here is a common situation. We want to optimize: |
| // |
| // %a = ... |
| // %b = and i32 %a, 2 |
| // %c = srl i32 %b, 1 |
| // brcond i32 %c ... |
| // |
| // into |
| // |
| // %a = ... |
| // %b = and %a, 2 |
| // %c = setcc eq %b, 0 |
| // brcond %c ... |
| // |
| // However when after the source operand of SRL is optimized into AND, the SRL |
| // itself may not be optimized further. Look for it and add the BRCOND into |
| // the worklist. |
| if (N->hasOneUse()) { |
| SDNode *Use = *N->use_begin(); |
| if (Use->getOpcode() == ISD::BRCOND) |
| AddToWorklist(Use); |
| else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { |
| // Also look pass the truncate. |
| Use = *Use->use_begin(); |
| if (Use->getOpcode() == ISD::BRCOND) |
| AddToWorklist(Use); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitABS(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (abs c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); |
| // fold (abs (abs x)) -> (abs x) |
| if (N0.getOpcode() == ISD::ABS) |
| return N0; |
| // fold (abs x) -> x iff not-negative |
| if (DAG.SignBitIsZero(N0)) |
| return N0; |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBSWAP(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (bswap c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); |
| // fold (bswap (bswap x)) -> x |
| if (N0.getOpcode() == ISD::BSWAP) |
| return N0->getOperand(0); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (bitreverse c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); |
| // fold (bitreverse (bitreverse x)) -> x |
| if (N0.getOpcode() == ISD::BITREVERSE) |
| return N0.getOperand(0); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTLZ(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ctlz c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); |
| |
| // If the value is known never to be zero, switch to the undef version. |
| if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { |
| if (DAG.isKnownNeverZero(N0)) |
| return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ctlz_zero_undef c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTTZ(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (cttz c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); |
| |
| // If the value is known never to be zero, switch to the undef version. |
| if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { |
| if (DAG.isKnownNeverZero(N0)) |
| return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (cttz_zero_undef c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitCTPOP(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ctpop c1) -> c2 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); |
| return SDValue(); |
| } |
| |
| /// Generate Min/Max node |
| static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, |
| SDValue RHS, SDValue True, SDValue False, |
| ISD::CondCode CC, const TargetLowering &TLI, |
| SelectionDAG &DAG) { |
| if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) |
| return SDValue(); |
| |
| switch (CC) { |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| case ISD::SETULT: |
| case ISD::SETULE: { |
| unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; |
| if (TLI.isOperationLegal(Opcode, VT)) |
| return DAG.getNode(Opcode, DL, VT, LHS, RHS); |
| return SDValue(); |
| } |
| case ISD::SETOGT: |
| case ISD::SETOGE: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: { |
| unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; |
| if (TLI.isOperationLegal(Opcode, VT)) |
| return DAG.getNode(Opcode, DL, VT, LHS, RHS); |
| return SDValue(); |
| } |
| default: |
| return SDValue(); |
| } |
| } |
| |
| SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { |
| SDValue Cond = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| EVT CondVT = Cond.getValueType(); |
| SDLoc DL(N); |
| |
| if (!VT.isInteger()) |
| return SDValue(); |
| |
| auto *C1 = dyn_cast<ConstantSDNode>(N1); |
| auto *C2 = dyn_cast<ConstantSDNode>(N2); |
| if (!C1 || !C2) |
| return SDValue(); |
| |
| // Only do this before legalization to avoid conflicting with target-specific |
| // transforms in the other direction (create a select from a zext/sext). There |
| // is also a target-independent combine here in DAGCombiner in the other |
| // direction for (select Cond, -1, 0) when the condition is not i1. |
| if (CondVT == MVT::i1 && !LegalOperations) { |
| if (C1->isNullValue() && C2->isOne()) { |
| // select Cond, 0, 1 --> zext (!Cond) |
| SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); |
| if (VT != MVT::i1) |
| NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); |
| return NotCond; |
| } |
| if (C1->isNullValue() && C2->isAllOnesValue()) { |
| // select Cond, 0, -1 --> sext (!Cond) |
| SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); |
| if (VT != MVT::i1) |
| NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); |
| return NotCond; |
| } |
| if (C1->isOne() && C2->isNullValue()) { |
| // select Cond, 1, 0 --> zext (Cond) |
| if (VT != MVT::i1) |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); |
| return Cond; |
| } |
| if (C1->isAllOnesValue() && C2->isNullValue()) { |
| // select Cond, -1, 0 --> sext (Cond) |
| if (VT != MVT::i1) |
| Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); |
| return Cond; |
| } |
| |
| // For any constants that differ by 1, we can transform the select into an |
| // extend and add. Use a target hook because some targets may prefer to |
| // transform in the other direction. |
| if (TLI.convertSelectOfConstantsToMath(VT)) { |
| if (C1->getAPIntValue() - 1 == C2->getAPIntValue()) { |
| // select Cond, C1, C1-1 --> add (zext Cond), C1-1 |
| if (VT != MVT::i1) |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); |
| return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); |
| } |
| if (C1->getAPIntValue() + 1 == C2->getAPIntValue()) { |
| // select Cond, C1, C1+1 --> add (sext Cond), C1+1 |
| if (VT != MVT::i1) |
| Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); |
| return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // fold (select Cond, 0, 1) -> (xor Cond, 1) |
| // We can't do this reliably if integer based booleans have different contents |
| // to floating point based booleans. This is because we can't tell whether we |
| // have an integer-based boolean or a floating-point-based boolean unless we |
| // can find the SETCC that produced it and inspect its operands. This is |
| // fairly easy if C is the SETCC node, but it can potentially be |
| // undiscoverable (or not reasonably discoverable). For example, it could be |
| // in another basic block or it could require searching a complicated |
| // expression. |
| if (CondVT.isInteger() && |
| TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| C1->isNullValue() && C2->isOne()) { |
| SDValue NotCond = |
| DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); |
| if (VT.bitsEq(CondVT)) |
| return NotCond; |
| return DAG.getZExtOrTrunc(NotCond, DL, VT); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSELECT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| EVT VT0 = N0.getValueType(); |
| SDLoc DL(N); |
| |
| // fold (select C, X, X) -> X |
| if (N1 == N2) |
| return N1; |
| |
| if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) { |
| // fold (select true, X, Y) -> X |
| // fold (select false, X, Y) -> Y |
| return !N0C->isNullValue() ? N1 : N2; |
| } |
| |
| // fold (select X, X, Y) -> (or X, Y) |
| // fold (select X, 1, Y) -> (or C, Y) |
| if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) |
| return DAG.getNode(ISD::OR, DL, VT, N0, N2); |
| |
| if (SDValue V = foldSelectOfConstants(N)) |
| return V; |
| |
| // fold (select C, 0, X) -> (and (not C), X) |
| if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { |
| SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); |
| AddToWorklist(NOTNode.getNode()); |
| return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2); |
| } |
| // fold (select C, X, 1) -> (or (not C), X) |
| if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { |
| SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); |
| AddToWorklist(NOTNode.getNode()); |
| return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1); |
| } |
| // fold (select X, Y, X) -> (and X, Y) |
| // fold (select X, Y, 0) -> (and X, Y) |
| if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) |
| return DAG.getNode(ISD::AND, DL, VT, N0, N1); |
| |
| // If we can fold this based on the true/false value, do so. |
| if (SimplifySelectOps(N, N1, N2)) |
| return SDValue(N, 0); // Don't revisit N. |
| |
| if (VT0 == MVT::i1) { |
| // The code in this block deals with the following 2 equivalences: |
| // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) |
| // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) |
| // The target can specify its preferred form with the |
| // shouldNormalizeToSelectSequence() callback. However we always transform |
| // to the right anyway if we find the inner select exists in the DAG anyway |
| // and we always transform to the left side if we know that we can further |
| // optimize the combination of the conditions. |
| bool normalizeToSequence = |
| TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); |
| // select (and Cond0, Cond1), X, Y |
| // -> select Cond0, (select Cond1, X, Y), Y |
| if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { |
| SDValue Cond0 = N0->getOperand(0); |
| SDValue Cond1 = N0->getOperand(1); |
| SDValue InnerSelect = |
| DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2); |
| if (normalizeToSequence || !InnerSelect.use_empty()) |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, |
| InnerSelect, N2); |
| } |
| // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) |
| if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { |
| SDValue Cond0 = N0->getOperand(0); |
| SDValue Cond1 = N0->getOperand(1); |
| SDValue InnerSelect = |
| DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2); |
| if (normalizeToSequence || !InnerSelect.use_empty()) |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, |
| InnerSelect); |
| } |
| |
| // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y |
| if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { |
| SDValue N1_0 = N1->getOperand(0); |
| SDValue N1_1 = N1->getOperand(1); |
| SDValue N1_2 = N1->getOperand(2); |
| if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { |
| // Create the actual and node if we can generate good code for it. |
| if (!normalizeToSequence) { |
| SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, N2); |
| } |
| // Otherwise see if we can optimize the "and" to a better pattern. |
| if (SDValue Combined = visitANDLike(N0, N1_0, N)) |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, |
| N2); |
| } |
| } |
| // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y |
| if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { |
| SDValue N2_0 = N2->getOperand(0); |
| SDValue N2_1 = N2->getOperand(1); |
| SDValue N2_2 = N2->getOperand(2); |
| if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { |
| // Create the actual or node if we can generate good code for it. |
| if (!normalizeToSequence) { |
| SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, N2_2); |
| } |
| // Otherwise see if we can optimize to a better pattern. |
| if (SDValue Combined = visitORLike(N0, N2_0, N)) |
| return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, |
| N2_2); |
| } |
| } |
| } |
| |
| if (VT0 == MVT::i1) { |
| // select (not Cond), N1, N2 -> select Cond, N2, N1 |
| if (isBitwiseNot(N0)) |
| return DAG.getNode(ISD::SELECT, DL, VT, N0->getOperand(0), N2, N1); |
| } |
| |
| // fold selects based on a setcc into other things, such as min/max/abs |
| if (N0.getOpcode() == ISD::SETCC) { |
| // select x, y (fcmp lt x, y) -> fminnum x, y |
| // select x, y (fcmp gt x, y) -> fmaxnum x, y |
| // |
| // This is OK if we don't care about what happens if either operand is a |
| // NaN. |
| // |
| |
| // FIXME: Instead of testing for UnsafeFPMath, this should be checking for |
| // no signed zeros as well as no nans. |
| const TargetOptions &Options = DAG.getTarget().Options; |
| if (Options.UnsafeFPMath && VT.isFloatingPoint() && N0.hasOneUse() && |
| DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); |
| |
| if (SDValue FMinMax = combineMinNumMaxNum( |
| DL, VT, N0.getOperand(0), N0.getOperand(1), N1, N2, CC, TLI, DAG)) |
| return FMinMax; |
| } |
| |
| if ((!LegalOperations && |
| TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || |
| TLI.isOperationLegal(ISD::SELECT_CC, VT)) |
| return DAG.getNode(ISD::SELECT_CC, DL, VT, N0.getOperand(0), |
| N0.getOperand(1), N1, N2, N0.getOperand(2)); |
| return SimplifySelect(DL, N0, N1, N2); |
| } |
| |
| return SDValue(); |
| } |
| |
| static |
| std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { |
| SDLoc DL(N); |
| EVT LoVT, HiVT; |
| std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); |
| |
| // Split the inputs. |
| SDValue Lo, Hi, LL, LH, RL, RH; |
| std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); |
| std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); |
| |
| Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); |
| Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); |
| |
| return std::make_pair(Lo, Hi); |
| } |
| |
| // This function assumes all the vselect's arguments are CONCAT_VECTOR |
| // nodes and that the condition is a BV of ConstantSDNodes (or undefs). |
| static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { |
| SDLoc DL(N); |
| SDValue Cond = N->getOperand(0); |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| int NumElems = VT.getVectorNumElements(); |
| assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && |
| RHS.getOpcode() == ISD::CONCAT_VECTORS && |
| Cond.getOpcode() == ISD::BUILD_VECTOR); |
| |
| // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about |
| // binary ones here. |
| if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) |
| return SDValue(); |
| |
| // We're sure we have an even number of elements due to the |
| // concat_vectors we have as arguments to vselect. |
| // Skip BV elements until we find one that's not an UNDEF |
| // After we find an UNDEF element, keep looping until we get to half the |
| // length of the BV and see if all the non-undef nodes are the same. |
| ConstantSDNode *BottomHalf = nullptr; |
| for (int i = 0; i < NumElems / 2; ++i) { |
| if (Cond->getOperand(i)->isUndef()) |
| continue; |
| |
| if (BottomHalf == nullptr) |
| BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); |
| else if (Cond->getOperand(i).getNode() != BottomHalf) |
| return SDValue(); |
| } |
| |
| // Do the same for the second half of the BuildVector |
| ConstantSDNode *TopHalf = nullptr; |
| for (int i = NumElems / 2; i < NumElems; ++i) { |
| if (Cond->getOperand(i)->isUndef()) |
| continue; |
| |
| if (TopHalf == nullptr) |
| TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); |
| else if (Cond->getOperand(i).getNode() != TopHalf) |
| return SDValue(); |
| } |
| |
| assert(TopHalf && BottomHalf && |
| "One half of the selector was all UNDEFs and the other was all the " |
| "same value. This should have been addressed before this function."); |
| return DAG.getNode( |
| ISD::CONCAT_VECTORS, DL, VT, |
| BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), |
| TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); |
| } |
| |
| SDValue DAGCombiner::visitMSCATTER(SDNode *N) { |
| if (Level >= AfterLegalizeTypes) |
| return SDValue(); |
| |
| MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); |
| SDValue Mask = MSC->getMask(); |
| SDValue Data = MSC->getValue(); |
| SDLoc DL(N); |
| |
| // If the MSCATTER data type requires splitting and the mask is provided by a |
| // SETCC, then split both nodes and its operands before legalization. This |
| // prevents the type legalizer from unrolling SETCC into scalar comparisons |
| // and enables future optimizations (e.g. min/max pattern matching on X86). |
| if (Mask.getOpcode() != ISD::SETCC) |
| return SDValue(); |
| |
| // Check if any splitting is required. |
| if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != |
| TargetLowering::TypeSplitVector) |
| return SDValue(); |
| SDValue MaskLo, MaskHi, Lo, Hi; |
| std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); |
| |
| EVT LoVT, HiVT; |
| std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); |
| |
| SDValue Chain = MSC->getChain(); |
| |
| EVT MemoryVT = MSC->getMemoryVT(); |
| unsigned Alignment = MSC->getOriginalAlignment(); |
| |
| EVT LoMemVT, HiMemVT; |
| std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); |
| |
| SDValue DataLo, DataHi; |
| std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); |
| |
| SDValue Scale = MSC->getScale(); |
| SDValue BasePtr = MSC->getBasePtr(); |
| SDValue IndexLo, IndexHi; |
| std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); |
| |
| MachineMemOperand *MMO = DAG.getMachineFunction(). |
| getMachineMemOperand(MSC->getPointerInfo(), |
| MachineMemOperand::MOStore, LoMemVT.getStoreSize(), |
| Alignment, MSC->getAAInfo(), MSC->getRanges()); |
| |
| SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo, Scale }; |
| Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(), |
| DL, OpsLo, MMO); |
| |
| SDValue OpsHi[] = { Chain, DataHi, MaskHi, BasePtr, IndexHi, Scale }; |
| Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), |
| DL, OpsHi, MMO); |
| |
| AddToWorklist(Lo.getNode()); |
| AddToWorklist(Hi.getNode()); |
| |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); |
| } |
| |
| SDValue DAGCombiner::visitMSTORE(SDNode *N) { |
| if (Level >= AfterLegalizeTypes) |
| return SDValue(); |
| |
| MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); |
| SDValue Mask = MST->getMask(); |
| SDValue Data = MST->getValue(); |
| EVT VT = Data.getValueType(); |
| SDLoc DL(N); |
| |
| // If the MSTORE data type requires splitting and the mask is provided by a |
| // SETCC, then split both nodes and its operands before legalization. This |
| // prevents the type legalizer from unrolling SETCC into scalar comparisons |
| // and enables future optimizations (e.g. min/max pattern matching on X86). |
| if (Mask.getOpcode() == ISD::SETCC) { |
| // Check if any splitting is required. |
| if (TLI.getTypeAction(*DAG.getContext(), VT) != |
| TargetLowering::TypeSplitVector) |
| return SDValue(); |
| |
| SDValue MaskLo, MaskHi, Lo, Hi; |
| std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); |
| |
| SDValue Chain = MST->getChain(); |
| SDValue Ptr = MST->getBasePtr(); |
| |
| EVT MemoryVT = MST->getMemoryVT(); |
| unsigned Alignment = MST->getOriginalAlignment(); |
| |
| // if Alignment is equal to the vector size, |
| // take the half of it for the second part |
| unsigned SecondHalfAlignment = |
| (Alignment == VT.getSizeInBits() / 8) ? Alignment / 2 : Alignment; |
| |
| EVT LoMemVT, HiMemVT; |
| std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); |
| |
| SDValue DataLo, DataHi; |
| std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); |
| |
| MachineMemOperand *MMO = DAG.getMachineFunction(). |
| getMachineMemOperand(MST->getPointerInfo(), |
| MachineMemOperand::MOStore, LoMemVT.getStoreSize(), |
| Alignment, MST->getAAInfo(), MST->getRanges()); |
| |
| Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, |
| MST->isTruncatingStore(), |
| MST->isCompressingStore()); |
| |
| Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG, |
| MST->isCompressingStore()); |
| unsigned HiOffset = LoMemVT.getStoreSize(); |
| |
| MMO = DAG.getMachineFunction().getMachineMemOperand( |
| MST->getPointerInfo().getWithOffset(HiOffset), |
| MachineMemOperand::MOStore, HiMemVT.getStoreSize(), SecondHalfAlignment, |
| MST->getAAInfo(), MST->getRanges()); |
| |
| Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, |
| MST->isTruncatingStore(), |
| MST->isCompressingStore()); |
| |
| AddToWorklist(Lo.getNode()); |
| AddToWorklist(Hi.getNode()); |
| |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitMGATHER(SDNode *N) { |
| if (Level >= AfterLegalizeTypes) |
| return SDValue(); |
| |
| MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); |
| SDValue Mask = MGT->getMask(); |
| SDLoc DL(N); |
| |
| // If the MGATHER result requires splitting and the mask is provided by a |
| // SETCC, then split both nodes and its operands before legalization. This |
| // prevents the type legalizer from unrolling SETCC into scalar comparisons |
| // and enables future optimizations (e.g. min/max pattern matching on X86). |
| |
| if (Mask.getOpcode() != ISD::SETCC) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| |
| // Check if any splitting is required. |
| if (TLI.getTypeAction(*DAG.getContext(), VT) != |
| TargetLowering::TypeSplitVector) |
| return SDValue(); |
| |
| SDValue MaskLo, MaskHi, Lo, Hi; |
| std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); |
| |
| SDValue Src0 = MGT->getValue(); |
| SDValue Src0Lo, Src0Hi; |
| std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); |
| |
| EVT LoVT, HiVT; |
| std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); |
| |
| SDValue Chain = MGT->getChain(); |
| EVT MemoryVT = MGT->getMemoryVT(); |
| unsigned Alignment = MGT->getOriginalAlignment(); |
| |
| EVT LoMemVT, HiMemVT; |
| std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); |
| |
| SDValue Scale = MGT->getScale(); |
| SDValue BasePtr = MGT->getBasePtr(); |
| SDValue Index = MGT->getIndex(); |
| SDValue IndexLo, IndexHi; |
| std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); |
| |
| MachineMemOperand *MMO = DAG.getMachineFunction(). |
| getMachineMemOperand(MGT->getPointerInfo(), |
| MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), |
| Alignment, MGT->getAAInfo(), MGT->getRanges()); |
| |
| SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo, Scale }; |
| Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, |
| MMO); |
| |
| SDValue OpsHi[] = { Chain, Src0Hi, MaskHi, BasePtr, IndexHi, Scale }; |
| Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, |
| MMO); |
| |
| AddToWorklist(Lo.getNode()); |
| AddToWorklist(Hi.getNode()); |
| |
| // Build a factor node to remember that this load is independent of the |
| // other one. |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| // Legalized the chain result - switch anything that used the old chain to |
| // use the new one. |
| DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); |
| |
| SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); |
| |
| SDValue RetOps[] = { GatherRes, Chain }; |
| return DAG.getMergeValues(RetOps, DL); |
| } |
| |
| SDValue DAGCombiner::visitMLOAD(SDNode *N) { |
| if (Level >= AfterLegalizeTypes) |
| return SDValue(); |
| |
| MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); |
| SDValue Mask = MLD->getMask(); |
| SDLoc DL(N); |
| |
| // If the MLOAD result requires splitting and the mask is provided by a |
| // SETCC, then split both nodes and its operands before legalization. This |
| // prevents the type legalizer from unrolling SETCC into scalar comparisons |
| // and enables future optimizations (e.g. min/max pattern matching on X86). |
| if (Mask.getOpcode() == ISD::SETCC) { |
| EVT VT = N->getValueType(0); |
| |
| // Check if any splitting is required. |
| if (TLI.getTypeAction(*DAG.getContext(), VT) != |
| TargetLowering::TypeSplitVector) |
| return SDValue(); |
| |
| SDValue MaskLo, MaskHi, Lo, Hi; |
| std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); |
| |
| SDValue Src0 = MLD->getSrc0(); |
| SDValue Src0Lo, Src0Hi; |
| std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); |
| |
| EVT LoVT, HiVT; |
| std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); |
| |
| SDValue Chain = MLD->getChain(); |
| SDValue Ptr = MLD->getBasePtr(); |
| EVT MemoryVT = MLD->getMemoryVT(); |
| unsigned Alignment = MLD->getOriginalAlignment(); |
| |
| // if Alignment is equal to the vector size, |
| // take the half of it for the second part |
| unsigned SecondHalfAlignment = |
| (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? |
| Alignment/2 : Alignment; |
| |
| EVT LoMemVT, HiMemVT; |
| std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); |
| |
| MachineMemOperand *MMO = DAG.getMachineFunction(). |
| getMachineMemOperand(MLD->getPointerInfo(), |
| MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), |
| Alignment, MLD->getAAInfo(), MLD->getRanges()); |
| |
| Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO, |
| ISD::NON_EXTLOAD, MLD->isExpandingLoad()); |
| |
| Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG, |
| MLD->isExpandingLoad()); |
| unsigned HiOffset = LoMemVT.getStoreSize(); |
| |
| MMO = DAG.getMachineFunction().getMachineMemOperand( |
| MLD->getPointerInfo().getWithOffset(HiOffset), |
| MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), SecondHalfAlignment, |
| MLD->getAAInfo(), MLD->getRanges()); |
| |
| Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO, |
| ISD::NON_EXTLOAD, MLD->isExpandingLoad()); |
| |
| AddToWorklist(Lo.getNode()); |
| AddToWorklist(Hi.getNode()); |
| |
| // Build a factor node to remember that this load is independent of the |
| // other one. |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| // Legalized the chain result - switch anything that used the old chain to |
| // use the new one. |
| DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); |
| |
| SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); |
| |
| SDValue RetOps[] = { LoadRes, Chain }; |
| return DAG.getMergeValues(RetOps, DL); |
| } |
| return SDValue(); |
| } |
| |
| /// A vector select of 2 constant vectors can be simplified to math/logic to |
| /// avoid a variable select instruction and possibly avoid constant loads. |
| SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { |
| SDValue Cond = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| EVT VT = N->getValueType(0); |
| if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || |
| !TLI.convertSelectOfConstantsToMath(VT) || |
| !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || |
| !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) |
| return SDValue(); |
| |
| // Check if we can use the condition value to increment/decrement a single |
| // constant value. This simplifies a select to an add and removes a constant |
| // load/materialization from the general case. |
| bool AllAddOne = true; |
| bool AllSubOne = true; |
| unsigned Elts = VT.getVectorNumElements(); |
| for (unsigned i = 0; i != Elts; ++i) { |
| SDValue N1Elt = N1.getOperand(i); |
| SDValue N2Elt = N2.getOperand(i); |
| if (N1Elt.isUndef() || N2Elt.isUndef()) |
| continue; |
| |
| const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); |
| const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); |
| if (C1 != C2 + 1) |
| AllAddOne = false; |
| if (C1 != C2 - 1) |
| AllSubOne = false; |
| } |
| |
| // Further simplifications for the extra-special cases where the constants are |
| // all 0 or all -1 should be implemented as folds of these patterns. |
| SDLoc DL(N); |
| if (AllAddOne || AllSubOne) { |
| // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C |
| // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C |
| auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; |
| SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); |
| return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); |
| } |
| |
| // The general case for select-of-constants: |
| // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 |
| // ...but that only makes sense if a vselect is slower than 2 logic ops, so |
| // leave that to a machine-specific pass. |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitVSELECT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| SDLoc DL(N); |
| |
| // fold (vselect C, X, X) -> X |
| if (N1 == N2) |
| return N1; |
| |
| // Canonicalize integer abs. |
| // vselect (setg[te] X, 0), X, -X -> |
| // vselect (setgt X, -1), X, -X -> |
| // vselect (setl[te] X, 0), -X, X -> |
| // Y = sra (X, size(X)-1); xor (add (X, Y), Y) |
| if (N0.getOpcode() == ISD::SETCC) { |
| SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); |
| bool isAbs = false; |
| bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); |
| |
| if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || |
| (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && |
| N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) |
| isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); |
| else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && |
| N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) |
| isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); |
| |
| if (isAbs) { |
| EVT VT = LHS.getValueType(); |
| if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) |
| return DAG.getNode(ISD::ABS, DL, VT, LHS); |
| |
| SDValue Shift = DAG.getNode( |
| ISD::SRA, DL, VT, LHS, |
| DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT)); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); |
| AddToWorklist(Shift.getNode()); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); |
| } |
| |
| // If this select has a condition (setcc) with narrower operands than the |
| // select, try to widen the compare to match the select width. |
| // TODO: This should be extended to handle any constant. |
| // TODO: This could be extended to handle non-loading patterns, but that |
| // requires thorough testing to avoid regressions. |
| if (isNullConstantOrNullSplatConstant(RHS)) { |
| EVT NarrowVT = LHS.getValueType(); |
| EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); |
| EVT SetCCVT = getSetCCResultType(LHS.getValueType()); |
| unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); |
| unsigned WideWidth = WideVT.getScalarSizeInBits(); |
| bool IsSigned = isSignedIntSetCC(CC); |
| auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; |
| if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && |
| SetCCWidth != 1 && SetCCWidth < WideWidth && |
| TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && |
| TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { |
| // Both compare operands can be widened for free. The LHS can use an |
| // extended load, and the RHS is a constant: |
| // vselect (ext (setcc load(X), C)), N1, N2 --> |
| // vselect (setcc extload(X), C'), N1, N2 |
| auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); |
| SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); |
| EVT WideSetCCVT = getSetCCResultType(WideVT); |
| SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); |
| return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); |
| } |
| } |
| } |
| |
| if (SimplifySelectOps(N, N1, N2)) |
| return SDValue(N, 0); // Don't revisit N. |
| |
| // Fold (vselect (build_vector all_ones), N1, N2) -> N1 |
| if (ISD::isBuildVectorAllOnes(N0.getNode())) |
| return N1; |
| // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 |
| if (ISD::isBuildVectorAllZeros(N0.getNode())) |
| return N2; |
| |
| // The ConvertSelectToConcatVector function is assuming both the above |
| // checks for (vselect (build_vector all{ones,zeros) ...) have been made |
| // and addressed. |
| if (N1.getOpcode() == ISD::CONCAT_VECTORS && |
| N2.getOpcode() == ISD::CONCAT_VECTORS && |
| ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { |
| if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) |
| return CV; |
| } |
| |
| if (SDValue V = foldVSelectOfConstants(N)) |
| return V; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| SDValue N3 = N->getOperand(3); |
| SDValue N4 = N->getOperand(4); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); |
| |
| // fold select_cc lhs, rhs, x, x, cc -> x |
| if (N2 == N3) |
| return N2; |
| |
| // Determine if the condition we're dealing with is constant |
| if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, |
| CC, SDLoc(N), false)) { |
| AddToWorklist(SCC.getNode()); |
| |
| if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { |
| if (!SCCC->isNullValue()) |
| return N2; // cond always true -> true val |
| else |
| return N3; // cond always false -> false val |
| } else if (SCC->isUndef()) { |
| // When the condition is UNDEF, just return the first operand. This is |
| // coherent the DAG creation, no setcc node is created in this case |
| return N2; |
| } else if (SCC.getOpcode() == ISD::SETCC) { |
| // Fold to a simpler select_cc |
| return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), |
| SCC.getOperand(0), SCC.getOperand(1), N2, N3, |
| SCC.getOperand(2)); |
| } |
| } |
| |
| // If we can fold this based on the true/false value, do so. |
| if (SimplifySelectOps(N, N2, N3)) |
| return SDValue(N, 0); // Don't revisit N. |
| |
| // fold select_cc into other things, such as min/max/abs |
| return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); |
| } |
| |
| SDValue DAGCombiner::visitSETCC(SDNode *N) { |
| // setcc is very commonly used as an argument to brcond. This pattern |
| // also lend itself to numerous combines and, as a result, it is desired |
| // we keep the argument to a brcond as a setcc as much as possible. |
| bool PreferSetCC = |
| N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; |
| |
| SDValue Combined = SimplifySetCC( |
| N->getValueType(0), N->getOperand(0), N->getOperand(1), |
| cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC); |
| |
| if (!Combined) |
| return SDValue(); |
| |
| // If we prefer to have a setcc, and we don't, we'll try our best to |
| // recreate one using rebuildSetCC. |
| if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { |
| SDValue NewSetCC = rebuildSetCC(Combined); |
| |
| // We don't have anything interesting to combine to. |
| if (NewSetCC.getNode() == N) |
| return SDValue(); |
| |
| if (NewSetCC) |
| return NewSetCC; |
| } |
| |
| return Combined; |
| } |
| |
| SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| SDValue Carry = N->getOperand(2); |
| SDValue Cond = N->getOperand(3); |
| |
| // If Carry is false, fold to a regular SETCC. |
| if (isNullConstant(Carry)) |
| return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); |
| |
| return SDValue(); |
| } |
| |
| /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or |
| /// a build_vector of constants. |
| /// This function is called by the DAGCombiner when visiting sext/zext/aext |
| /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). |
| /// Vector extends are not folded if operations are legal; this is to |
| /// avoid introducing illegal build_vector dag nodes. |
| static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, |
| SelectionDAG &DAG, bool LegalTypes, |
| bool LegalOperations) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || |
| Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || |
| Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) |
| && "Expected EXTEND dag node in input!"); |
| |
| // fold (sext c1) -> c1 |
| // fold (zext c1) -> c1 |
| // fold (aext c1) -> c1 |
| if (isa<ConstantSDNode>(N0)) |
| return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); |
| |
| // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) |
| // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) |
| // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) |
| EVT SVT = VT.getScalarType(); |
| if (!(VT.isVector() && |
| (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && |
| ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) |
| return nullptr; |
| |
| // We can fold this node into a build_vector. |
| unsigned VTBits = SVT.getSizeInBits(); |
| unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); |
| SmallVector<SDValue, 8> Elts; |
| unsigned NumElts = VT.getVectorNumElements(); |
| SDLoc DL(N); |
| |
| for (unsigned i=0; i != NumElts; ++i) { |
| SDValue Op = N0->getOperand(i); |
| if (Op->isUndef()) { |
| Elts.push_back(DAG.getUNDEF(SVT)); |
| continue; |
| } |
| |
| SDLoc DL(Op); |
| // Get the constant value and if needed trunc it to the size of the type. |
| // Nodes like build_vector might have constants wider than the scalar type. |
| APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); |
| if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) |
| Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); |
| else |
| Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); |
| } |
| |
| return DAG.getBuildVector(VT, DL, Elts).getNode(); |
| } |
| |
| // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: |
| // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" |
| // transformation. Returns true if extension are possible and the above |
| // mentioned transformation is profitable. |
| static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, |
| unsigned ExtOpc, |
| SmallVectorImpl<SDNode *> &ExtendNodes, |
| const TargetLowering &TLI) { |
| bool HasCopyToRegUses = false; |
| bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); |
| for (SDNode::use_iterator UI = N0.getNode()->use_begin(), |
| UE = N0.getNode()->use_end(); |
| UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (User == N) |
| continue; |
| if (UI.getUse().getResNo() != N0.getResNo()) |
| continue; |
| // FIXME: Only extend SETCC N, N and SETCC N, c for now. |
| if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); |
| if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) |
| // Sign bits will be lost after a zext. |
| return false; |
| bool Add = false; |
| for (unsigned i = 0; i != 2; ++i) { |
| SDValue UseOp = User->getOperand(i); |
| if (UseOp == N0) |
| continue; |
| if (!isa<ConstantSDNode>(UseOp)) |
| return false; |
| Add = true; |
| } |
| if (Add) |
| ExtendNodes.push_back(User); |
| continue; |
| } |
| // If truncates aren't free and there are users we can't |
| // extend, it isn't worthwhile. |
| if (!isTruncFree) |
| return false; |
| // Remember if this value is live-out. |
| if (User->getOpcode() == ISD::CopyToReg) |
| HasCopyToRegUses = true; |
| } |
| |
| if (HasCopyToRegUses) { |
| bool BothLiveOut = false; |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) { |
| SDUse &Use = UI.getUse(); |
| if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { |
| BothLiveOut = true; |
| break; |
| } |
| } |
| if (BothLiveOut) |
| // Both unextended and extended values are live out. There had better be |
| // a good reason for the transformation. |
| return ExtendNodes.size(); |
| } |
| return true; |
| } |
| |
| void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, |
| SDValue OrigLoad, SDValue ExtLoad, |
| ISD::NodeType ExtType) { |
| // Extend SetCC uses if necessary. |
| SDLoc DL(ExtLoad); |
| for (SDNode *SetCC : SetCCs) { |
| SmallVector<SDValue, 4> Ops; |
| |
| for (unsigned j = 0; j != 2; ++j) { |
| SDValue SOp = SetCC->getOperand(j); |
| if (SOp == OrigLoad) |
| Ops.push_back(ExtLoad); |
| else |
| Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); |
| } |
| |
| Ops.push_back(SetCC->getOperand(2)); |
| CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); |
| } |
| } |
| |
| // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). |
| SDValue DAGCombiner::CombineExtLoad(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT DstVT = N->getValueType(0); |
| EVT SrcVT = N0.getValueType(); |
| |
| assert((N->getOpcode() == ISD::SIGN_EXTEND || |
| N->getOpcode() == ISD::ZERO_EXTEND) && |
| "Unexpected node type (not an extend)!"); |
| |
| // fold (sext (load x)) to multiple smaller sextloads; same for zext. |
| // For example, on a target with legal v4i32, but illegal v8i32, turn: |
| // (v8i32 (sext (v8i16 (load x)))) |
| // into: |
| // (v8i32 (concat_vectors (v4i32 (sextload x)), |
| // (v4i32 (sextload (x + 16))))) |
| // Where uses of the original load, i.e.: |
| // (v8i16 (load x)) |
| // are replaced with: |
| // (v8i16 (truncate |
| // (v8i32 (concat_vectors (v4i32 (sextload x)), |
| // (v4i32 (sextload (x + 16))))))) |
| // |
| // This combine is only applicable to illegal, but splittable, vectors. |
| // All legal types, and illegal non-vector types, are handled elsewhere. |
| // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. |
| // |
| if (N0->getOpcode() != ISD::LOAD) |
| return SDValue(); |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| |
| if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || |
| !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || |
| !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) |
| return SDValue(); |
| |
| SmallVector<SDNode *, 4> SetCCs; |
| if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) |
| return SDValue(); |
| |
| ISD::LoadExtType ExtType = |
| N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; |
| |
| // Try to split the vector types to get down to legal types. |
| EVT SplitSrcVT = SrcVT; |
| EVT SplitDstVT = DstVT; |
| while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && |
| SplitSrcVT.getVectorNumElements() > 1) { |
| SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; |
| SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; |
| } |
| |
| if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| const unsigned NumSplits = |
| DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); |
| const unsigned Stride = SplitSrcVT.getStoreSize(); |
| SmallVector<SDValue, 4> Loads; |
| SmallVector<SDValue, 4> Chains; |
| |
| SDValue BasePtr = LN0->getBasePtr(); |
| for (unsigned Idx = 0; Idx < NumSplits; Idx++) { |
| const unsigned Offset = Idx * Stride; |
| const unsigned Align = MinAlign(LN0->getAlignment(), Offset); |
| |
| SDValue SplitLoad = DAG.getExtLoad( |
| ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, |
| LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, |
| LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); |
| |
| BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, |
| DAG.getConstant(Stride, DL, BasePtr.getValueType())); |
| |
| Loads.push_back(SplitLoad.getValue(0)); |
| Chains.push_back(SplitLoad.getValue(1)); |
| } |
| |
| SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); |
| SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); |
| |
| // Simplify TF. |
| AddToWorklist(NewChain.getNode()); |
| |
| CombineTo(N, NewValue); |
| |
| // Replace uses of the original load (before extension) |
| // with a truncate of the concatenated sextloaded vectors. |
| SDValue Trunc = |
| DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); |
| ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); |
| CombineTo(N0.getNode(), Trunc, NewChain); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> |
| // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) |
| SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { |
| assert(N->getOpcode() == ISD::ZERO_EXTEND); |
| EVT VT = N->getValueType(0); |
| |
| // and/or/xor |
| SDValue N0 = N->getOperand(0); |
| if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || |
| N0.getOpcode() == ISD::XOR) || |
| N0.getOperand(1).getOpcode() != ISD::Constant || |
| (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) |
| return SDValue(); |
| |
| // shl/shr |
| SDValue N1 = N0->getOperand(0); |
| if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || |
| N1.getOperand(1).getOpcode() != ISD::Constant || |
| (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) |
| return SDValue(); |
| |
| // load |
| if (!isa<LoadSDNode>(N1.getOperand(0))) |
| return SDValue(); |
| LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); |
| EVT MemVT = Load->getMemoryVT(); |
| if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || |
| Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) |
| return SDValue(); |
| |
| |
| // If the shift op is SHL, the logic op must be AND, otherwise the result |
| // will be wrong. |
| if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| if (!N0.hasOneUse() || !N1.hasOneUse()) |
| return SDValue(); |
| |
| SmallVector<SDNode*, 4> SetCCs; |
| if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), |
| ISD::ZERO_EXTEND, SetCCs, TLI)) |
| return SDValue(); |
| |
| // Actually do the transformation. |
| SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, |
| Load->getChain(), Load->getBasePtr(), |
| Load->getMemoryVT(), Load->getMemOperand()); |
| |
| SDLoc DL1(N1); |
| SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, |
| N1.getOperand(1)); |
| |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| Mask = Mask.zext(VT.getSizeInBits()); |
| SDLoc DL0(N0); |
| SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, |
| DAG.getConstant(Mask, DL0, VT)); |
| |
| ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); |
| CombineTo(N, And); |
| if (SDValue(Load, 0).hasOneUse()) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); |
| } else { |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), |
| Load->getValueType(0), ExtLoad); |
| CombineTo(Load, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N,0); // Return N so it doesn't get rechecked! |
| } |
| |
| /// If we're narrowing or widening the result of a vector select and the final |
| /// size is the same size as a setcc (compare) feeding the select, then try to |
| /// apply the cast operation to the select's operands because matching vector |
| /// sizes for a select condition and other operands should be more efficient. |
| SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { |
| unsigned CastOpcode = Cast->getOpcode(); |
| assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || |
| CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || |
| CastOpcode == ISD::FP_ROUND) && |
| "Unexpected opcode for vector select narrowing/widening"); |
| |
| // We only do this transform before legal ops because the pattern may be |
| // obfuscated by target-specific operations after legalization. Do not create |
| // an illegal select op, however, because that may be difficult to lower. |
| EVT VT = Cast->getValueType(0); |
| if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) |
| return SDValue(); |
| |
| SDValue VSel = Cast->getOperand(0); |
| if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || |
| VSel.getOperand(0).getOpcode() != ISD::SETCC) |
| return SDValue(); |
| |
| // Does the setcc have the same vector size as the casted select? |
| SDValue SetCC = VSel.getOperand(0); |
| EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); |
| if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) |
| return SDValue(); |
| |
| // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) |
| SDValue A = VSel.getOperand(1); |
| SDValue B = VSel.getOperand(2); |
| SDValue CastA, CastB; |
| SDLoc DL(Cast); |
| if (CastOpcode == ISD::FP_ROUND) { |
| // FP_ROUND (fptrunc) has an extra flag operand to pass along. |
| CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); |
| CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); |
| } else { |
| CastA = DAG.getNode(CastOpcode, DL, VT, A); |
| CastB = DAG.getNode(CastOpcode, DL, VT, B); |
| } |
| return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); |
| } |
| |
| // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) |
| // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) |
| static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, |
| const TargetLowering &TLI, EVT VT, |
| bool LegalOperations, SDNode *N, |
| SDValue N0, ISD::LoadExtType ExtLoadType) { |
| SDNode *N0Node = N0.getNode(); |
| bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) |
| : ISD::isZEXTLoad(N0Node); |
| if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || |
| !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) |
| return {}; |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| EVT MemVT = LN0->getMemoryVT(); |
| if ((LegalOperations || LN0->isVolatile()) && |
| !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) |
| return {}; |
| |
| SDValue ExtLoad = |
| DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), |
| LN0->getBasePtr(), MemVT, LN0->getMemOperand()); |
| Combiner.CombineTo(N, ExtLoad); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) |
| // Only generate vector extloads when 1) they're legal, and 2) they are |
| // deemed desirable by the target. |
| static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, |
| const TargetLowering &TLI, EVT VT, |
| bool LegalOperations, SDNode *N, SDValue N0, |
| ISD::LoadExtType ExtLoadType, |
| ISD::NodeType ExtOpc) { |
| if (!ISD::isNON_EXTLoad(N0.getNode()) || |
| !ISD::isUNINDEXEDLoad(N0.getNode()) || |
| ((LegalOperations || VT.isVector() || |
| cast<LoadSDNode>(N0)->isVolatile()) && |
| !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) |
| return {}; |
| |
| bool DoXform = true; |
| SmallVector<SDNode *, 4> SetCCs; |
| if (!N0.hasOneUse()) |
| DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); |
| if (VT.isVector()) |
| DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); |
| if (!DoXform) |
| return {}; |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), |
| LN0->getBasePtr(), N0.getValueType(), |
| LN0->getMemOperand()); |
| Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); |
| // If the load value is used only by N, replace it via CombineTo N. |
| bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); |
| Combiner.CombineTo(N, ExtLoad); |
| if (NoReplaceTrunc) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); |
| } else { |
| SDValue Trunc = |
| DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); |
| Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, |
| bool LegalOperations) { |
| assert((N->getOpcode() == ISD::SIGN_EXTEND || |
| N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); |
| |
| SDValue SetCC = N->getOperand(0); |
| if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || |
| !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) |
| return SDValue(); |
| |
| SDValue X = SetCC.getOperand(0); |
| SDValue Ones = SetCC.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); |
| EVT VT = N->getValueType(0); |
| EVT XVT = X.getValueType(); |
| // setge X, C is canonicalized to setgt, so we do not need to match that |
| // pattern. The setlt sibling is folded in SimplifySelectCC() because it does |
| // not require the 'not' op. |
| if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { |
| // Invert and smear/shift the sign bit: |
| // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) |
| // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) |
| SDLoc DL(N); |
| SDValue NotX = DAG.getNOT(DL, X, VT); |
| SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT); |
| auto ShiftOpcode = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; |
| return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, |
| LegalOperations)) |
| return SDValue(Res, 0); |
| |
| // fold (sext (sext x)) -> (sext x) |
| // fold (sext (aext x)) -> (sext x) |
| if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) |
| return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); |
| |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| // fold (sext (truncate (load x))) -> (sext (smaller load x)) |
| // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) |
| if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { |
| SDNode *oye = N0.getOperand(0).getNode(); |
| if (NarrowLoad.getNode() != N0.getNode()) { |
| CombineTo(N0.getNode(), NarrowLoad); |
| // CombineTo deleted the truncate, if needed, but not what's under it. |
| AddToWorklist(oye); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // See if the value being truncated is already sign extended. If so, just |
| // eliminate the trunc/sext pair. |
| SDValue Op = N0.getOperand(0); |
| unsigned OpBits = Op.getScalarValueSizeInBits(); |
| unsigned MidBits = N0.getScalarValueSizeInBits(); |
| unsigned DestBits = VT.getScalarSizeInBits(); |
| unsigned NumSignBits = DAG.ComputeNumSignBits(Op); |
| |
| if (OpBits == DestBits) { |
| // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign |
| // bits, it is already ready. |
| if (NumSignBits > DestBits-MidBits) |
| return Op; |
| } else if (OpBits < DestBits) { |
| // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign |
| // bits, just sext from i32. |
| if (NumSignBits > OpBits-MidBits) |
| return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); |
| } else { |
| // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign |
| // bits, just truncate to i32. |
