| //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Methods common to all machine instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBank.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineInstrBundle.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ModuleSlotTracker.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/LowLevelTypeImpl.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetIntrinsicInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <iterator> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { |
| if (const MachineBasicBlock *MBB = MI.getParent()) |
| if (const MachineFunction *MF = MBB->getParent()) |
| return MF; |
| return nullptr; |
| } |
| |
| // Try to crawl up to the machine function and get TRI and IntrinsicInfo from |
| // it. |
| static void tryToGetTargetInfo(const MachineInstr &MI, |
| const TargetRegisterInfo *&TRI, |
| const MachineRegisterInfo *&MRI, |
| const TargetIntrinsicInfo *&IntrinsicInfo, |
| const TargetInstrInfo *&TII) { |
| |
| if (const MachineFunction *MF = getMFIfAvailable(MI)) { |
| TRI = MF->getSubtarget().getRegisterInfo(); |
| MRI = &MF->getRegInfo(); |
| IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); |
| TII = MF->getSubtarget().getInstrInfo(); |
| } |
| } |
| |
| void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { |
| if (MCID->ImplicitDefs) |
| for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; |
| ++ImpDefs) |
| addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); |
| if (MCID->ImplicitUses) |
| for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; |
| ++ImpUses) |
| addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); |
| } |
| |
| /// MachineInstr ctor - This constructor creates a MachineInstr and adds the |
| /// implicit operands. It reserves space for the number of operands specified by |
| /// the MCInstrDesc. |
| MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, |
| DebugLoc dl, bool NoImp) |
| : MCID(&tid), debugLoc(std::move(dl)) { |
| assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); |
| |
| // Reserve space for the expected number of operands. |
| if (unsigned NumOps = MCID->getNumOperands() + |
| MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { |
| CapOperands = OperandCapacity::get(NumOps); |
| Operands = MF.allocateOperandArray(CapOperands); |
| } |
| |
| if (!NoImp) |
| addImplicitDefUseOperands(MF); |
| } |
| |
| /// MachineInstr ctor - Copies MachineInstr arg exactly |
| /// |
| MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) |
| : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), |
| debugLoc(MI.getDebugLoc()) { |
| assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); |
| |
| CapOperands = OperandCapacity::get(MI.getNumOperands()); |
| Operands = MF.allocateOperandArray(CapOperands); |
| |
| // Copy operands. |
| for (const MachineOperand &MO : MI.operands()) |
| addOperand(MF, MO); |
| |
| // Copy all the sensible flags. |
| setFlags(MI.Flags); |
| } |
| |
| /// getRegInfo - If this instruction is embedded into a MachineFunction, |
| /// return the MachineRegisterInfo object for the current function, otherwise |
| /// return null. |
| MachineRegisterInfo *MachineInstr::getRegInfo() { |
| if (MachineBasicBlock *MBB = getParent()) |
| return &MBB->getParent()->getRegInfo(); |
| return nullptr; |
| } |
| |
| /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in |
| /// this instruction from their respective use lists. This requires that the |
| /// operands already be on their use lists. |
| void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { |
| for (MachineOperand &MO : operands()) |
| if (MO.isReg()) |
| MRI.removeRegOperandFromUseList(&MO); |
| } |
| |
| /// AddRegOperandsToUseLists - Add all of the register operands in |
| /// this instruction from their respective use lists. This requires that the |
| /// operands not be on their use lists yet. |
| void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { |
| for (MachineOperand &MO : operands()) |
| if (MO.isReg()) |
| MRI.addRegOperandToUseList(&MO); |
| } |
| |
| void MachineInstr::addOperand(const MachineOperand &Op) { |
| MachineBasicBlock *MBB = getParent(); |
| assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); |
| MachineFunction *MF = MBB->getParent(); |
| assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); |
| addOperand(*MF, Op); |
| } |
| |
| /// Move NumOps MachineOperands from Src to Dst, with support for overlapping |
| /// ranges. If MRI is non-null also update use-def chains. |
| static void moveOperands(MachineOperand *Dst, MachineOperand *Src, |
| unsigned NumOps, MachineRegisterInfo *MRI) { |
| if (MRI) |
| return MRI->moveOperands(Dst, Src, NumOps); |
| |
| // MachineOperand is a trivially copyable type so we can just use memmove. |
| std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); |
| } |
| |
| /// addOperand - Add the specified operand to the instruction. If it is an |
| /// implicit operand, it is added to the end of the operand list. If it is |
| /// an explicit operand it is added at the end of the explicit operand list |
| /// (before the first implicit operand). |
| void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { |
| assert(MCID && "Cannot add operands before providing an instr descriptor"); |
| |
| // Check if we're adding one of our existing operands. |
| if (&Op >= Operands && &Op < Operands + NumOperands) { |
| // This is unusual: MI->addOperand(MI->getOperand(i)). |
| // If adding Op requires reallocating or moving existing operands around, |
| // the Op reference could go stale. Support it by copying Op. |
| MachineOperand CopyOp(Op); |
| return addOperand(MF, CopyOp); |
| } |
| |
| // Find the insert location for the new operand. Implicit registers go at |
| // the end, everything else goes before the implicit regs. |
| // |
| // FIXME: Allow mixed explicit and implicit operands on inline asm. |
| // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as |
| // implicit-defs, but they must not be moved around. See the FIXME in |
| // InstrEmitter.cpp. |
| unsigned OpNo = getNumOperands(); |
| bool isImpReg = Op.isReg() && Op.isImplicit(); |
| if (!isImpReg && !isInlineAsm()) { |
| while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { |
| --OpNo; |
| assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); |
| } |
| } |
| |
| #ifndef NDEBUG |
| bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; |
| // OpNo now points as the desired insertion point. Unless this is a variadic |
| // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). |
| // RegMask operands go between the explicit and implicit operands. |
| assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || |
| OpNo < MCID->getNumOperands() || isMetaDataOp) && |
| "Trying to add an operand to a machine instr that is already done!"); |
| #endif |
| |
| MachineRegisterInfo *MRI = getRegInfo(); |
| |
| // Determine if the Operands array needs to be reallocated. |
| // Save the old capacity and operand array. |
| OperandCapacity OldCap = CapOperands; |
| MachineOperand *OldOperands = Operands; |
| if (!OldOperands || OldCap.getSize() == getNumOperands()) { |
| CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); |
| Operands = MF.allocateOperandArray(CapOperands); |
| // Move the operands before the insertion point. |
| if (OpNo) |
| moveOperands(Operands, OldOperands, OpNo, MRI); |
| } |
| |
| // Move the operands following the insertion point. |
| if (OpNo != NumOperands) |
| moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, |
| MRI); |
| ++NumOperands; |
| |
| // Deallocate the old operand array. |
| if (OldOperands != Operands && OldOperands) |
| MF.deallocateOperandArray(OldCap, OldOperands); |
| |
| // Copy Op into place. It still needs to be inserted into the MRI use lists. |
| MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); |
| NewMO->ParentMI = this; |
| |
| // When adding a register operand, tell MRI about it. |
| if (NewMO->isReg()) { |
| // Ensure isOnRegUseList() returns false, regardless of Op's status. |
| NewMO->Contents.Reg.Prev = nullptr; |
| // Ignore existing ties. This is not a property that can be copied. |
| NewMO->TiedTo = 0; |
| // Add the new operand to MRI, but only for instructions in an MBB. |
| if (MRI) |
| MRI->addRegOperandToUseList(NewMO); |
| // The MCID operand information isn't accurate until we start adding |
| // explicit operands. The implicit operands are added first, then the |
| // explicits are inserted before them. |
| if (!isImpReg) { |
| // Tie uses to defs as indicated in MCInstrDesc. |
| if (NewMO->isUse()) { |
| int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); |
| if (DefIdx != -1) |
| tieOperands(DefIdx, OpNo); |
| } |
| // If the register operand is flagged as early, mark the operand as such. |
| if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) |
| NewMO->setIsEarlyClobber(true); |
| } |
| } |
| } |
| |
| /// RemoveOperand - Erase an operand from an instruction, leaving it with one |
| /// fewer operand than it started with. |
| /// |
| void MachineInstr::RemoveOperand(unsigned OpNo) { |
| assert(OpNo < getNumOperands() && "Invalid operand number"); |
| untieRegOperand(OpNo); |
| |
| #ifndef NDEBUG |
| // Moving tied operands would break the ties. |
| for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) |
| if (Operands[i].isReg()) |
| assert(!Operands[i].isTied() && "Cannot move tied operands"); |
| #endif |
| |
| MachineRegisterInfo *MRI = getRegInfo(); |
| if (MRI && Operands[OpNo].isReg()) |
| MRI->removeRegOperandFromUseList(Operands + OpNo); |
| |
| // Don't call the MachineOperand destructor. A lot of this code depends on |
| // MachineOperand having a trivial destructor anyway, and adding a call here |
| // wouldn't make it 'destructor-correct'. |
| |
| if (unsigned N = NumOperands - 1 - OpNo) |
| moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); |
| --NumOperands; |
| } |
| |
| /// addMemOperand - Add a MachineMemOperand to the machine instruction. |
| /// This function should be used only occasionally. The setMemRefs function |
| /// is the primary method for setting up a MachineInstr's MemRefs list. |
| void MachineInstr::addMemOperand(MachineFunction &MF, |
| MachineMemOperand *MO) { |
| mmo_iterator OldMemRefs = MemRefs; |
| unsigned OldNumMemRefs = NumMemRefs; |
| |
| unsigned NewNum = NumMemRefs + 1; |
| mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); |
| |
| std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); |
| NewMemRefs[NewNum - 1] = MO; |
| setMemRefs(NewMemRefs, NewMemRefs + NewNum); |
| } |
| |
| /// Check to see if the MMOs pointed to by the two MemRefs arrays are |
| /// identical. |
| static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { |
| auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); |
| auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); |
| if ((E1 - I1) != (E2 - I2)) |
| return false; |
| for (; I1 != E1; ++I1, ++I2) { |
| if (**I1 != **I2) |
| return false; |
| } |
| return true; |
| } |
| |
| std::pair<MachineInstr::mmo_iterator, unsigned> |
| MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { |
| |
| // If either of the incoming memrefs are empty, we must be conservative and |
| // treat this as if we've exhausted our space for memrefs and dropped them. |
| if (memoperands_empty() || Other.memoperands_empty()) |
| return std::make_pair(nullptr, 0); |
| |
| // If both instructions have identical memrefs, we don't need to merge them. |
| // Since many instructions have a single memref, and we tend to merge things |
| // like pairs of loads from the same location, this catches a large number of |
| // cases in practice. |
| if (hasIdenticalMMOs(*this, Other)) |
| return std::make_pair(MemRefs, NumMemRefs); |
| |
| // TODO: consider uniquing elements within the operand lists to reduce |
| // space usage and fall back to conservative information less often. |
| size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; |
| |
| // If we don't have enough room to store this many memrefs, be conservative |
| // and drop them. Otherwise, we'd fail asserts when trying to add them to |
| // the new instruction. |
| if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) |
| return std::make_pair(nullptr, 0); |
| |
| MachineFunction *MF = getMF(); |
| mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); |
| mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), |
| MemBegin); |
| MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), |