| if (NumSignBits > OpBits-MidBits) |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); |
| } |
| |
| // fold (sext (truncate x)) -> (sextinreg x). |
| if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, |
| N0.getValueType())) { |
| if (OpBits < DestBits) |
| Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); |
| else if (OpBits > DestBits) |
| Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, |
| DAG.getValueType(N0.getValueType())); |
| } |
| } |
| |
| // Try to simplify (sext (load x)). |
| if (SDValue foldedExt = |
| tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, |
| ISD::SEXTLOAD, ISD::SIGN_EXTEND)) |
| return foldedExt; |
| |
| // fold (sext (load x)) to multiple smaller sextloads. |
| // Only on illegal but splittable vectors. |
| if (SDValue ExtLoad = CombineExtLoad(N)) |
| return ExtLoad; |
| |
| // Try to simplify (sext (sextload x)). |
| if (SDValue foldedExt = tryToFoldExtOfExtload( |
| DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) |
| return foldedExt; |
| |
| // fold (sext (and/or/xor (load x), cst)) -> |
| // (and/or/xor (sextload x), (sext cst)) |
| if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || |
| N0.getOpcode() == ISD::XOR) && |
| isa<LoadSDNode>(N0.getOperand(0)) && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { |
| LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); |
| EVT MemVT = LN00->getMemoryVT(); |
| if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && |
| LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { |
| SmallVector<SDNode*, 4> SetCCs; |
| bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), |
| ISD::SIGN_EXTEND, SetCCs, TLI); |
| if (DoXform) { |
| SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, |
| LN00->getChain(), LN00->getBasePtr(), |
| LN00->getMemoryVT(), |
| LN00->getMemOperand()); |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| Mask = Mask.sext(VT.getSizeInBits()); |
| SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, |
| ExtLoad, DAG.getConstant(Mask, DL, VT)); |
| ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); |
| bool NoReplaceTruncAnd = !N0.hasOneUse(); |
| bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); |
| CombineTo(N, And); |
| // If N0 has multiple uses, change other uses as well. |
| if (NoReplaceTruncAnd) { |
| SDValue TruncAnd = |
| DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); |
| CombineTo(N0.getNode(), TruncAnd); |
| } |
| if (NoReplaceTrunc) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); |
| } else { |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), |
| LN00->getValueType(0), ExtLoad); |
| CombineTo(LN00, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N,0); // Return N so it doesn't get rechecked! |
| } |
| } |
| } |
| |
| if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) |
| return V; |
| |
| if (N0.getOpcode() == ISD::SETCC) { |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); |
| EVT N00VT = N0.getOperand(0).getValueType(); |
| |
| // sext(setcc) -> sext_in_reg(vsetcc) for vectors. |
| // Only do this before legalize for now. |
| if (VT.isVector() && !LegalOperations && |
| TLI.getBooleanContents(N00VT) == |
| TargetLowering::ZeroOrNegativeOneBooleanContent) { |
| // On some architectures (such as SSE/NEON/etc) the SETCC result type is |
| // of the same size as the compared operands. Only optimize sext(setcc()) |
| // if this is the case. |
| EVT SVT = getSetCCResultType(N00VT); |
| |
| // We know that the # elements of the results is the same as the |
| // # elements of the compare (and the # elements of the compare result |
| // for that matter). Check to see that they are the same size. If so, |
| // we know that the element size of the sext'd result matches the |
| // element size of the compare operands. |
| if (VT.getSizeInBits() == SVT.getSizeInBits()) |
| return DAG.getSetCC(DL, VT, N00, N01, CC); |
| |
| // If the desired elements are smaller or larger than the source |
| // elements, we can use a matching integer vector type and then |
| // truncate/sign extend. |
| EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); |
| if (SVT == MatchingVecType) { |
| SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); |
| return DAG.getSExtOrTrunc(VsetCC, DL, VT); |
| } |
| } |
| |
| // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) |
| // Here, T can be 1 or -1, depending on the type of the setcc and |
| // getBooleanContents(). |
| unsigned SetCCWidth = N0.getScalarValueSizeInBits(); |
| |
| // To determine the "true" side of the select, we need to know the high bit |
| // of the value returned by the setcc if it evaluates to true. |
| // If the type of the setcc is i1, then the true case of the select is just |
| // sext(i1 1), that is, -1. |
| // If the type of the setcc is larger (say, i8) then the value of the high |
| // bit depends on getBooleanContents(), so ask TLI for a real "true" value |
| // of the appropriate width. |
| SDValue ExtTrueVal = (SetCCWidth == 1) |
| ? DAG.getAllOnesConstant(DL, VT) |
| : DAG.getBoolConstant(true, DL, VT, N00VT); |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| if (SDValue SCC = |
| SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) |
| return SCC; |
| |
| if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { |
| EVT SetCCVT = getSetCCResultType(N00VT); |
| // Don't do this transform for i1 because there's a select transform |
| // that would reverse it. |
| // TODO: We should not do this transform at all without a target hook |
| // because a sext is likely cheaper than a select? |
| if (SetCCVT.getScalarSizeInBits() != 1 && |
| (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { |
| SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); |
| return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); |
| } |
| } |
| } |
| |
| // fold (sext x) -> (zext x) if the sign bit is known zero. |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && |
| DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| return SDValue(); |
| } |
| |
| // isTruncateOf - If N is a truncate of some other value, return true, record |
| // the value being truncated in Op and which of Op's bits are zero/one in Known. |
| // This function computes KnownBits to avoid a duplicated call to |
| // computeKnownBits in the caller. |
| static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, |
| KnownBits &Known) { |
| if (N->getOpcode() == ISD::TRUNCATE) { |
| Op = N->getOperand(0); |
| DAG.computeKnownBits(Op, Known); |
| return true; |
| } |
| |
| if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || |
| cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE) |
| return false; |
| |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| assert(Op0.getValueType() == Op1.getValueType()); |
| |
| if (isNullConstant(Op0)) |
| Op = Op1; |
| else if (isNullConstant(Op1)) |
| Op = Op0; |
| else |
| return false; |
| |
| DAG.computeKnownBits(Op, Known); |
| |
| if (!(Known.Zero | 1).isAllOnesValue()) |
| return false; |
| |
| return true; |
| } |
| |
| SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, |
| LegalOperations)) |
| return SDValue(Res, 0); |
| |
| // fold (zext (zext x)) -> (zext x) |
| // fold (zext (aext x)) -> (zext x) |
| if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, |
| N0.getOperand(0)); |
| |
| // fold (zext (truncate x)) -> (zext x) or |
| // (zext (truncate x)) -> (truncate x) |
| // This is valid when the truncated bits of x are already zero. |
| // FIXME: We should extend this to work for vectors too. |
| SDValue Op; |
| KnownBits Known; |
| if (!VT.isVector() && isTruncateOf(DAG, N0, Op, Known)) { |
| APInt TruncatedBits = |
| (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? |
| APInt(Op.getValueSizeInBits(), 0) : |
| APInt::getBitsSet(Op.getValueSizeInBits(), |
| N0.getValueSizeInBits(), |
| std::min(Op.getValueSizeInBits(), |
| VT.getSizeInBits())); |
| if (TruncatedBits.isSubsetOf(Known.Zero)) |
| return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); |
| } |
| |
| // fold (zext (truncate x)) -> (and x, mask) |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| // fold (zext (truncate (load x))) -> (zext (smaller load x)) |
| // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) |
| if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { |
| SDNode *oye = N0.getOperand(0).getNode(); |
| if (NarrowLoad.getNode() != N0.getNode()) { |
| CombineTo(N0.getNode(), NarrowLoad); |
| // CombineTo deleted the truncate, if needed, but not what's under it. |
| AddToWorklist(oye); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| EVT SrcVT = N0.getOperand(0).getValueType(); |
| EVT MinVT = N0.getValueType(); |
| |
| // Try to mask before the extension to avoid having to generate a larger mask, |
| // possibly over several sub-vectors. |
| if (SrcVT.bitsLT(VT) && VT.isVector()) { |
| if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && |
| TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { |
| SDValue Op = N0.getOperand(0); |
| Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); |
| AddToWorklist(Op.getNode()); |
| SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); |
| // Transfer the debug info; the new node is equivalent to N0. |
| DAG.transferDbgValues(N0, ZExtOrTrunc); |
| return ZExtOrTrunc; |
| } |
| } |
| |
| if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { |
| SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); |
| AddToWorklist(Op.getNode()); |
| SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); |
| // We may safely transfer the debug info describing the truncate node over |
| // to the equivalent and operation. |
| DAG.transferDbgValues(N0, And); |
| return And; |
| } |
| } |
| |
| // Fold (zext (and (trunc x), cst)) -> (and x, cst), |
| // if either of the casts is not free. |
| if (N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::TRUNCATE && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), |
| N0.getValueType()) || |
| !TLI.isZExtFree(N0.getValueType(), VT))) { |
| SDValue X = N0.getOperand(0).getOperand(0); |
| X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| Mask = Mask.zext(VT.getSizeInBits()); |
| SDLoc DL(N); |
| return DAG.getNode(ISD::AND, DL, VT, |
| X, DAG.getConstant(Mask, DL, VT)); |
| } |
| |
| // Try to simplify (zext (load x)). |
| if (SDValue foldedExt = |
| tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, |
| ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) |
| return foldedExt; |
| |
| // fold (zext (load x)) to multiple smaller zextloads. |
| // Only on illegal but splittable vectors. |
| if (SDValue ExtLoad = CombineExtLoad(N)) |
| return ExtLoad; |
| |
| // fold (zext (and/or/xor (load x), cst)) -> |
| // (and/or/xor (zextload x), (zext cst)) |
| // Unless (and (load x) cst) will match as a zextload already and has |
| // additional users. |
| if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || |
| N0.getOpcode() == ISD::XOR) && |
| isa<LoadSDNode>(N0.getOperand(0)) && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { |
| LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); |
| EVT MemVT = LN00->getMemoryVT(); |
| if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && |
| LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { |
| bool DoXform = true; |
| SmallVector<SDNode*, 4> SetCCs; |
| if (!N0.hasOneUse()) { |
| if (N0.getOpcode() == ISD::AND) { |
| auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); |
| EVT LoadResultTy = AndC->getValueType(0); |
| EVT ExtVT; |
| if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) |
| DoXform = false; |
| } |
| } |
| if (DoXform) |
| DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), |
| ISD::ZERO_EXTEND, SetCCs, TLI); |
| if (DoXform) { |
| SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, |
| LN00->getChain(), LN00->getBasePtr(), |
| LN00->getMemoryVT(), |
| LN00->getMemOperand()); |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| Mask = Mask.zext(VT.getSizeInBits()); |
| SDLoc DL(N); |
| SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, |
| ExtLoad, DAG.getConstant(Mask, DL, VT)); |
| ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); |
| bool NoReplaceTruncAnd = !N0.hasOneUse(); |
| bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); |
| CombineTo(N, And); |
| // If N0 has multiple uses, change other uses as well. |
| if (NoReplaceTruncAnd) { |
| SDValue TruncAnd = |
| DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); |
| CombineTo(N0.getNode(), TruncAnd); |
| } |
| if (NoReplaceTrunc) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); |
| } else { |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), |
| LN00->getValueType(0), ExtLoad); |
| CombineTo(LN00, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N,0); // Return N so it doesn't get rechecked! |
| } |
| } |
| } |
| |
| // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> |
| // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) |
| if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) |
| return ZExtLoad; |
| |
| // Try to simplify (zext (zextload x)). |
| if (SDValue foldedExt = tryToFoldExtOfExtload( |
| DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) |
| return foldedExt; |
| |
| if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) |
| return V; |
| |
| if (N0.getOpcode() == ISD::SETCC) { |
| // Only do this before legalize for now. |
| if (!LegalOperations && VT.isVector() && |
| N0.getValueType().getVectorElementType() == MVT::i1) { |
| EVT N00VT = N0.getOperand(0).getValueType(); |
| if (getSetCCResultType(N00VT) == N0.getValueType()) |
| return SDValue(); |
| |
| // We know that the # elements of the results is the same as the # |
| // elements of the compare (and the # elements of the compare result for |
| // that matter). Check to see that they are the same size. If so, we know |
| // that the element size of the sext'd result matches the element size of |
| // the compare operands. |
| SDLoc DL(N); |
| SDValue VecOnes = DAG.getConstant(1, DL, VT); |
| if (VT.getSizeInBits() == N00VT.getSizeInBits()) { |
| // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. |
| SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2)); |
| return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes); |
| } |
| |
| // If the desired elements are smaller or larger than the source |
| // elements we can use a matching integer vector type and then |
| // truncate/sign extend. |
| EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); |
| SDValue VsetCC = |
| DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2)); |
| return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT), |
| VecOnes); |
| } |
| |
| // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc |
| SDLoc DL(N); |
| if (SDValue SCC = SimplifySelectCC( |
| DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), |
| DAG.getConstant(0, DL, VT), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) |
| return SCC; |
| } |
| |
| // (zext (shl (zext x), cst)) -> (shl (zext x), cst) |
| if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && |
| isa<ConstantSDNode>(N0.getOperand(1)) && |
| N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && |
| N0.hasOneUse()) { |
| SDValue ShAmt = N0.getOperand(1); |
| unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); |
| if (N0.getOpcode() == ISD::SHL) { |
| SDValue InnerZExt = N0.getOperand(0); |
| // If the original shl may be shifting out bits, do not perform this |
| // transformation. |
| unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - |
| InnerZExt.getOperand(0).getValueSizeInBits(); |
| if (ShAmtVal > KnownZeroBits) |
| return SDValue(); |
| } |
| |
| SDLoc DL(N); |
| |
| // Ensure that the shift amount is wide enough for the shifted value. |
| if (VT.getSizeInBits() >= 256) |
| ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); |
| |
| return DAG.getNode(N0.getOpcode(), DL, VT, |
| DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), |
| ShAmt); |
| } |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, |
| LegalOperations)) |
| return SDValue(Res, 0); |
| |
| // fold (aext (aext x)) -> (aext x) |
| // fold (aext (zext x)) -> (zext x) |
| // fold (aext (sext x)) -> (sext x) |
| if (N0.getOpcode() == ISD::ANY_EXTEND || |
| N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND) |
| return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); |
| |
| // fold (aext (truncate (load x))) -> (aext (smaller load x)) |
| // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { |
| SDNode *oye = N0.getOperand(0).getNode(); |
| if (NarrowLoad.getNode() != N0.getNode()) { |
| CombineTo(N0.getNode(), NarrowLoad); |
| // CombineTo deleted the truncate, if needed, but not what's under it. |
| AddToWorklist(oye); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (aext (truncate x)) |
| if (N0.getOpcode() == ISD::TRUNCATE) |
| return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); |
| |
| // Fold (aext (and (trunc x), cst)) -> (and x, cst) |
| // if the trunc is not free. |
| if (N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::TRUNCATE && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), |
| N0.getValueType())) { |
| SDLoc DL(N); |
| SDValue X = N0.getOperand(0).getOperand(0); |
| X = DAG.getAnyExtOrTrunc(X, DL, VT); |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| Mask = Mask.zext(VT.getSizeInBits()); |
| return DAG.getNode(ISD::AND, DL, VT, |
| X, DAG.getConstant(Mask, DL, VT)); |
| } |
| |
| // fold (aext (load x)) -> (aext (truncate (extload x))) |
| // None of the supported targets knows how to perform load and any_ext |
| // on vectors in one instruction. We only perform this transformation on |
| // scalars. |
| if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && |
| ISD::isUNINDEXEDLoad(N0.getNode()) && |
| TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { |
| bool DoXform = true; |
| SmallVector<SDNode*, 4> SetCCs; |
| if (!N0.hasOneUse()) |
| DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, |
| TLI); |
| if (DoXform) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, |
| LN0->getChain(), |
| LN0->getBasePtr(), N0.getValueType(), |
| LN0->getMemOperand()); |
| ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); |
| // If the load value is used only by N, replace it via CombineTo N. |
| bool NoReplaceTrunc = N0.hasOneUse(); |
| CombineTo(N, ExtLoad); |
| if (NoReplaceTrunc) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); |
| } else { |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), |
| N0.getValueType(), ExtLoad); |
| CombineTo(LN0, Trunc, ExtLoad.getValue(1)); |
| } |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| // fold (aext (zextload x)) -> (aext (truncate (zextload x))) |
| // fold (aext (sextload x)) -> (aext (truncate (sextload x))) |
| // fold (aext ( extload x)) -> (aext (truncate (extload x))) |
| if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && |
| ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| ISD::LoadExtType ExtType = LN0->getExtensionType(); |
| EVT MemVT = LN0->getMemoryVT(); |
| if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { |
| SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), |
| VT, LN0->getChain(), LN0->getBasePtr(), |
| MemVT, LN0->getMemOperand()); |
| CombineTo(N, ExtLoad); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| |
| if (N0.getOpcode() == ISD::SETCC) { |
| // For vectors: |
| // aext(setcc) -> vsetcc |
| // aext(setcc) -> truncate(vsetcc) |
| // aext(setcc) -> aext(vsetcc) |
| // Only do this before legalize for now. |
| if (VT.isVector() && !LegalOperations) { |
| EVT N00VT = N0.getOperand(0).getValueType(); |
| if (getSetCCResultType(N00VT) == N0.getValueType()) |
| return SDValue(); |
| |
| // We know that the # elements of the results is the same as the |
| // # elements of the compare (and the # elements of the compare result |
| // for that matter). Check to see that they are the same size. If so, |
| // we know that the element size of the sext'd result matches the |
| // element size of the compare operands. |
| if (VT.getSizeInBits() == N00VT.getSizeInBits()) |
| return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), |
| N0.getOperand(1), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| // If the desired elements are smaller or larger than the source |
| // elements we can use a matching integer vector type and then |
| // truncate/any extend |
| else { |
| EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); |
| SDValue VsetCC = |
| DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), |
| N0.getOperand(1), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); |
| } |
| } |
| |
| // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc |
| SDLoc DL(N); |
| if (SDValue SCC = SimplifySelectCC( |
| DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), |
| DAG.getConstant(0, DL, VT), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) |
| return SCC; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitAssertExt(SDNode *N) { |
| unsigned Opcode = N->getOpcode(); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT AssertVT = cast<VTSDNode>(N1)->getVT(); |
| |
| // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) |
| if (N0.getOpcode() == Opcode && |
| AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) |
| return N0; |
| |
| if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && |
| N0.getOperand(0).getOpcode() == Opcode) { |
| // We have an assert, truncate, assert sandwich. Make one stronger assert |
| // by asserting on the smallest asserted type to the larger source type. |
| // This eliminates the later assert: |
| // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN |
| // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN |
| SDValue BigA = N0.getOperand(0); |
| EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); |
| assert(BigA_AssertVT.bitsLE(N0.getValueType()) && |
| "Asserting zero/sign-extended bits to a type larger than the " |
| "truncated destination does not provide information"); |
| |
| SDLoc DL(N); |
| EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; |
| SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); |
| SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), |
| BigA.getOperand(0), MinAssertVTVal); |
| return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// If the result of a wider load is shifted to right of N bits and then |
| /// truncated to a narrower type and where N is a multiple of number of bits of |
| /// the narrower type, transform it to a narrower load from address + N / num of |
| /// bits of new type. Also narrow the load if the result is masked with an AND |
| /// to effectively produce a smaller type. If the result is to be extended, also |
| /// fold the extension to form a extending load. |
| SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { |
| unsigned Opc = N->getOpcode(); |
| |
| ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT ExtVT = VT; |
| |
| // This transformation isn't valid for vector loads. |
| if (VT.isVector()) |
| return SDValue(); |
| |
| // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then |
| // extended to VT. |
| if (Opc == ISD::SIGN_EXTEND_INREG) { |
| ExtType = ISD::SEXTLOAD; |
| ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); |
| } else if (Opc == ISD::SRL) { |
| // Another special-case: SRL is basically zero-extending a narrower value, |
| // or it maybe shifting a higher subword, half or byte into the lowest |
| // bits. |
| ExtType = ISD::ZEXTLOAD; |
| N0 = SDValue(N, 0); |
| |
| auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); |
| auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!N01 || !LN0) |
| return SDValue(); |
| |
| uint64_t ShiftAmt = N01->getZExtValue(); |
| uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits(); |
| if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) |
| ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); |
| else |
| ExtVT = EVT::getIntegerVT(*DAG.getContext(), |
| VT.getSizeInBits() - ShiftAmt); |
| } else if (Opc == ISD::AND) { |
| // An AND with a constant mask is the same as a truncate + zero-extend. |
| auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!AndC || !AndC->getAPIntValue().isMask()) |
| return SDValue(); |
| |
| unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); |
| ExtType = ISD::ZEXTLOAD; |
| ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); |
| } |
| |
| unsigned ShAmt = 0; |
| if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { |
| SDValue SRL = N0; |
| if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { |
| ShAmt = ConstShift->getZExtValue(); |
| unsigned EVTBits = ExtVT.getSizeInBits(); |
| // Is the shift amount a multiple of size of VT? |
| if ((ShAmt & (EVTBits-1)) == 0) { |
| N0 = N0.getOperand(0); |
| // Is the load width a multiple of size of VT? |
| if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0) |
| return SDValue(); |
| } |
| |
| // At this point, we must have a load or else we can't do the transform. |
| if (!isa<LoadSDNode>(N0)) return SDValue(); |
| |
| auto *LN0 = cast<LoadSDNode>(N0); |
| |
| // Because a SRL must be assumed to *need* to zero-extend the high bits |
| // (as opposed to anyext the high bits), we can't combine the zextload |
| // lowering of SRL and an sextload. |
| if (LN0->getExtensionType() == ISD::SEXTLOAD) |
| return SDValue(); |
| |
| // If the shift amount is larger than the input type then we're not |
| // accessing any of the loaded bytes. If the load was a zextload/extload |
| // then the result of the shift+trunc is zero/undef (handled elsewhere). |
| if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) |
| return SDValue(); |
| |
| // If the SRL is only used by a masking AND, we may be able to adjust |
| // the ExtVT to make the AND redundant. |
| SDNode *Mask = *(SRL->use_begin()); |
| if (Mask->getOpcode() == ISD::AND && |
| isa<ConstantSDNode>(Mask->getOperand(1))) { |
| const APInt &ShiftMask = |
| cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue(); |
| if (ShiftMask.isMask()) { |
| EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), |
| ShiftMask.countTrailingOnes()); |
| // If the mask is smaller, recompute the type. |
| if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) && |
| TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) |
| ExtVT = MaskedVT; |
| } |
| } |
| } |
| } |
| |
| // If the load is shifted left (and the result isn't shifted back right), |
| // we can fold the truncate through the shift. |
| unsigned ShLeftAmt = 0; |
| if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && |
| ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { |
| if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| ShLeftAmt = N01->getZExtValue(); |
| N0 = N0.getOperand(0); |
| } |
| } |
| |
| // If we haven't found a load, we can't narrow it. |
| if (!isa<LoadSDNode>(N0)) |
| return SDValue(); |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| if (!isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) |
| return SDValue(); |
| |
| // For big endian targets, we need to adjust the offset to the pointer to |
| // load the correct bytes. |
| if (DAG.getDataLayout().isBigEndian()) { |
| unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); |
| unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); |
| ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; |
| } |
| |
| EVT PtrType = N0.getOperand(1).getValueType(); |
| uint64_t PtrOff = ShAmt / 8; |
| unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); |
| SDLoc DL(LN0); |
| // The original load itself didn't wrap, so an offset within it doesn't. |
| SDNodeFlags Flags; |
| Flags.setNoUnsignedWrap(true); |
| SDValue NewPtr = DAG.getNode(ISD::ADD, DL, |
| PtrType, LN0->getBasePtr(), |
| DAG.getConstant(PtrOff, DL, PtrType), |
| Flags); |
| AddToWorklist(NewPtr.getNode()); |
| |
| SDValue Load; |
| if (ExtType == ISD::NON_EXTLOAD) |
| Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, |
| LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, |
| LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); |
| else |
| Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(), NewPtr, |
| LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, |
| NewAlign, LN0->getMemOperand()->getFlags(), |
| LN0->getAAInfo()); |
| |
| // Replace the old load's chain with the new load's chain. |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); |
| |
| // Shift the result left, if we've swallowed a left shift. |
| SDValue Result = Load; |
| if (ShLeftAmt != 0) { |
| EVT ShImmTy = getShiftAmountTy(Result.getValueType()); |
| if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) |
| ShImmTy = VT; |
| // If the shift amount is as large as the result size (but, presumably, |
| // no larger than the source) then the useful bits of the result are |
| // zero; we can't simply return the shortened shift, because the result |
| // of that operation is undefined. |
| SDLoc DL(N0); |
| if (ShLeftAmt >= VT.getSizeInBits()) |
| Result = DAG.getConstant(0, DL, VT); |
| else |
| Result = DAG.getNode(ISD::SHL, DL, VT, |
| Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); |
| } |
| |
| // Return the new loaded value. |
| return Result; |
| } |
| |
| SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT EVT = cast<VTSDNode>(N1)->getVT(); |
| unsigned VTBits = VT.getScalarSizeInBits(); |
| unsigned EVTBits = EVT.getScalarSizeInBits(); |
| |
| if (N0.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| // fold (sext_in_reg c1) -> c1 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); |
| |
| // If the input is already sign extended, just drop the extension. |
| if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) |
| return N0; |
| |
| // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 |
| if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, |
| N0.getOperand(0), N1); |
| |
| // fold (sext_in_reg (sext x)) -> (sext x) |
| // fold (sext_in_reg (aext x)) -> (sext x) |
| // if x is small enough. |
| if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getScalarValueSizeInBits() <= EVTBits && |
| (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) |
| return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); |
| } |
| |
| // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) |
| if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || |
| N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || |
| N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) && |
| N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) { |
| if (!LegalOperations || |
| TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)) |
| return DAG.getSignExtendVectorInReg(N0.getOperand(0), SDLoc(N), VT); |
| } |
| |
| // fold (sext_in_reg (zext x)) -> (sext x) |
| // iff we are extending the source sign bit. |
| if (N0.getOpcode() == ISD::ZERO_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getScalarValueSizeInBits() == EVTBits && |
| (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) |
| return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); |
| } |
| |
| // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. |
| if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1))) |
| return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType()); |
| |
| // fold operands of sext_in_reg based on knowledge that the top bits are not |
| // demanded. |
| if (SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // fold (sext_in_reg (load x)) -> (smaller sextload x) |
| // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) |
| if (SDValue NarrowLoad = ReduceLoadWidth(N)) |
| return NarrowLoad; |
| |
| // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) |
| // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. |
| // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. |
| if (N0.getOpcode() == ISD::SRL) { |
| if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) |
| if (ShAmt->getZExtValue()+EVTBits <= VTBits) { |
| // We can turn this into an SRA iff the input to the SRL is already sign |
| // extended enough. |
| unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); |
| if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) |
| return DAG.getNode(ISD::SRA, SDLoc(N), VT, |
| N0.getOperand(0), N0.getOperand(1)); |
| } |
| } |
| |
| // fold (sext_inreg (extload x)) -> (sextload x) |
| // If sextload is not supported by target, we can only do the combine when |
| // load has one use. Doing otherwise can block folding the extload with other |
| // extends that the target does support. |
| if (ISD::isEXTLoad(N0.getNode()) && |
| ISD::isUNINDEXEDLoad(N0.getNode()) && |
| EVT == cast<LoadSDNode>(N0)->getMemoryVT() && |
| ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile() && |
| N0.hasOneUse()) || |
| TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, |
| LN0->getChain(), |
| LN0->getBasePtr(), EVT, |
| LN0->getMemOperand()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); |
| AddToWorklist(ExtLoad.getNode()); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use |
| if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && |
| N0.hasOneUse() && |
| EVT == cast<LoadSDNode>(N0)->getMemoryVT() && |
| ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || |
| TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, |
| LN0->getChain(), |
| LN0->getBasePtr(), EVT, |
| LN0->getMemOperand()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) |
| if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { |
| if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), |
| N0.getOperand(1), false)) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, |
| BSwap, N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (N0.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, |
| LegalOperations)) |
| return SDValue(Res, 0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (N0.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, |
| LegalOperations)) |
| return SDValue(Res, 0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| bool isLE = DAG.getDataLayout().isLittleEndian(); |
| |
| // noop truncate |
| if (N0.getValueType() == N->getValueType(0)) |
| return N0; |
| |
| // fold (truncate (truncate x)) -> (truncate x) |
| if (N0.getOpcode() == ISD::TRUNCATE) |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); |
| |
| // fold (truncate c1) -> c1 |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { |
| SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); |
| if (C.getNode() != N) |
| return C; |
| } |
| |
| // fold (truncate (ext x)) -> (ext x) or (truncate x) or x |
| if (N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND || |
| N0.getOpcode() == ISD::ANY_EXTEND) { |
| // if the source is smaller than the dest, we still need an extend. |
| if (N0.getOperand(0).getValueType().bitsLT(VT)) |
| return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); |
| // if the source is larger than the dest, than we just need the truncate. |
| if (N0.getOperand(0).getValueType().bitsGT(VT)) |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); |
| // if the source and dest are the same type, we can drop both the extend |
| // and the truncate. |
| return N0.getOperand(0); |
| } |
| |
| // If this is anyext(trunc), don't fold it, allow ourselves to be folded. |
| if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) |
| return SDValue(); |
| |
| // Fold extract-and-trunc into a narrow extract. For example: |
| // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) |
| // i32 y = TRUNCATE(i64 x) |
| // -- becomes -- |
| // v16i8 b = BITCAST (v2i64 val) |
| // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) |
| // |
| // Note: We only run this optimization after type legalization (which often |
| // creates this pattern) and before operation legalization after which |
| // we need to be more careful about the vector instructions that we generate. |
| if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { |
| EVT VecTy = N0.getOperand(0).getValueType(); |
| EVT ExTy = N0.getValueType(); |
| EVT TrTy = N->getValueType(0); |
| |
| unsigned NumElem = VecTy.getVectorNumElements(); |
| unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); |
| |
| EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); |
| assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); |
| |
| SDValue EltNo = N0->getOperand(1); |
| if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { |
| int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); |
| EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); |
| int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); |
| |
| SDLoc DL(N); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, |
| DAG.getBitcast(NVT, N0.getOperand(0)), |
| DAG.getConstant(Index, DL, IndexTy)); |
| } |
| } |
| |
| // trunc (select c, a, b) -> select c, (trunc a), (trunc b) |
| if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { |
| EVT SrcVT = N0.getValueType(); |
| if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && |
| TLI.isTruncateFree(SrcVT, VT)) { |
| SDLoc SL(N0); |
| SDValue Cond = N0.getOperand(0); |
| SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); |
| SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); |
| return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); |
| } |
| } |
| |
| // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() |
| if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) && |
| TLI.isTypeDesirableForOp(ISD::SHL, VT)) { |
| SDValue Amt = N0.getOperand(1); |
| KnownBits Known; |
| DAG.computeKnownBits(Amt, Known); |
| unsigned Size = VT.getScalarSizeInBits(); |
| if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { |
| SDLoc SL(N); |
| EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); |
| |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); |
| if (AmtVT != Amt.getValueType()) { |
| Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); |
| AddToWorklist(Amt.getNode()); |
| } |
| return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); |
| } |
| } |
| |
| // Fold a series of buildvector, bitcast, and truncate if possible. |
| // For example fold |
| // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to |
| // (2xi32 (buildvector x, y)). |
| if (Level == AfterLegalizeVectorOps && VT.isVector() && |
| N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && |
| N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && |
| N0.getOperand(0).hasOneUse()) { |
| SDValue BuildVect = N0.getOperand(0); |
| EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); |
| EVT TruncVecEltTy = VT.getVectorElementType(); |
| |
| // Check that the element types match. |
| if (BuildVectEltTy == TruncVecEltTy) { |
| // Now we only need to compute the offset of the truncated elements. |
| unsigned BuildVecNumElts = BuildVect.getNumOperands(); |
| unsigned TruncVecNumElts = VT.getVectorNumElements(); |
| unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; |
| |
| assert((BuildVecNumElts % TruncVecNumElts) == 0 && |
| "Invalid number of elements"); |
| |
| SmallVector<SDValue, 8> Opnds; |
| for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) |
| Opnds.push_back(BuildVect.getOperand(i)); |
| |
| return DAG.getBuildVector(VT, SDLoc(N), Opnds); |
| } |
| } |
| |
| // See if we can simplify the input to this truncate through knowledge that |
| // only the low bits are being used. |
| // For example "trunc (or (shl x, 8), y)" // -> trunc y |
| // Currently we only perform this optimization on scalars because vectors |
| // may have different active low bits. |
| if (!VT.isVector()) { |
| APInt Mask = |
| APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); |
| if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); |
| } |
| |
| // fold (truncate (load x)) -> (smaller load x) |
| // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) |
| if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { |
| if (SDValue Reduced = ReduceLoadWidth(N)) |
| return Reduced; |
| |
| // Handle the case where the load remains an extending load even |
| // after truncation. |
| if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| if (!LN0->isVolatile() && |
| LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { |
| SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), |
| VT, LN0->getChain(), LN0->getBasePtr(), |
| LN0->getMemoryVT(), |
| LN0->getMemOperand()); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); |
| return NewLoad; |
| } |
| } |
| } |
| |
| // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), |
| // where ... are all 'undef'. |
| if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { |
| SmallVector<EVT, 8> VTs; |
| SDValue V; |
| unsigned Idx = 0; |
| unsigned NumDefs = 0; |
| |
| for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { |
| SDValue X = N0.getOperand(i); |
| if (!X.isUndef()) { |
| V = X; |
| Idx = i; |
| NumDefs++; |
| } |
| // Stop if more than one members are non-undef. |
| if (NumDefs > 1) |
| break; |
| VTs.push_back(EVT::getVectorVT(*DAG.getContext(), |
| VT.getVectorElementType(), |
| X.getValueType().getVectorNumElements())); |
| } |
| |
| if (NumDefs == 0) |
| return DAG.getUNDEF(VT); |
| |
| if (NumDefs == 1) { |
| assert(V.getNode() && "The single defined operand is empty!"); |
| SmallVector<SDValue, 8> Opnds; |
| for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| if (i != Idx) { |
| Opnds.push_back(DAG.getUNDEF(VTs[i])); |
| continue; |
| } |
| SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); |
| AddToWorklist(NV.getNode()); |
| Opnds.push_back(NV); |
| } |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); |
| } |
| } |
| |
| // Fold truncate of a bitcast of a vector to an extract of the low vector |
| // element. |
| // |
| // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx |
| if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { |
| SDValue VecSrc = N0.getOperand(0); |
| EVT SrcVT = VecSrc.getValueType(); |
| if (SrcVT.isVector() && SrcVT.getScalarType() == VT && |
| (!LegalOperations || |
| TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) { |
| SDLoc SL(N); |
| |
| EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); |
| unsigned Idx = isLE ? 0 : SrcVT.getVectorNumElements() - 1; |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, |
| VecSrc, DAG.getConstant(Idx, SL, IdxVT)); |
| } |
| } |
| |
| // Simplify the operands using demanded-bits information. |
| if (!VT.isVector() && |
| SimplifyDemandedBits(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) |
| // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) |
| // When the adde's carry is not used. |
| if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && |
| N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && |
| (!LegalOperations || TLI.isOperationLegal(N0.getOpcode(), VT))) { |
| SDLoc SL(N); |
| auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); |
| auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); |
| auto VTs = DAG.getVTList(VT, N0->getValueType(1)); |
| return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); |
| } |
| |
| // fold (truncate (extract_subvector(ext x))) -> |
| // (extract_subvector x) |
| // TODO: This can be generalized to cover cases where the truncate and extract |
| // do not fully cancel each other out. |
| if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == ISD::SIGN_EXTEND || |
| N00.getOpcode() == ISD::ZERO_EXTEND || |
| N00.getOpcode() == ISD::ANY_EXTEND) { |
| if (N00.getOperand(0)->getValueType(0).getVectorElementType() == |
| VT.getVectorElementType()) |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, |
| N00.getOperand(0), N0.getOperand(1)); |
| } |
| } |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| return SDValue(); |
| } |
| |
| static SDNode *getBuildPairElt(SDNode *N, unsigned i) { |
| SDValue Elt = N->getOperand(i); |
| if (Elt.getOpcode() != ISD::MERGE_VALUES) |
| return Elt.getNode(); |
| return Elt.getOperand(Elt.getResNo()).getNode(); |
| } |
| |
| /// build_pair (load, load) -> load |
| /// if load locations are consecutive. |
| SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { |
| assert(N->getOpcode() == ISD::BUILD_PAIR); |
| |
| LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); |
| LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); |
| |
| // A BUILD_PAIR is always having the least significant part in elt 0 and the |
| // most significant part in elt 1. So when combining into one large load, we |
| // need to consider the endianness. |
| if (DAG.getDataLayout().isBigEndian()) |
| std::swap(LD1, LD2); |
| |
| if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || |
| LD1->getAddressSpace() != LD2->getAddressSpace()) |
| return SDValue(); |
| EVT LD1VT = LD1->getValueType(0); |
| unsigned LD1Bytes = LD1VT.getStoreSize(); |
| if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && |
| DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { |
| unsigned Align = LD1->getAlignment(); |
| unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( |
| VT.getTypeForEVT(*DAG.getContext())); |
| |
| if (NewAlign <= Align && |
| (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) |
| return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), |
| LD1->getPointerInfo(), Align); |
| } |
| |
| return SDValue(); |
| } |
| |
| static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { |
| // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi |
| // and Lo parts; on big-endian machines it doesn't. |
| return DAG.getDataLayout().isBigEndian() ? 1 : 0; |
| } |
| |
| static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| // If this is not a bitcast to an FP type or if the target doesn't have |
| // IEEE754-compliant FP logic, we're done. |
| EVT VT = N->getValueType(0); |
| if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) |
| return SDValue(); |
| |
| // TODO: Use splat values for the constant-checking below and remove this |
| // restriction. |
| SDValue N0 = N->getOperand(0); |
| EVT SourceVT = N0.getValueType(); |
| if (SourceVT.isVector()) |
| return SDValue(); |
| |
| unsigned FPOpcode; |
| APInt SignMask; |
| switch (N0.getOpcode()) { |
| case ISD::AND: |
| FPOpcode = ISD::FABS; |
| SignMask = ~APInt::getSignMask(SourceVT.getSizeInBits()); |
| break; |
| case ISD::XOR: |
| FPOpcode = ISD::FNEG; |
| SignMask = APInt::getSignMask(SourceVT.getSizeInBits()); |
| break; |
| // TODO: ISD::OR --> ISD::FNABS? |
| default: |
| return SDValue(); |
| } |
| |
| // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X |
| // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X |
| SDValue LogicOp0 = N0.getOperand(0); |
| ConstantSDNode *LogicOp1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && |
| LogicOp0.getOpcode() == ISD::BITCAST && |
| LogicOp0->getOperand(0).getValueType() == VT) |
| return DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0->getOperand(0)); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBITCAST(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (N0.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| // If the input is a BUILD_VECTOR with all constant elements, fold this now. |
| // Only do this before legalize, since afterward the target may be depending |
| // on the bitconvert. |
| // First check to see if this is all constant. |
| if (!LegalTypes && |
| N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && |
| VT.isVector()) { |
| bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant(); |
| |
| EVT DestEltVT = N->getValueType(0).getVectorElementType(); |
| assert(!DestEltVT.isVector() && |
| "Element type of vector ValueType must not be vector!"); |
| if (isSimple) |
| return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); |
| } |
| |
| // If the input is a constant, let getNode fold it. |
| // We always need to check that this is just a fp -> int or int -> conversion |
| // otherwise we will get back N which will confuse the caller into thinking |
| // we used CombineTo. This can block target combines from running. If we can't |
| // allowed legal operations, we need to ensure the resulting operation will be |
| // legal. |
| // TODO: Maybe we should check that the return value isn't N explicitly? |
| if ((isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && |
| (!LegalOperations || TLI.isOperationLegal(ISD::ConstantFP, VT))) || |
| (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && |
| (!LegalOperations || TLI.isOperationLegal(ISD::Constant, VT)))) |
| return DAG.getBitcast(VT, N0); |
| |
| // (conv (conv x, t1), t2) -> (conv x, t2) |
| if (N0.getOpcode() == ISD::BITCAST) |
| return DAG.getBitcast(VT, N0.getOperand(0)); |
| |
| // fold (conv (load x)) -> (load (conv*)x) |
| // If the resultant load doesn't need a higher alignment than the original! |
| if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && |
| // Do not change the width of a volatile load. |
| !cast<LoadSDNode>(N0)->isVolatile() && |
| // Do not remove the cast if the types differ in endian layout. |
| TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == |
| TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && |
| (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && |
| TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| unsigned OrigAlign = LN0->getAlignment(); |
| |
| bool Fast = false; |
| if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, |
| LN0->getAddressSpace(), OrigAlign, &Fast) && |
| Fast) { |
| SDValue Load = |
| DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), |
| LN0->getPointerInfo(), OrigAlign, |
| LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); |
| return Load; |
| } |
| } |
| |
| if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) |
| return V; |
| |
| // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) |
| // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) |
| // |
| // For ppc_fp128: |
| // fold (bitcast (fneg x)) -> |
| // flipbit = signbit |
| // (xor (bitcast x) (build_pair flipbit, flipbit)) |
| // |
| // fold (bitcast (fabs x)) -> |
| // flipbit = (and (extract_element (bitcast x), 0), signbit) |
| // (xor (bitcast x) (build_pair flipbit, flipbit)) |
| // This often reduces constant pool loads. |
| if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || |
| (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && |
| N0.getNode()->hasOneUse() && VT.isInteger() && |
| !VT.isVector() && !N0.getValueType().isVector()) { |
| SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); |
| AddToWorklist(NewConv.getNode()); |
| |
| SDLoc DL(N); |
| if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { |
| assert(VT.getSizeInBits() == 128); |
| SDValue SignBit = DAG.getConstant( |
| APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); |
| SDValue FlipBit; |
| if (N0.getOpcode() == ISD::FNEG) { |
| FlipBit = SignBit; |
| AddToWorklist(FlipBit.getNode()); |
| } else { |
| assert(N0.getOpcode() == ISD::FABS); |
| SDValue Hi = |
| DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, |
| DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), |
| SDLoc(NewConv))); |
| AddToWorklist(Hi.getNode()); |
| FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); |
| AddToWorklist(FlipBit.getNode()); |
| } |
| SDValue FlipBits = |
| DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); |
| AddToWorklist(FlipBits.getNode()); |
| return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); |
| } |
| APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); |
| if (N0.getOpcode() == ISD::FNEG) |
| return DAG.getNode(ISD::XOR, DL, VT, |
| NewConv, DAG.getConstant(SignBit, DL, VT)); |
| assert(N0.getOpcode() == ISD::FABS); |
| return DAG.getNode(ISD::AND, DL, VT, |
| NewConv, DAG.getConstant(~SignBit, DL, VT)); |
| } |
| |
| // fold (bitconvert (fcopysign cst, x)) -> |
| // (or (and (bitconvert x), sign), (and cst, (not sign))) |
| // Note that we don't handle (copysign x, cst) because this can always be |
| // folded to an fneg or fabs. |
| // |
| // For ppc_fp128: |
| // fold (bitcast (fcopysign cst, x)) -> |
| // flipbit = (and (extract_element |
| // (xor (bitcast cst), (bitcast x)), 0), |
| // signbit) |
| // (xor (bitcast cst) (build_pair flipbit, flipbit)) |
| if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && |
| isa<ConstantFPSDNode>(N0.getOperand(0)) && |
| VT.isInteger() && !VT.isVector()) { |
| unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); |
| EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); |
| if (isTypeLegal(IntXVT)) { |
| SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); |
| AddToWorklist(X.getNode()); |
| |
| // If X has a different width than the result/lhs, sext it or truncate it. |
| unsigned VTWidth = VT.getSizeInBits(); |
| if (OrigXWidth < VTWidth) { |
| X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); |
| AddToWorklist(X.getNode()); |
| } else if (OrigXWidth > VTWidth) { |
| // To get the sign bit in the right place, we have to shift it right |
| // before truncating. |
| SDLoc DL(X); |
| X = DAG.getNode(ISD::SRL, DL, |
| X.getValueType(), X, |
| DAG.getConstant(OrigXWidth-VTWidth, DL, |
| X.getValueType())); |
| AddToWorklist(X.getNode()); |
| X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); |
| AddToWorklist(X.getNode()); |
| } |
| |
| if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { |
| APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); |
| SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); |
| AddToWorklist(Cst.getNode()); |
| SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); |
| AddToWorklist(X.getNode()); |
| SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); |
| AddToWorklist(XorResult.getNode()); |
| SDValue XorResult64 = DAG.getNode( |
| ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, |
| DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), |
| SDLoc(XorResult))); |
| AddToWorklist(XorResult64.getNode()); |
| SDValue FlipBit = |
| DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, |
| DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); |
| AddToWorklist(FlipBit.getNode()); |
| SDValue FlipBits = |
| DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); |
| AddToWorklist(FlipBits.getNode()); |
| return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); |
| } |
| APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); |
| X = DAG.getNode(ISD::AND, SDLoc(X), VT, |
| X, DAG.getConstant(SignBit, SDLoc(X), VT)); |
| AddToWorklist(X.getNode()); |
| |
| SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); |
| Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, |
| Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); |
| AddToWorklist(Cst.getNode()); |
| |
| return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); |
| } |
| } |
| |
| // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. |
| if (N0.getOpcode() == ISD::BUILD_PAIR) |
| if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) |
| return CombineLD; |
| |
| // Remove double bitcasts from shuffles - this is often a legacy of |
| // XformToShuffleWithZero being used to combine bitmaskings (of |
| // float vectors bitcast to integer vectors) into shuffles. |
| // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) |
| if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && |
| N0->getOpcode() == ISD::VECTOR_SHUFFLE && |
| VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && |
| !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); |
| |
| // If operands are a bitcast, peek through if it casts the original VT. |
| // If operands are a constant, just bitcast back to original VT. |
| auto PeekThroughBitcast = [&](SDValue Op) { |
| if (Op.getOpcode() == ISD::BITCAST && |
| Op.getOperand(0).getValueType() == VT) |
| return SDValue(Op.getOperand(0)); |
| if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || |
| ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) |
| return DAG.getBitcast(VT, Op); |
| return SDValue(); |
| }; |
| |
| // FIXME: If either input vector is bitcast, try to convert the shuffle to |
| // the result type of this bitcast. This would eliminate at least one |
| // bitcast. See the transform in InstCombine. |
| SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); |
| SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); |
| if (!(SV0 && SV1)) |
| return SDValue(); |
| |
| int MaskScale = |
| VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); |
| SmallVector<int, 8> NewMask; |
| for (int M : SVN->getMask()) |
| for (int i = 0; i != MaskScale; ++i) |
| NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); |
| |
| bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); |
| if (!LegalMask) { |
| std::swap(SV0, SV1); |
| ShuffleVectorSDNode::commuteMask(NewMask); |
| LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); |
| } |
| |
| if (LegalMask) |
| return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| return CombineConsecutiveLoads(N, VT); |
| } |
| |
| /// We know that BV is a build_vector node with Constant, ConstantFP or Undef |
| /// operands. DstEltVT indicates the destination element value type. |
| SDValue DAGCombiner:: |
| ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { |
| EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); |
| |
| // If this is already the right type, we're done. |
| if (SrcEltVT == DstEltVT) return SDValue(BV, 0); |
| |
| unsigned SrcBitSize = SrcEltVT.getSizeInBits(); |
| unsigned DstBitSize = DstEltVT.getSizeInBits(); |
| |
| // If this is a conversion of N elements of one type to N elements of another |
| // type, convert each element. This handles FP<->INT cases. |
| if (SrcBitSize == DstBitSize) { |
| EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, |
| BV->getValueType(0).getVectorNumElements()); |
| |
| // Due to the FP element handling below calling this routine recursively, |
| // we can end up with a scalar-to-vector node here. |
| if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, |
| DAG.getBitcast(DstEltVT, BV->getOperand(0))); |
| |
| SmallVector<SDValue, 8> Ops; |
| for (SDValue Op : BV->op_values()) { |
| // If the vector element type is not legal, the BUILD_VECTOR operands |
| // are promoted and implicitly truncated. Make that explicit here. |
| if (Op.getValueType() != SrcEltVT) |
| Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); |
| Ops.push_back(DAG.getBitcast(DstEltVT, Op)); |
| AddToWorklist(Ops.back().getNode()); |
| } |
| return DAG.getBuildVector(VT, SDLoc(BV), Ops); |
| } |
| |
| // Otherwise, we're growing or shrinking the elements. To avoid having to |
| // handle annoying details of growing/shrinking FP values, we convert them to |
| // int first. |
| if (SrcEltVT.isFloatingPoint()) { |
| // Convert the input float vector to a int vector where the elements are the |
| // same sizes. |
| EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); |
| BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); |
| SrcEltVT = IntVT; |
| } |
| |
| // Now we know the input is an integer vector. If the output is a FP type, |
| // convert to integer first, then to FP of the right size. |
| if (DstEltVT.isFloatingPoint()) { |
| EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); |
| SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); |
| |
| // Next, convert to FP elements of the same size. |
| return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); |
| } |
| |
| SDLoc DL(BV); |
| |
| // Okay, we know the src/dst types are both integers of differing types. |
| // Handling growing first. |
| assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); |
| if (SrcBitSize < DstBitSize) { |
| unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; |
| |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0, e = BV->getNumOperands(); i != e; |
| i += NumInputsPerOutput) { |
| bool isLE = DAG.getDataLayout().isLittleEndian(); |
| APInt NewBits = APInt(DstBitSize, 0); |
| bool EltIsUndef = true; |
| for (unsigned j = 0; j != NumInputsPerOutput; ++j) { |
| // Shift the previously computed bits over. |
| NewBits <<= SrcBitSize; |
| SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); |
| if (Op.isUndef()) continue; |
| EltIsUndef = false; |
| |
| NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). |
| zextOrTrunc(SrcBitSize).zext(DstBitSize); |
| } |
| |
| if (EltIsUndef) |
| Ops.push_back(DAG.getUNDEF(DstEltVT)); |
| else |
| Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); |
| } |
| |
| EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); |
| return DAG.getBuildVector(VT, DL, Ops); |
| } |
| |
| // Finally, this must be the case where we are shrinking elements: each input |
| // turns into multiple outputs. |
| unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; |
| EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, |
| NumOutputsPerInput*BV->getNumOperands()); |
| SmallVector<SDValue, 8> Ops; |
| |
| for (const SDValue &Op : BV->op_values()) { |
| if (Op.isUndef()) { |
| Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); |
| continue; |
| } |
| |
| APInt OpVal = cast<ConstantSDNode>(Op)-> |
| getAPIntValue().zextOrTrunc(SrcBitSize); |
| |
| for (unsigned j = 0; j != NumOutputsPerInput; ++j) { |
| APInt ThisVal = OpVal.trunc(DstBitSize); |
| Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); |
| OpVal.lshrInPlace(DstBitSize); |
| } |
| |
| // For big endian targets, swap the order of the pieces of each element. |
| if (DAG.getDataLayout().isBigEndian()) |
| std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); |
| } |
| |
| return DAG.getBuildVector(VT, DL, Ops); |
| } |
| |
| static bool isContractable(SDNode *N) { |
| SDNodeFlags F = N->getFlags(); |
| return F.hasAllowContract() || F.hasAllowReassociation(); |
| } |
| |
| /// Try to perform FMA combining on a given FADD node. |
| SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| |
| const TargetOptions &Options = DAG.getTarget().Options; |
| |
| // Floating-point multiply-add with intermediate rounding. |
| bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); |
| |
| // Floating-point multiply-add without intermediate rounding. |
| bool HasFMA = |
| TLI.isFMAFasterThanFMulAndFAdd(VT) && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); |
| |
| // No valid opcode, do not combine. |
| if (!HasFMAD && !HasFMA) |
| return SDValue(); |
| |
| SDNodeFlags Flags = N->getFlags(); |
| bool CanFuse = Options.UnsafeFPMath || isContractable(N); |
| bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || |
| CanFuse || HasFMAD); |
| // If the addition is not contractable, do not combine. |
| if (!AllowFusionGlobally && !isContractable(N)) |
| return SDValue(); |
| |
| const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); |
| if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) |
| return SDValue(); |
| |
| // Always prefer FMAD to FMA for precision. |
| unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; |
| bool Aggressive = TLI.enableAggressiveFMAFusion(VT); |
| |
| // Is the node an FMUL and contractable either due to global flags or |
| // SDNodeFlags. |
| auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { |
| if (N.getOpcode() != ISD::FMUL) |
| return false; |
| return AllowFusionGlobally || isContractable(N.getNode()); |
| }; |
| // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), |
| // prefer to fold the multiply with fewer uses. |
| if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { |
| if (N0.getNode()->use_size() > N1.getNode()->use_size()) |
| std::swap(N0, N1); |
| } |
| |
| // fold (fadd (fmul x, y), z) -> (fma x, y, z) |
| if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(0), N0.getOperand(1), N1, Flags); |
| } |
| |
| // fold (fadd x, (fmul y, z)) -> (fma y, z, x) |
| // Note: Commutes FADD operands. |
| if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N1.getOperand(0), N1.getOperand(1), N0, Flags); |
| } |
| |
| // Look through FP_EXTEND nodes to do more combining. |
| |
| // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (isContractableFMUL(N00) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N00.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N00.getOperand(1)), N1, Flags); |
| } |
| } |
| |
| // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) |
| // Note: Commutes FADD operands. |
| if (N1.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N10 = N1.getOperand(0); |
| if (isContractableFMUL(N10) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N10.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N10.getOperand(1)), N0, Flags); |
| } |
| } |
| |
| // More folding opportunities when target permits. |
| if (Aggressive) { |
| // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) |
| if (CanFuse && |
| N0.getOpcode() == PreferredFusedOpcode && |
| N0.getOperand(2).getOpcode() == ISD::FMUL && |
| N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(0), N0.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(2).getOperand(0), |
| N0.getOperand(2).getOperand(1), |
| N1, Flags), Flags); |
| } |
| |
| // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) |
| if (CanFuse && |
| N1->getOpcode() == PreferredFusedOpcode && |
| N1.getOperand(2).getOpcode() == ISD::FMUL && |
| N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N1.getOperand(0), N1.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N1.getOperand(2).getOperand(0), |
| N1.getOperand(2).getOperand(1), |
| N0, Flags), Flags); |
| } |
| |
| |
| // fold (fadd (fma x, y, (fpext (fmul u, v))), z) |
| // -> (fma x, y, (fma (fpext u), (fpext v), z)) |
| auto FoldFAddFMAFPExtFMul = [&] ( |
| SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, |
| SDNodeFlags Flags) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, U), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, V), |
| Z, Flags), Flags); |
| }; |
| if (N0.getOpcode() == PreferredFusedOpcode) { |
| SDValue N02 = N0.getOperand(2); |
| if (N02.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N020 = N02.getOperand(0); |
| if (isContractableFMUL(N020) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) { |
| return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), |
| N020.getOperand(0), N020.getOperand(1), |
| N1, Flags); |
| } |
| } |
| } |
| |
| // fold (fadd (fpext (fma x, y, (fmul u, v))), z) |
| // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) |
| // FIXME: This turns two single-precision and one double-precision |
| // operation into two double-precision operations, which might not be |
| // interesting for all targets, especially GPUs. |
| auto FoldFAddFPExtFMAFMul = [&] ( |
| SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, |
| SDNodeFlags Flags) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, X), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, U), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, V), |
| Z, Flags), Flags); |
| }; |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == PreferredFusedOpcode) { |
| SDValue N002 = N00.getOperand(2); |
| if (isContractableFMUL(N002) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { |
| return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), |
| N002.getOperand(0), N002.getOperand(1), |
| N1, Flags); |
| } |
| } |
| } |
| |
| // fold (fadd x, (fma y, z, (fpext (fmul u, v))) |
| // -> (fma y, z, (fma (fpext u), (fpext v), x)) |
| if (N1.getOpcode() == PreferredFusedOpcode) { |
| SDValue N12 = N1.getOperand(2); |
| if (N12.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N120 = N12.getOperand(0); |
| if (isContractableFMUL(N120) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) { |
| return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), |
| N120.getOperand(0), N120.getOperand(1), |
| N0, Flags); |
| } |
| } |
| } |
| |
| // fold (fadd x, (fpext (fma y, z, (fmul u, v))) |
| // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) |
| // FIXME: This turns two single-precision and one double-precision |
| // operation into two double-precision operations, which might not be |
| // interesting for all targets, especially GPUs. |
| if (N1.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N10 = N1.getOperand(0); |
| if (N10.getOpcode() == PreferredFusedOpcode) { |
| SDValue N102 = N10.getOperand(2); |
| if (isContractableFMUL(N102) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { |
| return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), |
| N102.getOperand(0), N102.getOperand(1), |
| N0, Flags); |
| } |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Try to perform FMA combining on a given FSUB node. |
| SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| |
| const TargetOptions &Options = DAG.getTarget().Options; |
| // Floating-point multiply-add with intermediate rounding. |
| bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); |
| |
| // Floating-point multiply-add without intermediate rounding. |
| bool HasFMA = |
| TLI.isFMAFasterThanFMulAndFAdd(VT) && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); |
| |
| // No valid opcode, do not combine. |
| if (!HasFMAD && !HasFMA) |
| return SDValue(); |
| |
| const SDNodeFlags Flags = N->getFlags(); |
| bool CanFuse = Options.UnsafeFPMath || isContractable(N); |
| bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || |
| CanFuse || HasFMAD); |
| |
| // If the subtraction is not contractable, do not combine. |
| if (!AllowFusionGlobally && !isContractable(N)) |
| return SDValue(); |
| |
| const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); |
| if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) |
| return SDValue(); |
| |
| // Always prefer FMAD to FMA for precision. |
| unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; |
| bool Aggressive = TLI.enableAggressiveFMAFusion(VT); |
| |
| // Is the node an FMUL and contractable either due to global flags or |
| // SDNodeFlags. |
| auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { |
| if (N.getOpcode() != ISD::FMUL) |
| return false; |
| return AllowFusionGlobally || isContractable(N.getNode()); |
| }; |
| |
| // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) |
| if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(0), N0.getOperand(1), |
| DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); |
| } |
| |
| // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) |
| // Note: Commutes FSUB operands. |
| if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| N1.getOperand(0)), |
| N1.getOperand(1), N0, Flags); |
| } |
| |
| // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) |
| if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && |
| (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { |
| SDValue N00 = N0.getOperand(0).getOperand(0); |
| SDValue N01 = N0.getOperand(0).getOperand(1); |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, N00), N01, |
| DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); |
| } |
| |
| // Look through FP_EXTEND nodes to do more combining. |
| |
| // fold (fsub (fpext (fmul x, y)), z) |
| // -> (fma (fpext x), (fpext y), (fneg z)) |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (isContractableFMUL(N00) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N00.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N00.getOperand(1)), |
| DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); |
| } |
| } |
| |
| // fold (fsub x, (fpext (fmul y, z))) |
| // -> (fma (fneg (fpext y)), (fpext z), x) |
| // Note: Commutes FSUB operands. |
| if (N1.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N10 = N1.getOperand(0); |
| if (isContractableFMUL(N10) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N10.getOperand(0))), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N10.getOperand(1)), |
| N0, Flags); |
| } |
| } |
| |
| // fold (fsub (fpext (fneg (fmul, x, y))), z) |
| // -> (fneg (fma (fpext x), (fpext y), z)) |
| // Note: This could be removed with appropriate canonicalization of the |
| // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the |
| // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent |
| // from implementing the canonicalization in visitFSUB. |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == ISD::FNEG) { |
| SDValue N000 = N00.getOperand(0); |
| if (isContractableFMUL(N000) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { |
| return DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N000.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N000.getOperand(1)), |
| N1, Flags)); |
| } |
| } |
| } |
| |
| // fold (fsub (fneg (fpext (fmul, x, y))), z) |
| // -> (fneg (fma (fpext x)), (fpext y), z) |
| // Note: This could be removed with appropriate canonicalization of the |
| // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the |
| // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent |
| // from implementing the canonicalization in visitFSUB. |
| if (N0.getOpcode() == ISD::FNEG) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N000 = N00.getOperand(0); |
| if (isContractableFMUL(N000) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N000.getValueType())) { |
| return DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N000.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N000.getOperand(1)), |
| N1, Flags)); |
| } |
| } |
| } |
| |
| // More folding opportunities when target permits. |
| if (Aggressive) { |
| // fold (fsub (fma x, y, (fmul u, v)), z) |
| // -> (fma x, y (fma u, v, (fneg z))) |
| if (CanFuse && N0.getOpcode() == PreferredFusedOpcode && |
| isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() && |
| N0.getOperand(2)->hasOneUse()) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(0), N0.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(2).getOperand(0), |
| N0.getOperand(2).getOperand(1), |
| DAG.getNode(ISD::FNEG, SL, VT, |
| N1), Flags), Flags); |
| } |
| |
| // fold (fsub x, (fma y, z, (fmul u, v))) |
| // -> (fma (fneg y), z, (fma (fneg u), v, x)) |
| if (CanFuse && N1.getOpcode() == PreferredFusedOpcode && |
| isContractableFMUL(N1.getOperand(2))) { |
| SDValue N20 = N1.getOperand(2).getOperand(0); |
| SDValue N21 = N1.getOperand(2).getOperand(1); |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| N1.getOperand(0)), |
| N1.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, N20), |
| N21, N0, Flags), Flags); |
| } |
| |
| |
| // fold (fsub (fma x, y, (fpext (fmul u, v))), z) |
| // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) |
| if (N0.getOpcode() == PreferredFusedOpcode) { |
| SDValue N02 = N0.getOperand(2); |
| if (N02.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N020 = N02.getOperand(0); |
| if (isContractableFMUL(N020) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| N0.getOperand(0), N0.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N020.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N020.getOperand(1)), |
| DAG.getNode(ISD::FNEG, SL, VT, |
| N1), Flags), Flags); |
| } |
| } |
| } |
| |
| // fold (fsub (fpext (fma x, y, (fmul u, v))), z) |
| // -> (fma (fpext x), (fpext y), |
| // (fma (fpext u), (fpext v), (fneg z))) |
| // FIXME: This turns two single-precision and one double-precision |
| // operation into two double-precision operations, which might not be |
| // interesting for all targets, especially GPUs. |
| if (N0.getOpcode() == ISD::FP_EXTEND) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == PreferredFusedOpcode) { |
| SDValue N002 = N00.getOperand(2); |
| if (isContractableFMUL(N002) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N00.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N00.getOperand(1)), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N002.getOperand(0)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N002.getOperand(1)), |
| DAG.getNode(ISD::FNEG, SL, VT, |
| N1), Flags), Flags); |
| } |
| } |
| } |
| |
| // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) |
| // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) |
| if (N1.getOpcode() == PreferredFusedOpcode && |
| N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { |
| SDValue N120 = N1.getOperand(2).getOperand(0); |
| if (isContractableFMUL(N120) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) { |
| SDValue N1200 = N120.getOperand(0); |
| SDValue N1201 = N120.getOperand(1); |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), |
| N1.getOperand(1), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, |
| VT, N1200)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N1201), |
| N0, Flags), Flags); |
| } |
| } |
| |
| // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) |
| // -> (fma (fneg (fpext y)), (fpext z), |
| // (fma (fneg (fpext u)), (fpext v), x)) |
| // FIXME: This turns two single-precision and one double-precision |
| // operation into two double-precision operations, which might not be |
| // interesting for all targets, especially GPUs. |
| if (N1.getOpcode() == ISD::FP_EXTEND && |
| N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { |
| SDValue CvtSrc = N1.getOperand(0); |
| SDValue N100 = CvtSrc.getOperand(0); |
| SDValue N101 = CvtSrc.getOperand(1); |
| SDValue N102 = CvtSrc.getOperand(2); |
| if (isContractableFMUL(N102) && |
| TLI.isFPExtFoldable(PreferredFusedOpcode, VT, CvtSrc.getValueType())) { |
| SDValue N1020 = N102.getOperand(0); |
| SDValue N1021 = N102.getOperand(1); |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N100)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), |
| DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, |
| DAG.getNode(ISD::FP_EXTEND, SL, |
| VT, N1020)), |
| DAG.getNode(ISD::FP_EXTEND, SL, VT, |
| N1021), |
| N0, Flags), Flags); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Try to perform FMA combining on a given FMUL node based on the distributive |
| /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, |
| /// subtraction instead of addition). |
| SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| const SDNodeFlags Flags = N->getFlags(); |
| |
| assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); |
| |
| const TargetOptions &Options = DAG.getTarget().Options; |
| |
| // The transforms below are incorrect when x == 0 and y == inf, because the |
| // intermediate multiplication produces a nan. |
| if (!Options.NoInfsFPMath) |
| return SDValue(); |
| |
| // Floating-point multiply-add without intermediate rounding. |
| bool HasFMA = |
| (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && |
| TLI.isFMAFasterThanFMulAndFAdd(VT) && |
| (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); |
| |
| // Floating-point multiply-add with intermediate rounding. This can result |
| // in a less precise result due to the changed rounding order. |
| bool HasFMAD = Options.UnsafeFPMath && |
| (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); |
| |
| // No valid opcode, do not combine. |
| if (!HasFMAD && !HasFMA) |
| return SDValue(); |
| |
| // Always prefer FMAD to FMA for precision. |
| unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; |
| bool Aggressive = TLI.enableAggressiveFMAFusion(VT); |
| |
| // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y) |
| // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y)) |
| auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { |
| if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { |
| auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); |
| if (XC1 && XC1->isExactlyValue(+1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, |
| Y, Flags); |
| if (XC1 && XC1->isExactlyValue(-1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, |
| DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); |
| } |
| return SDValue(); |
| }; |
| |
| if (SDValue FMA = FuseFADD(N0, N1, Flags)) |
| return FMA; |
| if (SDValue FMA = FuseFADD(N1, N0, Flags)) |
| return FMA; |
| |
| // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y) |
| // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y)) |
| // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y)) |
| // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y) |
| auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { |
| if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { |
| auto XC0 = isConstOrConstSplatFP(X.getOperand(0)); |
| if (XC0 && XC0->isExactlyValue(+1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, |
| Y, Flags); |
| if (XC0 && XC0->isExactlyValue(-1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, |
| DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, |
| DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); |
| |
| auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); |
| if (XC1 && XC1->isExactlyValue(+1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, |
| DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); |
| if (XC1 && XC1->isExactlyValue(-1.0)) |
| return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, |
| Y, Flags); |
| } |
| return SDValue(); |
| }; |
| |
| if (SDValue FMA = FuseFSUB(N0, N1, Flags)) |
| return FMA; |
| if (SDValue FMA = FuseFSUB(N1, N0, Flags)) |
| return FMA; |
| |
| return SDValue(); |
| } |
| |
| static bool isFMulNegTwo(SDValue &N) { |
| if (N.getOpcode() != ISD::FMUL) |
| return false; |
| if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N.getOperand(1))) |
| return CFP->isExactlyValue(-2.0); |
| return false; |
| } |
| |
| SDValue DAGCombiner::visitFADD(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); |
| bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| const SDNodeFlags Flags = N->getFlags(); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (fadd c1, c2) -> c1 + c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); |
| |
| // canonicalize constant to RHS |
| if (N0CFP && !N1CFP) |
| return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // fold (fadd A, (fneg B)) -> (fsub A, B) |
| if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && |
| isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) |
| return DAG.getNode(ISD::FSUB, DL, VT, N0, |
| GetNegatedExpression(N1, DAG, LegalOperations), Flags); |
| |
| // fold (fadd (fneg A), B) -> (fsub B, A) |
| if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && |
| isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) |
| return DAG.getNode(ISD::FSUB, DL, VT, N1, |
| GetNegatedExpression(N0, DAG, LegalOperations), Flags); |
| |
| // fold (fadd A, (fmul B, -2.0)) -> (fsub A, (fadd B, B)) |
| // fold (fadd (fmul B, -2.0), A) -> (fsub A, (fadd B, B)) |
| if ((isFMulNegTwo(N0) && N0.hasOneUse()) || |
| (isFMulNegTwo(N1) && N1.hasOneUse())) { |
| bool N1IsFMul = isFMulNegTwo(N1); |
| SDValue AddOp = N1IsFMul ? N1.getOperand(0) : N0.getOperand(0); |
| SDValue Add = DAG.getNode(ISD::FADD, DL, VT, AddOp, AddOp, Flags); |
| return DAG.getNode(ISD::FSUB, DL, VT, N1IsFMul ? N0 : N1, Add, Flags); |
| } |
| |
| ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1); |
| if (N1C && N1C->isZero()) { |
| if (N1C->isNegative() || Options.UnsafeFPMath || |
| Flags.hasNoSignedZeros()) { |
| // fold (fadd A, 0) -> A |
| return N0; |
| } |
| } |
| |
| // No FP constant should be created after legalization as Instruction |
| // Selection pass has a hard time dealing with FP constants. |
| bool AllowNewConst = (Level < AfterLegalizeDAG); |
| |
| // If 'unsafe math' or nnan is enabled, fold lots of things. |
| if ((Options.UnsafeFPMath || Flags.hasNoNaNs()) && AllowNewConst) { |
| // If allowed, fold (fadd (fneg x), x) -> 0.0 |
| if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) |
| return DAG.getConstantFP(0.0, DL, VT); |
| |
| // If allowed, fold (fadd x, (fneg x)) -> 0.0 |
| if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) |
| return DAG.getConstantFP(0.0, DL, VT); |
| } |
| |
| // If 'unsafe math' or reassoc and nsz, fold lots of things. |
| // TODO: break out portions of the transformations below for which Unsafe is |
| // considered and which do not require both nsz and reassoc |
| if ((Options.UnsafeFPMath || |
| (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && |
| AllowNewConst) { |
| // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 |
| if (N1CFP && N0.getOpcode() == ISD::FADD && |
| isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { |
| SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags); |
| return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags); |
| } |
| |
| // We can fold chains of FADD's of the same value into multiplications. |
| // This transform is not safe in general because we are reducing the number |
| // of rounding steps. |
| if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { |
| if (N0.getOpcode() == ISD::FMUL) { |
| bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); |
| bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); |
| |
| // (fadd (fmul x, c), x) -> (fmul x, c+1) |
| if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { |
| SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), |
| DAG.getConstantFP(1.0, DL, VT), Flags); |
| return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); |
| } |
| |
| // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) |
| if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && |
| N1.getOperand(0) == N1.getOperand(1) && |
| N0.getOperand(0) == N1.getOperand(0)) { |
| SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), |
| DAG.getConstantFP(2.0, DL, VT), Flags); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); |
| } |
| } |
| |
| if (N1.getOpcode() == ISD::FMUL) { |
| bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); |
| bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); |
| |
| // (fadd x, (fmul x, c)) -> (fmul x, c+1) |
| if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { |
| SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), |
| DAG.getConstantFP(1.0, DL, VT), Flags); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); |
| } |
| |
| // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) |
| if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && |
| N0.getOperand(0) == N0.getOperand(1) && |
| N1.getOperand(0) == N0.getOperand(0)) { |
| SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), |
| DAG.getConstantFP(2.0, DL, VT), Flags); |
| return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); |
| } |
| } |
| |
| if (N0.getOpcode() == ISD::FADD) { |
| bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); |
| // (fadd (fadd x, x), x) -> (fmul x, 3.0) |
| if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && |
| (N0.getOperand(0) == N1)) { |
| return DAG.getNode(ISD::FMUL, DL, VT, |
| N1, DAG.getConstantFP(3.0, DL, VT), Flags); |
| } |
| } |
| |
| if (N1.getOpcode() == ISD::FADD) { |
| bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); |
| // (fadd x, (fadd x, x)) -> (fmul x, 3.0) |
| if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && |
| N1.getOperand(0) == N0) { |
| return DAG.getNode(ISD::FMUL, DL, VT, |
| N0, DAG.getConstantFP(3.0, DL, VT), Flags); |
| } |
| } |
| |
| // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) |
| if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && |
| N0.getOperand(0) == N0.getOperand(1) && |
| N1.getOperand(0) == N1.getOperand(1) && |
| N0.getOperand(0) == N1.getOperand(0)) { |
| return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), |
| DAG.getConstantFP(4.0, DL, VT), Flags); |
| } |
| } |
| } // enable-unsafe-fp-math |
| |
| // FADD -> FMA combines: |
| if (SDValue Fused = visitFADDForFMACombine(N)) { |
| AddToWorklist(Fused.getNode()); |
| return Fused; |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFSUB(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); |
| ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| const SDNodeFlags Flags = N->getFlags(); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (fsub c1, c2) -> c1-c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| // (fsub A, 0) -> A |
| if (N1CFP && N1CFP->isZero()) { |
| if (!N1CFP->isNegative() || Options.UnsafeFPMath || |
| Flags.hasNoSignedZeros()) { |
| return N0; |
| } |
| } |
| |
| if (N0 == N1) { |
| // (fsub x, x) -> 0.0 |
| if (Options.UnsafeFPMath || Flags.hasNoNaNs()) |
| return DAG.getConstantFP(0.0f, DL, VT); |
| } |
| |
| // (fsub 0, B) -> -B |
| if (N0CFP && N0CFP->isZero()) { |
| if (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) { |
| if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) |
| return GetNegatedExpression(N1, DAG, LegalOperations); |
| if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) |
| return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags); |
| } |
| } |
| |
| // fold (fsub A, (fneg B)) -> (fadd A, B) |
| if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) |
| return DAG.getNode(ISD::FADD, DL, VT, N0, |
| GetNegatedExpression(N1, DAG, LegalOperations), Flags); |
| |
| // If 'unsafe math' is enabled, fold lots of things. |
| if (Options.UnsafeFPMath) { |
| // (fsub x, (fadd x, y)) -> (fneg y) |
| // (fsub x, (fadd y, x)) -> (fneg y) |
| if (N1.getOpcode() == ISD::FADD) { |
| SDValue N10 = N1->getOperand(0); |
| SDValue N11 = N1->getOperand(1); |
| |
| if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) |
| return GetNegatedExpression(N11, DAG, LegalOperations); |
| |
| if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) |
| return GetNegatedExpression(N10, DAG, LegalOperations); |
| } |
| } |
| |
| // FSUB -> FMA combines: |
| if (SDValue Fused = visitFSUBForFMACombine(N)) { |
| AddToWorklist(Fused.getNode()); |
| return Fused; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFMUL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); |
| ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| const SDNodeFlags Flags = N->getFlags(); |
| |
| // fold vector ops |
| if (VT.isVector()) { |
| // This just handles C1 * C2 for vectors. Other vector folds are below. |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| } |
| |
| // fold (fmul c1, c2) -> c1*c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); |
| |
| // canonicalize constant to RHS |
| if (isConstantFPBuildVectorOrConstantFP(N0) && |
| !isConstantFPBuildVectorOrConstantFP(N1)) |
| return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); |
| |
| // fold (fmul A, 1.0) -> A |
| if (N1CFP && N1CFP->isExactlyValue(1.0)) |
| return N0; |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| if (Options.UnsafeFPMath || |
| (Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) { |
| // fold (fmul A, 0) -> 0 |
| if (N1CFP && N1CFP->isZero()) |
| return N1; |
| } |
| |
| if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { |
| // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 |
| if (N0.getOpcode() == ISD::FMUL) { |
| // Fold scalars or any vector constants (not just splats). |
| // This fold is done in general by InstCombine, but extra fmul insts |
| // may have been generated during lowering. |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); |
| auto *BV00 = dyn_cast<BuildVectorSDNode>(N00); |
| auto *BV01 = dyn_cast<BuildVectorSDNode>(N01); |
| |
| // Check 1: Make sure that the first operand of the inner multiply is NOT |
| // a constant. Otherwise, we may induce infinite looping. |
| if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) { |
| // Check 2: Make sure that the second operand of the inner multiply and |
| // the second operand of the outer multiply are constants. |
| if ((N1CFP && isConstOrConstSplatFP(N01)) || |
| (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { |
| SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); |
| return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); |
| } |
| } |
| } |
| |
| // Match a special-case: we convert X * 2.0 into fadd. |
| // fmul (fadd X, X), C -> fmul X, 2.0 * C |
| if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && |
| N0.getOperand(0) == N0.getOperand(1)) { |
| const SDValue Two = DAG.getConstantFP(2.0, DL, VT); |
| SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); |
| } |
| } |
| |
| // fold (fmul X, 2.0) -> (fadd X, X) |
| if (N1CFP && N1CFP->isExactlyValue(+2.0)) |
| return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); |
| |
| // fold (fmul X, -1.0) -> (fneg X) |
| if (N1CFP && N1CFP->isExactlyValue(-1.0)) |
| if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) |
| return DAG.getNode(ISD::FNEG, DL, VT, N0); |
| |
| // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) |
| if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { |
| if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { |
| // Both can be negated for free, check to see if at least one is cheaper |
| // negated. |
| if (LHSNeg == 2 || RHSNeg == 2) |
| return DAG.getNode(ISD::FMUL, DL, VT, |
| GetNegatedExpression(N0, DAG, LegalOperations), |
| GetNegatedExpression(N1, DAG, LegalOperations), |
| Flags); |
| } |
| } |
| |
| // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) |
| // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) |
| if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && |
| (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && |
| TLI.isOperationLegal(ISD::FABS, VT)) { |
| SDValue Select = N0, X = N1; |
| if (Select.getOpcode() != ISD::SELECT) |
| std::swap(Select, X); |
| |
| SDValue Cond = Select.getOperand(0); |
| auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); |
| auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); |
| |
| if (TrueOpnd && FalseOpnd && |
| Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && |
| isa<ConstantFPSDNode>(Cond.getOperand(1)) && |
| cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| switch (CC) { |
| default: break; |
| case ISD::SETOLT: |
| case ISD::SETULT: |
| case ISD::SETOLE: |
| case ISD::SETULE: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| std::swap(TrueOpnd, FalseOpnd); |
| LLVM_FALLTHROUGH; |
| case ISD::SETOGT: |
| case ISD::SETUGT: |
| case ISD::SETOGE: |
| case ISD::SETUGE: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && |
| TLI.isOperationLegal(ISD::FNEG, VT)) |
| return DAG.getNode(ISD::FNEG, DL, VT, |
| DAG.getNode(ISD::FABS, DL, VT, X)); |
| if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) |
| return DAG.getNode(ISD::FABS, DL, VT, X); |
| |
| break; |
| } |
| } |
| } |
| |
| // FMUL -> FMA combines: |
| if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { |
| AddToWorklist(Fused.getNode()); |
| return Fused; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFMA(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| |
| // FMA nodes have flags that propagate to the created nodes. |
| const SDNodeFlags Flags = N->getFlags(); |
| bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N); |
| |
| // Constant fold FMA. |
| if (isa<ConstantFPSDNode>(N0) && |
| isa<ConstantFPSDNode>(N1) && |
| isa<ConstantFPSDNode>(N2)) { |
| return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); |
| } |
| |
| if (UnsafeFPMath) { |
| if (N0CFP && N0CFP->isZero()) |
| return N2; |
| if (N1CFP && N1CFP->isZero()) |
| return N2; |
| } |
| // TODO: The FMA node should have flags that propagate to these nodes. |
| if (N0CFP && N0CFP->isExactlyValue(1.0)) |
| return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); |
| if (N1CFP && N1CFP->isExactlyValue(1.0)) |
| return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); |
| |
| // Canonicalize (fma c, x, y) -> (fma x, c, y) |
| if (isConstantFPBuildVectorOrConstantFP(N0) && |
| !isConstantFPBuildVectorOrConstantFP(N1)) |
| return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); |
| |
| if (UnsafeFPMath) { |
| // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) |
| if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && |
| isConstantFPBuildVectorOrConstantFP(N1) && |
| isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, |
| DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1), |
| Flags), Flags); |
| } |
| |
| // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) |
| if (N0.getOpcode() == ISD::FMUL && |
| isConstantFPBuildVectorOrConstantFP(N1) && |
| isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { |
| return DAG.getNode(ISD::FMA, DL, VT, |
| N0.getOperand(0), |
| DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1), |
| Flags), |
| N2); |
| } |
| } |
| |
| // (fma x, 1, y) -> (fadd x, y) |
| // (fma x, -1, y) -> (fadd (fneg x), y) |
| if (N1CFP) { |
| if (N1CFP->isExactlyValue(1.0)) |
| // TODO: The FMA node should have flags that propagate to this node. |
| return DAG.getNode(ISD::FADD, DL, VT, N0, N2); |
| |
| if (N1CFP->isExactlyValue(-1.0) && |
| (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { |
| SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); |
| AddToWorklist(RHSNeg.getNode()); |
| // TODO: The FMA node should have flags that propagate to this node. |
| return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); |
| } |
| |
| // fma (fneg x), K, y -> fma x -K, y |
| if (N0.getOpcode() == ISD::FNEG && |
| (TLI.isOperationLegal(ISD::ConstantFP, VT) || |
| (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT)))) { |
| return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), |
| DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2); |
| } |
| } |
| |
| if (UnsafeFPMath) { |
| // (fma x, c, x) -> (fmul x, (c+1)) |
| if (N1CFP && N0 == N2) { |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, |
| DAG.getNode(ISD::FADD, DL, VT, N1, |
| DAG.getConstantFP(1.0, DL, VT), Flags), |
| Flags); |
| } |
| |
| // (fma x, c, (fneg x)) -> (fmul x, (c-1)) |
| if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, |
| DAG.getNode(ISD::FADD, DL, VT, N1, |
| DAG.getConstantFP(-1.0, DL, VT), Flags), |
| Flags); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Combine multiple FDIVs with the same divisor into multiple FMULs by the |
| // reciprocal. |
| // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) |
| // Notice that this is not always beneficial. One reason is different targets |
| // may have different costs for FDIV and FMUL, so sometimes the cost of two |
| // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason |
| // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". |
| SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { |
| bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; |
| const SDNodeFlags Flags = N->getFlags(); |
| if (!UnsafeMath && !Flags.hasAllowReciprocal()) |
| return SDValue(); |
| |
| // Skip if current node is a reciprocal. |
| SDValue N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| if (N0CFP && N0CFP->isExactlyValue(1.0)) |
| return SDValue(); |
| |
| // Exit early if the target does not want this transform or if there can't |
| // possibly be enough uses of the divisor to make the transform worthwhile. |
| SDValue N1 = N->getOperand(1); |
| unsigned MinUses = TLI.combineRepeatedFPDivisors(); |
| if (!MinUses || N1->use_size() < MinUses) |
| return SDValue(); |
| |
| // Find all FDIV users of the same divisor. |
| // Use a set because duplicates may be present in the user list. |
| SetVector<SDNode *> Users; |
| for (auto *U : N1->uses()) { |
| if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { |
| // This division is eligible for optimization only if global unsafe math |
| // is enabled or if this division allows reciprocal formation. |
| if (UnsafeMath || U->getFlags().hasAllowReciprocal()) |
| Users.insert(U); |
| } |
| } |
| |
| // Now that we have the actual number of divisor uses, make sure it meets |
| // the minimum threshold specified by the target. |
| if (Users.size() < MinUses) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); |
| SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); |
| |
| // Dividend / Divisor -> Dividend * Reciprocal |
| for (auto *U : Users) { |
| SDValue Dividend = U->getOperand(0); |
| if (Dividend != FPOne) { |
| SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, |
| Reciprocal, Flags); |
| CombineTo(U, NewNode); |
| } else if (U != Reciprocal.getNode()) { |
| // In the absence of fast-math-flags, this user node is always the |
| // same node as Reciprocal, but with FMF they may be different nodes. |
| CombineTo(U, Reciprocal); |
| } |
| } |
| return SDValue(N, 0); // N was replaced. |
| } |
| |
| SDValue DAGCombiner::visitFDIV(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| const TargetOptions &Options = DAG.getTarget().Options; |
| SDNodeFlags Flags = N->getFlags(); |
| |
| // fold vector ops |
| if (VT.isVector()) |
| if (SDValue FoldedVOp = SimplifyVBinOp(N)) |
| return FoldedVOp; |
| |
| // fold (fdiv c1, c2) -> c1/c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { |
| // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. |
| if (N1CFP) { |
| // Compute the reciprocal 1.0 / c2. |
| const APFloat &N1APF = N1CFP->getValueAPF(); |
| APFloat Recip(N1APF.getSemantics(), 1); // 1.0 |
| APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); |
| // Only do the transform if the reciprocal is a legal fp immediate that |
| // isn't too nasty (eg NaN, denormal, ...). |
| if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty |
| (!LegalOperations || |
| // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM |
| // backend)... we should handle this gracefully after Legalize. |
| // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || |
| TLI.isOperationLegal(ISD::ConstantFP, VT) || |
| TLI.isFPImmLegal(Recip, VT))) |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, |
| DAG.getConstantFP(Recip, DL, VT), Flags); |
| } |
| |
| // If this FDIV is part of a reciprocal square root, it may be folded |
| // into a target-specific square root estimate instruction. |
| if (N1.getOpcode() == ISD::FSQRT) { |
| if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) { |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); |
| } |
| } else if (N1.getOpcode() == ISD::FP_EXTEND && |
| N1.getOperand(0).getOpcode() == ISD::FSQRT) { |
| if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), |
| Flags)) { |
| RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); |
| AddToWorklist(RV.getNode()); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); |
| } |
| } else if (N1.getOpcode() == ISD::FP_ROUND && |
| N1.getOperand(0).getOpcode() == ISD::FSQRT) { |
| if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), |
| Flags)) { |
| RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); |
| AddToWorklist(RV.getNode()); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); |
| } |
| } else if (N1.getOpcode() == ISD::FMUL) { |
| // Look through an FMUL. Even though this won't remove the FDIV directly, |
| // it's still worthwhile to get rid of the FSQRT if possible. |
| SDValue SqrtOp; |
| SDValue OtherOp; |
| if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { |
| SqrtOp = N1.getOperand(0); |
| OtherOp = N1.getOperand(1); |
| } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { |
| SqrtOp = N1.getOperand(1); |
| OtherOp = N1.getOperand(0); |
| } |
| if (SqrtOp.getNode()) { |
| // We found a FSQRT, so try to make this fold: |
| // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) |
| if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { |
| RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); |
| AddToWorklist(RV.getNode()); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); |
| } |
| } |
| } |
| |
| // Fold into a reciprocal estimate and multiply instead of a real divide. |
| if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { |
| AddToWorklist(RV.getNode()); |
| return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); |
| } |
| } |
| |
| // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) |
| if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { |
| if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { |
| // Both can be negated for free, check to see if at least one is cheaper |
| // negated. |
| if (LHSNeg == 2 || RHSNeg == 2) |
| return DAG.getNode(ISD::FDIV, SDLoc(N), VT, |
| GetNegatedExpression(N0, DAG, LegalOperations), |
| GetNegatedExpression(N1, DAG, LegalOperations), |
| Flags); |
| } |
| } |
| |
| if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) |
| return CombineRepeatedDivisors; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFREM(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| EVT VT = N->getValueType(0); |
| |
| // fold (frem c1, c2) -> fmod(c1,c2) |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags()); |
| |
| if (SDValue NewSel = foldBinOpIntoSelect(N)) |
| return NewSel; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFSQRT(SDNode *N) { |
| SDNodeFlags Flags = N->getFlags(); |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !Flags.hasApproximateFuncs()) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| if (TLI.isFsqrtCheap(N0, DAG)) |