| MemEnd); |
| assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && |
| "missing memrefs"); |
| |
| return std::make_pair(MemBegin, CombinedNumMemRefs); |
| } |
| |
| uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { |
| // For now, the just return the union of the flags. If the flags get more |
| // complicated over time, we might need more logic here. |
| return getFlags() | Other.getFlags(); |
| } |
| |
| bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { |
| assert(!isBundledWithPred() && "Must be called on bundle header"); |
| for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { |
| if (MII->getDesc().getFlags() & Mask) { |
| if (Type == AnyInBundle) |
| return true; |
| } else { |
| if (Type == AllInBundle && !MII->isBundle()) |
| return false; |
| } |
| // This was the last instruction in the bundle. |
| if (!MII->isBundledWithSucc()) |
| return Type == AllInBundle; |
| } |
| } |
| |
| bool MachineInstr::isIdenticalTo(const MachineInstr &Other, |
| MICheckType Check) const { |
| // If opcodes or number of operands are not the same then the two |
| // instructions are obviously not identical. |
| if (Other.getOpcode() != getOpcode() || |
| Other.getNumOperands() != getNumOperands()) |
| return false; |
| |
| if (isBundle()) { |
| // We have passed the test above that both instructions have the same |
| // opcode, so we know that both instructions are bundles here. Let's compare |
| // MIs inside the bundle. |
| assert(Other.isBundle() && "Expected that both instructions are bundles."); |
| MachineBasicBlock::const_instr_iterator I1 = getIterator(); |
| MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); |
| // Loop until we analysed the last intruction inside at least one of the |
| // bundles. |
| while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { |
| ++I1; |
| ++I2; |
| if (!I1->isIdenticalTo(*I2, Check)) |
| return false; |
| } |
| // If we've reached the end of just one of the two bundles, but not both, |
| // the instructions are not identical. |
| if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) |
| return false; |
| } |
| |
| // Check operands to make sure they match. |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| const MachineOperand &OMO = Other.getOperand(i); |
| if (!MO.isReg()) { |
| if (!MO.isIdenticalTo(OMO)) |
| return false; |
| continue; |
| } |
| |
| // Clients may or may not want to ignore defs when testing for equality. |
| // For example, machine CSE pass only cares about finding common |
| // subexpressions, so it's safe to ignore virtual register defs. |
| if (MO.isDef()) { |
| if (Check == IgnoreDefs) |
| continue; |
| else if (Check == IgnoreVRegDefs) { |
| if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) || |
| !TargetRegisterInfo::isVirtualRegister(OMO.getReg())) |
| if (!MO.isIdenticalTo(OMO)) |
| return false; |
| } else { |
| if (!MO.isIdenticalTo(OMO)) |
| return false; |
| if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) |
| return false; |
| } |
| } else { |
| if (!MO.isIdenticalTo(OMO)) |
| return false; |
| if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) |
| return false; |
| } |
| } |
| // If DebugLoc does not match then two debug instructions are not identical. |
| if (isDebugInstr()) |
| if (getDebugLoc() && Other.getDebugLoc() && |
| getDebugLoc() != Other.getDebugLoc()) |
| return false; |
| return true; |
| } |
| |
| const MachineFunction *MachineInstr::getMF() const { |
| return getParent()->getParent(); |
| } |
| |
| MachineInstr *MachineInstr::removeFromParent() { |
| assert(getParent() && "Not embedded in a basic block!"); |
| return getParent()->remove(this); |
| } |
| |
| MachineInstr *MachineInstr::removeFromBundle() { |
| assert(getParent() && "Not embedded in a basic block!"); |
| return getParent()->remove_instr(this); |
| } |
| |
| void MachineInstr::eraseFromParent() { |
| assert(getParent() && "Not embedded in a basic block!"); |
| getParent()->erase(this); |
| } |
| |
| void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { |
| assert(getParent() && "Not embedded in a basic block!"); |
| MachineBasicBlock *MBB = getParent(); |
| MachineFunction *MF = MBB->getParent(); |
| assert(MF && "Not embedded in a function!"); |
| |
| MachineInstr *MI = (MachineInstr *)this; |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| for (const MachineOperand &MO : MI->operands()) { |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| continue; |
| MRI.markUsesInDebugValueAsUndef(Reg); |
| } |
| MI->eraseFromParent(); |
| } |
| |
| void MachineInstr::eraseFromBundle() { |
| assert(getParent() && "Not embedded in a basic block!"); |
| getParent()->erase_instr(this); |
| } |
| |
| unsigned MachineInstr::getNumExplicitOperands() const { |
| unsigned NumOperands = MCID->getNumOperands(); |
| if (!MCID->isVariadic()) |
| return NumOperands; |
| |
| for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { |
| const MachineOperand &MO = getOperand(I); |
| // The operands must always be in the following order: |
| // - explicit reg defs, |
| // - other explicit operands (reg uses, immediates, etc.), |
| // - implicit reg defs |
| // - implicit reg uses |
| if (MO.isReg() && MO.isImplicit()) |
| break; |
| ++NumOperands; |
| } |
| return NumOperands; |
| } |
| |
| unsigned MachineInstr::getNumExplicitDefs() const { |
| unsigned NumDefs = MCID->getNumDefs(); |
| if (!MCID->isVariadic()) |
| return NumDefs; |
| |
| for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { |
| const MachineOperand &MO = getOperand(I); |
| if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) |
| break; |
| ++NumDefs; |
| } |
| return NumDefs; |
| } |
| |
| void MachineInstr::bundleWithPred() { |
| assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); |
| setFlag(BundledPred); |
| MachineBasicBlock::instr_iterator Pred = getIterator(); |
| --Pred; |
| assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); |
| Pred->setFlag(BundledSucc); |
| } |
| |
| void MachineInstr::bundleWithSucc() { |
| assert(!isBundledWithSucc() && "MI is already bundled with its successor"); |
| setFlag(BundledSucc); |
| MachineBasicBlock::instr_iterator Succ = getIterator(); |
| ++Succ; |
| assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); |