| return SDValue(); |
| |
| // FSQRT nodes have flags that propagate to the created nodes. |
| return buildSqrtEstimate(N0, Flags); |
| } |
| |
| /// copysign(x, fp_extend(y)) -> copysign(x, y) |
| /// copysign(x, fp_round(y)) -> copysign(x, y) |
| static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { |
| SDValue N1 = N->getOperand(1); |
| if ((N1.getOpcode() == ISD::FP_EXTEND || |
| N1.getOpcode() == ISD::FP_ROUND)) { |
| // Do not optimize out type conversion of f128 type yet. |
| // For some targets like x86_64, configuration is changed to keep one f128 |
| // value in one SSE register, but instruction selection cannot handle |
| // FCOPYSIGN on SSE registers yet. |
| EVT N1VT = N1->getValueType(0); |
| EVT N1Op0VT = N1->getOperand(0).getValueType(); |
| return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); |
| } |
| return false; |
| } |
| |
| SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| EVT VT = N->getValueType(0); |
| |
| if (N0CFP && N1CFP) // Constant fold |
| return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); |
| |
| if (N1CFP) { |
| const APFloat &V = N1CFP->getValueAPF(); |
| // copysign(x, c1) -> fabs(x) iff ispos(c1) |
| // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) |
| if (!V.isNegative()) { |
| if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) |
| return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); |
| } else { |
| if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) |
| return DAG.getNode(ISD::FNEG, SDLoc(N), VT, |
| DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); |
| } |
| } |
| |
| // copysign(fabs(x), y) -> copysign(x, y) |
| // copysign(fneg(x), y) -> copysign(x, y) |
| // copysign(copysign(x,z), y) -> copysign(x, y) |
| if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || |
| N0.getOpcode() == ISD::FCOPYSIGN) |
| return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); |
| |
| // copysign(x, abs(y)) -> abs(x) |
| if (N1.getOpcode() == ISD::FABS) |
| return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); |
| |
| // copysign(x, copysign(y,z)) -> copysign(x, z) |
| if (N1.getOpcode() == ISD::FCOPYSIGN) |
| return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); |
| |
| // copysign(x, fp_extend(y)) -> copysign(x, y) |
| // copysign(x, fp_round(y)) -> copysign(x, y) |
| if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) |
| return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); |
| |
| return SDValue(); |
| } |
| |
| static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| // This optimization is guarded by a function attribute because it may produce |
| // unexpected results. Ie, programs may be relying on the platform-specific |
| // undefined behavior when the float-to-int conversion overflows. |
| const Function &F = DAG.getMachineFunction().getFunction(); |
| Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow"); |
| if (StrictOverflow.getValueAsString().equals("false")) |
| return SDValue(); |
| |
| // We only do this if the target has legal ftrunc. Otherwise, we'd likely be |
| // replacing casts with a libcall. We also must be allowed to ignore -0.0 |
| // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer |
| // conversions would return +0.0. |
| // FIXME: We should be able to use node-level FMF here. |
| // TODO: If strict math, should we use FABS (+ range check for signed cast)? |
| EVT VT = N->getValueType(0); |
| if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || |
| !DAG.getTarget().Options.NoSignedZerosFPMath) |
| return SDValue(); |
| |
| // fptosi/fptoui round towards zero, so converting from FP to integer and |
| // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X |
| SDValue N0 = N->getOperand(0); |
| if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && |
| N0.getOperand(0).getValueType() == VT) |
| return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); |
| |
| if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && |
| N0.getOperand(0).getValueType() == VT) |
| return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT OpVT = N0.getValueType(); |
| |
| // fold (sint_to_fp c1) -> c1fp |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| // ...but only if the target supports immediate floating-point values |
| (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) |
| return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); |
| |
| // If the input is a legal type, and SINT_TO_FP is not legal on this target, |
| // but UINT_TO_FP is legal on this target, try to convert. |
| if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && |
| TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { |
| // If the sign bit is known to be zero, we can change this to UINT_TO_FP. |
| if (DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); |
| } |
| |
| // The next optimizations are desirable only if SELECT_CC can be lowered. |
| if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { |
| // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) |
| if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && |
| !VT.isVector() && |
| (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { |
| SDLoc DL(N); |
| SDValue Ops[] = |
| { N0.getOperand(0), N0.getOperand(1), |
| DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), |
| N0.getOperand(2) }; |
| return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); |
| } |
| |
| // fold (sint_to_fp (zext (setcc x, y, cc))) -> |
| // (select_cc x, y, 1.0, 0.0,, cc) |
| if (N0.getOpcode() == ISD::ZERO_EXTEND && |
| N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && |
| (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { |
| SDLoc DL(N); |
| SDValue Ops[] = |
| { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), |
| DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), |
| N0.getOperand(0).getOperand(2) }; |
| return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); |
| } |
| } |
| |
| if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) |
| return FTrunc; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT OpVT = N0.getValueType(); |
| |
| // fold (uint_to_fp c1) -> c1fp |
| if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && |
| // ...but only if the target supports immediate floating-point values |
| (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) |
| return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); |
| |
| // If the input is a legal type, and UINT_TO_FP is not legal on this target, |
| // but SINT_TO_FP is legal on this target, try to convert. |
| if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && |
| TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { |
| // If the sign bit is known to be zero, we can change this to SINT_TO_FP. |
| if (DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); |
| } |
| |
| // The next optimizations are desirable only if SELECT_CC can be lowered. |
| if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { |
| // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) |
| if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && |
| (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { |
| SDLoc DL(N); |
| SDValue Ops[] = |
| { N0.getOperand(0), N0.getOperand(1), |
| DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), |
| N0.getOperand(2) }; |
| return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); |
| } |
| } |
| |
| if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) |
| return FTrunc; |
| |
| return SDValue(); |
| } |
| |
| // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x |
| static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) |
| return SDValue(); |
| |
| SDValue Src = N0.getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; |
| bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; |
| |
| // We can safely assume the conversion won't overflow the output range, |
| // because (for example) (uint8_t)18293.f is undefined behavior. |
| |
| // Since we can assume the conversion won't overflow, our decision as to |
| // whether the input will fit in the float should depend on the minimum |
| // of the input range and output range. |
| |
| // This means this is also safe for a signed input and unsigned output, since |
| // a negative input would lead to undefined behavior. |
| unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; |
| unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; |
| unsigned ActualSize = std::min(InputSize, OutputSize); |
| const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); |
| |
| // We can only fold away the float conversion if the input range can be |
| // represented exactly in the float range. |
| if (APFloat::semanticsPrecision(sem) >= ActualSize) { |
| if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { |
| unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND |
| : ISD::ZERO_EXTEND; |
| return DAG.getNode(ExtOp, SDLoc(N), VT, Src); |
| } |
| if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); |
| return DAG.getBitcast(VT, Src); |
| } |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (fp_to_sint c1fp) -> c1 |
| if (isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); |
| |
| return FoldIntToFPToInt(N, DAG); |
| } |
| |
| SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (fp_to_uint c1fp) -> c1 |
| if (isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); |
| |
| return FoldIntToFPToInt(N, DAG); |
| } |
| |
| SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (fp_round c1fp) -> c1fp |
| if (N0CFP) |
| return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); |
| |
| // fold (fp_round (fp_extend x)) -> x |
| if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) |
| return N0.getOperand(0); |
| |
| // fold (fp_round (fp_round x)) -> (fp_round x) |
| if (N0.getOpcode() == ISD::FP_ROUND) { |
| const bool NIsTrunc = N->getConstantOperandVal(1) == 1; |
| const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; |
| |
| // Skip this folding if it results in an fp_round from f80 to f16. |
| // |
| // f80 to f16 always generates an expensive (and as yet, unimplemented) |
| // libcall to __truncxfhf2 instead of selecting native f16 conversion |
| // instructions from f32 or f64. Moreover, the first (value-preserving) |
| // fp_round from f80 to either f32 or f64 may become a NOP in platforms like |
| // x86. |
| if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) |
| return SDValue(); |
| |
| // If the first fp_round isn't a value preserving truncation, it might |
| // introduce a tie in the second fp_round, that wouldn't occur in the |
| // single-step fp_round we want to fold to. |
| // In other words, double rounding isn't the same as rounding. |
| // Also, this is a value preserving truncation iff both fp_round's are. |
| if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { |
| SDLoc DL(N); |
| return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), |
| DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); |
| } |
| } |
| |
| // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) |
| if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { |
| SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, |
| N0.getOperand(0), N1); |
| AddToWorklist(Tmp.getNode()); |
| return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, |
| Tmp, N0.getOperand(1)); |
| } |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| |
| // fold (fp_round_inreg c1fp) -> c1fp |
| if (N0CFP && isTypeLegal(EVT)) { |
| SDLoc DL(N); |
| SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); |
| return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. |
| if (N->hasOneUse() && |
| N->use_begin()->getOpcode() == ISD::FP_ROUND) |
| return SDValue(); |
| |
| // fold (fp_extend c1fp) -> c1fp |
| if (isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); |
| |
| // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) |
| if (N0.getOpcode() == ISD::FP16_TO_FP && |
| TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) |
| return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); |
| |
| // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the |
| // value of X. |
| if (N0.getOpcode() == ISD::FP_ROUND |
| && N0.getConstantOperandVal(1) == 1) { |
| SDValue In = N0.getOperand(0); |
| if (In.getValueType() == VT) return In; |
| if (VT.bitsLT(In.getValueType())) |
| return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, |
| In, N0.getOperand(1)); |
| return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); |
| } |
| |
| // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) |
| if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && |
| TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, |
| LN0->getChain(), |
| LN0->getBasePtr(), N0.getValueType(), |
| LN0->getMemOperand()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.getNode(), |
| DAG.getNode(ISD::FP_ROUND, SDLoc(N0), |
| N0.getValueType(), ExtLoad, |
| DAG.getIntPtrConstant(1, SDLoc(N0))), |
| ExtLoad.getValue(1)); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| |
| if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) |
| return NewVSel; |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFCEIL(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (fceil c1) -> fceil(c1) |
| if (isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFTRUNC(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ftrunc c1) -> ftrunc(c1) |
| if (isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); |
| |
| // fold ftrunc (known rounded int x) -> x |
| // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is |
| // likely to be generated to extract integer from a rounded floating value. |
| switch (N0.getOpcode()) { |
| default: break; |
| case ISD::FRINT: |
| case ISD::FTRUNC: |
| case ISD::FNEARBYINT: |
| case ISD::FFLOOR: |
| case ISD::FCEIL: |
| return N0; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFFLOOR(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (ffloor c1) -> ffloor(c1) |
| if (isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); |
| |
| return SDValue(); |
| } |
| |
| // FIXME: FNEG and FABS have a lot in common; refactor. |
| SDValue DAGCombiner::visitFNEG(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // Constant fold FNEG. |
| if (isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); |
| |
| if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), |
| &DAG.getTarget().Options)) |
| return GetNegatedExpression(N0, DAG, LegalOperations); |
| |
| // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading |
| // constant pool values. |
| if (!TLI.isFNegFree(VT) && |
| N0.getOpcode() == ISD::BITCAST && |
| N0.getNode()->hasOneUse()) { |
| SDValue Int = N0.getOperand(0); |
| EVT IntVT = Int.getValueType(); |
| if (IntVT.isInteger() && !IntVT.isVector()) { |
| APInt SignMask; |
| if (N0.getValueType().isVector()) { |
| // For a vector, get a mask such as 0x80... per scalar element |
| // and splat it. |
| SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); |
| SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); |
| } else { |
| // For a scalar, just generate 0x80... |
| SignMask = APInt::getSignMask(IntVT.getSizeInBits()); |
| } |
| SDLoc DL0(N0); |
| Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, |
| DAG.getConstant(SignMask, DL0, IntVT)); |
| AddToWorklist(Int.getNode()); |
| return DAG.getBitcast(VT, Int); |
| } |
| } |
| |
| // (fneg (fmul c, x)) -> (fmul -c, x) |
| if (N0.getOpcode() == ISD::FMUL && |
| (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { |
| ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); |
| if (CFP1) { |
| APFloat CVal = CFP1->getValueAPF(); |
| CVal.changeSign(); |
| if (Level >= AfterLegalizeDAG && |
| (TLI.isFPImmLegal(CVal, VT) || |
| TLI.isOperationLegal(ISD::ConstantFP, VT))) |
| return DAG.getNode( |
| ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), |
| DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)), |
| N0->getFlags()); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFMINNUM(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); |
| const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); |
| |
| if (N0CFP && N1CFP) { |
| const APFloat &C0 = N0CFP->getValueAPF(); |
| const APFloat &C1 = N1CFP->getValueAPF(); |
| return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT); |
| } |
| |
| // Canonicalize to constant on RHS. |
| if (isConstantFPBuildVectorOrConstantFP(N0) && |
| !isConstantFPBuildVectorOrConstantFP(N1)) |
| return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); |
| const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); |
| |
| if (N0CFP && N1CFP) { |
| const APFloat &C0 = N0CFP->getValueAPF(); |
| const APFloat &C1 = N1CFP->getValueAPF(); |
| return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT); |
| } |
| |
| // Canonicalize to constant on RHS. |
| if (isConstantFPBuildVectorOrConstantFP(N0) && |
| !isConstantFPBuildVectorOrConstantFP(N1)) |
| return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFABS(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fold (fabs c1) -> fabs(c1) |
| if (isConstantFPBuildVectorOrConstantFP(N0)) |
| return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); |
| |
| // fold (fabs (fabs x)) -> (fabs x) |
| if (N0.getOpcode() == ISD::FABS) |
| return N->getOperand(0); |
| |
| // fold (fabs (fneg x)) -> (fabs x) |
| // fold (fabs (fcopysign x, y)) -> (fabs x) |
| if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) |
| return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); |
| |
| // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading |
| // constant pool values. |
| if (!TLI.isFAbsFree(VT) && |
| N0.getOpcode() == ISD::BITCAST && |
| N0.getNode()->hasOneUse()) { |
| SDValue Int = N0.getOperand(0); |
| EVT IntVT = Int.getValueType(); |
| if (IntVT.isInteger() && !IntVT.isVector()) { |
| APInt SignMask; |
| if (N0.getValueType().isVector()) { |
| // For a vector, get a mask such as 0x7f... per scalar element |
| // and splat it. |
| SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits()); |
| SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); |
| } else { |
| // For a scalar, just generate 0x7f... |
| SignMask = ~APInt::getSignMask(IntVT.getSizeInBits()); |
| } |
| SDLoc DL(N0); |
| Int = DAG.getNode(ISD::AND, DL, IntVT, Int, |
| DAG.getConstant(SignMask, DL, IntVT)); |
| AddToWorklist(Int.getNode()); |
| return DAG.getBitcast(N->getValueType(0), Int); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitBRCOND(SDNode *N) { |
| SDValue Chain = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| |
| // If N is a constant we could fold this into a fallthrough or unconditional |
| // branch. However that doesn't happen very often in normal code, because |
| // Instcombine/SimplifyCFG should have handled the available opportunities. |
| // If we did this folding here, it would be necessary to update the |
| // MachineBasicBlock CFG, which is awkward. |
| |
| // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal |
| // on the target. |
| if (N1.getOpcode() == ISD::SETCC && |
| TLI.isOperationLegalOrCustom(ISD::BR_CC, |
| N1.getOperand(0).getValueType())) { |
| return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, |
| Chain, N1.getOperand(2), |
| N1.getOperand(0), N1.getOperand(1), N2); |
| } |
| |
| if (N1.hasOneUse()) { |
| if (SDValue NewN1 = rebuildSetCC(N1)) |
| return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, NewN1, N2); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::rebuildSetCC(SDValue N) { |
| if (N.getOpcode() == ISD::SRL || |
| (N.getOpcode() == ISD::TRUNCATE && |
| (N.getOperand(0).hasOneUse() && |
| N.getOperand(0).getOpcode() == ISD::SRL))) { |
| // Look pass the truncate. |
| if (N.getOpcode() == ISD::TRUNCATE) |
| N = N.getOperand(0); |
| |
| // Match this pattern so that we can generate simpler code: |
| // |
| // %a = ... |
| // %b = and i32 %a, 2 |
| // %c = srl i32 %b, 1 |
| // brcond i32 %c ... |
| // |
| // into |
| // |
| // %a = ... |
| // %b = and i32 %a, 2 |
| // %c = setcc eq %b, 0 |
| // brcond %c ... |
| // |
| // This applies only when the AND constant value has one bit set and the |
| // SRL constant is equal to the log2 of the AND constant. The back-end is |
| // smart enough to convert the result into a TEST/JMP sequence. |
| SDValue Op0 = N.getOperand(0); |
| SDValue Op1 = N.getOperand(1); |
| |
| if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { |
| SDValue AndOp1 = Op0.getOperand(1); |
| |
| if (AndOp1.getOpcode() == ISD::Constant) { |
| const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); |
| |
| if (AndConst.isPowerOf2() && |
| cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { |
| SDLoc DL(N); |
| return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), |
| Op0, DAG.getConstant(0, DL, Op0.getValueType()), |
| ISD::SETNE); |
| } |
| } |
| } |
| } |
| |
| // Transform br(xor(x, y)) -> br(x != y) |
| // Transform br(xor(xor(x,y), 1)) -> br (x == y) |
| if (N.getOpcode() == ISD::XOR) { |
| // Because we may call this on a speculatively constructed |
| // SimplifiedSetCC Node, we need to simplify this node first. |
| // Ideally this should be folded into SimplifySetCC and not |
| // here. For now, grab a handle to N so we don't lose it from |
| // replacements interal to the visit. |
| HandleSDNode XORHandle(N); |
| while (N.getOpcode() == ISD::XOR) { |
| SDValue Tmp = visitXOR(N.getNode()); |
| // No simplification done. |
| if (!Tmp.getNode()) |
| break; |
| // Returning N is form in-visit replacement that may invalidated |
| // N. Grab value from Handle. |
| if (Tmp.getNode() == N.getNode()) |
| N = XORHandle.getValue(); |
| else // Node simplified. Try simplifying again. |
| N = Tmp; |
| } |
| |
| if (N.getOpcode() != ISD::XOR) |
| return N; |
| |
| SDNode *TheXor = N.getNode(); |
| |
| SDValue Op0 = TheXor->getOperand(0); |
| SDValue Op1 = TheXor->getOperand(1); |
| |
| if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { |
| bool Equal = false; |
| if (isOneConstant(Op0) && Op0.hasOneUse() && |
| Op0.getOpcode() == ISD::XOR) { |
| TheXor = Op0.getNode(); |
| Equal = true; |
| } |
| |
| EVT SetCCVT = N.getValueType(); |
| if (LegalTypes) |
| SetCCVT = getSetCCResultType(SetCCVT); |
| // Replace the uses of XOR with SETCC |
| return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1, |
| Equal ? ISD::SETEQ : ISD::SETNE); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. |
| // |
| SDValue DAGCombiner::visitBR_CC(SDNode *N) { |
| CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); |
| SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); |
| |
| // If N is a constant we could fold this into a fallthrough or unconditional |
| // branch. However that doesn't happen very often in normal code, because |
| // Instcombine/SimplifyCFG should have handled the available opportunities. |
| // If we did this folding here, it would be necessary to update the |
| // MachineBasicBlock CFG, which is awkward. |
| |
| // Use SimplifySetCC to simplify SETCC's. |
| SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), |
| CondLHS, CondRHS, CC->get(), SDLoc(N), |
| false); |
| if (Simp.getNode()) AddToWorklist(Simp.getNode()); |
| |
| // fold to a simpler setcc |
| if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) |
| return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, |
| N->getOperand(0), Simp.getOperand(2), |
| Simp.getOperand(0), Simp.getOperand(1), |
| N->getOperand(4)); |
| |
| return SDValue(); |
| } |
| |
| /// Return true if 'Use' is a load or a store that uses N as its base pointer |
| /// and that N may be folded in the load / store addressing mode. |
| static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| EVT VT; |
| unsigned AS; |
| |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { |
| if (LD->isIndexed() || LD->getBasePtr().getNode() != N) |
| return false; |
| VT = LD->getMemoryVT(); |
| AS = LD->getAddressSpace(); |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { |
| if (ST->isIndexed() || ST->getBasePtr().getNode() != N) |
| return false; |
| VT = ST->getMemoryVT(); |
| AS = ST->getAddressSpace(); |
| } else |
| return false; |
| |
| TargetLowering::AddrMode AM; |
| if (N->getOpcode() == ISD::ADD) { |
| ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (Offset) |
| // [reg +/- imm] |
| AM.BaseOffs = Offset->getSExtValue(); |
| else |
| // [reg +/- reg] |
| AM.Scale = 1; |
| } else if (N->getOpcode() == ISD::SUB) { |
| ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (Offset) |
| // [reg +/- imm] |
| AM.BaseOffs = -Offset->getSExtValue(); |
| else |
| // [reg +/- reg] |
| AM.Scale = 1; |
| } else |
| return false; |
| |
| return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, |
| VT.getTypeForEVT(*DAG.getContext()), AS); |
| } |
| |
| /// Try turning a load/store into a pre-indexed load/store when the base |
| /// pointer is an add or subtract and it has other uses besides the load/store. |
| /// After the transformation, the new indexed load/store has effectively folded |
| /// the add/subtract in and all of its other uses are redirected to the |
| /// new load/store. |
| bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { |
| if (Level < AfterLegalizeDAG) |
| return false; |
| |
| bool isLoad = true; |
| SDValue Ptr; |
| EVT VT; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| if (LD->isIndexed()) |
| return false; |
| VT = LD->getMemoryVT(); |
| if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && |
| !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) |
| return false; |
| Ptr = LD->getBasePtr(); |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| if (ST->isIndexed()) |
| return false; |
| VT = ST->getMemoryVT(); |
| if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && |
| !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) |
| return false; |
| Ptr = ST->getBasePtr(); |
| isLoad = false; |
| } else { |
| return false; |
| } |
| |
| // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail |
| // out. There is no reason to make this a preinc/predec. |
| if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || |
| Ptr.getNode()->hasOneUse()) |
| return false; |
| |
| // Ask the target to do addressing mode selection. |
| SDValue BasePtr; |
| SDValue Offset; |
| ISD::MemIndexedMode AM = ISD::UNINDEXED; |
| if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) |
| return false; |
| |
| // Backends without true r+i pre-indexed forms may need to pass a |
| // constant base with a variable offset so that constant coercion |
| // will work with the patterns in canonical form. |
| bool Swapped = false; |
| if (isa<ConstantSDNode>(BasePtr)) { |
| std::swap(BasePtr, Offset); |
| Swapped = true; |
| } |
| |
| // Don't create a indexed load / store with zero offset. |
| if (isNullConstant(Offset)) |
| return false; |
| |
| // Try turning it into a pre-indexed load / store except when: |
| // 1) The new base ptr is a frame index. |
| // 2) If N is a store and the new base ptr is either the same as or is a |
| // predecessor of the value being stored. |
| // 3) Another use of old base ptr is a predecessor of N. If ptr is folded |
| // that would create a cycle. |
| // 4) All uses are load / store ops that use it as old base ptr. |
| |
| // Check #1. Preinc'ing a frame index would require copying the stack pointer |
| // (plus the implicit offset) to a register to preinc anyway. |
| if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) |
| return false; |
| |
| // Check #2. |
| if (!isLoad) { |
| SDValue Val = cast<StoreSDNode>(N)->getValue(); |
| if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) |
| return false; |
| } |
| |
| // Caches for hasPredecessorHelper. |
| SmallPtrSet<const SDNode *, 32> Visited; |
| SmallVector<const SDNode *, 16> Worklist; |
| Worklist.push_back(N); |
| |
| // If the offset is a constant, there may be other adds of constants that |
| // can be folded with this one. We should do this to avoid having to keep |
| // a copy of the original base pointer. |
| SmallVector<SDNode *, 16> OtherUses; |
| if (isa<ConstantSDNode>(Offset)) |
| for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), |
| UE = BasePtr.getNode()->use_end(); |
| UI != UE; ++UI) { |
| SDUse &Use = UI.getUse(); |
| // Skip the use that is Ptr and uses of other results from BasePtr's |
| // node (important for nodes that return multiple results). |
| if (Use.getUser() == Ptr.getNode() || Use != BasePtr) |
| continue; |
| |
| if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) |
| continue; |
| |
| if (Use.getUser()->getOpcode() != ISD::ADD && |
| Use.getUser()->getOpcode() != ISD::SUB) { |
| OtherUses.clear(); |
| break; |
| } |
| |
| SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); |
| if (!isa<ConstantSDNode>(Op1)) { |
| OtherUses.clear(); |
| break; |
| } |
| |
| // FIXME: In some cases, we can be smarter about this. |
| if (Op1.getValueType() != Offset.getValueType()) { |
| OtherUses.clear(); |
| break; |
| } |
| |
| OtherUses.push_back(Use.getUser()); |
| } |
| |
| if (Swapped) |
| std::swap(BasePtr, Offset); |
| |
| // Now check for #3 and #4. |
| bool RealUse = false; |
| |
| for (SDNode *Use : Ptr.getNode()->uses()) { |
| if (Use == N) |
| continue; |
| if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) |
| return false; |
| |
| // If Ptr may be folded in addressing mode of other use, then it's |
| // not profitable to do this transformation. |
| if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) |
| RealUse = true; |
| } |
| |
| if (!RealUse) |
| return false; |
| |
| SDValue Result; |
| if (isLoad) |
| Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), |
| BasePtr, Offset, AM); |
| else |
| Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), |
| BasePtr, Offset, AM); |
| ++PreIndexedNodes; |
| ++NodesCombined; |
| LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; |
| Result.getNode()->dump(&DAG); dbgs() << '\n'); |
| WorklistRemover DeadNodes(*this); |
| if (isLoad) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); |
| } else { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); |
| } |
| |
| // Finally, since the node is now dead, remove it from the graph. |
| deleteAndRecombine(N); |
| |
| if (Swapped) |
| std::swap(BasePtr, Offset); |
| |
| // Replace other uses of BasePtr that can be updated to use Ptr |
| for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { |
| unsigned OffsetIdx = 1; |
| if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) |
| OffsetIdx = 0; |
| assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == |
| BasePtr.getNode() && "Expected BasePtr operand"); |
| |
| // We need to replace ptr0 in the following expression: |
| // x0 * offset0 + y0 * ptr0 = t0 |
| // knowing that |
| // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) |
| // |
| // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the |
| // indexed load/store and the expression that needs to be re-written. |
| // |
| // Therefore, we have: |
| // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 |
| |
| ConstantSDNode *CN = |
| cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); |
| int X0, X1, Y0, Y1; |
| const APInt &Offset0 = CN->getAPIntValue(); |
| APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); |
| |
| X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; |
| Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; |
| X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; |
| Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; |
| |
| unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; |
| |
| APInt CNV = Offset0; |
| if (X0 < 0) CNV = -CNV; |
| if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; |
| else CNV = CNV - Offset1; |
| |
| SDLoc DL(OtherUses[i]); |
| |
| // We can now generate the new expression. |
| SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); |
| SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); |
| |
| SDValue NewUse = DAG.getNode(Opcode, |
| DL, |
| OtherUses[i]->getValueType(0), NewOp1, NewOp2); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); |
| deleteAndRecombine(OtherUses[i]); |
| } |
| |
| // Replace the uses of Ptr with uses of the updated base value. |
| DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); |
| deleteAndRecombine(Ptr.getNode()); |
| AddToWorklist(Result.getNode()); |
| |
| return true; |
| } |
| |
| /// Try to combine a load/store with a add/sub of the base pointer node into a |
| /// post-indexed load/store. The transformation folded the add/subtract into the |
| /// new indexed load/store effectively and all of its uses are redirected to the |
| /// new load/store. |
| bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { |
| if (Level < AfterLegalizeDAG) |
| return false; |
| |
| bool isLoad = true; |
| SDValue Ptr; |
| EVT VT; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| if (LD->isIndexed()) |
| return false; |
| VT = LD->getMemoryVT(); |
| if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && |
| !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) |
| return false; |
| Ptr = LD->getBasePtr(); |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| if (ST->isIndexed()) |
| return false; |
| VT = ST->getMemoryVT(); |
| if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && |
| !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) |
| return false; |
| Ptr = ST->getBasePtr(); |
| isLoad = false; |
| } else { |
| return false; |
| } |
| |
| if (Ptr.getNode()->hasOneUse()) |
| return false; |
| |
| for (SDNode *Op : Ptr.getNode()->uses()) { |
| if (Op == N || |
| (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) |
| continue; |
| |
| SDValue BasePtr; |
| SDValue Offset; |
| ISD::MemIndexedMode AM = ISD::UNINDEXED; |
| if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { |
| // Don't create a indexed load / store with zero offset. |
| if (isNullConstant(Offset)) |
| continue; |
| |
| // Try turning it into a post-indexed load / store except when |
| // 1) All uses are load / store ops that use it as base ptr (and |
| // it may be folded as addressing mmode). |
| // 2) Op must be independent of N, i.e. Op is neither a predecessor |
| // nor a successor of N. Otherwise, if Op is folded that would |
| // create a cycle. |
| |
| if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) |
| continue; |
| |
| // Check for #1. |
| bool TryNext = false; |
| for (SDNode *Use : BasePtr.getNode()->uses()) { |
| if (Use == Ptr.getNode()) |
| continue; |
| |
| // If all the uses are load / store addresses, then don't do the |
| // transformation. |
| if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ |
| bool RealUse = false; |
| for (SDNode *UseUse : Use->uses()) { |
| if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) |
| RealUse = true; |
| } |
| |
| if (!RealUse) { |
| TryNext = true; |
| break; |
| } |
| } |
| } |
| |
| if (TryNext) |
| continue; |
| |
| // Check for #2 |
| if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { |
| SDValue Result = isLoad |
| ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), |
| BasePtr, Offset, AM) |
| : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), |
| BasePtr, Offset, AM); |
| ++PostIndexedNodes; |
| ++NodesCombined; |
| LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); |
| dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); |
| dbgs() << '\n'); |
| WorklistRemover DeadNodes(*this); |
| if (isLoad) { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); |
| } else { |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); |
| } |
| |
| // Finally, since the node is now dead, remove it from the graph. |
| deleteAndRecombine(N); |
| |
| // Replace the uses of Use with uses of the updated base value. |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), |
| Result.getValue(isLoad ? 1 : 0)); |
| deleteAndRecombine(Op); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Return the base-pointer arithmetic from an indexed \p LD. |
| SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { |
| ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| assert(AM != ISD::UNINDEXED); |
| SDValue BP = LD->getOperand(1); |
| SDValue Inc = LD->getOperand(2); |
| |
| // Some backends use TargetConstants for load offsets, but don't expect |
| // TargetConstants in general ADD nodes. We can convert these constants into |
| // regular Constants (if the constant is not opaque). |
| assert((Inc.getOpcode() != ISD::TargetConstant || |
| !cast<ConstantSDNode>(Inc)->isOpaque()) && |
| "Cannot split out indexing using opaque target constants"); |
| if (Inc.getOpcode() == ISD::TargetConstant) { |
| ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); |
| Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), |
| ConstInc->getValueType(0)); |
| } |
| |
| unsigned Opc = |
| (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); |
| return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); |
| } |
| |
| SDValue DAGCombiner::visitLOAD(SDNode *N) { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| SDValue Chain = LD->getChain(); |
| SDValue Ptr = LD->getBasePtr(); |
| |
| // If load is not volatile and there are no uses of the loaded value (and |
| // the updated indexed value in case of indexed loads), change uses of the |
| // chain value into uses of the chain input (i.e. delete the dead load). |
| if (!LD->isVolatile()) { |
| if (N->getValueType(1) == MVT::Other) { |
| // Unindexed loads. |
| if (!N->hasAnyUseOfValue(0)) { |
| // It's not safe to use the two value CombineTo variant here. e.g. |
| // v1, chain2 = load chain1, loc |
| // v2, chain3 = load chain2, loc |
| // v3 = add v2, c |
| // Now we replace use of chain2 with chain1. This makes the second load |
| // isomorphic to the one we are deleting, and thus makes this load live. |
| LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); |
| dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); |
| dbgs() << "\n"); |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); |
| AddUsersToWorklist(Chain.getNode()); |
| if (N->use_empty()) |
| deleteAndRecombine(N); |
| |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } else { |
| // Indexed loads. |
| assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); |
| |
| // If this load has an opaque TargetConstant offset, then we cannot split |
| // the indexing into an add/sub directly (that TargetConstant may not be |
| // valid for a different type of node, and we cannot convert an opaque |
| // target constant into a regular constant). |
| bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && |
| cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); |
| |
| if (!N->hasAnyUseOfValue(0) && |
| ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { |
| SDValue Undef = DAG.getUNDEF(N->getValueType(0)); |
| SDValue Index; |
| if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { |
| Index = SplitIndexingFromLoad(LD); |
| // Try to fold the base pointer arithmetic into subsequent loads and |
| // stores. |
| AddUsersToWorklist(N); |
| } else |
| Index = DAG.getUNDEF(N->getValueType(1)); |
| LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); |
| dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); |
| dbgs() << " and 2 other values\n"); |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); |
| deleteAndRecombine(N); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked! |
| } |
| } |
| } |
| |
| // If this load is directly stored, replace the load value with the stored |
| // value. |
| // TODO: Handle store large -> read small portion. |
| // TODO: Handle TRUNCSTORE/LOADEXT |
| if (OptLevel != CodeGenOpt::None && |
| ISD::isNormalLoad(N) && !LD->isVolatile()) { |
| if (ISD::isNON_TRUNCStore(Chain.getNode())) { |
| StoreSDNode *PrevST = cast<StoreSDNode>(Chain); |
| if (PrevST->getBasePtr() == Ptr && |
| PrevST->getValue().getValueType() == N->getValueType(0)) |
| return CombineTo(N, PrevST->getOperand(1), Chain); |
| } |
| } |
| |
| // Try to infer better alignment information than the load already has. |
| if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { |
| if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { |
| if (Align > LD->getAlignment() && LD->getSrcValueOffset() % Align == 0) { |
| SDValue NewLoad = DAG.getExtLoad( |
| LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, |
| LD->getPointerInfo(), LD->getMemoryVT(), Align, |
| LD->getMemOperand()->getFlags(), LD->getAAInfo()); |
| // NewLoad will always be N as we are only refining the alignment |
| assert(NewLoad.getNode() == N); |
| (void)NewLoad; |
| } |
| } |
| } |
| |
| if (LD->isUnindexed()) { |
| // Walk up chain skipping non-aliasing memory nodes. |
| SDValue BetterChain = FindBetterChain(N, Chain); |
| |
| // If there is a better chain. |
| if (Chain != BetterChain) { |
| SDValue ReplLoad; |
| |
| // Replace the chain to void dependency. |
| if (LD->getExtensionType() == ISD::NON_EXTLOAD) { |
| ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), |
| BetterChain, Ptr, LD->getMemOperand()); |
| } else { |
| ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), |
| LD->getValueType(0), |
| BetterChain, Ptr, LD->getMemoryVT(), |
| LD->getMemOperand()); |
| } |
| |
| // Create token factor to keep old chain connected. |
| SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), |
| MVT::Other, Chain, ReplLoad.getValue(1)); |
| |
| // Replace uses with load result and token factor |
| return CombineTo(N, ReplLoad.getValue(0), Token); |
| } |
| } |
| |
| // Try transforming N to an indexed load. |
| if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) |
| return SDValue(N, 0); |
| |
| // Try to slice up N to more direct loads if the slices are mapped to |
| // different register banks or pairing can take place. |
| if (SliceUpLoad(N)) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| namespace { |
| |
| /// Helper structure used to slice a load in smaller loads. |
| /// Basically a slice is obtained from the following sequence: |
| /// Origin = load Ty1, Base |
| /// Shift = srl Ty1 Origin, CstTy Amount |
| /// Inst = trunc Shift to Ty2 |
| /// |
| /// Then, it will be rewritten into: |
| /// Slice = load SliceTy, Base + SliceOffset |
| /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 |
| /// |
| /// SliceTy is deduced from the number of bits that are actually used to |
| /// build Inst. |
| struct LoadedSlice { |
| /// Helper structure used to compute the cost of a slice. |
| struct Cost { |
| /// Are we optimizing for code size. |
| bool ForCodeSize; |
| |
| /// Various cost. |
| unsigned Loads = 0; |
| unsigned Truncates = 0; |
| unsigned CrossRegisterBanksCopies = 0; |
| unsigned ZExts = 0; |
| unsigned Shift = 0; |
| |
| Cost(bool ForCodeSize = false) : ForCodeSize(ForCodeSize) {} |
| |
| /// Get the cost of one isolated slice. |
| Cost(const LoadedSlice &LS, bool ForCodeSize = false) |
| : ForCodeSize(ForCodeSize), Loads(1) { |
| EVT TruncType = LS.Inst->getValueType(0); |
| EVT LoadedType = LS.getLoadedType(); |
| if (TruncType != LoadedType && |
| !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) |
| ZExts = 1; |
| } |
| |
| /// Account for slicing gain in the current cost. |
| /// Slicing provide a few gains like removing a shift or a |
| /// truncate. This method allows to grow the cost of the original |
| /// load with the gain from this slice. |
| void addSliceGain(const LoadedSlice &LS) { |
| // Each slice saves a truncate. |
| const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); |
| if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), |
| LS.Inst->getValueType(0))) |
| ++Truncates; |
| // If there is a shift amount, this slice gets rid of it. |
| if (LS.Shift) |
| ++Shift; |
| // If this slice can merge a cross register bank copy, account for it. |
| if (LS.canMergeExpensiveCrossRegisterBankCopy()) |
| ++CrossRegisterBanksCopies; |
| } |
| |
| Cost &operator+=(const Cost &RHS) { |
| Loads += RHS.Loads; |
| Truncates += RHS.Truncates; |
| CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; |
| ZExts += RHS.ZExts; |
| Shift += RHS.Shift; |
| return *this; |
| } |
| |
| bool operator==(const Cost &RHS) const { |
| return Loads == RHS.Loads && Truncates == RHS.Truncates && |
| CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && |
| ZExts == RHS.ZExts && Shift == RHS.Shift; |
| } |
| |
| bool operator!=(const Cost &RHS) const { return !(*this == RHS); } |
| |
| bool operator<(const Cost &RHS) const { |
| // Assume cross register banks copies are as expensive as loads. |
| // FIXME: Do we want some more target hooks? |
| unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; |
| unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; |
| // Unless we are optimizing for code size, consider the |
| // expensive operation first. |
| if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) |
| return ExpensiveOpsLHS < ExpensiveOpsRHS; |
| return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < |
| (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); |
| } |
| |
| bool operator>(const Cost &RHS) const { return RHS < *this; } |
| |
| bool operator<=(const Cost &RHS) const { return !(RHS < *this); } |
| |
| bool operator>=(const Cost &RHS) const { return !(*this < RHS); } |
| }; |
| |
| // The last instruction that represent the slice. This should be a |
| // truncate instruction. |
| SDNode *Inst; |
| |
| // The original load instruction. |
| LoadSDNode *Origin; |
| |
| // The right shift amount in bits from the original load. |
| unsigned Shift; |
| |
| // The DAG from which Origin came from. |
| // This is used to get some contextual information about legal types, etc. |
| SelectionDAG *DAG; |
| |
| LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, |
| unsigned Shift = 0, SelectionDAG *DAG = nullptr) |
| : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} |
| |
| /// Get the bits used in a chunk of bits \p BitWidth large. |
| /// \return Result is \p BitWidth and has used bits set to 1 and |
| /// not used bits set to 0. |
| APInt getUsedBits() const { |
| // Reproduce the trunc(lshr) sequence: |
| // - Start from the truncated value. |
| // - Zero extend to the desired bit width. |
| // - Shift left. |
| assert(Origin && "No original load to compare against."); |
| unsigned BitWidth = Origin->getValueSizeInBits(0); |
| assert(Inst && "This slice is not bound to an instruction"); |
| assert(Inst->getValueSizeInBits(0) <= BitWidth && |
| "Extracted slice is bigger than the whole type!"); |
| APInt UsedBits(Inst->getValueSizeInBits(0), 0); |
| UsedBits.setAllBits(); |
| UsedBits = UsedBits.zext(BitWidth); |
| UsedBits <<= Shift; |
| return UsedBits; |
| } |
| |
| /// Get the size of the slice to be loaded in bytes. |
| unsigned getLoadedSize() const { |
| unsigned SliceSize = getUsedBits().countPopulation(); |
| assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); |
| return SliceSize / 8; |
| } |
| |
| /// Get the type that will be loaded for this slice. |
| /// Note: This may not be the final type for the slice. |
| EVT getLoadedType() const { |
| assert(DAG && "Missing context"); |
| LLVMContext &Ctxt = *DAG->getContext(); |
| return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); |
| } |
| |
| /// Get the alignment of the load used for this slice. |
| unsigned getAlignment() const { |
| unsigned Alignment = Origin->getAlignment(); |
| unsigned Offset = getOffsetFromBase(); |
| if (Offset != 0) |
| Alignment = MinAlign(Alignment, Alignment + Offset); |
| return Alignment; |
| } |
| |
| /// Check if this slice can be rewritten with legal operations. |
| bool isLegal() const { |
| // An invalid slice is not legal. |
| if (!Origin || !Inst || !DAG) |
| return false; |
| |
| // Offsets are for indexed load only, we do not handle that. |
| if (!Origin->getOffset().isUndef()) |
| return false; |
| |
| const TargetLowering &TLI = DAG->getTargetLoweringInfo(); |
| |
| // Check that the type is legal. |
| EVT SliceType = getLoadedType(); |
| if (!TLI.isTypeLegal(SliceType)) |
| return false; |
| |
| // Check that the load is legal for this type. |
| if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) |
| return false; |
| |
| // Check that the offset can be computed. |
| // 1. Check its type. |
| EVT PtrType = Origin->getBasePtr().getValueType(); |
| if (PtrType == MVT::Untyped || PtrType.isExtended()) |
| return false; |
| |
| // 2. Check that it fits in the immediate. |
| if (!TLI.isLegalAddImmediate(getOffsetFromBase())) |
| return false; |
| |
| // 3. Check that the computation is legal. |
| if (!TLI.isOperationLegal(ISD::ADD, PtrType)) |
| return false; |
| |
| // Check that the zext is legal if it needs one. |
| EVT TruncateType = Inst->getValueType(0); |
| if (TruncateType != SliceType && |
| !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) |
| return false; |
| |
| return true; |
| } |
| |
| /// Get the offset in bytes of this slice in the original chunk of |
| /// bits. |
| /// \pre DAG != nullptr. |
| uint64_t getOffsetFromBase() const { |
| assert(DAG && "Missing context."); |
| bool IsBigEndian = DAG->getDataLayout().isBigEndian(); |
| assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); |
| uint64_t Offset = Shift / 8; |
| unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; |
| assert(!(Origin->getValueSizeInBits(0) & 0x7) && |
| "The size of the original loaded type is not a multiple of a" |
| " byte."); |
| // If Offset is bigger than TySizeInBytes, it means we are loading all |
| // zeros. This should have been optimized before in the process. |
| assert(TySizeInBytes > Offset && |
| "Invalid shift amount for given loaded size"); |
| if (IsBigEndian) |
| Offset = TySizeInBytes - Offset - getLoadedSize(); |
| return Offset; |
| } |
| |
| /// Generate the sequence of instructions to load the slice |
| /// represented by this object and redirect the uses of this slice to |
| /// this new sequence of instructions. |
| /// \pre this->Inst && this->Origin are valid Instructions and this |
| /// object passed the legal check: LoadedSlice::isLegal returned true. |
| /// \return The last instruction of the sequence used to load the slice. |
| SDValue loadSlice() const { |
| assert(Inst && Origin && "Unable to replace a non-existing slice."); |
| const SDValue &OldBaseAddr = Origin->getBasePtr(); |
| SDValue BaseAddr = OldBaseAddr; |
| // Get the offset in that chunk of bytes w.r.t. the endianness. |
| int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); |
| assert(Offset >= 0 && "Offset too big to fit in int64_t!"); |
| if (Offset) { |
| // BaseAddr = BaseAddr + Offset. |
| EVT ArithType = BaseAddr.getValueType(); |
| SDLoc DL(Origin); |
| BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, |
| DAG->getConstant(Offset, DL, ArithType)); |
| } |
| |
| // Create the type of the loaded slice according to its size. |
| EVT SliceType = getLoadedType(); |
| |
| // Create the load for the slice. |
| SDValue LastInst = |
| DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, |
| Origin->getPointerInfo().getWithOffset(Offset), |
| getAlignment(), Origin->getMemOperand()->getFlags()); |
| // If the final type is not the same as the loaded type, this means that |
| // we have to pad with zero. Create a zero extend for that. |
| EVT FinalType = Inst->getValueType(0); |
| if (SliceType != FinalType) |
| LastInst = |
| DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); |
| return LastInst; |
| } |
| |
| /// Check if this slice can be merged with an expensive cross register |
| /// bank copy. E.g., |
| /// i = load i32 |
| /// f = bitcast i32 i to float |
| bool canMergeExpensiveCrossRegisterBankCopy() const { |
| if (!Inst || !Inst->hasOneUse()) |
| return false; |
| SDNode *Use = *Inst->use_begin(); |
| if (Use->getOpcode() != ISD::BITCAST) |
| return false; |
| assert(DAG && "Missing context"); |
| const TargetLowering &TLI = DAG->getTargetLoweringInfo(); |
| EVT ResVT = Use->getValueType(0); |
| const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); |
| const TargetRegisterClass *ArgRC = |
| TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); |
| if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) |
| return false; |
| |
| // At this point, we know that we perform a cross-register-bank copy. |
| // Check if it is expensive. |
| const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); |
| // Assume bitcasts are cheap, unless both register classes do not |
| // explicitly share a common sub class. |
| if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) |
| return false; |
| |
| // Check if it will be merged with the load. |
| // 1. Check the alignment constraint. |
| unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( |
| ResVT.getTypeForEVT(*DAG->getContext())); |
| |
| if (RequiredAlignment > getAlignment()) |
| return false; |
| |
| // 2. Check that the load is a legal operation for that type. |
| if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) |
| return false; |
| |
| // 3. Check that we do not have a zext in the way. |
| if (Inst->getValueType(0) != getLoadedType()) |
| return false; |
| |
| return true; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Check that all bits set in \p UsedBits form a dense region, i.e., |
| /// \p UsedBits looks like 0..0 1..1 0..0. |
| static bool areUsedBitsDense(const APInt &UsedBits) { |
| // If all the bits are one, this is dense! |
| if (UsedBits.isAllOnesValue()) |
| return true; |
| |
| // Get rid of the unused bits on the right. |
| APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); |
| // Get rid of the unused bits on the left. |
| if (NarrowedUsedBits.countLeadingZeros()) |
| NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); |
| // Check that the chunk of bits is completely used. |
| return NarrowedUsedBits.isAllOnesValue(); |
| } |
| |
| /// Check whether or not \p First and \p Second are next to each other |
| /// in memory. This means that there is no hole between the bits loaded |
| /// by \p First and the bits loaded by \p Second. |
| static bool areSlicesNextToEachOther(const LoadedSlice &First, |
| const LoadedSlice &Second) { |
| assert(First.Origin == Second.Origin && First.Origin && |
| "Unable to match different memory origins."); |
| APInt UsedBits = First.getUsedBits(); |
| assert((UsedBits & Second.getUsedBits()) == 0 && |
| "Slices are not supposed to overlap."); |
| UsedBits |= Second.getUsedBits(); |
| return areUsedBitsDense(UsedBits); |
| } |
| |
| /// Adjust the \p GlobalLSCost according to the target |
| /// paring capabilities and the layout of the slices. |
| /// \pre \p GlobalLSCost should account for at least as many loads as |
| /// there is in the slices in \p LoadedSlices. |
| static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, |
| LoadedSlice::Cost &GlobalLSCost) { |
| unsigned NumberOfSlices = LoadedSlices.size(); |
| // If there is less than 2 elements, no pairing is possible. |
| if (NumberOfSlices < 2) |
| return; |
| |
| // Sort the slices so that elements that are likely to be next to each |
| // other in memory are next to each other in the list. |
| llvm::sort(LoadedSlices.begin(), LoadedSlices.end(), |
| [](const LoadedSlice &LHS, const LoadedSlice &RHS) { |
| assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); |
| return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); |
| }); |
| const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); |
| // First (resp. Second) is the first (resp. Second) potentially candidate |
| // to be placed in a paired load. |
| const LoadedSlice *First = nullptr; |
| const LoadedSlice *Second = nullptr; |
| for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, |
| // Set the beginning of the pair. |
| First = Second) { |
| Second = &LoadedSlices[CurrSlice]; |
| |
| // If First is NULL, it means we start a new pair. |
| // Get to the next slice. |
| if (!First) |
| continue; |
| |
| EVT LoadedType = First->getLoadedType(); |
| |
| // If the types of the slices are different, we cannot pair them. |
| if (LoadedType != Second->getLoadedType()) |
| continue; |
| |
| // Check if the target supplies paired loads for this type. |
| unsigned RequiredAlignment = 0; |
| if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { |
| // move to the next pair, this type is hopeless. |
| Second = nullptr; |
| continue; |
| } |
| // Check if we meet the alignment requirement. |
| if (RequiredAlignment > First->getAlignment()) |
| continue; |
| |
| // Check that both loads are next to each other in memory. |
| if (!areSlicesNextToEachOther(*First, *Second)) |
| continue; |
| |
| assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); |
| --GlobalLSCost.Loads; |
| // Move to the next pair. |
| Second = nullptr; |
| } |
| } |
| |
| /// Check the profitability of all involved LoadedSlice. |
| /// Currently, it is considered profitable if there is exactly two |
| /// involved slices (1) which are (2) next to each other in memory, and |
| /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). |
| /// |
| /// Note: The order of the elements in \p LoadedSlices may be modified, but not |
| /// the elements themselves. |
| /// |
| /// FIXME: When the cost model will be mature enough, we can relax |
| /// constraints (1) and (2). |
| static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, |
| const APInt &UsedBits, bool ForCodeSize) { |
| unsigned NumberOfSlices = LoadedSlices.size(); |
| if (StressLoadSlicing) |
| return NumberOfSlices > 1; |
| |
| // Check (1). |
| if (NumberOfSlices != 2) |
| return false; |
| |
| // Check (2). |
| if (!areUsedBitsDense(UsedBits)) |
| return false; |
| |
| // Check (3). |
| LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); |
| // The original code has one big load. |
| OrigCost.Loads = 1; |
| for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { |
| const LoadedSlice &LS = LoadedSlices[CurrSlice]; |
| // Accumulate the cost of all the slices. |
| LoadedSlice::Cost SliceCost(LS, ForCodeSize); |
| GlobalSlicingCost += SliceCost; |
| |
| // Account as cost in the original configuration the gain obtained |
| // with the current slices. |
| OrigCost.addSliceGain(LS); |
| } |
| |
| // If the target supports paired load, adjust the cost accordingly. |
| adjustCostForPairing(LoadedSlices, GlobalSlicingCost); |
| return OrigCost > GlobalSlicingCost; |
| } |
| |
| /// If the given load, \p LI, is used only by trunc or trunc(lshr) |
| /// operations, split it in the various pieces being extracted. |
| /// |
| /// This sort of thing is introduced by SROA. |
| /// This slicing takes care not to insert overlapping loads. |
| /// \pre LI is a simple load (i.e., not an atomic or volatile load). |
| bool DAGCombiner::SliceUpLoad(SDNode *N) { |
| if (Level < AfterLegalizeDAG) |
| return false; |
| |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| if (LD->isVolatile() || !ISD::isNormalLoad(LD) || |
| !LD->getValueType(0).isInteger()) |
| return false; |
| |
| // Keep track of already used bits to detect overlapping values. |
| // In that case, we will just abort the transformation. |
| APInt UsedBits(LD->getValueSizeInBits(0), 0); |
| |
| SmallVector<LoadedSlice, 4> LoadedSlices; |
| |
| // Check if this load is used as several smaller chunks of bits. |
| // Basically, look for uses in trunc or trunc(lshr) and record a new chain |
| // of computation for each trunc. |
| for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); |
| UI != UIEnd; ++UI) { |
| // Skip the uses of the chain. |
| if (UI.getUse().getResNo() != 0) |
| continue; |
| |
| SDNode *User = *UI; |
| unsigned Shift = 0; |
| |
| // Check if this is a trunc(lshr). |
| if (User->getOpcode() == ISD::SRL && User->hasOneUse() && |
| isa<ConstantSDNode>(User->getOperand(1))) { |
| Shift = User->getConstantOperandVal(1); |
| User = *User->use_begin(); |
| } |
| |
| // At this point, User is a Truncate, iff we encountered, trunc or |
| // trunc(lshr). |
| if (User->getOpcode() != ISD::TRUNCATE) |
| return false; |
| |
| // The width of the type must be a power of 2 and greater than 8-bits. |
| // Otherwise the load cannot be represented in LLVM IR. |
| // Moreover, if we shifted with a non-8-bits multiple, the slice |
| // will be across several bytes. We do not support that. |
| unsigned Width = User->getValueSizeInBits(0); |
| if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) |
| return false; |
| |
| // Build the slice for this chain of computations. |
| LoadedSlice LS(User, LD, Shift, &DAG); |
| APInt CurrentUsedBits = LS.getUsedBits(); |
| |
| // Check if this slice overlaps with another. |
| if ((CurrentUsedBits & UsedBits) != 0) |
| return false; |
| // Update the bits used globally. |
| UsedBits |= CurrentUsedBits; |
| |
| // Check if the new slice would be legal. |
| if (!LS.isLegal()) |
| return false; |
| |
| // Record the slice. |
| LoadedSlices.push_back(LS); |
| } |
| |
| // Abort slicing if it does not seem to be profitable. |
| if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) |
| return false; |
| |
| ++SlicedLoads; |
| |
| // Rewrite each chain to use an independent load. |
| // By construction, each chain can be represented by a unique load. |
| |
| // Prepare the argument for the new token factor for all the slices. |
| SmallVector<SDValue, 8> ArgChains; |
| for (SmallVectorImpl<LoadedSlice>::const_iterator |
| LSIt = LoadedSlices.begin(), |
| LSItEnd = LoadedSlices.end(); |
| LSIt != LSItEnd; ++LSIt) { |
| SDValue SliceInst = LSIt->loadSlice(); |
| CombineTo(LSIt->Inst, SliceInst, true); |
| if (SliceInst.getOpcode() != ISD::LOAD) |
| SliceInst = SliceInst.getOperand(0); |
| assert(SliceInst->getOpcode() == ISD::LOAD && |
| "It takes more than a zext to get to the loaded slice!!"); |
| ArgChains.push_back(SliceInst.getValue(1)); |
| } |
| |
| SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, |
| ArgChains); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); |
| AddToWorklist(Chain.getNode()); |
| return true; |
| } |
| |
| /// Check to see if V is (and load (ptr), imm), where the load is having |
| /// specific bytes cleared out. If so, return the byte size being masked out |
| /// and the shift amount. |
| static std::pair<unsigned, unsigned> |
| CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { |
| std::pair<unsigned, unsigned> Result(0, 0); |
| |
| // Check for the structure we're looking for. |
| if (V->getOpcode() != ISD::AND || |
| !isa<ConstantSDNode>(V->getOperand(1)) || |
| !ISD::isNormalLoad(V->getOperand(0).getNode())) |
| return Result; |
| |
| // Check the chain and pointer. |
| LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); |
| if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. |
| |
| // This only handles simple types. |
| if (V.getValueType() != MVT::i16 && |
| V.getValueType() != MVT::i32 && |
| V.getValueType() != MVT::i64) |
| return Result; |
| |
| // Check the constant mask. Invert it so that the bits being masked out are |
| // 0 and the bits being kept are 1. Use getSExtValue so that leading bits |
| // follow the sign bit for uniformity. |
| uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); |
| unsigned NotMaskLZ = countLeadingZeros(NotMask); |
| if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. |
| unsigned NotMaskTZ = countTrailingZeros(NotMask); |
| if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. |
| if (NotMaskLZ == 64) return Result; // All zero mask. |
| |
| // See if we have a continuous run of bits. If so, we have 0*1+0* |
| if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) |
| return Result; |
| |
| // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. |
| if (V.getValueType() != MVT::i64 && NotMaskLZ) |
| NotMaskLZ -= 64-V.getValueSizeInBits(); |
| |
| unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; |
| switch (MaskedBytes) { |
| case 1: |
| case 2: |
| case 4: break; |
| default: return Result; // All one mask, or 5-byte mask. |
| } |
| |
| // Verify that the first bit starts at a multiple of mask so that the access |
| // is aligned the same as the access width. |
| if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; |
| |
| // For narrowing to be valid, it must be the case that the load the |
| // immediately preceeding memory operation before the store. |
| if (LD == Chain.getNode()) |
| ; // ok. |
| else if (Chain->getOpcode() == ISD::TokenFactor && |
| SDValue(LD, 1).hasOneUse()) { |
| // LD has only 1 chain use so they are no indirect dependencies. |
| bool isOk = false; |
| for (const SDValue &ChainOp : Chain->op_values()) |
| if (ChainOp.getNode() == LD) { |
| isOk = true; |
| break; |
| } |
| if (!isOk) |
| return Result; |
| } else |
| return Result; // Fail. |
| |
| Result.first = MaskedBytes; |
| Result.second = NotMaskTZ/8; |
| return Result; |
| } |
| |
| /// Check to see if IVal is something that provides a value as specified by |
| /// MaskInfo. If so, replace the specified store with a narrower store of |
| /// truncated IVal. |
| static SDNode * |
| ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, |
| SDValue IVal, StoreSDNode *St, |
| DAGCombiner *DC) { |
| unsigned NumBytes = MaskInfo.first; |
| unsigned ByteShift = MaskInfo.second; |
| SelectionDAG &DAG = DC->getDAG(); |
| |
| // Check to see if IVal is all zeros in the part being masked in by the 'or' |
| // that uses this. If not, this is not a replacement. |
| APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), |
| ByteShift*8, (ByteShift+NumBytes)*8); |
| if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; |
| |
| // Check that it is legal on the target to do this. It is legal if the new |
| // VT we're shrinking to (i8/i16/i32) is legal or we're still before type |
| // legalization. |
| MVT VT = MVT::getIntegerVT(NumBytes*8); |
| if (!DC->isTypeLegal(VT)) |
| return nullptr; |
| |
| // Okay, we can do this! Replace the 'St' store with a store of IVal that is |
| // shifted by ByteShift and truncated down to NumBytes. |
| if (ByteShift) { |
| SDLoc DL(IVal); |
| IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, |
| DAG.getConstant(ByteShift*8, DL, |
| DC->getShiftAmountTy(IVal.getValueType()))); |
| } |
| |
| // Figure out the offset for the store and the alignment of the access. |
| unsigned StOffset; |
| unsigned NewAlign = St->getAlignment(); |
| |
| if (DAG.getDataLayout().isLittleEndian()) |
| StOffset = ByteShift; |
| else |
| StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; |
| |
| SDValue Ptr = St->getBasePtr(); |
| if (StOffset) { |
| SDLoc DL(IVal); |
| Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), |
| Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); |
| NewAlign = MinAlign(NewAlign, StOffset); |
| } |
| |
| // Truncate down to the new size. |
| IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); |
| |
| ++OpsNarrowed; |
| return DAG |
| .getStore(St->getChain(), SDLoc(St), IVal, Ptr, |
| St->getPointerInfo().getWithOffset(StOffset), NewAlign) |
| .getNode(); |
| } |
| |
| /// Look for sequence of load / op / store where op is one of 'or', 'xor', and |
| /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try |
| /// narrowing the load and store if it would end up being a win for performance |
| /// or code size. |
| SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| if (ST->isVolatile()) |
| return SDValue(); |
| |
| SDValue Chain = ST->getChain(); |
| SDValue Value = ST->getValue(); |
| SDValue Ptr = ST->getBasePtr(); |
| EVT VT = Value.getValueType(); |
| |
| if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) |
| return SDValue(); |
| |
| unsigned Opc = Value.getOpcode(); |
| |
| // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst |
| // is a byte mask indicating a consecutive number of bytes, check to see if |
| // Y is known to provide just those bytes. If so, we try to replace the |
| // load + replace + store sequence with a single (narrower) store, which makes |
| // the load dead. |
| if (Opc == ISD::OR) { |
| std::pair<unsigned, unsigned> MaskedLoad; |
| MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); |
| if (MaskedLoad.first) |
| if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, |
| Value.getOperand(1), ST,this)) |
| return SDValue(NewST, 0); |
| |
| // Or is commutative, so try swapping X and Y. |
| MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); |
| if (MaskedLoad.first) |
| if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, |
| Value.getOperand(0), ST,this)) |
| return SDValue(NewST, 0); |
| } |
| |
| if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || |
| Value.getOperand(1).getOpcode() != ISD::Constant) |
| return SDValue(); |
| |
| SDValue N0 = Value.getOperand(0); |
| if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && |
| Chain == SDValue(N0.getNode(), 1)) { |
| LoadSDNode *LD = cast<LoadSDNode>(N0); |
| if (LD->getBasePtr() != Ptr || |
| LD->getPointerInfo().getAddrSpace() != |
| ST->getPointerInfo().getAddrSpace()) |
| return SDValue(); |
| |
| // Find the type to narrow it the load / op / store to. |
| SDValue N1 = Value.getOperand(1); |
| unsigned BitWidth = N1.getValueSizeInBits(); |
| APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); |
| if (Opc == ISD::AND) |
| Imm ^= APInt::getAllOnesValue(BitWidth); |
| if (Imm == 0 || Imm.isAllOnesValue()) |
| return SDValue(); |
| unsigned ShAmt = Imm.countTrailingZeros(); |
| unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; |
| unsigned NewBW = NextPowerOf2(MSB - ShAmt); |
| EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); |
| // The narrowing should be profitable, the load/store operation should be |
| // legal (or custom) and the store size should be equal to the NewVT width. |
| while (NewBW < BitWidth && |
| (NewVT.getStoreSizeInBits() != NewBW || |
| !TLI.isOperationLegalOrCustom(Opc, NewVT) || |
| !TLI.isNarrowingProfitable(VT, NewVT))) { |
| NewBW = NextPowerOf2(NewBW); |
| NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); |
| } |
| if (NewBW >= BitWidth) |
| return SDValue(); |
| |
| // If the lsb changed does not start at the type bitwidth boundary, |
| // start at the previous one. |
| if (ShAmt % NewBW) |
| ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; |
| APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, |
| std::min(BitWidth, ShAmt + NewBW)); |
| if ((Imm & Mask) == Imm) { |
| APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); |
| if (Opc == ISD::AND) |
| NewImm ^= APInt::getAllOnesValue(NewBW); |
| uint64_t PtrOff = ShAmt / 8; |
| // For big endian targets, we need to adjust the offset to the pointer to |
| // load the correct bytes. |
| if (DAG.getDataLayout().isBigEndian()) |
| PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; |
| |
| unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); |
| Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); |
| if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) |
| return SDValue(); |
| |
| SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), |
| Ptr.getValueType(), Ptr, |
| DAG.getConstant(PtrOff, SDLoc(LD), |
| Ptr.getValueType())); |
| SDValue NewLD = |
| DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, |
| LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, |
| LD->getMemOperand()->getFlags(), LD->getAAInfo()); |
| SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, |
| DAG.getConstant(NewImm, SDLoc(Value), |
| NewVT)); |
| SDValue NewST = |
| DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, |
| ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); |
| |
| AddToWorklist(NewPtr.getNode()); |
| AddToWorklist(NewLD.getNode()); |
| AddToWorklist(NewVal.getNode()); |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); |
| ++OpsNarrowed; |
| return NewST; |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// For a given floating point load / store pair, if the load value isn't used |
| /// by any other operations, then consider transforming the pair to integer |
| /// load / store operations if the target deems the transformation profitable. |
| SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| SDValue Chain = ST->getChain(); |
| SDValue Value = ST->getValue(); |
| if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && |
| Value.hasOneUse() && |
| Chain == SDValue(Value.getNode(), 1)) { |
| LoadSDNode *LD = cast<LoadSDNode>(Value); |
| EVT VT = LD->getMemoryVT(); |
| if (!VT.isFloatingPoint() || |
| VT != ST->getMemoryVT() || |
| LD->isNonTemporal() || |
| ST->isNonTemporal() || |
| LD->getPointerInfo().getAddrSpace() != 0 || |
| ST->getPointerInfo().getAddrSpace() != 0) |
| return SDValue(); |
| |
| EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); |
| if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || |
| !TLI.isOperationLegal(ISD::STORE, IntVT) || |
| !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || |
| !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) |
| return SDValue(); |
| |
| unsigned LDAlign = LD->getAlignment(); |
| unsigned STAlign = ST->getAlignment(); |
| Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); |
| unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); |
| if (LDAlign < ABIAlign || STAlign < ABIAlign) |
| return SDValue(); |
| |
| SDValue NewLD = |
| DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), |
| LD->getPointerInfo(), LDAlign); |
| |
| SDValue NewST = |
| DAG.getStore(NewLD.getValue(1), SDLoc(N), NewLD, ST->getBasePtr(), |
| ST->getPointerInfo(), STAlign); |
| |
| AddToWorklist(NewLD.getNode()); |
| AddToWorklist(NewST.getNode()); |
| WorklistRemover DeadNodes(*this); |
| DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); |
| ++LdStFP2Int; |
| return NewST; |
| } |
| |
| return SDValue(); |
| } |
| |
| // This is a helper function for visitMUL to check the profitability |
| // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). |
| // MulNode is the original multiply, AddNode is (add x, c1), |
| // and ConstNode is c2. |
| // |
| // If the (add x, c1) has multiple uses, we could increase |
| // the number of adds if we make this transformation. |
| // It would only be worth doing this if we can remove a |
| // multiply in the process. Check for that here. |
| // To illustrate: |
| // (A + c1) * c3 |
| // (A + c2) * c3 |
| // We're checking for cases where we have common "c3 * A" expressions. |
| bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, |
| SDValue &AddNode, |
| SDValue &ConstNode) { |
| APInt Val; |
| |
| // If the add only has one use, this would be OK to do. |
| if (AddNode.getNode()->hasOneUse()) |
| return true; |
| |
| // Walk all the users of the constant with which we're multiplying. |
| for (SDNode *Use : ConstNode->uses()) { |
| if (Use == MulNode) // This use is the one we're on right now. Skip it. |
| continue; |
| |
| if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. |
| SDNode *OtherOp; |
| SDNode *MulVar = AddNode.getOperand(0).getNode(); |
| |
| // OtherOp is what we're multiplying against the constant. |
| if (Use->getOperand(0) == ConstNode) |
| OtherOp = Use->getOperand(1).getNode(); |
| else |
| OtherOp = Use->getOperand(0).getNode(); |
| |
| // Check to see if multiply is with the same operand of our "add". |
| // |
| // ConstNode = CONST |
| // Use = ConstNode * A <-- visiting Use. OtherOp is A. |
| // ... |
| // AddNode = (A + c1) <-- MulVar is A. |
| // = AddNode * ConstNode <-- current visiting instruction. |
| // |
| // If we make this transformation, we will have a common |
| // multiply (ConstNode * A) that we can save. |
| if (OtherOp == MulVar) |
| return true; |
| |
| // Now check to see if a future expansion will give us a common |
| // multiply. |
| // |
| // ConstNode = CONST |
| // AddNode = (A + c1) |
| // ... = AddNode * ConstNode <-- current visiting instruction. |
| // ... |
| // OtherOp = (A + c2) |
| // Use = OtherOp * ConstNode <-- visiting Use. |
| // |
| // If we make this transformation, we will have a common |
| // multiply (CONST * A) after we also do the same transformation |
| // to the "t2" instruction. |
| if (OtherOp->getOpcode() == ISD::ADD && |
| DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && |
| OtherOp->getOperand(0).getNode() == MulVar) |
| return true; |
| } |
| } |
| |
| // Didn't find a case where this would be profitable. |
| return false; |
| } |
| |
| SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, |
| unsigned NumStores) { |
| SmallVector<SDValue, 8> Chains; |
| SmallPtrSet<const SDNode *, 8> Visited; |
| SDLoc StoreDL(StoreNodes[0].MemNode); |
| |
| for (unsigned i = 0; i < NumStores; ++i) { |
| Visited.insert(StoreNodes[i].MemNode); |
| } |
| |
| // don't include nodes that are children |
| for (unsigned i = 0; i < NumStores; ++i) { |
| if (Visited.count(StoreNodes[i].MemNode->getChain().getNode()) == 0) |
| Chains.push_back(StoreNodes[i].MemNode->getChain()); |
| } |
| |
| assert(Chains.size() > 0 && "Chain should have generated a chain"); |
| return DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, Chains); |
| } |
| |
| bool DAGCombiner::MergeStoresOfConstantsOrVecElts( |
| SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, |
| bool IsConstantSrc, bool UseVector, bool UseTrunc) { |
| // Make sure we have something to merge. |
| if (NumStores < 2) |
| return false; |
| |
| // The latest Node in the DAG. |
| SDLoc DL(StoreNodes[0].MemNode); |
| |
| int64_t ElementSizeBits = MemVT.getStoreSizeInBits(); |
| unsigned SizeInBits = NumStores * ElementSizeBits; |
| unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; |
| |
| EVT StoreTy; |
| if (UseVector) { |
| unsigned Elts = NumStores * NumMemElts; |
| // Get the type for the merged vector store. |
| StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); |
| } else |
| StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); |
| |
| SDValue StoredVal; |
| if (UseVector) { |
| if (IsConstantSrc) { |
| SmallVector<SDValue, 8> BuildVector; |
| for (unsigned I = 0; I != NumStores; ++I) { |
| StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); |
| SDValue Val = St->getValue(); |
| // If constant is of the wrong type, convert it now. |
| if (MemVT != Val.getValueType()) { |
| Val = peekThroughBitcast(Val); |
| // Deal with constants of wrong size. |
| if (ElementSizeBits != Val.getValueSizeInBits()) { |
| EVT IntMemVT = |
| EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); |
| if (isa<ConstantFPSDNode>(Val)) { |
| // Not clear how to truncate FP values. |
| return false; |
| } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) |
| Val = DAG.getConstant(C->getAPIntValue() |
| .zextOrTrunc(Val.getValueSizeInBits()) |
| .zextOrTrunc(ElementSizeBits), |
| SDLoc(C), IntMemVT); |
| } |
| // Make sure correctly size type is the correct type. |
| Val = DAG.getBitcast(MemVT, Val); |
| } |
| BuildVector.push_back(Val); |
| } |
| StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS |
| : ISD::BUILD_VECTOR, |
| DL, StoreTy, BuildVector); |
| } else { |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i < NumStores; ++i) { |
| StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); |
| SDValue Val = peekThroughBitcast(St->getValue()); |
| // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of |
| // type MemVT. If the underlying value is not the correct |
| // type, but it is an extraction of an appropriate vector we |
| // can recast Val to be of the correct type. This may require |
| // converting between EXTRACT_VECTOR_ELT and |
| // EXTRACT_SUBVECTOR. |
| if ((MemVT != Val.getValueType()) && |
| (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || |
| Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { |
| SDValue Vec = Val.getOperand(0); |
| EVT MemVTScalarTy = MemVT.getScalarType(); |
| // We may need to add a bitcast here to get types to line up. |
| if (MemVTScalarTy != Vec.getValueType()) { |
| unsigned Elts = Vec.getValueType().getSizeInBits() / |
| MemVTScalarTy.getSizeInBits(); |
| EVT NewVecTy = |
| EVT::getVectorVT(*DAG.getContext(), MemVTScalarTy, Elts); |
| Vec = DAG.getBitcast(NewVecTy, Vec); |
| } |
| auto OpC = (MemVT.isVector()) ? ISD::EXTRACT_SUBVECTOR |
| : ISD::EXTRACT_VECTOR_ELT; |
| Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Val.getOperand(1)); |
| } |
| Ops.push_back(Val); |
| } |
| |
| // Build the extracted vector elements back into a vector. |
| StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS |
| : ISD::BUILD_VECTOR, |
| DL, StoreTy, Ops); |
| } |
| } else { |
| // We should always use a vector store when merging extracted vector |
| // elements, so this path implies a store of constants. |
| assert(IsConstantSrc && "Merged vector elements should use vector store"); |
| |
| APInt StoreInt(SizeInBits, 0); |
| |
| // Construct a single integer constant which is made of the smaller |
| // constant inputs. |
| bool IsLE = DAG.getDataLayout().isLittleEndian(); |
| for (unsigned i = 0; i < NumStores; ++i) { |
| unsigned Idx = IsLE ? (NumStores - 1 - i) : i; |
| StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); |
| |
| SDValue Val = St->getValue(); |
| Val = peekThroughBitcast(Val); |
| StoreInt <<= ElementSizeBits; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { |
| StoreInt |= C->getAPIntValue() |
| .zextOrTrunc(ElementSizeBits) |
| .zextOrTrunc(SizeInBits); |
| } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { |
| StoreInt |= C->getValueAPF() |
| .bitcastToAPInt() |
| .zextOrTrunc(ElementSizeBits) |
| .zextOrTrunc(SizeInBits); |
| // If fp truncation is necessary give up for now. |
| if (MemVT.getSizeInBits() != ElementSizeBits) |
| return false; |
| } else { |
| llvm_unreachable("Invalid constant element type"); |
| } |
| } |
| |
| // Create the new Load and Store operations. |
| StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); |
| } |
| |
| LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; |
| SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); |
| |
| // make sure we use trunc store if it's necessary to be legal. |
| SDValue NewStore; |
| if (!UseTrunc) { |
| NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), |
| FirstInChain->getPointerInfo(), |
| FirstInChain->getAlignment()); |
| } else { // Must be realized as a trunc store |
| EVT LegalizedStoredValTy = |
| TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); |
| unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); |
| ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); |
| SDValue ExtendedStoreVal = |
| DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, |
| LegalizedStoredValTy); |
| NewStore = DAG.getTruncStore( |
| NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), |
| FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, |
| FirstInChain->getAlignment(), |
| FirstInChain->getMemOperand()->getFlags()); |
| } |
| |
| // Replace all merged stores with the new store. |
| for (unsigned i = 0; i < NumStores; ++i) |
| CombineTo(StoreNodes[i].MemNode, NewStore); |
| |
| AddToWorklist(NewChain.getNode()); |
| return true; |
| } |
| |
| void DAGCombiner::getStoreMergeCandidates( |
| StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, |
| SDNode *&RootNode) { |
| // This holds the base pointer, index, and the offset in bytes from the base |
| // pointer. |
| BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); |
| EVT MemVT = St->getMemoryVT(); |
| |
| SDValue Val = peekThroughBitcast(St->getValue()); |
| // We must have a base and an offset. |
| if (!BasePtr.getBase().getNode()) |
| return; |
| |
| // Do not handle stores to undef base pointers. |
| if (BasePtr.getBase().isUndef()) |
| return; |
| |
| bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val); |
| bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || |
| Val.getOpcode() == ISD::EXTRACT_SUBVECTOR); |
| bool IsLoadSrc = isa<LoadSDNode>(Val); |
| BaseIndexOffset LBasePtr; |
| // Match on loadbaseptr if relevant. |
| EVT LoadVT; |
| if (IsLoadSrc) { |
| auto *Ld = cast<LoadSDNode>(Val); |
| LBasePtr = BaseIndexOffset::match(Ld, DAG); |
| LoadVT = Ld->getMemoryVT(); |
| // Load and store should be the same type. |
| if (MemVT != LoadVT) |
| return; |
| // Loads must only have one use. |
| if (!Ld->hasNUsesOfValue(1, 0)) |
| return; |
| // The memory operands must not be volatile. |
| if (Ld->isVolatile() || Ld->isIndexed()) |
| return; |
| } |
| auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, |
| int64_t &Offset) -> bool { |
| if (Other->isVolatile() || Other->isIndexed()) |
| return false; |
| SDValue Val = peekThroughBitcast(Other->getValue()); |
| // Allow merging constants of different types as integers. |
| bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) |
| : Other->getMemoryVT() != MemVT; |
| if (IsLoadSrc) { |
| if (NoTypeMatch) |
| return false; |
| // The Load's Base Ptr must also match |
| if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(Val)) { |
| auto LPtr = BaseIndexOffset::match(OtherLd, DAG); |
| if (LoadVT != OtherLd->getMemoryVT()) |
| return false; |
| // Loads must only have one use. |
| if (!OtherLd->hasNUsesOfValue(1, 0)) |
| return false; |
| // The memory operands must not be volatile. |
| if (OtherLd->isVolatile() || OtherLd->isIndexed()) |
| return false; |
| if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) |
| return false; |
| } else |
| return false; |
| } |
| if (IsConstantSrc) { |
| if (NoTypeMatch) |
| return false; |
| if (!(isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val))) |
| return false; |
| } |
| if (IsExtractVecSrc) { |
| // Do not merge truncated stores here. |
| if (Other->isTruncatingStore()) |
| return false; |
| if (!MemVT.bitsEq(Val.getValueType())) |
| return false; |
| if (Val.getOpcode() != ISD::EXTRACT_VECTOR_ELT && |
| Val.getOpcode() != ISD::EXTRACT_SUBVECTOR) |
| return false; |
| } |
| Ptr = BaseIndexOffset::match(Other, DAG); |
| return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); |
| }; |
| |
| // We looking for a root node which is an ancestor to all mergable |
| // stores. We search up through a load, to our root and then down |
| // through all children. For instance we will find Store{1,2,3} if |
| // St is Store1, Store2. or Store3 where the root is not a load |
| // which always true for nonvolatile ops. TODO: Expand |
| // the search to find all valid candidates through multiple layers of loads. |
| // |
| // Root |
| // |-------|-------| |
| // Load Load Store3 |
| // | | |
| // Store1 Store2 |
| // |
| // FIXME: We should be able to climb and |
| // descend TokenFactors to find candidates as well. |
| |
| RootNode = St->getChain().getNode(); |
| |
| if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) { |
| RootNode = Ldn->getChain().getNode(); |
| for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E; ++I) |
| if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain |
| for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) |
| if (I2.getOperandNo() == 0) |
| if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) { |
| BaseIndexOffset Ptr; |
| int64_t PtrDiff; |
| if (CandidateMatch(OtherST, Ptr, PtrDiff)) |
| StoreNodes.push_back(MemOpLink(OtherST, PtrDiff)); |
| } |
| } else |
| for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E; ++I) |
| if (I.getOperandNo() == 0) |
| if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { |
| BaseIndexOffset Ptr; |
| int64_t PtrDiff; |
| if (CandidateMatch(OtherST, Ptr, PtrDiff)) |
| StoreNodes.push_back(MemOpLink(OtherST, PtrDiff)); |
| } |
| } |
| |
| // We need to check that merging these stores does not cause a loop in |
| // the DAG. Any store candidate may depend on another candidate |
| // indirectly through its operand (we already consider dependencies |
| // through the chain). Check in parallel by searching up from |
| // non-chain operands of candidates. |
| bool DAGCombiner::checkMergeStoreCandidatesForDependencies( |
| SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, |
| SDNode *RootNode) { |
| // FIXME: We should be able to truncate a full search of |
| // predecessors by doing a BFS and keeping tabs the originating |
| // stores from which worklist nodes come from in a similar way to |
| // TokenFactor simplfication. |
| |
| SmallPtrSet<const SDNode *, 32> Visited; |
| SmallVector<const SDNode *, 8> Worklist; |
| |
| // RootNode is a predecessor to all candidates so we need not search |
| // past it. Add RootNode (peeking through TokenFactors). Do not count |
| // these towards size check. |
| |
| Worklist.push_back(RootNode); |
| while (!Worklist.empty()) { |
| auto N = Worklist.pop_back_val(); |
| if (N->getOpcode() == ISD::TokenFactor) { |
| for (SDValue Op : N->ops()) |
| Worklist.push_back(Op.getNode()); |
| } |
| Visited.insert(N); |
| } |
| |
| // Don't count pruning nodes towards max. |
| unsigned int Max = 1024 + Visited.size(); |
| // Search Ops of store candidates. |
| for (unsigned i = 0; i < NumStores; ++i) { |
| SDNode *N = StoreNodes[i].MemNode; |
| // Of the 4 Store Operands: |
| // * Chain (Op 0) -> We have already considered these |
| // in candidate selection and can be |
| // safely ignored |
| // * Value (Op 1) -> Cycles may happen (e.g. through load chains) |
| // * Address (Op 2) -> Merged addresses may only vary by a fixed constant |
| // and so no cycles are possible. |
| // * (Op 3) -> appears to always be undef. Cannot be source of cycle. |
| // |
| // Thus we need only check predecessors of the value operands. |
| auto *Op = N->getOperand(1).getNode(); |
| if (Visited.insert(Op).second) |
| Worklist.push_back(Op); |
| } |
| // Search through DAG. We can stop early if we find a store node. |
| for (unsigned i = 0; i < NumStores; ++i) |
| if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, |
| Max)) |
| return false; |
| return true; |
| } |
| |
| bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) { |
| if (OptLevel == CodeGenOpt::None) |
| return false; |
| |
| EVT MemVT = St->getMemoryVT(); |
| int64_t ElementSizeBytes = MemVT.getStoreSize(); |
| unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; |
| |
| if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) |
| return false; |
| |
| bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute( |
| Attribute::NoImplicitFloat); |
| |
| // This function cannot currently deal with non-byte-sized memory sizes. |
| if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) |
| return false; |
| |
| if (!MemVT.isSimple()) |
| return false; |
| |
| // Perform an early exit check. Do not bother looking at stored values that |
| // are not constants, loads, or extracted vector elements. |
| SDValue StoredVal = peekThroughBitcast(St->getValue()); |
| bool IsLoadSrc = isa<LoadSDNode>(StoredVal); |
| bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || |
| isa<ConstantFPSDNode>(StoredVal); |
| bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || |
| StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); |
| |
| if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) |
| return false; |
| |
| SmallVector<MemOpLink, 8> StoreNodes; |
| SDNode *RootNode; |
| // Find potential store merge candidates by searching through chain sub-DAG |
| getStoreMergeCandidates(St, StoreNodes, RootNode); |
| |
| // Check if there is anything to merge. |
| if (StoreNodes.size() < 2) |
| return false; |
| |
| // Sort the memory operands according to their distance from the |
| // base pointer. |
| llvm::sort(StoreNodes.begin(), StoreNodes.end(), |
| [](MemOpLink LHS, MemOpLink RHS) { |
| return LHS.OffsetFromBase < RHS.OffsetFromBase; |
| }); |
| |
| // Store Merge attempts to merge the lowest stores. This generally |
| // works out as if successful, as the remaining stores are checked |
| // after the first collection of stores is merged. However, in the |
| // case that a non-mergeable store is found first, e.g., {p[-2], |
| // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent |
| // mergeable cases. To prevent this, we prune such stores from the |
| // front of StoreNodes here. |
| |
| bool RV = false; |
| while (StoreNodes.size() > 1) { |
| unsigned StartIdx = 0; |
| while ((StartIdx + 1 < StoreNodes.size()) && |
| StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != |
| StoreNodes[StartIdx + 1].OffsetFromBase) |
| ++StartIdx; |
| |
| // Bail if we don't have enough candidates to merge. |
| if (StartIdx + 1 >= StoreNodes.size()) |
| return RV; |
| |
| if (StartIdx) |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); |
| |
| // Scan the memory operations on the chain and find the first |
| // non-consecutive store memory address. |
| unsigned NumConsecutiveStores = 1; |
| int64_t StartAddress = StoreNodes[0].OffsetFromBase; |
| // Check that the addresses are consecutive starting from the second |
| // element in the list of stores. |
| for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { |
| int64_t CurrAddress = StoreNodes[i].OffsetFromBase; |
| if (CurrAddress - StartAddress != (ElementSizeBytes * i)) |
| break; |
| NumConsecutiveStores = i + 1; |
| } |
| |
| if (NumConsecutiveStores < 2) { |
| StoreNodes.erase(StoreNodes.begin(), |
| StoreNodes.begin() + NumConsecutiveStores); |
| continue; |
| } |
| |
| // The node with the lowest store address. |
| LLVMContext &Context = *DAG.getContext(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| |
| // Store the constants into memory as one consecutive store. |
| if (IsConstantSrc) { |
| while (NumConsecutiveStores >= 2) { |
| LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; |
| unsigned FirstStoreAS = FirstInChain->getAddressSpace(); |
| unsigned FirstStoreAlign = FirstInChain->getAlignment(); |
| unsigned LastLegalType = 1; |
| unsigned LastLegalVectorType = 1; |
| bool LastIntegerTrunc = false; |
| bool NonZero = false; |
| unsigned FirstZeroAfterNonZero = NumConsecutiveStores; |
| for (unsigned i = 0; i < NumConsecutiveStores; ++i) { |
| StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); |
| SDValue StoredVal = ST->getValue(); |
| bool IsElementZero = false; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) |
| IsElementZero = C->isNullValue(); |
| else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) |
| IsElementZero = C->getConstantFPValue()->isNullValue(); |
| if (IsElementZero) { |
| if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) |
| FirstZeroAfterNonZero = i; |
| } |
| NonZero |= !IsElementZero; |
| |
| // Find a legal type for the constant store. |
| unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; |
| EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); |
| bool IsFast = false; |
| |
| // Break early when size is too large to be legal. |
| if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) |
| break; |
| |
| if (TLI.isTypeLegal(StoreTy) && |
| TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, |
| FirstStoreAlign, &IsFast) && |
| IsFast) { |
| LastIntegerTrunc = false; |
| LastLegalType = i + 1; |
| // Or check whether a truncstore is legal. |
| } else if (TLI.getTypeAction(Context, StoreTy) == |
| TargetLowering::TypePromoteInteger) { |
| EVT LegalizedStoredValTy = |
| TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); |
| if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && |
| TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, |
| FirstStoreAlign, &IsFast) && |
| IsFast) { |
| LastIntegerTrunc = true; |
| LastLegalType = i + 1; |
| } |
| } |
| |
| // We only use vectors if the constant is known to be zero or the |
| // target allows it and the function is not marked with the |
| // noimplicitfloat attribute. |
| if ((!NonZero || |
| TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && |
| !NoVectors) { |
| // Find a legal type for the vector store. |
| unsigned Elts = (i + 1) * NumMemElts; |
| EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); |
| if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && |
| TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && |
| TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, |
| FirstStoreAlign, &IsFast) && |
| IsFast) |
| LastLegalVectorType = i + 1; |
| } |
| } |
| |
| bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; |
| unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; |
| |
| // Check if we found a legal integer type that creates a meaningful |
| // merge. |
| if (NumElem < 2) { |
| // We know that candidate stores are in order and of correct |
| // shape. While there is no mergeable sequence from the |
| // beginning one may start later in the sequence. The only |
| // reason a merge of size N could have failed where another of |
| // the same size would not have, is if the alignment has |
| // improved or we've dropped a non-zero value. Drop as many |
| // candidates as we can here. |
| unsigned NumSkip = 1; |
| while ( |
| (NumSkip < NumConsecutiveStores) && |
| (NumSkip < FirstZeroAfterNonZero) && |
| (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) |
| NumSkip++; |
| |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); |
| NumConsecutiveStores -= NumSkip; |
| continue; |
| } |
| |
| // Check that we can merge these candidates without causing a cycle. |
| if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, |
| RootNode)) { |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); |
| NumConsecutiveStores -= NumElem; |
| continue; |
| } |
| |
| RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true, |
| UseVector, LastIntegerTrunc); |
| |
| // Remove merged stores for next iteration. |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); |
| NumConsecutiveStores -= NumElem; |
| } |
| continue; |
| } |
| |
| // When extracting multiple vector elements, try to store them |
| // in one vector store rather than a sequence of scalar stores. |
| if (IsExtractVecSrc) { |
| // Loop on Consecutive Stores on success. |
| while (NumConsecutiveStores >= 2) { |
| LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; |
| unsigned FirstStoreAS = FirstInChain->getAddressSpace(); |
| unsigned FirstStoreAlign = FirstInChain->getAlignment(); |
| unsigned NumStoresToMerge = 1; |
| for (unsigned i = 0; i < NumConsecutiveStores; ++i) { |
| // Find a legal type for the vector store. |
| unsigned Elts = (i + 1) * NumMemElts; |
| EVT Ty = |
| EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); |
| bool IsFast; |
| |
| // Break early when size is too large to be legal. |
| if (Ty.getSizeInBits() > MaximumLegalStoreInBits) |
| break; |
| |
| if (TLI.isTypeLegal(Ty) && |
| TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && |
| TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, |
| FirstStoreAlign, &IsFast) && |
| IsFast) |
| NumStoresToMerge = i + 1; |
| } |
| |
| // Check if we found a legal integer type creating a meaningful |
| // merge. |
| if (NumStoresToMerge < 2) { |
| // We know that candidate stores are in order and of correct |
| // shape. While there is no mergeable sequence from the |
| // beginning one may start later in the sequence. The only |
| // reason a merge of size N could have failed where another of |
| // the same size would not have, is if the alignment has |
| // improved. Drop as many candidates as we can here. |
| unsigned NumSkip = 1; |
| while ( |
| (NumSkip < NumConsecutiveStores) && |
| (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) |
| NumSkip++; |
| |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); |
| NumConsecutiveStores -= NumSkip; |
| continue; |
| } |
| |
| // Check that we can merge these candidates without causing a cycle. |
| if (!checkMergeStoreCandidatesForDependencies( |
| StoreNodes, NumStoresToMerge, RootNode)) { |
| StoreNodes.erase(StoreNodes.begin(), |
| StoreNodes.begin() + NumStoresToMerge); |
| NumConsecutiveStores -= NumStoresToMerge; |
| continue; |
| } |
| |
| RV |= MergeStoresOfConstantsOrVecElts( |
| StoreNodes, MemVT, NumStoresToMerge, false, true, false); |
| |
| StoreNodes.erase(StoreNodes.begin(), |
| StoreNodes.begin() + NumStoresToMerge); |
| NumConsecutiveStores -= NumStoresToMerge; |
| } |
| continue; |
| } |
| |
| // Below we handle the case of multiple consecutive stores that |
| // come from multiple consecutive loads. We merge them into a single |
| // wide load and a single wide store. |
| |
| // Look for load nodes which are used by the stored values. |
| SmallVector<MemOpLink, 8> LoadNodes; |
| |
| // Find acceptable loads. Loads need to have the same chain (token factor), |
| // must not be zext, volatile, indexed, and they must be consecutive. |
| BaseIndexOffset LdBasePtr; |
| |
| for (unsigned i = 0; i < NumConsecutiveStores; ++i) { |
| StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); |
| SDValue Val = peekThroughBitcast(St->getValue()); |
| LoadSDNode *Ld = cast<LoadSDNode>(Val); |
| |
| BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); |
| // If this is not the first ptr that we check. |
| int64_t LdOffset = 0; |
| if (LdBasePtr.getBase().getNode()) { |
| // The base ptr must be the same. |
| if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) |
| break; |
| } else { |
| // Check that all other base pointers are the same as this one. |
| LdBasePtr = LdPtr; |
| } |
| |
| // We found a potential memory operand to merge. |
| LoadNodes.push_back(MemOpLink(Ld, LdOffset)); |
| } |
| |
| while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { |
| // If we have load/store pair instructions and we only have two values, |
| // don't bother merging. |
| unsigned RequiredAlignment; |
| if (LoadNodes.size() == 2 && |
| TLI.hasPairedLoad(MemVT, RequiredAlignment) && |
| StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) { |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); |
| LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); |
| break; |
| } |
| LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; |
| unsigned FirstStoreAS = FirstInChain->getAddressSpace(); |
| unsigned FirstStoreAlign = FirstInChain->getAlignment(); |
| LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); |
| unsigned FirstLoadAS = FirstLoad->getAddressSpace(); |
| unsigned FirstLoadAlign = FirstLoad->getAlignment(); |
| |
| // Scan the memory operations on the chain and find the first |
| // non-consecutive load memory address. These variables hold the index in |
| // the store node array. |
| |
| unsigned LastConsecutiveLoad = 1; |
| |
| // This variable refers to the size and not index in the array. |
| unsigned LastLegalVectorType = 1; |
| unsigned LastLegalIntegerType = 1; |
| bool isDereferenceable = true; |
| bool DoIntegerTruncate = false; |
| StartAddress = LoadNodes[0].OffsetFromBase; |
| SDValue FirstChain = FirstLoad->getChain(); |
| for (unsigned i = 1; i < LoadNodes.size(); ++i) { |
| // All loads must share the same chain. |
| if (LoadNodes[i].MemNode->getChain() != FirstChain) |
| break; |
| |
| int64_t CurrAddress = LoadNodes[i].OffsetFromBase; |
| if (CurrAddress - StartAddress != (ElementSizeBytes * i)) |
| break; |
| LastConsecutiveLoad = i; |
| |
| if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) |
| isDereferenceable = false; |
| |
| // Find a legal type for the vector store. |
| unsigned Elts = (i + 1) * NumMemElts; |
| EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); |
| |
| // Break early when size is too large to be legal. |
| if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) |
| break; |
| |
| bool IsFastSt, IsFastLd; |
| if (TLI.isTypeLegal(StoreTy) && |
| TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, |
| FirstStoreAlign, &IsFastSt) && |
| IsFastSt && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, |
| FirstLoadAlign, &IsFastLd) && |
| IsFastLd) { |
| LastLegalVectorType = i + 1; |
| } |
| |
| // Find a legal type for the integer store. |
| unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; |
| StoreTy = EVT::getIntegerVT(Context, SizeInBits); |
| if (TLI.isTypeLegal(StoreTy) && |
| TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, |
| FirstStoreAlign, &IsFastSt) && |
| IsFastSt && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, |
| FirstLoadAlign, &IsFastLd) && |
| IsFastLd) { |
| LastLegalIntegerType = i + 1; |
| DoIntegerTruncate = false; |
| // Or check whether a truncstore and extload is legal. |
| } else if (TLI.getTypeAction(Context, StoreTy) == |
| TargetLowering::TypePromoteInteger) { |
| EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); |
| if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && |
| TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && |
| TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, |
| StoreTy) && |
| TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, |
| StoreTy) && |
| TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, |
| FirstStoreAlign, &IsFastSt) && |
| IsFastSt && |
| TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, |
| FirstLoadAlign, &IsFastLd) && |
| IsFastLd) { |
| LastLegalIntegerType = i + 1; |
| DoIntegerTruncate = true; |
| } |
| } |
| } |
| |
| // Only use vector types if the vector type is larger than the integer |
| // type. If they are the same, use integers. |
| bool UseVectorTy = |
| LastLegalVectorType > LastLegalIntegerType && !NoVectors; |
| unsigned LastLegalType = |
| std::max(LastLegalVectorType, LastLegalIntegerType); |
| |
| // We add +1 here because the LastXXX variables refer to location while |
| // the NumElem refers to array/index size. |
| unsigned NumElem = |
| std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); |
| NumElem = std::min(LastLegalType, NumElem); |
| |
| if (NumElem < 2) { |
| // We know that candidate stores are in order and of correct |
| // shape. While there is no mergeable sequence from the |
| // beginning one may start later in the sequence. The only |
| // reason a merge of size N could have failed where another of |
| // the same size would not have is if the alignment or either |
| // the load or store has improved. Drop as many candidates as we |
| // can here. |
| unsigned NumSkip = 1; |
| while ((NumSkip < LoadNodes.size()) && |
| (LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) && |
| (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) |
| NumSkip++; |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); |
| LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); |
| NumConsecutiveStores -= NumSkip; |
| continue; |
| } |
| |
| // Check that we can merge these candidates without causing a cycle. |
| if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, |
| RootNode)) { |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); |
| LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); |
| NumConsecutiveStores -= NumElem; |
| continue; |
| } |
| |
| // Find if it is better to use vectors or integers to load and store |
| // to memory. |
| EVT JointMemOpVT; |
| if (UseVectorTy) { |
| // Find a legal type for the vector store. |
| unsigned Elts = NumElem * NumMemElts; |
| JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); |
| } else { |
| unsigned SizeInBits = NumElem * ElementSizeBytes * 8; |
| JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); |
| } |
| |
| SDLoc LoadDL(LoadNodes[0].MemNode); |
| SDLoc StoreDL(StoreNodes[0].MemNode); |
| |
| // The merged loads are required to have the same incoming chain, so |
| // using the first's chain is acceptable. |
| |
| SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); |
| AddToWorklist(NewStoreChain.getNode()); |
| |
| MachineMemOperand::Flags MMOFlags = |
| isDereferenceable ? MachineMemOperand::MODereferenceable |
| : MachineMemOperand::MONone; |
| |
| SDValue NewLoad, NewStore; |
| if (UseVectorTy || !DoIntegerTruncate) { |
| NewLoad = |
| DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(), |
| FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(), |
| FirstLoadAlign, MMOFlags); |
| NewStore = DAG.getStore( |
| NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), |
| FirstInChain->getPointerInfo(), FirstStoreAlign); |
| } else { // This must be the truncstore/extload case |
| EVT ExtendedTy = |
| TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); |
| NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, |
| FirstLoad->getChain(), FirstLoad->getBasePtr(), |
| FirstLoad->getPointerInfo(), JointMemOpVT, |
| FirstLoadAlign, MMOFlags); |
| NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad, |
| FirstInChain->getBasePtr(), |
| FirstInChain->getPointerInfo(), |
| JointMemOpVT, FirstInChain->getAlignment(), |
| FirstInChain->getMemOperand()->getFlags()); |
| } |
| |
| // Transfer chain users from old loads to the new load. |
| for (unsigned i = 0; i < NumElem; ++i) { |
| LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), |
| SDValue(NewLoad.getNode(), 1)); |
| } |
| |
| // Replace the all stores with the new store. Recursively remove |
| // corresponding value if its no longer used. |
| for (unsigned i = 0; i < NumElem; ++i) { |
| SDValue Val = StoreNodes[i].MemNode->getOperand(1); |
| CombineTo(StoreNodes[i].MemNode, NewStore); |
| if (Val.getNode()->use_empty()) |
| recursivelyDeleteUnusedNodes(Val.getNode()); |
| } |
| |
| RV = true; |
| StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); |
| LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); |
| NumConsecutiveStores -= NumElem; |
| } |
| } |
| return RV; |
| } |
| |
| SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { |
| SDLoc SL(ST); |
| SDValue ReplStore; |
| |
| // Replace the chain to avoid dependency. |
| if (ST->isTruncatingStore()) { |
| ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), |
| ST->getBasePtr(), ST->getMemoryVT(), |
| ST->getMemOperand()); |
| } else { |
| ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), |
| ST->getMemOperand()); |
| } |
| |
| // Create token to keep both nodes around. |
| SDValue Token = DAG.getNode(ISD::TokenFactor, SL, |
| MVT::Other, ST->getChain(), ReplStore); |
| |
| // Make sure the new and old chains are cleaned up. |
| AddToWorklist(Token.getNode()); |
| |
| // Don't add users to work list. |
| return CombineTo(ST, Token, false); |
| } |
| |
| SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { |
| SDValue Value = ST->getValue(); |
| if (Value.getOpcode() == ISD::TargetConstantFP) |
| return SDValue(); |
| |
| SDLoc DL(ST); |
| |
| SDValue Chain = ST->getChain(); |
| SDValue Ptr = ST->getBasePtr(); |
| |
| const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); |
| |
| // NOTE: If the original store is volatile, this transform must not increase |
| // the number of stores. For example, on x86-32 an f64 can be stored in one |
| // processor operation but an i64 (which is not legal) requires two. So the |
| // transform should not be done in this case. |
| |
| SDValue Tmp; |
| switch (CFP->getSimpleValueType(0).SimpleTy) { |
| default: |
| llvm_unreachable("Unknown FP type"); |
| case MVT::f16: // We don't do this for these yet. |
| case MVT::f80: |
| case MVT::f128: |
| case MVT::ppcf128: |
| return SDValue(); |
| case MVT::f32: |
| if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || |
| TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { |
| ; |
| Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). |
| bitcastToAPInt().getZExtValue(), SDLoc(CFP), |
| MVT::i32); |
| return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); |
| } |
| |
| return SDValue(); |
| case MVT::f64: |
| if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && |
| !ST->isVolatile()) || |
| TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { |
| ; |
| Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). |
| getZExtValue(), SDLoc(CFP), MVT::i64); |
| return DAG.getStore(Chain, DL, Tmp, |
| Ptr, ST->getMemOperand()); |
| } |
| |
| if (!ST->isVolatile() && |
| TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { |
| // Many FP stores are not made apparent until after legalize, e.g. for |
| // argument passing. Since this is so common, custom legalize the |
| // 64-bit integer store into two 32-bit stores. |
| uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); |
| SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); |
| SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); |
| if (DAG.getDataLayout().isBigEndian()) |
| std::swap(Lo, Hi); |
| |
| unsigned Alignment = ST->getAlignment(); |
| MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); |
| AAMDNodes AAInfo = ST->getAAInfo(); |
| |
| SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), |
| ST->getAlignment(), MMOFlags, AAInfo); |
| Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, |
| DAG.getConstant(4, DL, Ptr.getValueType())); |
| Alignment = MinAlign(Alignment, 4U); |
| SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, |
| ST->getPointerInfo().getWithOffset(4), |
| Alignment, MMOFlags, AAInfo); |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, |
| St0, St1); |
| } |
| |
| return SDValue(); |
| } |
| } |
| |
| SDValue DAGCombiner::visitSTORE(SDNode *N) { |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| SDValue Chain = ST->getChain(); |
| SDValue Value = ST->getValue(); |
| SDValue Ptr = ST->getBasePtr(); |
| |
| // If this is a store of a bit convert, store the input value if the |
| // resultant store does not need a higher alignment than the original. |
| if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && |
| ST->isUnindexed()) { |
| EVT SVT = Value.getOperand(0).getValueType(); |
| if (((!LegalOperations && !ST->isVolatile()) || |
| TLI.isOperationLegalOrCustom(ISD::STORE, SVT)) && |
| TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) { |
| unsigned OrigAlign = ST->getAlignment(); |
| bool Fast = false; |
| if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT, |
| ST->getAddressSpace(), OrigAlign, &Fast) && |
| Fast) { |
| return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, |
| ST->getPointerInfo(), OrigAlign, |
| ST->getMemOperand()->getFlags(), ST->getAAInfo()); |
| } |
| } |
| } |
| |
| // Turn 'store undef, Ptr' -> nothing. |
| if (Value.isUndef() && ST->isUnindexed()) |
| return Chain; |
| |
| // Try to infer better alignment information than the store already has. |
| if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { |
| if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { |
| if (Align > ST->getAlignment() && ST->getSrcValueOffset() % Align == 0) { |
| SDValue NewStore = |
| DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), |
| ST->getMemoryVT(), Align, |
| ST->getMemOperand()->getFlags(), ST->getAAInfo()); |
| // NewStore will always be N as we are only refining the alignment |
| assert(NewStore.getNode() == N); |
| (void)NewStore; |
| } |
| } |
| } |
| |
| // Try transforming a pair floating point load / store ops to integer |
| // load / store ops. |
| if (SDValue NewST = TransformFPLoadStorePair(N)) |
| return NewST; |
| |
| if (ST->isUnindexed()) { |
| // Walk up chain skipping non-aliasing memory nodes, on this store and any |
| // adjacent stores. |
| if (findBetterNeighborChains(ST)) { |
| // replaceStoreChain uses CombineTo, which handled all of the worklist |
| // manipulation. Return the original node to not do anything else. |
| return SDValue(ST, 0); |
| } |
| Chain = ST->getChain(); |
| } |
| |
| // FIXME: is there such a thing as a truncating indexed store? |
| if (ST->isTruncatingStore() && ST->isUnindexed() && |
| Value.getValueType().isInteger()) { |
| // See if we can simplify the input to this truncstore with knowledge that |
| // only the low bits are being used. For example: |
| // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" |
| SDValue Shorter = DAG.GetDemandedBits( |
| Value, APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), |
| ST->getMemoryVT().getScalarSizeInBits())); |
| AddToWorklist(Value.getNode()); |
| if (Shorter.getNode()) |
| return DAG.getTruncStore(Chain, SDLoc(N), Shorter, |
| Ptr, ST->getMemoryVT(), ST->getMemOperand()); |
| |
| // Otherwise, see if we can simplify the operation with |
| // SimplifyDemandedBits, which only works if the value has a single use. |
| if (SimplifyDemandedBits( |
| Value, |
| APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), |
| ST->getMemoryVT().getScalarSizeInBits()))) { |
| // Re-visit the store if anything changed and the store hasn't been merged |
| // with another node (N is deleted) SimplifyDemandedBits will add Value's |
| // node back to the worklist if necessary, but we also need to re-visit |
| // the Store node itself. |
| if (N->getOpcode() != ISD::DELETED_NODE) |
| AddToWorklist(N); |
| return SDValue(N, 0); |
| } |
| } |
| |
| // If this is a load followed by a store to the same location, then the store |
| // is dead/noop. |
| if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { |
| if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && |
| ST->isUnindexed() && !ST->isVolatile() && |
| // There can't be any side effects between the load and store, such as |
| // a call or store. |
| Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { |
| // The store is dead, remove it. |
| return Chain; |
| } |
| } |
| |
| if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { |
| if (ST->isUnindexed() && !ST->isVolatile() && ST1->isUnindexed() && |
| !ST1->isVolatile() && ST1->getBasePtr() == Ptr && |
| ST->getMemoryVT() == ST1->getMemoryVT()) { |
| // If this is a store followed by a store with the same value to the same |
| // location, then the store is dead/noop. |
| if (ST1->getValue() == Value) { |
| // The store is dead, remove it. |
| return Chain; |
| } |
| |
| // If this is a store who's preceeding store to the same location |
| // and no one other node is chained to that store we can effectively |
| // drop the store. Do not remove stores to undef as they may be used as |
| // data sinks. |
| if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && |
| !ST1->getBasePtr().isUndef()) { |
| // ST1 is fully overwritten and can be elided. Combine with it's chain |
| // value. |
| CombineTo(ST1, ST1->getChain()); |
| return SDValue(); |
| } |
| } |
| } |
| |
| // If this is an FP_ROUND or TRUNC followed by a store, fold this into a |
| // truncating store. We can do this even if this is already a truncstore. |
| if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) |
| && Value.getNode()->hasOneUse() && ST->isUnindexed() && |
| TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), |
| ST->getMemoryVT())) { |
| return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), |
| Ptr, ST->getMemoryVT(), ST->getMemOperand()); |
| } |
| |
| // Always perform this optimization before types are legal. If the target |
| // prefers, also try this after legalization to catch stores that were created |
| // by intrinsics or other nodes. |
| if (!LegalTypes || (TLI.mergeStoresAfterLegalization())) { |
| while (true) { |
| // There can be multiple store sequences on the same chain. |
| // Keep trying to merge store sequences until we are unable to do so |
| // or until we merge the last store on the chain. |
| bool Changed = MergeConsecutiveStores(ST); |
| if (!Changed) break; |
| // Return N as merge only uses CombineTo and no worklist clean |
| // up is necessary. |
| if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) |
| return SDValue(N, 0); |
| } |
| } |
| |
| // Try transforming N to an indexed store. |
| if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) |
| return SDValue(N, 0); |
| |
| // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' |
| // |
| // Make sure to do this only after attempting to merge stores in order to |
| // avoid changing the types of some subset of stores due to visit order, |
| // preventing their merging. |
| if (isa<ConstantFPSDNode>(ST->getValue())) { |
| if (SDValue NewSt = replaceStoreOfFPConstant(ST)) |
| return NewSt; |
| } |
| |
| if (SDValue NewSt = splitMergedValStore(ST)) |
| return NewSt; |
| |
| return ReduceLoadOpStoreWidth(N); |
| } |
| |
| /// For the instruction sequence of store below, F and I values |
| /// are bundled together as an i64 value before being stored into memory. |
| /// Sometimes it is more efficent to generate separate stores for F and I, |
| /// which can remove the bitwise instructions or sink them to colder places. |
| /// |
| /// (store (or (zext (bitcast F to i32) to i64), |
| /// (shl (zext I to i64), 32)), addr) --> |
| /// (store F, addr) and (store I, addr+4) |
| /// |
| /// Similarly, splitting for other merged store can also be beneficial, like: |
| /// For pair of {i32, i32}, i64 store --> two i32 stores. |
| /// For pair of {i32, i16}, i64 store --> two i32 stores. |
| /// For pair of {i16, i16}, i32 store --> two i16 stores. |
| /// For pair of {i16, i8}, i32 store --> two i16 stores. |
| /// For pair of {i8, i8}, i16 store --> two i8 stores. |
| /// |
| /// We allow each target to determine specifically which kind of splitting is |
| /// supported. |
| /// |
| /// The store patterns are commonly seen from the simple code snippet below |
| /// if only std::make_pair(...) is sroa transformed before inlined into hoo. |
| /// void goo(const std::pair<int, float> &); |
| /// hoo() { |
| /// ... |
| /// goo(std::make_pair(tmp, ftmp)); |
| /// ... |
| /// } |
| /// |
| SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { |
| if (OptLevel == CodeGenOpt::None) |
| return SDValue(); |
| |
| SDValue Val = ST->getValue(); |
| SDLoc DL(ST); |
| |
| // Match OR operand. |
| if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) |
| return SDValue(); |
| |
| // Match SHL operand and get Lower and Higher parts of Val. |
| SDValue Op1 = Val.getOperand(0); |
| SDValue Op2 = Val.getOperand(1); |
| SDValue Lo, Hi; |
| if (Op1.getOpcode() != ISD::SHL) { |
| std::swap(Op1, Op2); |
| if (Op1.getOpcode() != ISD::SHL) |
| return SDValue(); |
| } |
| Lo = Op2; |
| Hi = Op1.getOperand(0); |
| if (!Op1.hasOneUse()) |
| return SDValue(); |
| |
| // Match shift amount to HalfValBitSize. |
| unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; |
| ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); |
| if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) |
| return SDValue(); |
| |
| // Lo and Hi are zero-extended from int with size less equal than 32 |
| // to i64. |
| if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || |
| !Lo.getOperand(0).getValueType().isScalarInteger() || |
| Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || |
| Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || |
| !Hi.getOperand(0).getValueType().isScalarInteger() || |
| Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) |
| return SDValue(); |
| |
| // Use the EVT of low and high parts before bitcast as the input |
| // of target query. |
| EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) |
| ? Lo.getOperand(0).getValueType() |
| : Lo.getValueType(); |
| EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) |
| ? Hi.getOperand(0).getValueType() |
| : Hi.getValueType(); |
| if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) |
| return SDValue(); |
| |
| // Start to split store. |
| unsigned Alignment = ST->getAlignment(); |
| MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); |
| AAMDNodes AAInfo = ST->getAAInfo(); |
| |
| // Change the sizes of Lo and Hi's value types to HalfValBitSize. |
| EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); |
| Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); |
| Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); |
| |
| SDValue Chain = ST->getChain(); |
| SDValue Ptr = ST->getBasePtr(); |
| // Lower value store. |
| SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), |
| ST->getAlignment(), MMOFlags, AAInfo); |
| Ptr = |
| DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, |
| DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType())); |
| // Higher value store. |
| SDValue St1 = |
| DAG.getStore(St0, DL, Hi, Ptr, |
| ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), |
| Alignment / 2, MMOFlags, AAInfo); |
| return St1; |
| } |
| |
| /// Convert a disguised subvector insertion into a shuffle: |
| /// insert_vector_elt V, (bitcast X from vector type), IdxC --> |
| /// bitcast(shuffle (bitcast V), (extended X), Mask) |
| /// Note: We do not use an insert_subvector node because that requires a legal |
| /// subvector type. |
| SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { |
| SDValue InsertVal = N->getOperand(1); |
| if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || |
| !InsertVal.getOperand(0).getValueType().isVector()) |
| return SDValue(); |
| |
| SDValue SubVec = InsertVal.getOperand(0); |
| SDValue DestVec = N->getOperand(0); |
| EVT SubVecVT = SubVec.getValueType(); |
| EVT VT = DestVec.getValueType(); |
| unsigned NumSrcElts = SubVecVT.getVectorNumElements(); |
| unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); |
| unsigned NumMaskVals = ExtendRatio * NumSrcElts; |
| |
| // Step 1: Create a shuffle mask that implements this insert operation. The |
| // vector that we are inserting into will be operand 0 of the shuffle, so |
| // those elements are just 'i'. The inserted subvector is in the first |
| // positions of operand 1 of the shuffle. Example: |
| // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} |
| SmallVector<int, 16> Mask(NumMaskVals); |
| for (unsigned i = 0; i != NumMaskVals; ++i) { |
| if (i / NumSrcElts == InsIndex) |
| Mask[i] = (i % NumSrcElts) + NumMaskVals; |
| else |
| Mask[i] = i; |
| } |
| |
| // Bail out if the target can not handle the shuffle we want to create. |
| EVT SubVecEltVT = SubVecVT.getVectorElementType(); |
| EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); |
| if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) |
| return SDValue(); |
| |
| // Step 2: Create a wide vector from the inserted source vector by appending |
| // undefined elements. This is the same size as our destination vector. |
| SDLoc DL(N); |
| SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); |
| ConcatOps[0] = SubVec; |
| SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); |
| |
| // Step 3: Shuffle in the padded subvector. |
| SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); |
| SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); |
| AddToWorklist(PaddedSubV.getNode()); |
| AddToWorklist(DestVecBC.getNode()); |
| AddToWorklist(Shuf.getNode()); |
| return DAG.getBitcast(VT, Shuf); |
| } |
| |
| SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { |
| SDValue InVec = N->getOperand(0); |
| SDValue InVal = N->getOperand(1); |
| SDValue EltNo = N->getOperand(2); |
| SDLoc DL(N); |
| |
| // If the inserted element is an UNDEF, just use the input vector. |
| if (InVal.isUndef()) |
| return InVec; |
| |
| EVT VT = InVec.getValueType(); |
| |
| // Remove redundant insertions: |
| // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x |
| if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) |
| return InVec; |
| |
| // We must know which element is being inserted for folds below here. |
| auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); |
| if (!IndexC) |
| return SDValue(); |
| unsigned Elt = IndexC->getZExtValue(); |
| |
| if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) |
| return Shuf; |
| |
| // Canonicalize insert_vector_elt dag nodes. |
| // Example: |
| // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) |
| // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) |
| // |
| // Do this only if the child insert_vector node has one use; also |
| // do this only if indices are both constants and Idx1 < Idx0. |
| if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() |
| && isa<ConstantSDNode>(InVec.getOperand(2))) { |
| unsigned OtherElt = InVec.getConstantOperandVal(2); |
| if (Elt < OtherElt) { |
| // Swap nodes. |
| SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, |
| InVec.getOperand(0), InVal, EltNo); |
| AddToWorklist(NewOp.getNode()); |
| return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), |
| VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); |
| } |
| } |
| |
| // If we can't generate a legal BUILD_VECTOR, exit |
| if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) |
| return SDValue(); |
| |
| // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially |
| // be converted to a BUILD_VECTOR). Fill in the Ops vector with the |
| // vector elements. |
| SmallVector<SDValue, 8> Ops; |
| // Do not combine these two vectors if the output vector will not replace |
| // the input vector. |
| if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { |
| Ops.append(InVec.getNode()->op_begin(), |
| InVec.getNode()->op_end()); |
| } else if (InVec.isUndef()) { |
| unsigned NElts = VT.getVectorNumElements(); |
| Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); |
| } else { |
| return SDValue(); |
| } |
| |
| // Insert the element |
| if (Elt < Ops.size()) { |
| // All the operands of BUILD_VECTOR must have the same type; |
| // we enforce that here. |
| EVT OpVT = Ops[0].getValueType(); |
| Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; |
| } |
| |
| // Return the new vector |
| return DAG.getBuildVector(VT, DL, Ops); |
| } |
| |
| SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad( |
| SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) { |
| assert(!OriginalLoad->isVolatile()); |
| |
| EVT ResultVT = EVE->getValueType(0); |
| EVT VecEltVT = InVecVT.getVectorElementType(); |
| unsigned Align = OriginalLoad->getAlignment(); |
| unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( |
| VecEltVT.getTypeForEVT(*DAG.getContext())); |
| |
| if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) |
| return SDValue(); |
| |
| ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ? |
| ISD::NON_EXTLOAD : ISD::EXTLOAD; |
| if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) |
| return SDValue(); |
| |
| Align = NewAlign; |
| |
| SDValue NewPtr = OriginalLoad->getBasePtr(); |
| SDValue Offset; |
| EVT PtrType = NewPtr.getValueType(); |
| MachinePointerInfo MPI; |
| SDLoc DL(EVE); |
| if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { |
| int Elt = ConstEltNo->getZExtValue(); |
| unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; |
| Offset = DAG.getConstant(PtrOff, DL, PtrType); |
| MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); |
| } else { |
| Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); |
| Offset = DAG.getNode( |
| ISD::MUL, DL, PtrType, Offset, |
| DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); |
| MPI = OriginalLoad->getPointerInfo(); |
| } |
| NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); |
| |
| // The replacement we need to do here is a little tricky: we need to |
| // replace an extractelement of a load with a load. |
| // Use ReplaceAllUsesOfValuesWith to do the replacement. |
| // Note that this replacement assumes that the extractvalue is the only |
| // use of the load; that's okay because we don't want to perform this |
| // transformation in other cases anyway. |
| SDValue Load; |
| SDValue Chain; |
| if (ResultVT.bitsGT(VecEltVT)) { |
| // If the result type of vextract is wider than the load, then issue an |
| // extending load instead. |
| ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, |
| VecEltVT) |
| ? ISD::ZEXTLOAD |
| : ISD::EXTLOAD; |
| Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, |
| OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, |
| Align, OriginalLoad->getMemOperand()->getFlags(), |
| OriginalLoad->getAAInfo()); |
| Chain = Load.getValue(1); |
| } else { |
| Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, |
| MPI, Align, OriginalLoad->getMemOperand()->getFlags(), |
| OriginalLoad->getAAInfo()); |
| Chain = Load.getValue(1); |
| if (ResultVT.bitsLT(VecEltVT)) |
| Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); |
| else |
| Load = DAG.getBitcast(ResultVT, Load); |
| } |
| WorklistRemover DeadNodes(*this); |
| SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; |
| SDValue To[] = { Load, Chain }; |
| DAG.ReplaceAllUsesOfValuesWith(From, To, 2); |
| // Since we're explicitly calling ReplaceAllUses, add the new node to the |
| // worklist explicitly as well. |
| AddToWorklist(Load.getNode()); |
| AddUsersToWorklist(Load.getNode()); // Add users too |
| // Make sure to revisit this node to clean it up; it will usually be dead. |
| AddToWorklist(EVE); |
| ++OpsNarrowed; |
| return SDValue(EVE, 0); |
| } |
| |
| SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { |
| // (vextract (scalar_to_vector val, 0) -> val |
| SDValue InVec = N->getOperand(0); |
| EVT VT = InVec.getValueType(); |
| EVT NVT = N->getValueType(0); |
| |
| if (InVec.isUndef()) |
| return DAG.getUNDEF(NVT); |
| |
| if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| // Check if the result type doesn't match the inserted element type. A |
| // SCALAR_TO_VECTOR may truncate the inserted element and the |
| // EXTRACT_VECTOR_ELT may widen the extracted vector. |
| SDValue InOp = InVec.getOperand(0); |
| if (InOp.getValueType() != NVT) { |
| assert(InOp.getValueType().isInteger() && NVT.isInteger()); |
| return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT); |
| } |
| return InOp; |
| } |
| |
| SDValue EltNo = N->getOperand(1); |
| ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); |
| |
| // extract_vector_elt of out-of-bounds element -> UNDEF |
| if (ConstEltNo && ConstEltNo->getAPIntValue().uge(VT.getVectorNumElements())) |
| return DAG.getUNDEF(NVT); |
| |
| // extract_vector_elt (build_vector x, y), 1 -> y |
| if (ConstEltNo && |
| InVec.getOpcode() == ISD::BUILD_VECTOR && |
| TLI.isTypeLegal(VT) && |
| (InVec.hasOneUse() || |
| TLI.aggressivelyPreferBuildVectorSources(VT))) { |
| SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue()); |
| EVT InEltVT = Elt.getValueType(); |
| |
| // Sometimes build_vector's scalar input types do not match result type. |
| if (NVT == InEltVT) |
| return Elt; |
| |
| // TODO: It may be useful to truncate if free if the build_vector implicitly |
| // converts. |
| } |
| |
| // extract_vector_elt (v2i32 (bitcast i64:x)), EltTrunc -> i32 (trunc i64:x) |
| bool isLE = DAG.getDataLayout().isLittleEndian(); |
| unsigned EltTrunc = isLE ? 0 : VT.getVectorNumElements() - 1; |
| if (ConstEltNo && InVec.getOpcode() == ISD::BITCAST && InVec.hasOneUse() && |
| ConstEltNo->getZExtValue() == EltTrunc && VT.isInteger()) { |
| SDValue BCSrc = InVec.getOperand(0); |
| if (BCSrc.getValueType().isScalarInteger()) |
| return DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, BCSrc); |
| } |
| |
| // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val |
| // |
| // This only really matters if the index is non-constant since other combines |
| // on the constant elements already work. |
| if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && |
| EltNo == InVec.getOperand(2)) { |
| SDValue Elt = InVec.getOperand(1); |
| return VT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, SDLoc(N), NVT) : Elt; |
| } |
| |
| // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. |
| // We only perform this optimization before the op legalization phase because |
| // we may introduce new vector instructions which are not backed by TD |
| // patterns. For example on AVX, extracting elements from a wide vector |
| // without using extract_subvector. However, if we can find an underlying |
| // scalar value, then we can always use that. |
| if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) { |
| int NumElem = VT.getVectorNumElements(); |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec); |
| // Find the new index to extract from. |
| int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue()); |
| |
| // Extracting an undef index is undef. |
| if (OrigElt == -1) |
| return DAG.getUNDEF(NVT); |
| |
| // Select the right vector half to extract from. |
| SDValue SVInVec; |
| if (OrigElt < NumElem) { |
| SVInVec = InVec->getOperand(0); |
| } else { |
| SVInVec = InVec->getOperand(1); |
| OrigElt -= NumElem; |
| } |
| |
| if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { |
| SDValue InOp = SVInVec.getOperand(OrigElt); |
| if (InOp.getValueType() != NVT) { |
| assert(InOp.getValueType().isInteger() && NVT.isInteger()); |
| InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT); |
| } |
| |
| return InOp; |
| } |
| |
| // FIXME: We should handle recursing on other vector shuffles and |
| // scalar_to_vector here as well. |
| |
| if (!LegalOperations || |
| // FIXME: Should really be just isOperationLegalOrCustom. |
| TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VT) || |
| TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VT)) { |
| EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec, |
| DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy)); |
| } |
| } |
| |
| // If only EXTRACT_VECTOR_ELT nodes use the source vector we can |
| // simplify it based on the (valid) extraction indices. |
| if (llvm::all_of(InVec->uses(), [&](SDNode *Use) { |
| return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| Use->getOperand(0) == InVec && |
| isa<ConstantSDNode>(Use->getOperand(1)); |
| })) { |
| APInt DemandedElts = APInt::getNullValue(VT.getVectorNumElements()); |
| for (SDNode *Use : InVec->uses()) { |
| auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); |
| if (CstElt->getAPIntValue().ult(VT.getVectorNumElements())) |
| DemandedElts.setBit(CstElt->getZExtValue()); |
| } |
| if (SimplifyDemandedVectorElts(InVec, DemandedElts, true)) |
| return SDValue(N, 0); |
| } |
| |
| bool BCNumEltsChanged = false; |
| EVT ExtVT = VT.getVectorElementType(); |
| EVT LVT = ExtVT; |
| |
| // If the result of load has to be truncated, then it's not necessarily |
| // profitable. |
| if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT)) |
| return SDValue(); |
| |
| if (InVec.getOpcode() == ISD::BITCAST) { |
| // Don't duplicate a load with other uses. |
| if (!InVec.hasOneUse()) |
| return SDValue(); |
| |
| EVT BCVT = InVec.getOperand(0).getValueType(); |
| if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) |
| return SDValue(); |
| if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) |
| BCNumEltsChanged = true; |
| InVec = InVec.getOperand(0); |
| ExtVT = BCVT.getVectorElementType(); |
| } |
| |
| // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size) |
| if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() && |
| ISD::isNormalLoad(InVec.getNode()) && |
| !N->getOperand(1)->hasPredecessor(InVec.getNode())) { |
| SDValue Index = N->getOperand(1); |
| if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) { |
| if (!OrigLoad->isVolatile()) { |
| return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index, |
| OrigLoad); |
| } |
| } |
| } |
| |
| // Perform only after legalization to ensure build_vector / vector_shuffle |
| // optimizations have already been done. |
| if (!LegalOperations) return SDValue(); |
| |
| // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) |
| // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) |
| // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) |
| |
| if (ConstEltNo) { |
| int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); |
| |
| LoadSDNode *LN0 = nullptr; |
| const ShuffleVectorSDNode *SVN = nullptr; |
| if (ISD::isNormalLoad(InVec.getNode())) { |
| LN0 = cast<LoadSDNode>(InVec); |
| } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && |
| InVec.getOperand(0).getValueType() == ExtVT && |
| ISD::isNormalLoad(InVec.getOperand(0).getNode())) { |
| // Don't duplicate a load with other uses. |
| if (!InVec.hasOneUse()) |
| return SDValue(); |
| |
| LN0 = cast<LoadSDNode>(InVec.getOperand(0)); |
| } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { |
| // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) |
| // => |
| // (load $addr+1*size) |
| |
| // Don't duplicate a load with other uses. |
| if (!InVec.hasOneUse()) |
| return SDValue(); |
| |
| // If the bit convert changed the number of elements, it is unsafe |
| // to examine the mask. |
| if (BCNumEltsChanged) |
| return SDValue(); |
| |
| // Select the input vector, guarding against out of range extract vector. |
| unsigned NumElems = VT.getVectorNumElements(); |
| int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); |
| InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); |
| |
| if (InVec.getOpcode() == ISD::BITCAST) { |
| // Don't duplicate a load with other uses. |
| if (!InVec.hasOneUse()) |
| return SDValue(); |
| |
| InVec = InVec.getOperand(0); |
| } |
| if (ISD::isNormalLoad(InVec.getNode())) { |
| LN0 = cast<LoadSDNode>(InVec); |
| Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; |
| EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType()); |
| } |
| } |
| |
| // Make sure we found a non-volatile load and the extractelement is |
| // the only use. |
| if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) |
| return SDValue(); |
| |
| // If Idx was -1 above, Elt is going to be -1, so just return undef. |
| if (Elt == -1) |
| return DAG.getUNDEF(LVT); |
| |
| return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Simplify (build_vec (ext )) to (bitcast (build_vec )) |
| SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { |
| // We perform this optimization post type-legalization because |
| // the type-legalizer often scalarizes integer-promoted vectors. |
| // Performing this optimization before may create bit-casts which |
| // will be type-legalized to complex code sequences. |
| // We perform this optimization only before the operation legalizer because we |
| // may introduce illegal operations. |
| if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) |
| return SDValue(); |
| |
| unsigned NumInScalars = N->getNumOperands(); |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| // Check to see if this is a BUILD_VECTOR of a bunch of values |
| // which come from any_extend or zero_extend nodes. If so, we can create |
| // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR |
| // optimizations. We do not handle sign-extend because we can't fill the sign |
| // using shuffles. |
| EVT SourceType = MVT::Other; |
| bool AllAnyExt = true; |
| |
| for (unsigned i = 0; i != NumInScalars; ++i) { |
| SDValue In = N->getOperand(i); |
| // Ignore undef inputs. |
| if (In.isUndef()) continue; |
| |
| bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; |
| bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; |
| |
| // Abort if the element is not an extension. |
| if (!ZeroExt && !AnyExt) { |
| SourceType = MVT::Other; |
| break; |
| } |
| |
| // The input is a ZeroExt or AnyExt. Check the original type. |
| EVT InTy = In.getOperand(0).getValueType(); |
| |
| // Check that all of the widened source types are the same. |
| if (SourceType == MVT::Other) |
| // First time. |
| SourceType = InTy; |
| else if (InTy != SourceType) { |
| // Multiple income types. Abort. |
| SourceType = MVT::Other; |
| break; |
| } |
| |
| // Check if all of the extends are ANY_EXTENDs. |
| AllAnyExt &= AnyExt; |
| } |
| |
| // In order to have valid types, all of the inputs must be extended from the |
| // same source type and all of the inputs must be any or zero extend. |
| // Scalar sizes must be a power of two. |
| EVT OutScalarTy = VT.getScalarType(); |
| bool ValidTypes = SourceType != MVT::Other && |
| isPowerOf2_32(OutScalarTy.getSizeInBits()) && |
| isPowerOf2_32(SourceType.getSizeInBits()); |
| |
| // Create a new simpler BUILD_VECTOR sequence which other optimizations can |
| // turn into a single shuffle instruction. |
| if (!ValidTypes) |
| return SDValue(); |
| |
| bool isLE = DAG.getDataLayout().isLittleEndian(); |
| unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); |
| assert(ElemRatio > 1 && "Invalid element size ratio"); |
| SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): |
| DAG.getConstant(0, DL, SourceType); |
| |
| unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); |
| SmallVector<SDValue, 8> Ops(NewBVElems, Filler); |
| |
| // Populate the new build_vector |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDValue Cast = N->getOperand(i); |
| assert((Cast.getOpcode() == ISD::ANY_EXTEND || |
| Cast.getOpcode() == ISD::ZERO_EXTEND || |
| Cast.isUndef()) && "Invalid cast opcode"); |
| SDValue In; |
| if (Cast.isUndef()) |
| In = DAG.getUNDEF(SourceType); |
| else |
| In = Cast->getOperand(0); |
| unsigned Index = isLE ? (i * ElemRatio) : |
| (i * ElemRatio + (ElemRatio - 1)); |
| |
| assert(Index < Ops.size() && "Invalid index"); |
| Ops[Index] = In; |
| } |
| |
| // The type of the new BUILD_VECTOR node. |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); |
| assert(VecVT.getSizeInBits() == VT.getSizeInBits() && |
| "Invalid vector size"); |
| // Check if the new vector type is legal. |
| if (!isTypeLegal(VecVT) || |
| (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && |
| TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) |
| return SDValue(); |
| |
| // Make the new BUILD_VECTOR. |
| SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); |
| |
| // The new BUILD_VECTOR node has the potential to be further optimized. |
| AddToWorklist(BV.getNode()); |
| // Bitcast to the desired type. |
| return DAG.getBitcast(VT, BV); |
| } |
| |
| SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| |
| unsigned NumInScalars = N->getNumOperands(); |
| SDLoc DL(N); |
| |
| EVT SrcVT = MVT::Other; |
| unsigned Opcode = ISD::DELETED_NODE; |
| unsigned NumDefs = 0; |
| |
| for (unsigned i = 0; i != NumInScalars; ++i) { |
| SDValue In = N->getOperand(i); |
| unsigned Opc = In.getOpcode(); |
| |
| if (Opc == ISD::UNDEF) |
| continue; |
| |
| // If all scalar values are floats and converted from integers. |
| if (Opcode == ISD::DELETED_NODE && |
| (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) { |
| Opcode = Opc; |
| } |
| |
| if (Opc != Opcode) |
| return SDValue(); |
| |
| EVT InVT = In.getOperand(0).getValueType(); |
| |
| // If all scalar values are typed differently, bail out. It's chosen to |
| // simplify BUILD_VECTOR of integer types. |
| if (SrcVT == MVT::Other) |
| SrcVT = InVT; |
| if (SrcVT != InVT) |
| return SDValue(); |
| NumDefs++; |
| } |
| |
| // If the vector has just one element defined, it's not worth to fold it into |
| // a vectorized one. |
| if (NumDefs < 2) |
| return SDValue(); |
| |
| assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP) |
| && "Should only handle conversion from integer to float."); |
| assert(SrcVT != MVT::Other && "Cannot determine source type!"); |
| |
| EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars); |
| |
| if (!TLI.isOperationLegalOrCustom(Opcode, NVT)) |
| return SDValue(); |
| |
| // Just because the floating-point vector type is legal does not necessarily |
| // mean that the corresponding integer vector type is. |
| if (!isTypeLegal(NVT)) |
| return SDValue(); |
| |
| SmallVector<SDValue, 8> Opnds; |
| for (unsigned i = 0; i != NumInScalars; ++i) { |
| SDValue In = N->getOperand(i); |
| |
| if (In.isUndef()) |
| Opnds.push_back(DAG.getUNDEF(SrcVT)); |
| else |
| Opnds.push_back(In.getOperand(0)); |
| } |
| SDValue BV = DAG.getBuildVector(NVT, DL, Opnds); |
| AddToWorklist(BV.getNode()); |
| |
| return DAG.getNode(Opcode, DL, VT, BV); |
| } |
| |
| SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, |
| ArrayRef<int> VectorMask, |
| SDValue VecIn1, SDValue VecIn2, |
| unsigned LeftIdx) { |
| MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); |
| SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy); |
| |
| EVT VT = N->getValueType(0); |
| EVT InVT1 = VecIn1.getValueType(); |
| EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; |
| |
| unsigned Vec2Offset = 0; |
| unsigned NumElems = VT.getVectorNumElements(); |
| unsigned ShuffleNumElems = NumElems; |
| |
| // In case both the input vectors are extracted from same base |
| // vector we do not need extra addend (Vec2Offset) while |
| // computing shuffle mask. |
| if (!VecIn2 || !(VecIn1.getOpcode() == ISD::EXTRACT_SUBVECTOR) || |
| !(VecIn2.getOpcode() == ISD::EXTRACT_SUBVECTOR) || |
| !(VecIn1.getOperand(0) == VecIn2.getOperand(0))) |
| Vec2Offset = InVT1.getVectorNumElements(); |
| |
| // We can't generate a shuffle node with mismatched input and output types. |
| // Try to make the types match the type of the output. |
| if (InVT1 != VT || InVT2 != VT) { |
| if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) { |
| // If the output vector length is a multiple of both input lengths, |
| // we can concatenate them and pad the rest with undefs. |
| unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits(); |
| assert(NumConcats >= 2 && "Concat needs at least two inputs!"); |
| SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); |
| ConcatOps[0] = VecIn1; |
| ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); |
| VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); |
| VecIn2 = SDValue(); |
| } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) { |
| if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) |
| return SDValue(); |
| |
| if (!VecIn2.getNode()) { |
| // If we only have one input vector, and it's twice the size of the |
| // output, split it in two. |
| VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, |
| DAG.getConstant(NumElems, DL, IdxTy)); |
| VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); |
| // Since we now have shorter input vectors, adjust the offset of the |
| // second vector's start. |
| Vec2Offset = NumElems; |
| } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) { |
| // VecIn1 is wider than the output, and we have another, possibly |
| // smaller input. Pad the smaller input with undefs, shuffle at the |
| // input vector width, and extract the output. |
| // The shuffle type is different than VT, so check legality again. |
| if (LegalOperations && |
| !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) |
| return SDValue(); |
| |
| // Legalizing INSERT_SUBVECTOR is tricky - you basically have to |
| // lower it back into a BUILD_VECTOR. So if the inserted type is |
| // illegal, don't even try. |
| if (InVT1 != InVT2) { |
| if (!TLI.isTypeLegal(InVT2)) |
| return SDValue(); |
| VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, |
| DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); |
| } |
| ShuffleNumElems = NumElems * 2; |
| } else { |
| // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider |
| // than VecIn1. We can't handle this for now - this case will disappear |
| // when we start sorting the vectors by type. |
| return SDValue(); |
| } |
| } else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() && |
| InVT1.getSizeInBits() == VT.getSizeInBits()) { |
| SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); |
| ConcatOps[0] = VecIn2; |
| VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); |
| } else { |
| // TODO: Support cases where the length mismatch isn't exactly by a |
| // factor of 2. |
| // TODO: Move this check upwards, so that if we have bad type |
| // mismatches, we don't create any DAG nodes. |
| return SDValue(); |
| } |
| } |
| |
| // Initialize mask to undef. |
| SmallVector<int, 8> Mask(ShuffleNumElems, -1); |
| |
| // Only need to run up to the number of elements actually used, not the |
| // total number of elements in the shuffle - if we are shuffling a wider |
| // vector, the high lanes should be set to undef. |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (VectorMask[i] <= 0) |
| continue; |
| |
| unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); |
| if (VectorMask[i] == (int)LeftIdx) { |
| Mask[i] = ExtIndex; |
| } else if (VectorMask[i] == (int)LeftIdx + 1) { |
| Mask[i] = Vec2Offset + ExtIndex; |
| } |
| } |
| |
| // The type the input vectors may have changed above. |
| InVT1 = VecIn1.getValueType(); |
| |
| // If we already have a VecIn2, it should have the same type as VecIn1. |
| // If we don't, get an undef/zero vector of the appropriate type. |
| VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); |
| assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); |
| |
| SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); |
| if (ShuffleNumElems > NumElems) |
| Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); |
| |
| return Shuffle; |
| } |
| |
| // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT |
| // operations. If the types of the vectors we're extracting from allow it, |
| // turn this into a vector_shuffle node. |
| SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. |
| if (!isTypeLegal(VT)) |
| return SDValue(); |
| |
| // May only combine to shuffle after legalize if shuffle is legal. |
| if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) |
| return SDValue(); |
| |
| bool UsesZeroVector = false; |
| unsigned NumElems = N->getNumOperands(); |
| |
| // Record, for each element of the newly built vector, which input vector |
| // that element comes from. -1 stands for undef, 0 for the zero vector, |
| // and positive values for the input vectors. |
| // VectorMask maps each element to its vector number, and VecIn maps vector |
| // numbers to their initial SDValues. |
| |
| SmallVector<int, 8> VectorMask(NumElems, -1); |
| SmallVector<SDValue, 8> VecIn; |
| VecIn.push_back(SDValue()); |
| |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDValue Op = N->getOperand(i); |
| |
| if (Op.isUndef()) |
| continue; |
| |
| // See if we can use a blend with a zero vector. |
| // TODO: Should we generalize this to a blend with an arbitrary constant |
| // vector? |
| if (isNullConstant(Op) || isNullFPConstant(Op)) { |
| UsesZeroVector = true; |
| VectorMask[i] = 0; |
| continue; |
| } |
| |
| // Not an undef or zero. If the input is something other than an |
| // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. |
| if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| !isa<ConstantSDNode>(Op.getOperand(1))) |
| return SDValue(); |
| SDValue ExtractedFromVec = Op.getOperand(0); |
| |
| APInt ExtractIdx = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue(); |
| if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) |
| return SDValue(); |
| |
| // All inputs must have the same element type as the output. |
| if (VT.getVectorElementType() != |
| ExtractedFromVec.getValueType().getVectorElementType()) |
| return SDValue(); |
| |
| // Have we seen this input vector before? |
| // The vectors are expected to be tiny (usually 1 or 2 elements), so using |
| // a map back from SDValues to numbers isn't worth it. |
| unsigned Idx = std::distance( |
| VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec)); |
| if (Idx == VecIn.size()) |
| VecIn.push_back(ExtractedFromVec); |
| |
| VectorMask[i] = Idx; |
| } |
| |
| // If we didn't find at least one input vector, bail out. |
| if (VecIn.size() < 2) |
| return SDValue(); |
| |
| // If all the Operands of BUILD_VECTOR extract from same |
| // vector, then split the vector efficiently based on the maximum |
| // vector access index and adjust the VectorMask and |
| // VecIn accordingly. |
| if (VecIn.size() == 2) { |
| unsigned MaxIndex = 0; |
| unsigned NearestPow2 = 0; |
| SDValue Vec = VecIn.back(); |
| EVT InVT = Vec.getValueType(); |
| MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); |
| SmallVector<unsigned, 8> IndexVec(NumElems, 0); |
| |
| for (unsigned i = 0; i < NumElems; i++) { |
| if (VectorMask[i] <= 0) |
| continue; |
| unsigned Index = N->getOperand(i).getConstantOperandVal(1); |
| IndexVec[i] = Index; |
| MaxIndex = std::max(MaxIndex, Index); |
| } |
| |
| NearestPow2 = PowerOf2Ceil(MaxIndex); |
| if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && |
| NumElems * 2 < NearestPow2) { |
| unsigned SplitSize = NearestPow2 / 2; |
| EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), |
| InVT.getVectorElementType(), SplitSize); |
| if (TLI.isTypeLegal(SplitVT)) { |
| SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, |
| DAG.getConstant(SplitSize, DL, IdxTy)); |
| SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, |
| DAG.getConstant(0, DL, IdxTy)); |
| VecIn.pop_back(); |
| VecIn.push_back(VecIn1); |
| VecIn.push_back(VecIn2); |
| |
| for (unsigned i = 0; i < NumElems; i++) { |
| if (VectorMask[i] <= 0) |
| continue; |
| VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; |
| } |
| } |
| } |
| } |
| |
| // TODO: We want to sort the vectors by descending length, so that adjacent |
| // pairs have similar length, and the longer vector is always first in the |
| // pair. |
| |
| // TODO: Should this fire if some of the input vectors has illegal type (like |
| // it does now), or should we let legalization run its course first? |
| |
| // Shuffle phase: |
| // Take pairs of vectors, and shuffle them so that the result has elements |
| // from these vectors in the correct places. |
| // For example, given: |
| // t10: i32 = extract_vector_elt t1, Constant:i64<0> |
| // t11: i32 = extract_vector_elt t2, Constant:i64<0> |
| // t12: i32 = extract_vector_elt t3, Constant:i64<0> |