| Succ->setFlag(BundledPred); |
| } |
| |
| void MachineInstr::unbundleFromPred() { |
| assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); |
| clearFlag(BundledPred); |
| MachineBasicBlock::instr_iterator Pred = getIterator(); |
| --Pred; |
| assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); |
| Pred->clearFlag(BundledSucc); |
| } |
| |
| void MachineInstr::unbundleFromSucc() { |
| assert(isBundledWithSucc() && "MI isn't bundled with its successor"); |
| clearFlag(BundledSucc); |
| MachineBasicBlock::instr_iterator Succ = getIterator(); |
| ++Succ; |
| assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); |
| Succ->clearFlag(BundledPred); |
| } |
| |
| bool MachineInstr::isStackAligningInlineAsm() const { |
| if (isInlineAsm()) { |
| unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
| if (ExtraInfo & InlineAsm::Extra_IsAlignStack) |
| return true; |
| } |
| return false; |
| } |
| |
| InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { |
| assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); |
| unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
| return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); |
| } |
| |
| int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, |
| unsigned *GroupNo) const { |
| assert(isInlineAsm() && "Expected an inline asm instruction"); |
| assert(OpIdx < getNumOperands() && "OpIdx out of range"); |
| |
| // Ignore queries about the initial operands. |
| if (OpIdx < InlineAsm::MIOp_FirstOperand) |
| return -1; |
| |
| unsigned Group = 0; |
| unsigned NumOps; |
| for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; |
| i += NumOps) { |
| const MachineOperand &FlagMO = getOperand(i); |
| // If we reach the implicit register operands, stop looking. |
| if (!FlagMO.isImm()) |
| return -1; |
| NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); |
| if (i + NumOps > OpIdx) { |
| if (GroupNo) |
| *GroupNo = Group; |
| return i; |
| } |
| ++Group; |
| } |
| return -1; |
| } |
| |
| const DILabel *MachineInstr::getDebugLabel() const { |
| assert(isDebugLabel() && "not a DBG_LABEL"); |
| return cast<DILabel>(getOperand(0).getMetadata()); |
| } |
| |
| const DILocalVariable *MachineInstr::getDebugVariable() const { |
| assert(isDebugValue() && "not a DBG_VALUE"); |
| return cast<DILocalVariable>(getOperand(2).getMetadata()); |
| } |
| |
| const DIExpression *MachineInstr::getDebugExpression() const { |
| assert(isDebugValue() && "not a DBG_VALUE"); |
| return cast<DIExpression>(getOperand(3).getMetadata()); |
| } |
| |
| const TargetRegisterClass* |
| MachineInstr::getRegClassConstraint(unsigned OpIdx, |
| const TargetInstrInfo *TII, |
| const TargetRegisterInfo *TRI) const { |
| assert(getParent() && "Can't have an MBB reference here!"); |
| assert(getMF() && "Can't have an MF reference here!"); |
| const MachineFunction &MF = *getMF(); |
| |
| // Most opcodes have fixed constraints in their MCInstrDesc. |
| if (!isInlineAsm()) |
| return TII->getRegClass(getDesc(), OpIdx, TRI, MF); |
| |
| if (!getOperand(OpIdx).isReg()) |
| return nullptr; |
| |
| // For tied uses on inline asm, get the constraint from the def. |
| unsigned DefIdx; |
| if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) |
| OpIdx = DefIdx; |
| |
| // Inline asm stores register class constraints in the flag word. |
| int FlagIdx = findInlineAsmFlagIdx(OpIdx); |
| if (FlagIdx < 0) |
| return nullptr; |
| |
| unsigned Flag = getOperand(FlagIdx).getImm(); |
| unsigned RCID; |
| if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || |
| InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || |
| InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && |
| InlineAsm::hasRegClassConstraint(Flag, RCID)) |
| return TRI->getRegClass(RCID); |
| |
| // Assume that all registers in a memory operand are pointers. |
| if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) |
| return TRI->getPointerRegClass(MF); |
| |
| return nullptr; |
| } |
| |
| const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( |
| unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, |
| const TargetRegisterInfo *TRI, bool ExploreBundle) const { |
| // Check every operands inside the bundle if we have |
| // been asked to. |
| if (ExploreBundle) |
| for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; |
| ++OpndIt) |
| CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( |
| OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); |
| else |
| // Otherwise, just check the current operands. |
| for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) |
| CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); |
| return CurRC; |
| } |
| |
| const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( |
| unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, |
| const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { |
| assert(CurRC && "Invalid initial register class"); |
| // Check if Reg is constrained by some of its use/def from MI. |
| const MachineOperand &MO = getOperand(OpIdx); |
| if (!MO.isReg() || MO.getReg() != Reg) |
| return CurRC; |
| // If yes, accumulate the constraints through the operand. |
| return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); |
| } |
| |
| const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( |
| unsigned OpIdx, const TargetRegisterClass *CurRC, |
| const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { |
| const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); |
| const MachineOperand &MO = getOperand(OpIdx); |
| assert(MO.isReg() && |
| "Cannot get register constraints for non-register operand"); |
| assert(CurRC && "Invalid initial register class"); |
| if (unsigned SubIdx = MO.getSubReg()) { |
| if (OpRC) |
| CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); |
| else |
| CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); |
| } else if (OpRC) |
| CurRC = TRI->getCommonSubClass(CurRC, OpRC); |
| return CurRC; |
| } |
| |
| /// Return the number of instructions inside the MI bundle, not counting the |
| /// header instruction. |
| unsigned MachineInstr::getBundleSize() const { |
| MachineBasicBlock::const_instr_iterator I = getIterator(); |
| unsigned Size = 0; |
| while (I->isBundledWithSucc()) { |
| ++Size; |
| ++I; |