| // t13: i32 = extract_vector_elt t1, Constant:i64<1> |
| // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 |
| // We will generate: |
| // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 |
| // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef |
| SmallVector<SDValue, 4> Shuffles; |
| for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { |
| unsigned LeftIdx = 2 * In + 1; |
| SDValue VecLeft = VecIn[LeftIdx]; |
| SDValue VecRight = |
| (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); |
| |
| if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, |
| VecRight, LeftIdx)) |
| Shuffles.push_back(Shuffle); |
| else |
| return SDValue(); |
| } |
| |
| // If we need the zero vector as an "ingredient" in the blend tree, add it |
| // to the list of shuffles. |
| if (UsesZeroVector) |
| Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) |
| : DAG.getConstantFP(0.0, DL, VT)); |
| |
| // If we only have one shuffle, we're done. |
| if (Shuffles.size() == 1) |
| return Shuffles[0]; |
| |
| // Update the vector mask to point to the post-shuffle vectors. |
| for (int &Vec : VectorMask) |
| if (Vec == 0) |
| Vec = Shuffles.size() - 1; |
| else |
| Vec = (Vec - 1) / 2; |
| |
| // More than one shuffle. Generate a binary tree of blends, e.g. if from |
| // the previous step we got the set of shuffles t10, t11, t12, t13, we will |
| // generate: |
| // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 |
| // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 |
| // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 |
| // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 |
| // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 |
| // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 |
| // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 |
| |
| // Make sure the initial size of the shuffle list is even. |
| if (Shuffles.size() % 2) |
| Shuffles.push_back(DAG.getUNDEF(VT)); |
| |
| for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { |
| if (CurSize % 2) { |
| Shuffles[CurSize] = DAG.getUNDEF(VT); |
| CurSize++; |
| } |
| for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { |
| int Left = 2 * In; |
| int Right = 2 * In + 1; |
| SmallVector<int, 8> Mask(NumElems, -1); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (VectorMask[i] == Left) { |
| Mask[i] = i; |
| VectorMask[i] = In; |
| } else if (VectorMask[i] == Right) { |
| Mask[i] = i + NumElems; |
| VectorMask[i] = In; |
| } |
| } |
| |
| Shuffles[In] = |
| DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); |
| } |
| } |
| return Shuffles[0]; |
| } |
| |
| // Try to turn a build vector of zero extends of extract vector elts into a |
| // a vector zero extend and possibly an extract subvector. |
| // TODO: Support sign extend or any extend? |
| // TODO: Allow undef elements? |
| // TODO: Don't require the extracts to start at element 0. |
| SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { |
| if (LegalOperations) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| |
| SDValue Op0 = N->getOperand(0); |
| auto checkElem = [&](SDValue Op) -> int64_t { |
| if (Op.getOpcode() == ISD::ZERO_EXTEND && |
| Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) |
| if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) |
| return C->getZExtValue(); |
| return -1; |
| }; |
| |
| // Make sure the first element matches |
| // (zext (extract_vector_elt X, C)) |
| int64_t Offset = checkElem(Op0); |
| if (Offset < 0) |
| return SDValue(); |
| |
| unsigned NumElems = N->getNumOperands(); |
| SDValue In = Op0.getOperand(0).getOperand(0); |
| EVT InSVT = In.getValueType().getScalarType(); |
| EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); |
| |
| // Don't create an illegal input type after type legalization. |
| if (LegalTypes && !TLI.isTypeLegal(InVT)) |
| return SDValue(); |
| |
| // Ensure all the elements come from the same vector and are adjacent. |
| for (unsigned i = 1; i != NumElems; ++i) { |
| if ((Offset + i) != checkElem(N->getOperand(i))) |
| return SDValue(); |
| } |
| |
| SDLoc DL(N); |
| In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, |
| Op0.getOperand(0).getOperand(1)); |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, In); |
| } |
| |
| SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| |
| // A vector built entirely of undefs is undef. |
| if (ISD::allOperandsUndef(N)) |
| return DAG.getUNDEF(VT); |
| |
| // If this is a splat of a bitcast from another vector, change to a |
| // concat_vector. |
| // For example: |
| // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> |
| // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) |
| // |
| // If X is a build_vector itself, the concat can become a larger build_vector. |
| // TODO: Maybe this is useful for non-splat too? |
| if (!LegalOperations) { |
| if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { |
| Splat = peekThroughBitcast(Splat); |
| EVT SrcVT = Splat.getValueType(); |
| if (SrcVT.isVector()) { |
| unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); |
| EVT NewVT = EVT::getVectorVT(*DAG.getContext(), |
| SrcVT.getVectorElementType(), NumElts); |
| if (!LegalTypes || TLI.isTypeLegal(NewVT)) { |
| SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); |
| SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), |
| NewVT, Ops); |
| return DAG.getBitcast(VT, Concat); |
| } |
| } |
| } |
| } |
| |
| // Check if we can express BUILD VECTOR via subvector extract. |
| if (!LegalTypes && (N->getNumOperands() > 1)) { |
| SDValue Op0 = N->getOperand(0); |
| auto checkElem = [&](SDValue Op) -> uint64_t { |
| if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && |
| (Op0.getOperand(0) == Op.getOperand(0))) |
| if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| return CNode->getZExtValue(); |
| return -1; |
| }; |
| |
| int Offset = checkElem(Op0); |
| for (unsigned i = 0; i < N->getNumOperands(); ++i) { |
| if (Offset + i != checkElem(N->getOperand(i))) { |
| Offset = -1; |
| break; |
| } |
| } |
| |
| if ((Offset == 0) && |
| (Op0.getOperand(0).getValueType() == N->getValueType(0))) |
| return Op0.getOperand(0); |
| if ((Offset != -1) && |
| ((Offset % N->getValueType(0).getVectorNumElements()) == |
| 0)) // IDX must be multiple of output size. |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), |
| Op0.getOperand(0), Op0.getOperand(1)); |
| } |
| |
| if (SDValue V = convertBuildVecZextToZext(N)) |
| return V; |
| |
| if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) |
| return V; |
| |
| if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N)) |
| return V; |
| |
| if (SDValue V = reduceBuildVecToShuffle(N)) |
| return V; |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT OpVT = N->getOperand(0).getValueType(); |
| |
| // If the operands are legal vectors, leave them alone. |
| if (TLI.isTypeLegal(OpVT)) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| SmallVector<SDValue, 8> Ops; |
| |
| EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); |
| SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); |
| |
| // Keep track of what we encounter. |
| bool AnyInteger = false; |
| bool AnyFP = false; |
| for (const SDValue &Op : N->ops()) { |
| if (ISD::BITCAST == Op.getOpcode() && |
| !Op.getOperand(0).getValueType().isVector()) |
| Ops.push_back(Op.getOperand(0)); |
| else if (ISD::UNDEF == Op.getOpcode()) |
| Ops.push_back(ScalarUndef); |
| else |
| return SDValue(); |
| |
| // Note whether we encounter an integer or floating point scalar. |
| // If it's neither, bail out, it could be something weird like x86mmx. |
| EVT LastOpVT = Ops.back().getValueType(); |
| if (LastOpVT.isFloatingPoint()) |
| AnyFP = true; |
| else if (LastOpVT.isInteger()) |
| AnyInteger = true; |
| else |
| return SDValue(); |
| } |
| |
| // If any of the operands is a floating point scalar bitcast to a vector, |
| // use floating point types throughout, and bitcast everything. |
| // Replace UNDEFs by another scalar UNDEF node, of the final desired type. |
| if (AnyFP) { |
| SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); |
| ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); |
| if (AnyInteger) { |
| for (SDValue &Op : Ops) { |
| if (Op.getValueType() == SVT) |
| continue; |
| if (Op.isUndef()) |
| Op = ScalarUndef; |
| else |
| Op = DAG.getBitcast(SVT, Op); |
| } |
| } |
| } |
| |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, |
| VT.getSizeInBits() / SVT.getSizeInBits()); |
| return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); |
| } |
| |
| // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR |
| // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at |
| // most two distinct vectors the same size as the result, attempt to turn this |
| // into a legal shuffle. |
| static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| EVT OpVT = N->getOperand(0).getValueType(); |
| int NumElts = VT.getVectorNumElements(); |
| int NumOpElts = OpVT.getVectorNumElements(); |
| |
| SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); |
| SmallVector<int, 8> Mask; |
| |
| for (SDValue Op : N->ops()) { |
| // Peek through any bitcast. |
| Op = peekThroughBitcast(Op); |
| |
| // UNDEF nodes convert to UNDEF shuffle mask values. |
| if (Op.isUndef()) { |
| Mask.append((unsigned)NumOpElts, -1); |
| continue; |
| } |
| |
| if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) |
| return SDValue(); |
| |
| // What vector are we extracting the subvector from and at what index? |
| SDValue ExtVec = Op.getOperand(0); |
| |
| // We want the EVT of the original extraction to correctly scale the |
| // extraction index. |
| EVT ExtVT = ExtVec.getValueType(); |
| |
| // Peek through any bitcast. |
| ExtVec = peekThroughBitcast(ExtVec); |
| |
| // UNDEF nodes convert to UNDEF shuffle mask values. |
| if (ExtVec.isUndef()) { |
| Mask.append((unsigned)NumOpElts, -1); |
| continue; |
| } |
| |
| if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| return SDValue(); |
| int ExtIdx = Op.getConstantOperandVal(1); |
| |
| // Ensure that we are extracting a subvector from a vector the same |
| // size as the result. |
| if (ExtVT.getSizeInBits() != VT.getSizeInBits()) |
| return SDValue(); |
| |
| // Scale the subvector index to account for any bitcast. |
| int NumExtElts = ExtVT.getVectorNumElements(); |
| if (0 == (NumExtElts % NumElts)) |
| ExtIdx /= (NumExtElts / NumElts); |
| else if (0 == (NumElts % NumExtElts)) |
| ExtIdx *= (NumElts / NumExtElts); |
| else |
| return SDValue(); |
| |
| // At most we can reference 2 inputs in the final shuffle. |
| if (SV0.isUndef() || SV0 == ExtVec) { |
| SV0 = ExtVec; |
| for (int i = 0; i != NumOpElts; ++i) |
| Mask.push_back(i + ExtIdx); |
| } else if (SV1.isUndef() || SV1 == ExtVec) { |
| SV1 = ExtVec; |
| for (int i = 0; i != NumOpElts; ++i) |
| Mask.push_back(i + ExtIdx + NumElts); |
| } else { |
| return SDValue(); |
| } |
| } |
| |
| if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) |
| return SDValue(); |
| |
| return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), |
| DAG.getBitcast(VT, SV1), Mask); |
| } |
| |
| SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { |
| // If we only have one input vector, we don't need to do any concatenation. |
| if (N->getNumOperands() == 1) |
| return N->getOperand(0); |
| |
| // Check if all of the operands are undefs. |
| EVT VT = N->getValueType(0); |
| if (ISD::allOperandsUndef(N)) |
| return DAG.getUNDEF(VT); |
| |
| // Optimize concat_vectors where all but the first of the vectors are undef. |
| if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { |
| return Op.isUndef(); |
| })) { |
| SDValue In = N->getOperand(0); |
| assert(In.getValueType().isVector() && "Must concat vectors"); |
| |
| // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr). |
| if (In->getOpcode() == ISD::BITCAST && |
| !In->getOperand(0).getValueType().isVector()) { |
| SDValue Scalar = In->getOperand(0); |
| |
| // If the bitcast type isn't legal, it might be a trunc of a legal type; |
| // look through the trunc so we can still do the transform: |
| // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) |
| if (Scalar->getOpcode() == ISD::TRUNCATE && |
| !TLI.isTypeLegal(Scalar.getValueType()) && |
| TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) |
| Scalar = Scalar->getOperand(0); |
| |
| EVT SclTy = Scalar->getValueType(0); |
| |
| if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) |
| return SDValue(); |
| |
| // Bail out if the vector size is not a multiple of the scalar size. |
| if (VT.getSizeInBits() % SclTy.getSizeInBits()) |
| return SDValue(); |
| |
| unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); |
| if (VNTNumElms < 2) |
| return SDValue(); |
| |
| EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); |
| if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) |
| return SDValue(); |
| |
| SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); |
| return DAG.getBitcast(VT, Res); |
| } |
| } |
| |
| // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. |
| // We have already tested above for an UNDEF only concatenation. |
| // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) |
| // -> (BUILD_VECTOR A, B, ..., C, D, ...) |
| auto IsBuildVectorOrUndef = [](const SDValue &Op) { |
| return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); |
| }; |
| if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { |
| SmallVector<SDValue, 8> Opnds; |
| EVT SVT = VT.getScalarType(); |
| |
| EVT MinVT = SVT; |
| if (!SVT.isFloatingPoint()) { |
| // If BUILD_VECTOR are from built from integer, they may have different |
| // operand types. Get the smallest type and truncate all operands to it. |
| bool FoundMinVT = false; |
| for (const SDValue &Op : N->ops()) |
| if (ISD::BUILD_VECTOR == Op.getOpcode()) { |
| EVT OpSVT = Op.getOperand(0).getValueType(); |
| MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; |
| FoundMinVT = true; |
| } |
| assert(FoundMinVT && "Concat vector type mismatch"); |
| } |
| |
| for (const SDValue &Op : N->ops()) { |
| EVT OpVT = Op.getValueType(); |
| unsigned NumElts = OpVT.getVectorNumElements(); |
| |
| if (ISD::UNDEF == Op.getOpcode()) |
| Opnds.append(NumElts, DAG.getUNDEF(MinVT)); |
| |
| if (ISD::BUILD_VECTOR == Op.getOpcode()) { |
| if (SVT.isFloatingPoint()) { |
| assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); |
| Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); |
| } else { |
| for (unsigned i = 0; i != NumElts; ++i) |
| Opnds.push_back( |
| DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); |
| } |
| } |
| } |
| |
| assert(VT.getVectorNumElements() == Opnds.size() && |
| "Concat vector type mismatch"); |
| return DAG.getBuildVector(VT, SDLoc(N), Opnds); |
| } |
| |
| // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. |
| if (SDValue V = combineConcatVectorOfScalars(N, DAG)) |
| return V; |
| |
| // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. |
| if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) |
| if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) |
| return V; |
| |
| // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR |
| // nodes often generate nop CONCAT_VECTOR nodes. |
| // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that |
| // place the incoming vectors at the exact same location. |
| SDValue SingleSource = SDValue(); |
| unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); |
| |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDValue Op = N->getOperand(i); |
| |
| if (Op.isUndef()) |
| continue; |
| |
| // Check if this is the identity extract: |
| if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) |
| return SDValue(); |
| |
| // Find the single incoming vector for the extract_subvector. |
| if (SingleSource.getNode()) { |
| if (Op.getOperand(0) != SingleSource) |
| return SDValue(); |
| } else { |
| SingleSource = Op.getOperand(0); |
| |
| // Check the source type is the same as the type of the result. |
| // If not, this concat may extend the vector, so we can not |
| // optimize it away. |
| if (SingleSource.getValueType() != N->getValueType(0)) |
| return SDValue(); |
| } |
| |
| unsigned IdentityIndex = i * PartNumElem; |
| ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| // The extract index must be constant. |
| if (!CS) |
| return SDValue(); |
| |
| // Check that we are reading from the identity index. |
| if (CS->getZExtValue() != IdentityIndex) |
| return SDValue(); |
| } |
| |
| if (SingleSource.getNode()) |
| return SingleSource; |
| |
| return SDValue(); |
| } |
| |
| /// If we are extracting a subvector produced by a wide binary operator with at |
| /// at least one operand that was the result of a vector concatenation, then try |
| /// to use the narrow vector operands directly to avoid the concatenation and |
| /// extraction. |
| static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) { |
| // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share |
| // some of these bailouts with other transforms. |
| |
| // The extract index must be a constant, so we can map it to a concat operand. |
| auto *ExtractIndex = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); |
| if (!ExtractIndex) |
| return SDValue(); |
| |
| // Only handle the case where we are doubling and then halving. A larger ratio |
| // may require more than two narrow binops to replace the wide binop. |
| EVT VT = Extract->getValueType(0); |
| unsigned NumElems = VT.getVectorNumElements(); |
| assert((ExtractIndex->getZExtValue() % NumElems) == 0 && |
| "Extract index is not a multiple of the vector length."); |
| if (Extract->getOperand(0).getValueSizeInBits() != VT.getSizeInBits() * 2) |
| return SDValue(); |
| |
| // We are looking for an optionally bitcasted wide vector binary operator |
| // feeding an extract subvector. |
| SDValue BinOp = peekThroughBitcast(Extract->getOperand(0)); |
| |
| // TODO: The motivating case for this transform is an x86 AVX1 target. That |
| // target has temptingly almost legal versions of bitwise logic ops in 256-bit |
| // flavors, but no other 256-bit integer support. This could be extended to |
| // handle any binop, but that may require fixing/adding other folds to avoid |
| // codegen regressions. |
| unsigned BOpcode = BinOp.getOpcode(); |
| if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) |
| return SDValue(); |
| |
| // The binop must be a vector type, so we can chop it in half. |
| EVT WideBVT = BinOp.getValueType(); |
| if (!WideBVT.isVector()) |
| return SDValue(); |
| |
| // Bail out if the target does not support a narrower version of the binop. |
| EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), |
| WideBVT.getVectorNumElements() / 2); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) |
| return SDValue(); |
| |
| // Peek through bitcasts of the binary operator operands if needed. |
| SDValue LHS = peekThroughBitcast(BinOp.getOperand(0)); |
| SDValue RHS = peekThroughBitcast(BinOp.getOperand(1)); |
| |
| // We need at least one concatenation operation of a binop operand to make |
| // this transform worthwhile. The concat must double the input vector sizes. |
| // TODO: Should we also handle INSERT_SUBVECTOR patterns? |
| bool ConcatL = |
| LHS.getOpcode() == ISD::CONCAT_VECTORS && LHS.getNumOperands() == 2; |
| bool ConcatR = |
| RHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getNumOperands() == 2; |
| if (!ConcatL && !ConcatR) |
| return SDValue(); |
| |
| // If one of the binop operands was not the result of a concat, we must |
| // extract a half-sized operand for our new narrow binop. We can't just reuse |
| // the original extract index operand because we may have bitcasted. |
| unsigned ConcatOpNum = ExtractIndex->getZExtValue() / NumElems; |
| unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); |
| EVT ExtBOIdxVT = Extract->getOperand(1).getValueType(); |
| SDLoc DL(Extract); |
| |
| // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN |
| // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, N) |
| // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, N), YN |
| SDValue X = ConcatL ? DAG.getBitcast(NarrowBVT, LHS.getOperand(ConcatOpNum)) |
| : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, |
| BinOp.getOperand(0), |
| DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT)); |
| |
| SDValue Y = ConcatR ? DAG.getBitcast(NarrowBVT, RHS.getOperand(ConcatOpNum)) |
| : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, |
| BinOp.getOperand(1), |
| DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT)); |
| |
| SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); |
| return DAG.getBitcast(VT, NarrowBinOp); |
| } |
| |
| /// If we are extracting a subvector from a wide vector load, convert to a |
| /// narrow load to eliminate the extraction: |
| /// (extract_subvector (load wide vector)) --> (load narrow vector) |
| static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { |
| // TODO: Add support for big-endian. The offset calculation must be adjusted. |
| if (DAG.getDataLayout().isBigEndian()) |
| return SDValue(); |
| |
| // TODO: The one-use check is overly conservative. Check the cost of the |
| // extract instead or remove that condition entirely. |
| auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); |
| auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); |
| if (!Ld || !Ld->hasOneUse() || Ld->getExtensionType() || Ld->isVolatile() || |
| !ExtIdx) |
| return SDValue(); |
| |
| // The narrow load will be offset from the base address of the old load if |
| // we are extracting from something besides index 0 (little-endian). |
| EVT VT = Extract->getValueType(0); |
| SDLoc DL(Extract); |
| SDValue BaseAddr = Ld->getOperand(1); |
| unsigned Offset = ExtIdx->getZExtValue() * VT.getScalarType().getStoreSize(); |
| |
| // TODO: Use "BaseIndexOffset" to make this more effective. |
| SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset, |
| VT.getStoreSize()); |
| SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); |
| DAG.makeEquivalentMemoryOrdering(Ld, NewLd); |
| return NewLd; |
| } |
| |
| SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { |
| EVT NVT = N->getValueType(0); |
| SDValue V = N->getOperand(0); |
| |
| // Extract from UNDEF is UNDEF. |
| if (V.isUndef()) |
| return DAG.getUNDEF(NVT); |
| |
| if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) |
| if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) |
| return NarrowLoad; |
| |
| // Combine: |
| // (extract_subvec (concat V1, V2, ...), i) |
| // Into: |
| // Vi if possible |
| // Only operand 0 is checked as 'concat' assumes all inputs of the same |
| // type. |
| if (V->getOpcode() == ISD::CONCAT_VECTORS && |
| isa<ConstantSDNode>(N->getOperand(1)) && |
| V->getOperand(0).getValueType() == NVT) { |
| unsigned Idx = N->getConstantOperandVal(1); |
| unsigned NumElems = NVT.getVectorNumElements(); |
| assert((Idx % NumElems) == 0 && |
| "IDX in concat is not a multiple of the result vector length."); |
| return V->getOperand(Idx / NumElems); |
| } |
| |
| // Skip bitcasting |
| V = peekThroughBitcast(V); |
| |
| // If the input is a build vector. Try to make a smaller build vector. |
| if (V->getOpcode() == ISD::BUILD_VECTOR) { |
| if (auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))) { |
| EVT InVT = V->getValueType(0); |
| unsigned ExtractSize = NVT.getSizeInBits(); |
| unsigned EltSize = InVT.getScalarSizeInBits(); |
| // Only do this if we won't split any elements. |
| if (ExtractSize % EltSize == 0) { |
| unsigned NumElems = ExtractSize / EltSize; |
| EVT EltVT = InVT.getVectorElementType(); |
| EVT ExtractVT = NumElems == 1 ? EltVT : |
| EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); |
| if ((Level < AfterLegalizeDAG || |
| (NumElems == 1 || |
| TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && |
| (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { |
| unsigned IdxVal = (Idx->getZExtValue() * NVT.getScalarSizeInBits()) / |
| EltSize; |
| if (NumElems == 1) { |
| SDValue Src = V->getOperand(IdxVal); |
| if (EltVT != Src.getValueType()) |
| Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); |
| |
| return DAG.getBitcast(NVT, Src); |
| } |
| |
| // Extract the pieces from the original build_vector. |
| SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), |
| makeArrayRef(V->op_begin() + IdxVal, |
| NumElems)); |
| return DAG.getBitcast(NVT, BuildVec); |
| } |
| } |
| } |
| } |
| |
| if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { |
| // Handle only simple case where vector being inserted and vector |
| // being extracted are of same size. |
| EVT SmallVT = V->getOperand(1).getValueType(); |
| if (!NVT.bitsEq(SmallVT)) |
| return SDValue(); |
| |
| // Only handle cases where both indexes are constants. |
| ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); |
| |
| if (InsIdx && ExtIdx) { |
| // Combine: |
| // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) |
| // Into: |
| // indices are equal or bit offsets are equal => V1 |
| // otherwise => (extract_subvec V1, ExtIdx) |
| if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() == |
| ExtIdx->getZExtValue() * NVT.getScalarSizeInBits()) |
| return DAG.getBitcast(NVT, V->getOperand(1)); |
| return DAG.getNode( |
| ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, |
| DAG.getBitcast(N->getOperand(0).getValueType(), V->getOperand(0)), |
| N->getOperand(1)); |
| } |
| } |
| |
| if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG)) |
| return NarrowBOp; |
| |
| if (SimplifyDemandedVectorElts(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, |
| // or turn a shuffle of a single concat into simpler shuffle then concat. |
| static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| |
| SmallVector<SDValue, 4> Ops; |
| EVT ConcatVT = N0.getOperand(0).getValueType(); |
| unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); |
| unsigned NumConcats = NumElts / NumElemsPerConcat; |
| |
| // Special case: shuffle(concat(A,B)) can be more efficiently represented |
| // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high |
| // half vector elements. |
| if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && |
| std::all_of(SVN->getMask().begin() + NumElemsPerConcat, |
| SVN->getMask().end(), [](int i) { return i == -1; })) { |
| N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1), |
| makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat)); |
| N1 = DAG.getUNDEF(ConcatVT); |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); |
| } |
| |
| // Look at every vector that's inserted. We're looking for exact |
| // subvector-sized copies from a concatenated vector |
| for (unsigned I = 0; I != NumConcats; ++I) { |
| // Make sure we're dealing with a copy. |
| unsigned Begin = I * NumElemsPerConcat; |
| bool AllUndef = true, NoUndef = true; |
| for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { |
| if (SVN->getMaskElt(J) >= 0) |
| AllUndef = false; |
| else |
| NoUndef = false; |
| } |
| |
| if (NoUndef) { |
| if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) |
| return SDValue(); |
| |
| for (unsigned J = 1; J != NumElemsPerConcat; ++J) |
| if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) |
| return SDValue(); |
| |
| unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; |
| if (FirstElt < N0.getNumOperands()) |
| Ops.push_back(N0.getOperand(FirstElt)); |
| else |
| Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); |
| |
| } else if (AllUndef) { |
| Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); |
| } else { // Mixed with general masks and undefs, can't do optimization. |
| return SDValue(); |
| } |
| } |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); |
| } |
| |
| // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - |
| // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. |
| // |
| // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always |
| // a simplification in some sense, but it isn't appropriate in general: some |
| // BUILD_VECTORs are substantially cheaper than others. The general case |
| // of a BUILD_VECTOR requires inserting each element individually (or |
| // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of |
| // all constants is a single constant pool load. A BUILD_VECTOR where each |
| // element is identical is a splat. A BUILD_VECTOR where most of the operands |
| // are undef lowers to a small number of element insertions. |
| // |
| // To deal with this, we currently use a bunch of mostly arbitrary heuristics. |
| // We don't fold shuffles where one side is a non-zero constant, and we don't |
| // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate |
| // non-constant operands. This seems to work out reasonably well in practice. |
| static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| EVT VT = SVN->getValueType(0); |
| unsigned NumElts = VT.getVectorNumElements(); |
| SDValue N0 = SVN->getOperand(0); |
| SDValue N1 = SVN->getOperand(1); |
| |
| if (!N0->hasOneUse() || !N1->hasOneUse()) |
| return SDValue(); |
| |
| // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as |
| // discussed above. |
| if (!N1.isUndef()) { |
| bool N0AnyConst = isAnyConstantBuildVector(N0.getNode()); |
| bool N1AnyConst = isAnyConstantBuildVector(N1.getNode()); |
| if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) |
| return SDValue(); |
| if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) |
| return SDValue(); |
| } |
| |
| // If both inputs are splats of the same value then we can safely merge this |
| // to a single BUILD_VECTOR with undef elements based on the shuffle mask. |
| bool IsSplat = false; |
| auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); |
| auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); |
| if (BV0 && BV1) |
| if (SDValue Splat0 = BV0->getSplatValue()) |
| IsSplat = (Splat0 == BV1->getSplatValue()); |
| |
| SmallVector<SDValue, 8> Ops; |
| SmallSet<SDValue, 16> DuplicateOps; |
| for (int M : SVN->getMask()) { |
| SDValue Op = DAG.getUNDEF(VT.getScalarType()); |
| if (M >= 0) { |
| int Idx = M < (int)NumElts ? M : M - NumElts; |
| SDValue &S = (M < (int)NumElts ? N0 : N1); |
| if (S.getOpcode() == ISD::BUILD_VECTOR) { |
| Op = S.getOperand(Idx); |
| } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| assert(Idx == 0 && "Unexpected SCALAR_TO_VECTOR operand index."); |
| Op = S.getOperand(0); |
| } else { |
| // Operand can't be combined - bail out. |
| return SDValue(); |
| } |
| } |
| |
| // Don't duplicate a non-constant BUILD_VECTOR operand unless we're |
| // generating a splat; semantically, this is fine, but it's likely to |
| // generate low-quality code if the target can't reconstruct an appropriate |
| // shuffle. |
| if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op)) |
| if (!IsSplat && !DuplicateOps.insert(Op).second) |
| return SDValue(); |
| |
| Ops.push_back(Op); |
| } |
| |
| // BUILD_VECTOR requires all inputs to be of the same type, find the |
| // maximum type and extend them all. |
| EVT SVT = VT.getScalarType(); |
| if (SVT.isInteger()) |
| for (SDValue &Op : Ops) |
| SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); |
| if (SVT != VT.getScalarType()) |
| for (SDValue &Op : Ops) |
| Op = TLI.isZExtFree(Op.getValueType(), SVT) |
| ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) |
| : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); |
| return DAG.getBuildVector(VT, SDLoc(SVN), Ops); |
| } |
| |
| // Match shuffles that can be converted to any_vector_extend_in_reg. |
| // This is often generated during legalization. |
| // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) |
| // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. |
| static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI, |
| bool LegalOperations, |
| bool LegalTypes) { |
| EVT VT = SVN->getValueType(0); |
| bool IsBigEndian = DAG.getDataLayout().isBigEndian(); |
| |
| // TODO Add support for big-endian when we have a test case. |
| if (!VT.isInteger() || IsBigEndian) |
| return SDValue(); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| ArrayRef<int> Mask = SVN->getMask(); |
| SDValue N0 = SVN->getOperand(0); |
| |
| // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) |
| auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (Mask[i] < 0) |
| continue; |
| if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) |
| continue; |
| return false; |
| } |
| return true; |
| }; |
| |
| // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for |
| // power-of-2 extensions as they are the most likely. |
| for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { |
| // Check for non power of 2 vector sizes |
| if (NumElts % Scale != 0) |
| continue; |
| if (!isAnyExtend(Scale)) |
| continue; |
| |
| EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); |
| EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); |
| if (!LegalTypes || TLI.isTypeLegal(OutVT)) |
| if (!LegalOperations || |
| TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) |
| return DAG.getBitcast(VT, |
| DAG.getAnyExtendVectorInReg(N0, SDLoc(SVN), OutVT)); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of |
| // each source element of a large type into the lowest elements of a smaller |
| // destination type. This is often generated during legalization. |
| // If the source node itself was a '*_extend_vector_inreg' node then we should |
| // then be able to remove it. |
| static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, |
| SelectionDAG &DAG) { |
| EVT VT = SVN->getValueType(0); |
| bool IsBigEndian = DAG.getDataLayout().isBigEndian(); |
| |
| // TODO Add support for big-endian when we have a test case. |
| if (!VT.isInteger() || IsBigEndian) |
| return SDValue(); |
| |
| SDValue N0 = peekThroughBitcast(SVN->getOperand(0)); |
| |
| unsigned Opcode = N0.getOpcode(); |
| if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && |
| Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && |
| Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) |
| return SDValue(); |
| |
| SDValue N00 = N0.getOperand(0); |
| ArrayRef<int> Mask = SVN->getMask(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); |
| unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); |
| |
| if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) |
| return SDValue(); |
| unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; |
| |
| // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> |
| // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> |
| // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> |
| auto isTruncate = [&Mask, &NumElts](unsigned Scale) { |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (Mask[i] < 0) |
| continue; |
| if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) |
| continue; |
| return false; |
| } |
| return true; |
| }; |
| |
| // At the moment we just handle the case where we've truncated back to the |
| // same size as before the extension. |
| // TODO: handle more extension/truncation cases as cases arise. |
| if (EltSizeInBits != ExtSrcSizeInBits) |
| return SDValue(); |
| |
| // We can remove *extend_vector_inreg only if the truncation happens at |
| // the same scale as the extension. |
| if (isTruncate(ExtScale)) |
| return DAG.getBitcast(VT, N00); |
| |
| return SDValue(); |
| } |
| |
| // Combine shuffles of splat-shuffles of the form: |
| // shuffle (shuffle V, undef, splat-mask), undef, M |
| // If splat-mask contains undef elements, we need to be careful about |
| // introducing undef's in the folded mask which are not the result of composing |
| // the masks of the shuffles. |
| static SDValue combineShuffleOfSplat(ArrayRef<int> UserMask, |
| ShuffleVectorSDNode *Splat, |
| SelectionDAG &DAG) { |
| ArrayRef<int> SplatMask = Splat->getMask(); |
| assert(UserMask.size() == SplatMask.size() && "Mask length mismatch"); |
| |
| // Prefer simplifying to the splat-shuffle, if possible. This is legal if |
| // every undef mask element in the splat-shuffle has a corresponding undef |
| // element in the user-shuffle's mask or if the composition of mask elements |
| // would result in undef. |
| // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): |
| // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] |
| // In this case it is not legal to simplify to the splat-shuffle because we |
| // may be exposing the users of the shuffle an undef element at index 1 |
| // which was not there before the combine. |
| // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] |
| // In this case the composition of masks yields SplatMask, so it's ok to |
| // simplify to the splat-shuffle. |
| // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] |
| // In this case the composed mask includes all undef elements of SplatMask |
| // and in addition sets element zero to undef. It is safe to simplify to |
| // the splat-shuffle. |
| auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, |
| ArrayRef<int> SplatMask) { |
| for (unsigned i = 0, e = UserMask.size(); i != e; ++i) |
| if (UserMask[i] != -1 && SplatMask[i] == -1 && |
| SplatMask[UserMask[i]] != -1) |
| return false; |
| return true; |
| }; |
| if (CanSimplifyToExistingSplat(UserMask, SplatMask)) |
| return SDValue(Splat, 0); |
| |
| // Create a new shuffle with a mask that is composed of the two shuffles' |
| // masks. |
| SmallVector<int, 32> NewMask; |
| for (int Idx : UserMask) |
| NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); |
| |
| return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), |
| Splat->getOperand(0), Splat->getOperand(1), |
| NewMask); |
| } |
| |
| /// If the shuffle mask is taking exactly one element from the first vector |
| /// operand and passing through all other elements from the second vector |
| /// operand, return the index of the mask element that is choosing an element |
| /// from the first operand. Otherwise, return -1. |
| static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { |
| int MaskSize = Mask.size(); |
| int EltFromOp0 = -1; |
| // TODO: This does not match if there are undef elements in the shuffle mask. |
| // Should we ignore undefs in the shuffle mask instead? The trade-off is |
| // removing an instruction (a shuffle), but losing the knowledge that some |
| // vector lanes are not needed. |
| for (int i = 0; i != MaskSize; ++i) { |
| if (Mask[i] >= 0 && Mask[i] < MaskSize) { |
| // We're looking for a shuffle of exactly one element from operand 0. |
| if (EltFromOp0 != -1) |
| return -1; |
| EltFromOp0 = i; |
| } else if (Mask[i] != i + MaskSize) { |
| // Nothing from operand 1 can change lanes. |
| return -1; |
| } |
| } |
| return EltFromOp0; |
| } |
| |
| /// If a shuffle inserts exactly one element from a source vector operand into |
| /// another vector operand and we can access the specified element as a scalar, |
| /// then we can eliminate the shuffle. |
| static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, |
| SelectionDAG &DAG) { |
| // First, check if we are taking one element of a vector and shuffling that |
| // element into another vector. |
| ArrayRef<int> Mask = Shuf->getMask(); |
| SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); |
| SDValue Op0 = Shuf->getOperand(0); |
| SDValue Op1 = Shuf->getOperand(1); |
| int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); |
| if (ShufOp0Index == -1) { |
| // Commute mask and check again. |
| ShuffleVectorSDNode::commuteMask(CommutedMask); |
| ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); |
| if (ShufOp0Index == -1) |
| return SDValue(); |
| // Commute operands to match the commuted shuffle mask. |
| std::swap(Op0, Op1); |
| Mask = CommutedMask; |
| } |
| |
| // The shuffle inserts exactly one element from operand 0 into operand 1. |
| // Now see if we can access that element as a scalar via a real insert element |
| // instruction. |
| // TODO: We can try harder to locate the element as a scalar. Examples: it |
| // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. |
| assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && |
| "Shuffle mask value must be from operand 0"); |
| if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) |
| return SDValue(); |
| |
| auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); |
| if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) |
| return SDValue(); |
| |
| // There's an existing insertelement with constant insertion index, so we |
| // don't need to check the legality/profitability of a replacement operation |
| // that differs at most in the constant value. The target should be able to |
| // lower any of those in a similar way. If not, legalization will expand this |
| // to a scalar-to-vector plus shuffle. |
| // |
| // Note that the shuffle may move the scalar from the position that the insert |
| // element used. Therefore, our new insert element occurs at the shuffle's |
| // mask index value, not the insert's index value. |
| // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' |
| SDValue NewInsIndex = DAG.getConstant(ShufOp0Index, SDLoc(Shuf), |
| Op0.getOperand(2).getValueType()); |
| return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), |
| Op1, Op0.getOperand(1), NewInsIndex); |
| } |
| |
| SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); |
| |
| // Canonicalize shuffle undef, undef -> undef |
| if (N0.isUndef() && N1.isUndef()) |
| return DAG.getUNDEF(VT); |
| |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| |
| // Canonicalize shuffle v, v -> v, undef |
| if (N0 == N1) { |
| SmallVector<int, 8> NewMask; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int Idx = SVN->getMaskElt(i); |
| if (Idx >= (int)NumElts) Idx -= NumElts; |
| NewMask.push_back(Idx); |
| } |
| return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); |
| } |
| |
| // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. |
| if (N0.isUndef()) |
| return DAG.getCommutedVectorShuffle(*SVN); |
| |
| // Remove references to rhs if it is undef |
| if (N1.isUndef()) { |
| bool Changed = false; |
| SmallVector<int, 8> NewMask; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int Idx = SVN->getMaskElt(i); |
| if (Idx >= (int)NumElts) { |
| Idx = -1; |
| Changed = true; |
| } |
| NewMask.push_back(Idx); |
| } |
| if (Changed) |
| return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); |
| } |
| |
| if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) |
| return InsElt; |
| |
| // A shuffle of a single vector that is a splat can always be folded. |
| if (auto *N0Shuf = dyn_cast<ShuffleVectorSDNode>(N0)) |
| if (N1->isUndef() && N0Shuf->isSplat()) |
| return combineShuffleOfSplat(SVN->getMask(), N0Shuf, DAG); |
| |
| // If it is a splat, check if the argument vector is another splat or a |
| // build_vector. |
| if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { |
| SDNode *V = N0.getNode(); |
| |
| // If this is a bit convert that changes the element type of the vector but |
| // not the number of vector elements, look through it. Be careful not to |
| // look though conversions that change things like v4f32 to v2f64. |
| if (V->getOpcode() == ISD::BITCAST) { |
| SDValue ConvInput = V->getOperand(0); |
| if (ConvInput.getValueType().isVector() && |
| ConvInput.getValueType().getVectorNumElements() == NumElts) |
| V = ConvInput.getNode(); |
| } |
| |
| if (V->getOpcode() == ISD::BUILD_VECTOR) { |
| assert(V->getNumOperands() == NumElts && |
| "BUILD_VECTOR has wrong number of operands"); |
| SDValue Base; |
| bool AllSame = true; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (!V->getOperand(i).isUndef()) { |
| Base = V->getOperand(i); |
| break; |
| } |
| } |
| // Splat of <u, u, u, u>, return <u, u, u, u> |
| if (!Base.getNode()) |
| return N0; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (V->getOperand(i) != Base) { |
| AllSame = false; |
| break; |
| } |
| } |
| // Splat of <x, x, x, x>, return <x, x, x, x> |
| if (AllSame) |
| return N0; |
| |
| // Canonicalize any other splat as a build_vector. |
| const SDValue &Splatted = V->getOperand(SVN->getSplatIndex()); |
| SmallVector<SDValue, 8> Ops(NumElts, Splatted); |
| SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); |
| |
| // We may have jumped through bitcasts, so the type of the |
| // BUILD_VECTOR may not match the type of the shuffle. |
| if (V->getValueType(0) != VT) |
| NewBV = DAG.getBitcast(VT, NewBV); |
| return NewBV; |
| } |
| } |
| |
| // Simplify source operands based on shuffle mask. |
| if (SimplifyDemandedVectorElts(SDValue(N, 0))) |
| return SDValue(N, 0); |
| |
| // Match shuffles that can be converted to any_vector_extend_in_reg. |
| if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations, LegalTypes)) |
| return V; |
| |
| // Combine "truncate_vector_in_reg" style shuffles. |
| if (SDValue V = combineTruncationShuffle(SVN, DAG)) |
| return V; |
| |
| if (N0.getOpcode() == ISD::CONCAT_VECTORS && |
| Level < AfterLegalizeVectorOps && |
| (N1.isUndef() || |
| (N1.getOpcode() == ISD::CONCAT_VECTORS && |
| N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { |
| if (SDValue V = partitionShuffleOfConcats(N, DAG)) |
| return V; |
| } |
| |
| // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - |
| // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. |
| if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) |
| if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) |
| return Res; |
| |
| // If this shuffle only has a single input that is a bitcasted shuffle, |
| // attempt to merge the 2 shuffles and suitably bitcast the inputs/output |
| // back to their original types. |
| if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && |
| N1.isUndef() && Level < AfterLegalizeVectorOps && |
| TLI.isTypeLegal(VT)) { |
| |
| // Peek through the bitcast only if there is one user. |
| SDValue BC0 = N0; |
| while (BC0.getOpcode() == ISD::BITCAST) { |
| if (!BC0.hasOneUse()) |
| break; |
| BC0 = BC0.getOperand(0); |
| } |
| |
| auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { |
| if (Scale == 1) |
| return SmallVector<int, 8>(Mask.begin(), Mask.end()); |
| |
| SmallVector<int, 8> NewMask; |
| for (int M : Mask) |
| for (int s = 0; s != Scale; ++s) |
| NewMask.push_back(M < 0 ? -1 : Scale * M + s); |
| return NewMask; |
| }; |
| |
| if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { |
| EVT SVT = VT.getScalarType(); |
| EVT InnerVT = BC0->getValueType(0); |
| EVT InnerSVT = InnerVT.getScalarType(); |
| |
| // Determine which shuffle works with the smaller scalar type. |
| EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; |
| EVT ScaleSVT = ScaleVT.getScalarType(); |
| |
| if (TLI.isTypeLegal(ScaleVT) && |
| 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && |
| 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { |
| int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); |
| int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); |
| |
| // Scale the shuffle masks to the smaller scalar type. |
| ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); |
| SmallVector<int, 8> InnerMask = |
| ScaleShuffleMask(InnerSVN->getMask(), InnerScale); |
| SmallVector<int, 8> OuterMask = |
| ScaleShuffleMask(SVN->getMask(), OuterScale); |
| |
| // Merge the shuffle masks. |
| SmallVector<int, 8> NewMask; |
| for (int M : OuterMask) |
| NewMask.push_back(M < 0 ? -1 : InnerMask[M]); |
| |
| // Test for shuffle mask legality over both commutations. |
| SDValue SV0 = BC0->getOperand(0); |
| SDValue SV1 = BC0->getOperand(1); |
| bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); |
| if (!LegalMask) { |
| std::swap(SV0, SV1); |
| ShuffleVectorSDNode::commuteMask(NewMask); |
| LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); |
| } |
| |
| if (LegalMask) { |
| SV0 = DAG.getBitcast(ScaleVT, SV0); |
| SV1 = DAG.getBitcast(ScaleVT, SV1); |
| return DAG.getBitcast( |
| VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); |
| } |
| } |
| } |
| } |
| |
| // Canonicalize shuffles according to rules: |
| // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) |
| // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) |
| // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) |
| if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && |
| N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && |
| TLI.isTypeLegal(VT)) { |
| // The incoming shuffle must be of the same type as the result of the |
| // current shuffle. |
| assert(N1->getOperand(0).getValueType() == VT && |
| "Shuffle types don't match"); |
| |
| SDValue SV0 = N1->getOperand(0); |
| SDValue SV1 = N1->getOperand(1); |
| bool HasSameOp0 = N0 == SV0; |
| bool IsSV1Undef = SV1.isUndef(); |
| if (HasSameOp0 || IsSV1Undef || N0 == SV1) |
| // Commute the operands of this shuffle so that next rule |
| // will trigger. |
| return DAG.getCommutedVectorShuffle(*SVN); |
| } |
| |
| // Try to fold according to rules: |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) |
| // Don't try to fold shuffles with illegal type. |
| // Only fold if this shuffle is the only user of the other shuffle. |
| if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && |
| Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { |
| ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); |
| |
| // Don't try to fold splats; they're likely to simplify somehow, or they |
| // might be free. |
| if (OtherSV->isSplat()) |
| return SDValue(); |
| |
| // The incoming shuffle must be of the same type as the result of the |
| // current shuffle. |
| assert(OtherSV->getOperand(0).getValueType() == VT && |
| "Shuffle types don't match"); |
| |
| SDValue SV0, SV1; |
| SmallVector<int, 4> Mask; |
| // Compute the combined shuffle mask for a shuffle with SV0 as the first |
| // operand, and SV1 as the second operand. |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int Idx = SVN->getMaskElt(i); |
| if (Idx < 0) { |
| // Propagate Undef. |
| Mask.push_back(Idx); |
| continue; |
| } |
| |
| SDValue CurrentVec; |
| if (Idx < (int)NumElts) { |
| // This shuffle index refers to the inner shuffle N0. Lookup the inner |
| // shuffle mask to identify which vector is actually referenced. |
| Idx = OtherSV->getMaskElt(Idx); |
| if (Idx < 0) { |
| // Propagate Undef. |
| Mask.push_back(Idx); |
| continue; |
| } |
| |
| CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) |
| : OtherSV->getOperand(1); |
| } else { |
| // This shuffle index references an element within N1. |
| CurrentVec = N1; |
| } |
| |
| // Simple case where 'CurrentVec' is UNDEF. |
| if (CurrentVec.isUndef()) { |
| Mask.push_back(-1); |
| continue; |
| } |
| |
| // Canonicalize the shuffle index. We don't know yet if CurrentVec |
| // will be the first or second operand of the combined shuffle. |
| Idx = Idx % NumElts; |
| if (!SV0.getNode() || SV0 == CurrentVec) { |
| // Ok. CurrentVec is the left hand side. |
| // Update the mask accordingly. |
| SV0 = CurrentVec; |
| Mask.push_back(Idx); |
| continue; |
| } |
| |
| // Bail out if we cannot convert the shuffle pair into a single shuffle. |
| if (SV1.getNode() && SV1 != CurrentVec) |
| return SDValue(); |
| |
| // Ok. CurrentVec is the right hand side. |
| // Update the mask accordingly. |
| SV1 = CurrentVec; |
| Mask.push_back(Idx + NumElts); |
| } |
| |
| // Check if all indices in Mask are Undef. In case, propagate Undef. |
| bool isUndefMask = true; |
| for (unsigned i = 0; i != NumElts && isUndefMask; ++i) |
| isUndefMask &= Mask[i] < 0; |
| |
| if (isUndefMask) |
| return DAG.getUNDEF(VT); |
| |
| if (!SV0.getNode()) |
| SV0 = DAG.getUNDEF(VT); |
| if (!SV1.getNode()) |
| SV1 = DAG.getUNDEF(VT); |
| |
| // Avoid introducing shuffles with illegal mask. |
| if (!TLI.isShuffleMaskLegal(Mask, VT)) { |
| ShuffleVectorSDNode::commuteMask(Mask); |
| |
| if (!TLI.isShuffleMaskLegal(Mask, VT)) |
| return SDValue(); |
| |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) |
| std::swap(SV0, SV1); |
| } |
| |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) |
| // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) |
| return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { |
| SDValue InVal = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern |
| // with a VECTOR_SHUFFLE and possible truncate. |