| } |
| return Size; |
| } |
| |
| /// Returns true if the MachineInstr has an implicit-use operand of exactly |
| /// the given register (not considering sub/super-registers). |
| bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) |
| return true; |
| } |
| return false; |
| } |
| |
| /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of |
| /// the specific register or -1 if it is not found. It further tightens |
| /// the search criteria to a use that kills the register if isKill is true. |
| int MachineInstr::findRegisterUseOperandIdx( |
| unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (!MOReg) |
| continue; |
| if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && |
| TargetRegisterInfo::isPhysicalRegister(Reg) && |
| TRI->isSubRegister(MOReg, Reg))) |
| if (!isKill || MO.isKill()) |
| return i; |
| } |
| return -1; |
| } |
| |
| /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) |
| /// indicating if this instruction reads or writes Reg. This also considers |
| /// partial defines. |
| std::pair<bool,bool> |
| MachineInstr::readsWritesVirtualRegister(unsigned Reg, |
| SmallVectorImpl<unsigned> *Ops) const { |
| bool PartDef = false; // Partial redefine. |
| bool FullDef = false; // Full define. |
| bool Use = false; |
| |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || MO.getReg() != Reg) |
| continue; |
| if (Ops) |
| Ops->push_back(i); |
| if (MO.isUse()) |
| Use |= !MO.isUndef(); |
| else if (MO.getSubReg() && !MO.isUndef()) |
| // A partial def undef doesn't count as reading the register. |
| PartDef = true; |
| else |
| FullDef = true; |
| } |
| // A partial redefine uses Reg unless there is also a full define. |
| return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); |
| } |
| |
| /// findRegisterDefOperandIdx() - Returns the operand index that is a def of |
| /// the specified register or -1 if it is not found. If isDead is true, defs |
| /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it |
| /// also checks if there is a def of a super-register. |
| int |
| MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, |
| const TargetRegisterInfo *TRI) const { |
| bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| // Accept regmask operands when Overlap is set. |
| // Ignore them when looking for a specific def operand (Overlap == false). |
| if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) |
| return i; |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| bool Found = (MOReg == Reg); |
| if (!Found && TRI && isPhys && |
| TargetRegisterInfo::isPhysicalRegister(MOReg)) { |
| if (Overlap) |
| Found = TRI->regsOverlap(MOReg, Reg); |
| else |
| Found = TRI->isSubRegister(MOReg, Reg); |
| } |
| if (Found && (!isDead || MO.isDead())) |
| return i; |
| } |
| return -1; |
| } |
| |
| /// findFirstPredOperandIdx() - Find the index of the first operand in the |
| /// operand list that is used to represent the predicate. It returns -1 if |
| /// none is found. |
| int MachineInstr::findFirstPredOperandIdx() const { |
| // Don't call MCID.findFirstPredOperandIdx() because this variant |
| // is sometimes called on an instruction that's not yet complete, and |
| // so the number of operands is less than the MCID indicates. In |
| // particular, the PTX target does this. |
| const MCInstrDesc &MCID = getDesc(); |
| if (MCID.isPredicable()) { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (MCID.OpInfo[i].isPredicate()) |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| // MachineOperand::TiedTo is 4 bits wide. |
| const unsigned TiedMax = 15; |
| |
| /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. |
| /// |
| /// Use and def operands can be tied together, indicated by a non-zero TiedTo |
| /// field. TiedTo can have these values: |
| /// |
| /// 0: Operand is not tied to anything. |
| /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). |
| /// TiedMax: Tied to an operand >= TiedMax-1. |
| /// |
| /// The tied def must be one of the first TiedMax operands on a normal |
| /// instruction. INLINEASM instructions allow more tied defs. |
| /// |
| void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { |
| MachineOperand &DefMO = getOperand(DefIdx); |
| MachineOperand &UseMO = getOperand(UseIdx); |
| assert(DefMO.isDef() && "DefIdx must be a def operand"); |
| assert(UseMO.isUse() && "UseIdx must be a use operand"); |
| assert(!DefMO.isTied() && "Def is already tied to another use"); |
| assert(!UseMO.isTied() && "Use is already tied to another def"); |
| |
| if (DefIdx < TiedMax) |
| UseMO.TiedTo = DefIdx + 1; |
| else { |
| // Inline asm can use the group descriptors to find tied operands, but on |
| // normal instruction, the tied def must be within the first TiedMax |
| // operands. |
| assert(isInlineAsm() && "DefIdx out of range"); |
| UseMO.TiedTo = TiedMax; |
| } |
| |
| // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). |
| DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); |
| } |
| |
| /// Given the index of a tied register operand, find the operand it is tied to. |
| /// Defs are tied to uses and vice versa. Returns the index of the tied operand |
| /// which must exist. |
| unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { |
| const MachineOperand &MO = getOperand(OpIdx); |
| assert(MO.isTied() && "Operand isn't tied"); |
| |
| // Normally TiedTo is in range. |
| if (MO.TiedTo < TiedMax) |
| return MO.TiedTo - 1; |
| |
| // Uses on normal instructions can be out of range. |
| if (!isInlineAsm()) { |
| // Normal tied defs must be in the 0..TiedMax-1 range. |
| if (MO.isUse()) |
| return TiedMax - 1; |
| // MO is a def. Search for the tied use. |
| for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &UseMO = getOperand(i); |
| if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) |
| return i; |
| } |
| llvm_unreachable("Can't find tied use"); |
| } |
| |
| // Now deal with inline asm by parsing the operand group descriptor flags. |
| // Find the beginning of each operand group. |
| SmallVector<unsigned, 8> GroupIdx; |
| unsigned OpIdxGroup = ~0u; |
| unsigned NumOps; |
| for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; |
| i += NumOps) { |
| const MachineOperand &FlagMO = getOperand(i); |
| assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); |
| unsigned CurGroup = GroupIdx.size(); |
| GroupIdx.push_back(i); |
| NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); |
| // OpIdx belongs to this operand group. |
| if (OpIdx > i && OpIdx < i + NumOps) |
| OpIdxGroup = CurGroup; |
| unsigned TiedGroup; |
| if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) |
| continue; |
| // Operands in this group are tied to operands in TiedGroup which must be |
| // earlier. Find the number of operands between the two groups. |
| unsigned Delta = i - GroupIdx[TiedGroup]; |
| |
| // OpIdx is a use tied to TiedGroup. |
| if (OpIdxGroup == CurGroup) |
| return OpIdx - Delta; |
| |
| // OpIdx is a def tied to this use group. |
| if (OpIdxGroup == TiedGroup) |
| return OpIdx + Delta; |
| } |
| llvm_unreachable("Invalid tied operand on inline asm"); |
| } |
| |
| /// clearKillInfo - Clears kill flags on all operands. |
| /// |
| void MachineInstr::clearKillInfo() { |
| for (MachineOperand &MO : operands()) { |
| if (MO.isReg() && MO.isUse()) |
| MO.setIsKill(false); |
| } |
| } |
| |
| void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg, |
| unsigned SubIdx, |
| const TargetRegisterInfo &RegInfo) { |
| if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { |
| if (SubIdx) |
| ToReg = RegInfo.getSubReg(ToReg, SubIdx); |
| for (MachineOperand &MO : operands()) { |
| if (!MO.isReg() || MO.getReg() != FromReg) |
| continue; |
| MO.substPhysReg(ToReg, RegInfo); |
| } |
| } else { |
| for (MachineOperand &MO : operands()) { |
| if (!MO.isReg() || MO.getReg() != FromReg) |
| continue; |
| MO.substVirtReg(ToReg, SubIdx, RegInfo); |
| } |
| } |
| } |
| |
| /// isSafeToMove - Return true if it is safe to move this instruction. If |
| /// SawStore is set to true, it means that there is a store (or call) between |
| /// the instruction's location and its intended destination. |
| bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { |
| // Ignore stuff that we obviously can't move. |
| // |
| // Treat volatile loads as stores. This is not strictly necessary for |
| // volatiles, but it is required for atomic loads. It is not allowed to move |
| // a load across an atomic load with Ordering > Monotonic. |
| if (mayStore() || isCall() || isPHI() || |
| (mayLoad() && hasOrderedMemoryRef())) { |
| SawStore = true; |
| return false; |
| } |
| |
| if (isPosition() || isDebugInstr() || isTerminator() || |
| hasUnmodeledSideEffects()) |
| return false; |
| |
| // See if this instruction does a load. If so, we have to guarantee that the |
| // loaded value doesn't change between the load and the its intended |
| // destination. The check for isInvariantLoad gives the targe the chance to |
| // classify the load as always returning a constant, e.g. a constant pool |
| // load. |
| if (mayLoad() && !isDereferenceableInvariantLoad(AA)) |
| // Otherwise, this is a real load. If there is a store between the load and |
| // end of block, we can't move it. |
| return !SawStore; |
| |
| return true; |
| } |
| |
| bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, |
| bool UseTBAA) { |
| const MachineFunction *MF = getMF(); |
| const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| const MachineFrameInfo &MFI = MF->getFrameInfo(); |
| |
| // If neither instruction stores to memory, they can't alias in any |
| // meaningful way, even if they read from the same address. |
| if (!mayStore() && !Other.mayStore()) |
| return false; |
| |
| // Let the target decide if memory accesses cannot possibly overlap. |
| if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) |
| return false; |
| |
| // FIXME: Need to handle multiple memory operands to support all targets. |
| if (!hasOneMemOperand() || !Other.hasOneMemOperand()) |
| return true; |
| |
| MachineMemOperand *MMOa = *memoperands_begin(); |
| MachineMemOperand *MMOb = *Other.memoperands_begin(); |
| |
| // The following interface to AA is fashioned after DAGCombiner::isAlias |
| // and operates with MachineMemOperand offset with some important |
| // assumptions: |
| // - LLVM fundamentally assumes flat address spaces. |
| // - MachineOperand offset can *only* result from legalization and |
| // cannot affect queries other than the trivial case of overlap |
| // checking. |
| // - These offsets never wrap and never step outside |
| // of allocated objects. |
| // - There should never be any negative offsets here. |
| // |
| // FIXME: Modify API to hide this math from "user" |
| // Even before we go to AA we can reason locally about some |
| // memory objects. It can save compile time, and possibly catch some |
| // corner cases not currently covered. |
| |
| int64_t OffsetA = MMOa->getOffset(); |
| int64_t OffsetB = MMOb->getOffset(); |
| |
| int64_t MinOffset = std::min(OffsetA, OffsetB); |
| int64_t WidthA = MMOa->getSize(); |
| int64_t WidthB = MMOb->getSize(); |
| const Value *ValA = MMOa->getValue(); |
| const Value *ValB = MMOb->getValue(); |
| bool SameVal = (ValA && ValB && (ValA == ValB)); |
| if (!SameVal) { |
| const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); |
| const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); |
| if (PSVa && ValB && !PSVa->mayAlias(&MFI)) |
| return false; |
| if (PSVb && ValA && !PSVb->mayAlias(&MFI)) |
| return false; |
| if (PSVa && PSVb && (PSVa == PSVb)) |
| SameVal = true; |
| } |
| |
| if (SameVal) { |
| int64_t MaxOffset = std::max(OffsetA, OffsetB); |
| int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; |
| return (MinOffset + LowWidth > MaxOffset); |
| } |
| |
| if (!AA) |
| return true; |
| |
| if (!ValA || !ValB) |
| return true; |
| |
| assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); |
| assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); |
| |
| int64_t Overlapa = WidthA + OffsetA - MinOffset; |
| int64_t Overlapb = WidthB + OffsetB - MinOffset; |
| |
| AliasResult AAResult = AA->alias( |
| MemoryLocation(ValA, Overlapa, |
| UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), |
| MemoryLocation(ValB, Overlapb, |
| UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); |
| |
| return (AAResult != NoAlias); |
| } |
| |
| /// hasOrderedMemoryRef - Return true if this instruction may have an ordered |