| if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| SDValue InVec = InVal->getOperand(0); |
| SDValue EltNo = InVal->getOperand(1); |
| auto InVecT = InVec.getValueType(); |
| if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { |
| SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); |
| int Elt = C0->getZExtValue(); |
| NewMask[0] = Elt; |
| SDValue Val; |
| // If we have an implict truncate do truncate here as long as it's legal. |
| // if it's not legal, this should |
| if (VT.getScalarType() != InVal.getValueType() && |
| InVal.getValueType().isScalarInteger() && |
| isTypeLegal(VT.getScalarType())) { |
| Val = |
| DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); |
| } |
| if (VT.getScalarType() == InVecT.getScalarType() && |
| VT.getVectorNumElements() <= InVecT.getVectorNumElements() && |
| TLI.isShuffleMaskLegal(NewMask, VT)) { |
| Val = DAG.getVectorShuffle(InVecT, SDLoc(N), InVec, |
| DAG.getUNDEF(InVecT), NewMask); |
| // If the initial vector is the correct size this shuffle is a |
| // valid result. |
| if (VT == InVecT) |
| return Val; |
| // If not we must truncate the vector. |
| if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { |
| MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); |
| SDValue ZeroIdx = DAG.getConstant(0, SDLoc(N), IdxTy); |
| EVT SubVT = |
| EVT::getVectorVT(*DAG.getContext(), InVecT.getVectorElementType(), |
| VT.getVectorNumElements()); |
| Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, Val, |
| ZeroIdx); |
| return Val; |
| } |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| |
| // If inserting an UNDEF, just return the original vector. |
| if (N1.isUndef()) |
| return N0; |
| |
| // For nested INSERT_SUBVECTORs, attempt to combine inner node first to allow |
| // us to pull BITCASTs from input to output. |
| if (N0.hasOneUse() && N0->getOpcode() == ISD::INSERT_SUBVECTOR) |
| if (SDValue NN0 = visitINSERT_SUBVECTOR(N0.getNode())) |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, NN0, N1, N2); |
| |
| // If this is an insert of an extracted vector into an undef vector, we can |
| // just use the input to the extract. |
| if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && |
| N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) |
| return N1.getOperand(0); |
| |
| // If we are inserting a bitcast value into an undef, with the same |
| // number of elements, just use the bitcast input of the extract. |
| // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> |
| // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) |
| if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && |
| N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && |
| N1.getOperand(0).getOperand(1) == N2 && |
| N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() == |
| VT.getVectorNumElements() && |
| N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == |
| VT.getSizeInBits()) { |
| return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); |
| } |
| |
| // If both N1 and N2 are bitcast values on which insert_subvector |
| // would makes sense, pull the bitcast through. |
| // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> |
| // BITCAST (INSERT_SUBVECTOR N0 N1 N2) |
| if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { |
| SDValue CN0 = N0.getOperand(0); |
| SDValue CN1 = N1.getOperand(0); |
| EVT CN0VT = CN0.getValueType(); |
| EVT CN1VT = CN1.getValueType(); |
| if (CN0VT.isVector() && CN1VT.isVector() && |
| CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && |
| CN0VT.getVectorNumElements() == VT.getVectorNumElements()) { |
| SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), |
| CN0.getValueType(), CN0, CN1, N2); |
| return DAG.getBitcast(VT, NewINSERT); |
| } |
| } |
| |
| // Combine INSERT_SUBVECTORs where we are inserting to the same index. |
| // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) |
| // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) |
| if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && |
| N0.getOperand(1).getValueType() == N1.getValueType() && |
| N0.getOperand(2) == N2) |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), |
| N1, N2); |
| |
| if (!isa<ConstantSDNode>(N2)) |
| return SDValue(); |
| |
| unsigned InsIdx = cast<ConstantSDNode>(N2)->getZExtValue(); |
| |
| // Canonicalize insert_subvector dag nodes. |
| // Example: |
| // (insert_subvector (insert_subvector A, Idx0), Idx1) |
| // -> (insert_subvector (insert_subvector A, Idx1), Idx0) |
| if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && |
| N1.getValueType() == N0.getOperand(1).getValueType() && |
| isa<ConstantSDNode>(N0.getOperand(2))) { |
| unsigned OtherIdx = N0.getConstantOperandVal(2); |
| if (InsIdx < OtherIdx) { |
| // Swap nodes. |
| SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, |
| N0.getOperand(0), N1, N2); |
| AddToWorklist(NewOp.getNode()); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), |
| VT, NewOp, N0.getOperand(1), N0.getOperand(2)); |
| } |
| } |
| |
| // If the input vector is a concatenation, and the insert replaces |
| // one of the pieces, we can optimize into a single concat_vectors. |
| if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && |
| N0.getOperand(0).getValueType() == N1.getValueType()) { |
| unsigned Factor = N1.getValueType().getVectorNumElements(); |
| |
| SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); |
| Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1; |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| |
| // fold (fp_to_fp16 (fp16_to_fp op)) -> op |
| if (N0->getOpcode() == ISD::FP16_TO_FP) |
| return N0->getOperand(0); |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { |
| SDValue N0 = N->getOperand(0); |
| |
| // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) |
| if (N0->getOpcode() == ISD::AND) { |
| ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); |
| if (AndConst && AndConst->getAPIntValue() == 0xffff) { |
| return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), |
| N0.getOperand(0)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle |
| /// with the destination vector and a zero vector. |
| /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> |
| /// vector_shuffle V, Zero, <0, 4, 2, 4> |
| SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { |
| assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); |
| |
| EVT VT = N->getValueType(0); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = peekThroughBitcast(N->getOperand(1)); |
| SDLoc DL(N); |
| |
| // Make sure we're not running after operation legalization where it |
| // may have custom lowered the vector shuffles. |
| if (LegalOperations) |
| return SDValue(); |
| |
| if (RHS.getOpcode() != ISD::BUILD_VECTOR) |
| return SDValue(); |
| |
| EVT RVT = RHS.getValueType(); |
| unsigned NumElts = RHS.getNumOperands(); |
| |
| // Attempt to create a valid clear mask, splitting the mask into |
| // sub elements and checking to see if each is |
| // all zeros or all ones - suitable for shuffle masking. |
| auto BuildClearMask = [&](int Split) { |
| int NumSubElts = NumElts * Split; |
| int NumSubBits = RVT.getScalarSizeInBits() / Split; |
| |
| SmallVector<int, 8> Indices; |
| for (int i = 0; i != NumSubElts; ++i) { |
| int EltIdx = i / Split; |
| int SubIdx = i % Split; |
| SDValue Elt = RHS.getOperand(EltIdx); |
| if (Elt.isUndef()) { |
| Indices.push_back(-1); |
| continue; |
| } |
| |
| APInt Bits; |
| if (isa<ConstantSDNode>(Elt)) |
| Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); |
| else if (isa<ConstantFPSDNode>(Elt)) |
| Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); |
| else |
| return SDValue(); |
| |
| // Extract the sub element from the constant bit mask. |
| if (DAG.getDataLayout().isBigEndian()) { |
| Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits); |
| } else { |
| Bits.lshrInPlace(SubIdx * NumSubBits); |
| } |
| |
| if (Split > 1) |
| Bits = Bits.trunc(NumSubBits); |
| |
| if (Bits.isAllOnesValue()) |
| Indices.push_back(i); |
| else if (Bits == 0) |
| Indices.push_back(i + NumSubElts); |
| else |
| return SDValue(); |
| } |
| |
| // Let's see if the target supports this vector_shuffle. |
| EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); |
| EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); |
| if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) |
| return SDValue(); |
| |
| SDValue Zero = DAG.getConstant(0, DL, ClearVT); |
| return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, |
| DAG.getBitcast(ClearVT, LHS), |
| Zero, Indices)); |
| }; |
| |
| // Determine maximum split level (byte level masking). |
| int MaxSplit = 1; |
| if (RVT.getScalarSizeInBits() % 8 == 0) |
| MaxSplit = RVT.getScalarSizeInBits() / 8; |
| |
| for (int Split = 1; Split <= MaxSplit; ++Split) |
| if (RVT.getScalarSizeInBits() % Split == 0) |
| if (SDValue S = BuildClearMask(Split)) |
| return S; |
| |
| return SDValue(); |
| } |
| |
| /// Visit a binary vector operation, like ADD. |
| SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { |
| assert(N->getValueType(0).isVector() && |
| "SimplifyVBinOp only works on vectors!"); |
| |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| SDValue Ops[] = {LHS, RHS}; |
| |
| // See if we can constant fold the vector operation. |
| if (SDValue Fold = DAG.FoldConstantVectorArithmetic( |
| N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) |
| return Fold; |
| |
| // Type legalization might introduce new shuffles in the DAG. |
| // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) |
| // -> (shuffle (VBinOp (A, B)), Undef, Mask). |
| if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && |
| isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && |
| LHS.getOperand(1).isUndef() && |
| RHS.getOperand(1).isUndef()) { |
| ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); |
| ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); |
| |
| if (SVN0->getMask().equals(SVN1->getMask())) { |
| EVT VT = N->getValueType(0); |
| SDValue UndefVector = LHS.getOperand(1); |
| SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, |
| LHS.getOperand(0), RHS.getOperand(0), |
| N->getFlags()); |
| AddUsersToWorklist(N); |
| return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, |
| SVN0->getMask()); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, |
| SDValue N2) { |
| assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); |
| |
| SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, |
| cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| |
| // If we got a simplified select_cc node back from SimplifySelectCC, then |
| // break it down into a new SETCC node, and a new SELECT node, and then return |
| // the SELECT node, since we were called with a SELECT node. |
| if (SCC.getNode()) { |
| // Check to see if we got a select_cc back (to turn into setcc/select). |
| // Otherwise, just return whatever node we got back, like fabs. |
| if (SCC.getOpcode() == ISD::SELECT_CC) { |
| SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), |
| N0.getValueType(), |
| SCC.getOperand(0), SCC.getOperand(1), |
| SCC.getOperand(4)); |
| AddToWorklist(SETCC.getNode()); |
| return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, |
| SCC.getOperand(2), SCC.getOperand(3)); |
| } |
| |
| return SCC; |
| } |
| return SDValue(); |
| } |
| |
| /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values |
| /// being selected between, see if we can simplify the select. Callers of this |
| /// should assume that TheSelect is deleted if this returns true. As such, they |
| /// should return the appropriate thing (e.g. the node) back to the top-level of |
| /// the DAG combiner loop to avoid it being looked at. |
| bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, |
| SDValue RHS) { |
| // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) |
| // The select + setcc is redundant, because fsqrt returns NaN for X < 0. |
| if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { |
| if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { |
| // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) |
| SDValue Sqrt = RHS; |
| ISD::CondCode CC; |
| SDValue CmpLHS; |
| const ConstantFPSDNode *Zero = nullptr; |
| |
| if (TheSelect->getOpcode() == ISD::SELECT_CC) { |
| CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); |
| CmpLHS = TheSelect->getOperand(0); |
| Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); |
| } else { |
| // SELECT or VSELECT |
| SDValue Cmp = TheSelect->getOperand(0); |
| if (Cmp.getOpcode() == ISD::SETCC) { |
| CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); |
| CmpLHS = Cmp.getOperand(0); |
| Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); |
| } |
| } |
| if (Zero && Zero->isZero() && |
| Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || |
| CC == ISD::SETULT || CC == ISD::SETLT)) { |
| // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) |
| CombineTo(TheSelect, Sqrt); |
| return true; |
| } |
| } |
| } |
| // Cannot simplify select with vector condition |
| if (TheSelect->getOperand(0).getValueType().isVector()) return false; |
| |
| // If this is a select from two identical things, try to pull the operation |
| // through the select. |
| if (LHS.getOpcode() != RHS.getOpcode() || |
| !LHS.hasOneUse() || !RHS.hasOneUse()) |
| return false; |
| |
| // If this is a load and the token chain is identical, replace the select |
| // of two loads with a load through a select of the address to load from. |
| // This triggers in things like "select bool X, 10.0, 123.0" after the FP |
| // constants have been dropped into the constant pool. |
| if (LHS.getOpcode() == ISD::LOAD) { |
| LoadSDNode *LLD = cast<LoadSDNode>(LHS); |
| LoadSDNode *RLD = cast<LoadSDNode>(RHS); |
| |
| // Token chains must be identical. |
| if (LHS.getOperand(0) != RHS.getOperand(0) || |
| // Do not let this transformation reduce the number of volatile loads. |
| LLD->isVolatile() || RLD->isVolatile() || |
| // FIXME: If either is a pre/post inc/dec load, |
| // we'd need to split out the address adjustment. |
| LLD->isIndexed() || RLD->isIndexed() || |
| // If this is an EXTLOAD, the VT's must match. |
| LLD->getMemoryVT() != RLD->getMemoryVT() || |
| // If this is an EXTLOAD, the kind of extension must match. |
| (LLD->getExtensionType() != RLD->getExtensionType() && |
| // The only exception is if one of the extensions is anyext. |
| LLD->getExtensionType() != ISD::EXTLOAD && |
| RLD->getExtensionType() != ISD::EXTLOAD) || |
| // FIXME: this discards src value information. This is |
| // over-conservative. It would be beneficial to be able to remember |
| // both potential memory locations. Since we are discarding |
| // src value info, don't do the transformation if the memory |
| // locations are not in the default address space. |
| LLD->getPointerInfo().getAddrSpace() != 0 || |
| RLD->getPointerInfo().getAddrSpace() != 0 || |
| !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), |
| LLD->getBasePtr().getValueType())) |
| return false; |
| |
| // Check that the select condition doesn't reach either load. If so, |
| // folding this will induce a cycle into the DAG. If not, this is safe to |
| // xform, so create a select of the addresses. |
| SDValue Addr; |
| if (TheSelect->getOpcode() == ISD::SELECT) { |
| SDNode *CondNode = TheSelect->getOperand(0).getNode(); |
| if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || |
| (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) |
| return false; |
| // The loads must not depend on one another. |
| if (LLD->isPredecessorOf(RLD) || |
| RLD->isPredecessorOf(LLD)) |
| return false; |
| Addr = DAG.getSelect(SDLoc(TheSelect), |
| LLD->getBasePtr().getValueType(), |
| TheSelect->getOperand(0), LLD->getBasePtr(), |
| RLD->getBasePtr()); |
| } else { // Otherwise SELECT_CC |
| SDNode *CondLHS = TheSelect->getOperand(0).getNode(); |
| SDNode *CondRHS = TheSelect->getOperand(1).getNode(); |
| |
| if ((LLD->hasAnyUseOfValue(1) && |
| (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || |
| (RLD->hasAnyUseOfValue(1) && |
| (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS)))) |
| return false; |
| |
| Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), |
| LLD->getBasePtr().getValueType(), |
| TheSelect->getOperand(0), |
| TheSelect->getOperand(1), |
| LLD->getBasePtr(), RLD->getBasePtr(), |
| TheSelect->getOperand(4)); |
| } |
| |
| SDValue Load; |
| // It is safe to replace the two loads if they have different alignments, |
| // but the new load must be the minimum (most restrictive) alignment of the |
| // inputs. |
| unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); |
| MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); |
| if (!RLD->isInvariant()) |
| MMOFlags &= ~MachineMemOperand::MOInvariant; |
| if (!RLD->isDereferenceable()) |
| MMOFlags &= ~MachineMemOperand::MODereferenceable; |
| if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { |
| // FIXME: Discards pointer and AA info. |
| Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), |
| LLD->getChain(), Addr, MachinePointerInfo(), Alignment, |
| MMOFlags); |
| } else { |
| // FIXME: Discards pointer and AA info. |
| Load = DAG.getExtLoad( |
| LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() |
| : LLD->getExtensionType(), |
| SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, |
| MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); |
| } |
| |
| // Users of the select now use the result of the load. |
| CombineTo(TheSelect, Load); |
| |
| // Users of the old loads now use the new load's chain. We know the |
| // old-load value is dead now. |
| CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); |
| CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and |
| /// bitwise 'and'. |
| SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, |
| SDValue N1, SDValue N2, SDValue N3, |
| ISD::CondCode CC) { |
| // If this is a select where the false operand is zero and the compare is a |
| // check of the sign bit, see if we can perform the "gzip trick": |
| // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A |
| // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A |
| EVT XType = N0.getValueType(); |
| EVT AType = N2.getValueType(); |
| if (!isNullConstant(N3) || !XType.bitsGE(AType)) |
| return SDValue(); |
| |
| // If the comparison is testing for a positive value, we have to invert |
| // the sign bit mask, so only do that transform if the target has a bitwise |
| // 'and not' instruction (the invert is free). |
| if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { |
| // (X > -1) ? A : 0 |
| // (X > 0) ? X : 0 <-- This is canonical signed max. |
| if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) |
| return SDValue(); |
| } else if (CC == ISD::SETLT) { |
| // (X < 0) ? A : 0 |
| // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. |
| if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) |
| return SDValue(); |
| } else { |
| return SDValue(); |
| } |
| |
| // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit |
| // constant. |
| EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); |
| auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); |
| if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { |
| unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; |
| SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); |
| SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); |
| AddToWorklist(Shift.getNode()); |
| |
| if (XType.bitsGT(AType)) { |
| Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); |
| AddToWorklist(Shift.getNode()); |
| } |
| |
| if (CC == ISD::SETGT) |
| Shift = DAG.getNOT(DL, Shift, AType); |
| |
| return DAG.getNode(ISD::AND, DL, AType, Shift, N2); |
| } |
| |
| SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy); |
| SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); |
| AddToWorklist(Shift.getNode()); |
| |
| if (XType.bitsGT(AType)) { |
| Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); |
| AddToWorklist(Shift.getNode()); |
| } |
| |
| if (CC == ISD::SETGT) |
| Shift = DAG.getNOT(DL, Shift, AType); |
| |
| return DAG.getNode(ISD::AND, DL, AType, Shift, N2); |
| } |
| |
| /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 |
| /// where 'cond' is the comparison specified by CC. |
| SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, |
| SDValue N2, SDValue N3, ISD::CondCode CC, |
| bool NotExtCompare) { |
| // (x ? y : y) -> y. |
| if (N2 == N3) return N2; |
| |
| EVT VT = N2.getValueType(); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); |
| |
| // Determine if the condition we're dealing with is constant |
| SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), |
| N0, N1, CC, DL, false); |
| if (SCC.getNode()) AddToWorklist(SCC.getNode()); |
| |
| if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { |
| // fold select_cc true, x, y -> x |
| // fold select_cc false, x, y -> y |
| return !SCCC->isNullValue() ? N2 : N3; |
| } |
| |
| // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" |
| // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 |
| // in it. This is a win when the constant is not otherwise available because |
| // it replaces two constant pool loads with one. We only do this if the FP |
| // type is known to be legal, because if it isn't, then we are before legalize |
| // types an we want the other legalization to happen first (e.g. to avoid |
| // messing with soft float) and if the ConstantFP is not legal, because if |
| // it is legal, we may not need to store the FP constant in a constant pool. |
| if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) |
| if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { |
| if (TLI.isTypeLegal(N2.getValueType()) && |
| (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != |
| TargetLowering::Legal && |
| !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) && |
| !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) && |
| // If both constants have multiple uses, then we won't need to do an |
| // extra load, they are likely around in registers for other users. |
| (TV->hasOneUse() || FV->hasOneUse())) { |
| Constant *Elts[] = { |
| const_cast<ConstantFP*>(FV->getConstantFPValue()), |
| const_cast<ConstantFP*>(TV->getConstantFPValue()) |
| }; |
| Type *FPTy = Elts[0]->getType(); |
| const DataLayout &TD = DAG.getDataLayout(); |
| |
| // Create a ConstantArray of the two constants. |
| Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); |
| SDValue CPIdx = |
| DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), |
| TD.getPrefTypeAlignment(FPTy)); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| |
| // Get the offsets to the 0 and 1 element of the array so that we can |
| // select between them. |
| SDValue Zero = DAG.getIntPtrConstant(0, DL); |
| unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); |
| SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); |
| |
| SDValue Cond = DAG.getSetCC(DL, |
| getSetCCResultType(N0.getValueType()), |
| N0, N1, CC); |
| AddToWorklist(Cond.getNode()); |
| SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), |
| Cond, One, Zero); |
| AddToWorklist(CstOffset.getNode()); |
| CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, |
| CstOffset); |
| AddToWorklist(CPIdx.getNode()); |
| return DAG.getLoad( |
| TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), |
| Alignment); |
| } |
| } |
| |
| if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) |
| return V; |
| |
| // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) |
| // where y is has a single bit set. |
| // A plaintext description would be, we can turn the SELECT_CC into an AND |
| // when the condition can be materialized as an all-ones register. Any |
| // single bit-test can be materialized as an all-ones register with |
| // shift-left and shift-right-arith. |
| if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && |
| N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { |
| SDValue AndLHS = N0->getOperand(0); |
| ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); |
| if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { |
| // Shift the tested bit over the sign bit. |
| const APInt &AndMask = ConstAndRHS->getAPIntValue(); |
| SDValue ShlAmt = |
| DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), |
| getShiftAmountTy(AndLHS.getValueType())); |
| SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); |
| |
| // Now arithmetic right shift it all the way over, so the result is either |
| // all-ones, or zero. |
| SDValue ShrAmt = |
| DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), |
| getShiftAmountTy(Shl.getValueType())); |
| SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); |
| |
| return DAG.getNode(ISD::AND, DL, VT, Shr, N3); |
| } |
| } |
| |
| // fold select C, 16, 0 -> shl C, 4 |
| if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() && |
| TLI.getBooleanContents(N0.getValueType()) == |
| TargetLowering::ZeroOrOneBooleanContent) { |
| |
| // If the caller doesn't want us to simplify this into a zext of a compare, |
| // don't do it. |
| if (NotExtCompare && N2C->isOne()) |
| return SDValue(); |
| |
| // Get a SetCC of the condition |
| // NOTE: Don't create a SETCC if it's not legal on this target. |
| if (!LegalOperations || |
| TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) { |
| SDValue Temp, SCC; |
| // cast from setcc result type to select result type |
| if (LegalTypes) { |
| SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), |
| N0, N1, CC); |
| if (N2.getValueType().bitsLT(SCC.getValueType())) |
| Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), |
| N2.getValueType()); |
| else |
| Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), |
| N2.getValueType(), SCC); |
| } else { |
| SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); |
| Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), |
| N2.getValueType(), SCC); |
| } |
| |
| AddToWorklist(SCC.getNode()); |
| AddToWorklist(Temp.getNode()); |
| |
| if (N2C->isOne()) |
| return Temp; |
| |
| // shl setcc result by log2 n2c |
| return DAG.getNode( |
| ISD::SHL, DL, N2.getValueType(), Temp, |
| DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp), |
| getShiftAmountTy(Temp.getValueType()))); |
| } |
| } |
| |
| // Check to see if this is an integer abs. |
| // select_cc setg[te] X, 0, X, -X -> |
| // select_cc setgt X, -1, X, -X -> |
| // select_cc setl[te] X, 0, -X, X -> |
| // select_cc setlt X, 1, -X, X -> |
| // Y = sra (X, size(X)-1); xor (add (X, Y), Y) |
| if (N1C) { |
| ConstantSDNode *SubC = nullptr; |
| if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || |
| (N1C->isAllOnesValue() && CC == ISD::SETGT)) && |
| N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) |
| SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); |
| else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || |
| (N1C->isOne() && CC == ISD::SETLT)) && |
| N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) |
| SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); |
| |
| EVT XType = N0.getValueType(); |
| if (SubC && SubC->isNullValue() && XType.isInteger()) { |
| SDLoc DL(N0); |
| SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, |
| N0, |
| DAG.getConstant(XType.getSizeInBits() - 1, DL, |
| getShiftAmountTy(N0.getValueType()))); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, |
| XType, N0, Shift); |
| AddToWorklist(Shift.getNode()); |
| AddToWorklist(Add.getNode()); |
| return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); |
| } |
| } |
| |
| // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) |
| // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) |
| // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) |
| // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) |
| // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) |
| // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) |
| // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) |
| // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) |
| if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| SDValue ValueOnZero = N2; |
| SDValue Count = N3; |
| // If the condition is NE instead of E, swap the operands. |
| if (CC == ISD::SETNE) |
| std::swap(ValueOnZero, Count); |
| // Check if the value on zero is a constant equal to the bits in the type. |
| if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { |
| if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { |
| // If the other operand is cttz/cttz_zero_undef of N0, and cttz is |
| // legal, combine to just cttz. |
| if ((Count.getOpcode() == ISD::CTTZ || |
| Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && |
| N0 == Count.getOperand(0) && |
| (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) |
| return DAG.getNode(ISD::CTTZ, DL, VT, N0); |
| // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is |
| // legal, combine to just ctlz. |
| if ((Count.getOpcode() == ISD::CTLZ || |
| Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && |
| N0 == Count.getOperand(0) && |
| (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) |
| return DAG.getNode(ISD::CTLZ, DL, VT, N0); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// This is a stub for TargetLowering::SimplifySetCC. |
| SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, |
| ISD::CondCode Cond, const SDLoc &DL, |
| bool foldBooleans) { |
| TargetLowering::DAGCombinerInfo |
| DagCombineInfo(DAG, Level, false, this); |
| return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); |
| } |
| |
| /// Given an ISD::SDIV node expressing a divide by constant, return |
| /// a DAG expression to select that will generate the same value by multiplying |
| /// by a magic number. |
| /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". |
| SDValue DAGCombiner::BuildSDIV(SDNode *N) { |
| // when optimising for minimum size, we don't want to expand a div to a mul |
| // and a shift. |
| if (DAG.getMachineFunction().getFunction().optForMinSize()) |
| return SDValue(); |
| |
| ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| |
| // Avoid division by zero. |
| if (C->isNullValue()) |
| return SDValue(); |
| |
| SmallVector<SDNode *, 8> Built; |
| SDValue S = |
| TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, Built); |
| |
| for (SDNode *N : Built) |
| AddToWorklist(N); |
| return S; |
| } |
| |
| /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a |
| /// DAG expression that will generate the same value by right shifting. |
| SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { |
| ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| |
| // Avoid division by zero. |
| if (C->isNullValue()) |
| return SDValue(); |
| |
| SmallVector<SDNode *, 8> Built; |
| SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built); |
| |
| for (SDNode *N : Built) |
| AddToWorklist(N); |
| return S; |
| } |
| |
| /// Given an ISD::UDIV node expressing a divide by constant, return a DAG |
| /// expression that will generate the same value by multiplying by a magic |
| /// number. |
| /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". |
| SDValue DAGCombiner::BuildUDIV(SDNode *N) { |
| // when optimising for minimum size, we don't want to expand a div to a mul |
| // and a shift. |
| if (DAG.getMachineFunction().getFunction().optForMinSize()) |
| return SDValue(); |
| |
| ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| |
| // Avoid division by zero. |
| if (C->isNullValue()) |
| return SDValue(); |
| |
| SmallVector<SDNode *, 8> Built; |
| SDValue S = |
| TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, Built); |
| |
| for (SDNode *N : Built) |
| AddToWorklist(N); |
| return S; |
| } |
| |
| /// Determines the LogBase2 value for a non-null input value using the |
| /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). |
| SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { |
| EVT VT = V.getValueType(); |
| unsigned EltBits = VT.getScalarSizeInBits(); |
| SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); |
| SDValue Base = DAG.getConstant(EltBits - 1, DL, VT); |
| SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); |
| return LogBase2; |
| } |
| |
| /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) |
| /// For the reciprocal, we need to find the zero of the function: |
| /// F(X) = A X - 1 [which has a zero at X = 1/A] |
| /// => |
| /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form |
| /// does not require additional intermediate precision] |
| SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags) { |
| if (Level >= AfterLegalizeDAG) |
| return SDValue(); |
| |
| // TODO: Handle half and/or extended types? |
| EVT VT = Op.getValueType(); |
| if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) |
| return SDValue(); |
| |
| // If estimates are explicitly disabled for this function, we're done. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); |
| if (Enabled == TLI.ReciprocalEstimate::Disabled) |
| return SDValue(); |
| |
| // Estimates may be explicitly enabled for this type with a custom number of |
| // refinement steps. |
| int Iterations = TLI.getDivRefinementSteps(VT, MF); |
| if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { |
| AddToWorklist(Est.getNode()); |
| |
| if (Iterations) { |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); |
| |
| // Newton iterations: Est = Est + Est (1 - Arg * Est) |
| for (int i = 0; i < Iterations; ++i) { |
| SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); |
| AddToWorklist(NewEst.getNode()); |
| |
| NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); |
| AddToWorklist(NewEst.getNode()); |
| |
| NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); |
| AddToWorklist(NewEst.getNode()); |
| |
| Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); |
| AddToWorklist(Est.getNode()); |
| } |
| } |
| return Est; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) |
| /// For the reciprocal sqrt, we need to find the zero of the function: |
| /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] |
| /// => |
| /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) |
| /// As a result, we precompute A/2 prior to the iteration loop. |
| SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, |
| unsigned Iterations, |
| SDNodeFlags Flags, bool Reciprocal) { |
| EVT VT = Arg.getValueType(); |
| SDLoc DL(Arg); |
| SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); |
| |
| // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that |
| // this entire sequence requires only one FP constant. |
| SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); |
| AddToWorklist(HalfArg.getNode()); |
| |
| HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); |
| AddToWorklist(HalfArg.getNode()); |
| |
| // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) |
| for (unsigned i = 0; i < Iterations; ++i) { |
| SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); |
| AddToWorklist(NewEst.getNode()); |
| |
| NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); |
| AddToWorklist(NewEst.getNode()); |
| |
| NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); |
| AddToWorklist(NewEst.getNode()); |
| |
| Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); |
| AddToWorklist(Est.getNode()); |
| } |
| |
| // If non-reciprocal square root is requested, multiply the result by Arg. |
| if (!Reciprocal) { |
| Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); |
| AddToWorklist(Est.getNode()); |
| } |
| |
| return Est; |
| } |
| |
| /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) |
| /// For the reciprocal sqrt, we need to find the zero of the function: |
| /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] |
| /// => |
| /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) |
| SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, |
| unsigned Iterations, |
| SDNodeFlags Flags, bool Reciprocal) { |
| EVT VT = Arg.getValueType(); |
| SDLoc DL(Arg); |
| SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); |
| SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); |
| |
| // This routine must enter the loop below to work correctly |
| // when (Reciprocal == false). |
| assert(Iterations > 0); |
| |
| // Newton iterations for reciprocal square root: |
| // E = (E * -0.5) * ((A * E) * E + -3.0) |
| for (unsigned i = 0; i < Iterations; ++i) { |
| SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); |
| AddToWorklist(AE.getNode()); |
| |
| SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); |
| AddToWorklist(AEE.getNode()); |
| |
| SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); |
| AddToWorklist(RHS.getNode()); |
| |
| // When calculating a square root at the last iteration build: |
| // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) |
| // (notice a common subexpression) |
| SDValue LHS; |
| if (Reciprocal || (i + 1) < Iterations) { |
| // RSQRT: LHS = (E * -0.5) |
| LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); |
| } else { |
| // SQRT: LHS = (A * E) * -0.5 |
| LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); |
| } |
| AddToWorklist(LHS.getNode()); |
| |
| Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); |
| AddToWorklist(Est.getNode()); |
| } |
| |
| return Est; |
| } |
| |
| /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case |
| /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if |
| /// Op can be zero. |
| SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, |
| bool Reciprocal) { |
| if (Level >= AfterLegalizeDAG) |
| return SDValue(); |
| |
| // TODO: Handle half and/or extended types? |
| EVT VT = Op.getValueType(); |
| if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) |
| return SDValue(); |
| |
| // If estimates are explicitly disabled for this function, we're done. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); |
| if (Enabled == TLI.ReciprocalEstimate::Disabled) |
| return SDValue(); |
| |
| // Estimates may be explicitly enabled for this type with a custom number of |
| // refinement steps. |
| int Iterations = TLI.getSqrtRefinementSteps(VT, MF); |
| |
| bool UseOneConstNR = false; |
| if (SDValue Est = |
| TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, |
| Reciprocal)) { |
| AddToWorklist(Est.getNode()); |
| |
| if (Iterations) { |
| Est = UseOneConstNR |
| ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) |
| : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); |
| |
| if (!Reciprocal) { |
| // The estimate is now completely wrong if the input was exactly 0.0 or |
| // possibly a denormal. Force the answer to 0.0 for those cases. |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| EVT CCVT = getSetCCResultType(VT); |
| ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT; |
| const Function &F = DAG.getMachineFunction().getFunction(); |
| Attribute Denorms = F.getFnAttribute("denormal-fp-math"); |
| if (Denorms.getValueAsString().equals("ieee")) { |
| // fabs(X) < SmallestNormal ? 0.0 : Est |
| const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); |
| APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); |
| SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); |
| SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); |
| SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); |
| SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); |
| Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est); |
| AddToWorklist(Fabs.getNode()); |
| AddToWorklist(IsDenorm.getNode()); |
| AddToWorklist(Est.getNode()); |
| } else { |
| // X == 0.0 ? 0.0 : Est |
| SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); |
| SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); |
| Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est); |
| AddToWorklist(IsZero.getNode()); |
| AddToWorklist(Est.getNode()); |
| } |
| } |
| } |
| return Est; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { |
| return buildSqrtEstimateImpl(Op, Flags, true); |
| } |
| |
| SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { |
| return buildSqrtEstimateImpl(Op, Flags, false); |
| } |
| |
| /// Return true if there is any possibility that the two addresses overlap. |
| bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { |
| // If they are the same then they must be aliases. |
| if (Op0->getBasePtr() == Op1->getBasePtr()) return true; |
| |
| // If they are both volatile then they cannot be reordered. |
| if (Op0->isVolatile() && Op1->isVolatile()) return true; |
| |
| // If one operation reads from invariant memory, and the other may store, they |
| // cannot alias. These should really be checking the equivalent of mayWrite, |
| // but it only matters for memory nodes other than load /store. |
| if (Op0->isInvariant() && Op1->writeMem()) |
| return false; |
| |
| if (Op1->isInvariant() && Op0->writeMem()) |
| return false; |
| |
| unsigned NumBytes0 = Op0->getMemoryVT().getStoreSize(); |
| unsigned NumBytes1 = Op1->getMemoryVT().getStoreSize(); |
| |
| // Check for BaseIndexOffset matching. |
| BaseIndexOffset BasePtr0 = BaseIndexOffset::match(Op0, DAG); |
| BaseIndexOffset BasePtr1 = BaseIndexOffset::match(Op1, DAG); |
| int64_t PtrDiff; |
| if (BasePtr0.getBase().getNode() && BasePtr1.getBase().getNode()) { |
| if (BasePtr0.equalBaseIndex(BasePtr1, DAG, PtrDiff)) |
| return !((NumBytes0 <= PtrDiff) || (PtrDiff + NumBytes1 <= 0)); |
| |
| // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be |
| // able to calculate their relative offset if at least one arises |
| // from an alloca. However, these allocas cannot overlap and we |
| // can infer there is no alias. |
| if (auto *A = dyn_cast<FrameIndexSDNode>(BasePtr0.getBase())) |
| if (auto *B = dyn_cast<FrameIndexSDNode>(BasePtr1.getBase())) { |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| // If the base are the same frame index but the we couldn't find a |
| // constant offset, (indices are different) be conservative. |
| if (A != B && (!MFI.isFixedObjectIndex(A->getIndex()) || |
| !MFI.isFixedObjectIndex(B->getIndex()))) |
| return false; |
| } |
| |
| bool IsFI0 = isa<FrameIndexSDNode>(BasePtr0.getBase()); |
| bool IsFI1 = isa<FrameIndexSDNode>(BasePtr1.getBase()); |
| bool IsGV0 = isa<GlobalAddressSDNode>(BasePtr0.getBase()); |
| bool IsGV1 = isa<GlobalAddressSDNode>(BasePtr1.getBase()); |
| bool IsCV0 = isa<ConstantPoolSDNode>(BasePtr0.getBase()); |
| bool IsCV1 = isa<ConstantPoolSDNode>(BasePtr1.getBase()); |
| |
| // If of mismatched base types or checkable indices we can check |
| // they do not alias. |
| if ((BasePtr0.getIndex() == BasePtr1.getIndex() || (IsFI0 != IsFI1) || |
| (IsGV0 != IsGV1) || (IsCV0 != IsCV1)) && |
| (IsFI0 || IsGV0 || IsCV0) && (IsFI1 || IsGV1 || IsCV1)) |
| return false; |
| } |
| |
| // If we know required SrcValue1 and SrcValue2 have relatively large |
| // alignment compared to the size and offset of the access, we may be able |
| // to prove they do not alias. This check is conservative for now to catch |
| // cases created by splitting vector types. |
| int64_t SrcValOffset0 = Op0->getSrcValueOffset(); |
| int64_t SrcValOffset1 = Op1->getSrcValueOffset(); |
| unsigned OrigAlignment0 = Op0->getOriginalAlignment(); |
| unsigned OrigAlignment1 = Op1->getOriginalAlignment(); |
| if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && |
| NumBytes0 == NumBytes1 && OrigAlignment0 > NumBytes0) { |
| int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0; |
| int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1; |
| |
| // There is no overlap between these relatively aligned accesses of |
| // similar size. Return no alias. |
| if ((OffAlign0 + NumBytes0) <= OffAlign1 || |
| (OffAlign1 + NumBytes1) <= OffAlign0) |
| return false; |
| } |
| |
| bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 |
| ? CombinerGlobalAA |
| : DAG.getSubtarget().useAA(); |
| #ifndef NDEBUG |
| if (CombinerAAOnlyFunc.getNumOccurrences() && |
| CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) |
| UseAA = false; |
| #endif |
| |
| if (UseAA && AA && |
| Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { |
| // Use alias analysis information. |
| int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); |
| int64_t Overlap0 = NumBytes0 + SrcValOffset0 - MinOffset; |
| int64_t Overlap1 = NumBytes1 + SrcValOffset1 - MinOffset; |
| AliasResult AAResult = |
| AA->alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap0, |
| UseTBAA ? Op0->getAAInfo() : AAMDNodes()), |
| MemoryLocation(Op1->getMemOperand()->getValue(), Overlap1, |
| UseTBAA ? Op1->getAAInfo() : AAMDNodes()) ); |
| if (AAResult == NoAlias) |
| return false; |
| } |
| |
| // Otherwise we have to assume they alias. |
| return true; |
| } |
| |
| /// Walk up chain skipping non-aliasing memory nodes, |
| /// looking for aliasing nodes and adding them to the Aliases vector. |
| void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, |
| SmallVectorImpl<SDValue> &Aliases) { |
| SmallVector<SDValue, 8> Chains; // List of chains to visit. |
| SmallPtrSet<SDNode *, 16> Visited; // Visited node set. |
| |
| // Get alias information for node. |
| bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); |
| |
| // Starting off. |
| Chains.push_back(OriginalChain); |
| unsigned Depth = 0; |
| |
| // Look at each chain and determine if it is an alias. If so, add it to the |
| // aliases list. If not, then continue up the chain looking for the next |
| // candidate. |
| while (!Chains.empty()) { |
| SDValue Chain = Chains.pop_back_val(); |
| |
| // For TokenFactor nodes, look at each operand and only continue up the |
| // chain until we reach the depth limit. |
| // |
| // FIXME: The depth check could be made to return the last non-aliasing |
| // chain we found before we hit a tokenfactor rather than the original |
| // chain. |
| if (Depth > TLI.getGatherAllAliasesMaxDepth()) { |
| Aliases.clear(); |
| Aliases.push_back(OriginalChain); |
| return; |
| } |
| |
| // Don't bother if we've been before. |
| if (!Visited.insert(Chain.getNode()).second) |
| continue; |
| |
| switch (Chain.getOpcode()) { |
| case ISD::EntryToken: |
| // Entry token is ideal chain operand, but handled in FindBetterChain. |
| break; |
| |
| case ISD::LOAD: |
| case ISD::STORE: { |
| // Get alias information for Chain. |
| bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && |
| !cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); |
| |
| // If chain is alias then stop here. |
| if (!(IsLoad && IsOpLoad) && |
| isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { |
| Aliases.push_back(Chain); |
| } else { |
| // Look further up the chain. |
| Chains.push_back(Chain.getOperand(0)); |
| ++Depth; |
| } |
| break; |
| } |
| |
| case ISD::TokenFactor: |
| // We have to check each of the operands of the token factor for "small" |
| // token factors, so we queue them up. Adding the operands to the queue |
| // (stack) in reverse order maintains the original order and increases the |
| // likelihood that getNode will find a matching token factor (CSE.) |
| if (Chain.getNumOperands() > 16) { |
| Aliases.push_back(Chain); |
| break; |
| } |
| for (unsigned n = Chain.getNumOperands(); n;) |
| Chains.push_back(Chain.getOperand(--n)); |
| ++Depth; |
| break; |
| |
| case ISD::CopyFromReg: |
| // Forward past CopyFromReg. |
| Chains.push_back(Chain.getOperand(0)); |
| ++Depth; |
| break; |
| |
| default: |
| // For all other instructions we will just have to take what we can get. |
| Aliases.push_back(Chain); |
| break; |
| } |
| } |
| } |
| |
| /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain |
| /// (aliasing node.) |
| SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { |
| if (OptLevel == CodeGenOpt::None) |
| return OldChain; |
| |
| // Ops for replacing token factor. |
| SmallVector<SDValue, 8> Aliases; |
| |
| // Accumulate all the aliases to this node. |
| GatherAllAliases(N, OldChain, Aliases); |
| |
| // If no operands then chain to entry token. |
| if (Aliases.size() == 0) |
| return DAG.getEntryNode(); |
| |
| // If a single operand then chain to it. We don't need to revisit it. |
| if (Aliases.size() == 1) |
| return Aliases[0]; |
| |
| // Construct a custom tailored token factor. |
| return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); |
| } |
| |
| // This function tries to collect a bunch of potentially interesting |
| // nodes to improve the chains of, all at once. This might seem |
| // redundant, as this function gets called when visiting every store |
| // node, so why not let the work be done on each store as it's visited? |
| // |
| // I believe this is mainly important because MergeConsecutiveStores |
| // is unable to deal with merging stores of different sizes, so unless |
| // we improve the chains of all the potential candidates up-front |
| // before running MergeConsecutiveStores, it might only see some of |
| // the nodes that will eventually be candidates, and then not be able |
| // to go from a partially-merged state to the desired final |
| // fully-merged state. |
| bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { |
| if (OptLevel == CodeGenOpt::None) |
| return false; |
| |
| // This holds the base pointer, index, and the offset in bytes from the base |
| // pointer. |
| BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); |
| |
| // We must have a base and an offset. |
| if (!BasePtr.getBase().getNode()) |
| return false; |
| |
| // Do not handle stores to undef base pointers. |
| if (BasePtr.getBase().isUndef()) |
| return false; |
| |
| SmallVector<StoreSDNode *, 8> ChainedStores; |
| ChainedStores.push_back(St); |
| |
| // Walk up the chain and look for nodes with offsets from the same |
| // base pointer. Stop when reaching an instruction with a different kind |
| // or instruction which has a different base pointer. |
| StoreSDNode *Index = St; |
| while (Index) { |
| // If the chain has more than one use, then we can't reorder the mem ops. |
| if (Index != St && !SDValue(Index, 0)->hasOneUse()) |
| break; |
| |
| if (Index->isVolatile() || Index->isIndexed()) |
| break; |
| |
| // Find the base pointer and offset for this memory node. |
| BaseIndexOffset Ptr = BaseIndexOffset::match(Index, DAG); |
| |
| // Check that the base pointer is the same as the original one. |
| if (!BasePtr.equalBaseIndex(Ptr, DAG)) |
| break; |
| |
| // Walk up the chain to find the next store node, ignoring any |
| // intermediate loads. Any other kind of node will halt the loop. |
| SDNode *NextInChain = Index->getChain().getNode(); |
| while (true) { |
| if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { |
| // We found a store node. Use it for the next iteration. |
| if (STn->isVolatile() || STn->isIndexed()) { |
| Index = nullptr; |
| break; |
| } |
| ChainedStores.push_back(STn); |
| Index = STn; |
| break; |
| } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { |
| NextInChain = Ldn->getChain().getNode(); |
| continue; |
| } else { |
| Index = nullptr; |
| break; |
| } |
| }// end while |
| } |
| |
| // At this point, ChainedStores lists all of the Store nodes |
| // reachable by iterating up through chain nodes matching the above |
| // conditions. For each such store identified, try to find an |
| // earlier chain to attach the store to which won't violate the |
| // required ordering. |
| bool MadeChangeToSt = false; |
| SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains; |
| |
| for (StoreSDNode *ChainedStore : ChainedStores) { |
| SDValue Chain = ChainedStore->getChain(); |
| SDValue BetterChain = FindBetterChain(ChainedStore, Chain); |
| |
| if (Chain != BetterChain) { |
| if (ChainedStore == St) |
| MadeChangeToSt = true; |
| BetterChains.push_back(std::make_pair(ChainedStore, BetterChain)); |
| } |
| } |
| |
| // Do all replacements after finding the replacements to make to avoid making |
| // the chains more complicated by introducing new TokenFactors. |
| for (auto Replacement : BetterChains) |
| replaceStoreChain(Replacement.first, Replacement.second); |
| |
| return MadeChangeToSt; |
| } |
| |
| /// This is the entry point for the file. |
| void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, |
| CodeGenOpt::Level OptLevel) { |
| /// This is the main entry point to this class. |
| DAGCombiner(*this, AA, OptLevel).Run(Level); |
| } |