| /// or volatile memory reference, or if the information describing the memory |
| /// reference is not available. Return false if it is known to have no ordered |
| /// memory references. |
| bool MachineInstr::hasOrderedMemoryRef() const { |
| // An instruction known never to access memory won't have a volatile access. |
| if (!mayStore() && |
| !mayLoad() && |
| !isCall() && |
| !hasUnmodeledSideEffects()) |
| return false; |
| |
| // Otherwise, if the instruction has no memory reference information, |
| // conservatively assume it wasn't preserved. |
| if (memoperands_empty()) |
| return true; |
| |
| // Check if any of our memory operands are ordered. |
| return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { |
| return !MMO->isUnordered(); |
| }); |
| } |
| |
| /// isDereferenceableInvariantLoad - Return true if this instruction will never |
| /// trap and is loading from a location whose value is invariant across a run of |
| /// this function. |
| bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { |
| // If the instruction doesn't load at all, it isn't an invariant load. |
| if (!mayLoad()) |
| return false; |
| |
| // If the instruction has lost its memoperands, conservatively assume that |
| // it may not be an invariant load. |
| if (memoperands_empty()) |
| return false; |
| |
| const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); |
| |
| for (MachineMemOperand *MMO : memoperands()) { |
| if (MMO->isVolatile()) return false; |
| if (MMO->isStore()) return false; |
| if (MMO->isInvariant() && MMO->isDereferenceable()) |
| continue; |
| |
| // A load from a constant PseudoSourceValue is invariant. |
| if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) |
| if (PSV->isConstant(&MFI)) |
| continue; |
| |
| if (const Value *V = MMO->getValue()) { |
| // If we have an AliasAnalysis, ask it whether the memory is constant. |
| if (AA && |
| AA->pointsToConstantMemory( |
| MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) |
| continue; |
| } |
| |
| // Otherwise assume conservatively. |
| return false; |
| } |
| |
| // Everything checks out. |
| return true; |
| } |
| |
| /// isConstantValuePHI - If the specified instruction is a PHI that always |
| /// merges together the same virtual register, return the register, otherwise |
| /// return 0. |
| unsigned MachineInstr::isConstantValuePHI() const { |
| if (!isPHI()) |
| return 0; |
| assert(getNumOperands() >= 3 && |
| "It's illegal to have a PHI without source operands"); |
| |
| unsigned Reg = getOperand(1).getReg(); |
| for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) |
| if (getOperand(i).getReg() != Reg) |
| return 0; |
| return Reg; |
| } |
| |
| bool MachineInstr::hasUnmodeledSideEffects() const { |
| if (hasProperty(MCID::UnmodeledSideEffects)) |
| return true; |
| if (isInlineAsm()) { |
| unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
| if (ExtraInfo & InlineAsm::Extra_HasSideEffects) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool MachineInstr::isLoadFoldBarrier() const { |
| return mayStore() || isCall() || hasUnmodeledSideEffects(); |
| } |
| |
| /// allDefsAreDead - Return true if all the defs of this instruction are dead. |
| /// |
| bool MachineInstr::allDefsAreDead() const { |
| for (const MachineOperand &MO : operands()) { |
| if (!MO.isReg() || MO.isUse()) |
| continue; |
| if (!MO.isDead()) |
| return false; |
| } |
| return true; |
| } |
| |
| /// copyImplicitOps - Copy implicit register operands from specified |
| /// instruction to this instruction. |
| void MachineInstr::copyImplicitOps(MachineFunction &MF, |
| const MachineInstr &MI) { |
| for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); |
| i != e; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) |
| addOperand(MF, MO); |
| } |
| } |
| |
| bool MachineInstr::hasComplexRegisterTies() const { |
| const MCInstrDesc &MCID = getDesc(); |
| for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { |
| const auto &Operand = getOperand(I); |
| if (!Operand.isReg() || Operand.isDef()) |
| // Ignore the defined registers as MCID marks only the uses as tied. |
| continue; |
| int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); |
| int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; |
| if (ExpectedTiedIdx != TiedIdx) |
| return true; |
| } |
| return false; |
| } |
| |
| LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, |
| const MachineRegisterInfo &MRI) const { |
| const MachineOperand &Op = getOperand(OpIdx); |
| if (!Op.isReg()) |
| return LLT{}; |
| |
| if (isVariadic() || OpIdx >= getNumExplicitOperands()) |
| return MRI.getType(Op.getReg()); |
| |
| auto &OpInfo = getDesc().OpInfo[OpIdx]; |
| if (!OpInfo.isGenericType()) |
| return MRI.getType(Op.getReg()); |
| |
| if (PrintedTypes[OpInfo.getGenericTypeIndex()]) |
| return LLT{}; |
| |
| LLT TypeToPrint = MRI.getType(Op.getReg()); |
| // Don't mark the type index printed if it wasn't actually printed: maybe |
| // another operand with the same type index has an actual type attached: |
| if (TypeToPrint.isValid()) |
| PrintedTypes.set(OpInfo.getGenericTypeIndex()); |
| return TypeToPrint; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void MachineInstr::dump() const { |
| dbgs() << " "; |
| print(dbgs()); |
| } |
| #endif |
| |
| void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, |
| bool SkipDebugLoc, bool AddNewLine, |
| const TargetInstrInfo *TII) const { |
| const Module *M = nullptr; |
| const Function *F = nullptr; |
| if (const MachineFunction *MF = getMFIfAvailable(*this)) { |
| F = &MF->getFunction(); |
| M = F->getParent(); |
| if (!TII) |
| TII = MF->getSubtarget().getInstrInfo(); |
| } |
| |
| ModuleSlotTracker MST(M); |
| if (F) |
| MST.incorporateFunction(*F); |
| print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, TII); |
| } |
| |
| void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, |
| bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, |
| bool AddNewLine, const TargetInstrInfo *TII) const { |
| // We can be a bit tidier if we know the MachineFunction. |
| const MachineFunction *MF = nullptr; |
| const TargetRegisterInfo *TRI = nullptr; |
| const MachineRegisterInfo *MRI = nullptr; |
| const TargetIntrinsicInfo *IntrinsicInfo = nullptr; |
| tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); |
| |
| if (isCFIInstruction()) |
| assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); |
| |
| SmallBitVector PrintedTypes(8); |
| bool ShouldPrintRegisterTies = hasComplexRegisterTies(); |
| auto getTiedOperandIdx = [&](unsigned OpIdx) { |
| if (!ShouldPrintRegisterTies) |
| return 0U; |
| const MachineOperand &MO = getOperand(OpIdx); |
| if (MO.isReg() && MO.isTied() && !MO.isDef()) |
| return findTiedOperandIdx(OpIdx); |
| return 0U; |
| }; |
| unsigned StartOp = 0; |
| unsigned e = getNumOperands(); |
| |
| // Print explicitly defined operands on the left of an assignment syntax. |
| while (StartOp < e) { |
| const MachineOperand &MO = getOperand(StartOp); |
| if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) |
| break; |
| |
| if (StartOp != 0) |
| OS << ", "; |
| |
| LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; |
| unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); |
| MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone, |
| ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); |
| ++StartOp; |
| } |
| |
| if (StartOp != 0) |
| OS << " = "; |
| |
| if (getFlag(MachineInstr::FrameSetup)) |
| OS << "frame-setup "; |
| if (getFlag(MachineInstr::FrameDestroy)) |
| OS << "frame-destroy "; |
| if (getFlag(MachineInstr::FmNoNans)) |
| OS << "nnan "; |
| if (getFlag(MachineInstr::FmNoInfs)) |
| OS << "ninf "; |
| if (getFlag(MachineInstr::FmNsz)) |
| OS << "nsz "; |
| if (getFlag(MachineInstr::FmArcp)) |
| OS << "arcp "; |
| if (getFlag(MachineInstr::FmContract)) |
| OS << "contract "; |
| if (getFlag(MachineInstr::FmAfn)) |
| OS << "afn "; |
| if (getFlag(MachineInstr::FmReassoc)) |
| OS << "reassoc "; |
| |
| // Print the opcode name. |
| if (TII) |
| OS << TII->getName(getOpcode()); |
| else |
| OS << "UNKNOWN"; |
| |
| if (SkipOpers) |
| return; |
| |
| // Print the rest of the operands. |
| bool FirstOp = true; |
| unsigned AsmDescOp = ~0u; |
| unsigned AsmOpCount = 0; |
| |
| if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { |
| // Print asm string. |
| OS << " "; |
| const unsigned OpIdx = InlineAsm::MIOp_AsmString; |
| LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; |
| unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); |
| getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, |
| ShouldPrintRegisterTies, TiedOperandIdx, TRI, |
| IntrinsicInfo); |
| |
| // Print HasSideEffects, MayLoad, MayStore, IsAlignStack |
| unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
| if (ExtraInfo & InlineAsm::Extra_HasSideEffects) |
| OS << " [sideeffect]"; |
| if (ExtraInfo & InlineAsm::Extra_MayLoad) |
| OS << " [mayload]"; |
| if (ExtraInfo & InlineAsm::Extra_MayStore) |
| OS << " [maystore]"; |
| if (ExtraInfo & InlineAsm::Extra_IsConvergent) |
| OS << " [isconvergent]"; |
| if (ExtraInfo & InlineAsm::Extra_IsAlignStack) |
| OS << " [alignstack]"; |
| if (getInlineAsmDialect() == InlineAsm::AD_ATT) |
| OS << " [attdialect]"; |
| if (getInlineAsmDialect() == InlineAsm::AD_Intel) |
| OS << " [inteldialect]"; |
| |
| StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; |
| FirstOp = false; |
| } |
| |
| for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| |
| if (FirstOp) FirstOp = false; else OS << ","; |
| OS << " "; |
| |
| if (isDebugValue() && MO.isMetadata()) { |
| // Pretty print DBG_VALUE instructions. |
| auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); |
| if (DIV && !DIV->getName().empty()) |
| OS << "!\"" << DIV->getName() << '\"'; |
| else { |
| LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; |
| unsigned TiedOperandIdx = getTiedOperandIdx(i); |
| MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, |
| ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); |
| } |
| } else if (isDebugLabel() && MO.isMetadata()) { |
| // Pretty print DBG_LABEL instructions. |
| auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); |
| if (DIL && !DIL->getName().empty()) |
| OS << "\"" << DIL->getName() << '\"'; |
| else { |
| LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; |
| unsigned TiedOperandIdx = getTiedOperandIdx(i); |
| MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, |
| ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); |
| } |
| } else if (i == AsmDescOp && MO.isImm()) { |
| // Pretty print the inline asm operand descriptor. |
| OS << '$' << AsmOpCount++; |
| unsigned Flag = MO.getImm(); |
| switch (InlineAsm::getKind(Flag)) { |
| case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; |
| case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; |
| case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; |
| case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; |
| case InlineAsm::Kind_Imm: OS << ":[imm"; break; |
| case InlineAsm::Kind_Mem: OS << ":[mem"; break; |
| default: OS << ":[??" << InlineAsm::getKind(Flag); break; |
| } |
| |
| unsigned RCID = 0; |
| if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && |
| InlineAsm::hasRegClassConstraint(Flag, RCID)) { |
| if (TRI) { |
| OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); |
| } else |
| OS << ":RC" << RCID; |
| } |
| |
| if (InlineAsm::isMemKind(Flag)) { |
| unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); |
| switch (MCID) { |
| case InlineAsm::Constraint_es: OS << ":es"; break; |
| case InlineAsm::Constraint_i: OS << ":i"; break; |
| case InlineAsm::Constraint_m: OS << ":m"; break; |
| case InlineAsm::Constraint_o: OS << ":o"; break; |
| case InlineAsm::Constraint_v: OS << ":v"; break; |
| case InlineAsm::Constraint_Q: OS << ":Q"; break; |
| case InlineAsm::Constraint_R: OS << ":R"; break; |
| case InlineAsm::Constraint_S: OS << ":S"; break; |
| case InlineAsm::Constraint_T: OS << ":T"; break; |
| case InlineAsm::Constraint_Um: OS << ":Um"; break; |
| case InlineAsm::Constraint_Un: OS << ":Un"; break; |
| case InlineAsm::Constraint_Uq: OS << ":Uq"; break; |
| case InlineAsm::Constraint_Us: OS << ":Us"; break; |
| case InlineAsm::Constraint_Ut: OS << ":Ut"; break; |
| case InlineAsm::Constraint_Uv: OS << ":Uv"; break; |
| case InlineAsm::Constraint_Uy: OS << ":Uy"; break; |
| case InlineAsm::Constraint_X: OS << ":X"; break; |
| case InlineAsm::Constraint_Z: OS << ":Z"; break; |
| case InlineAsm::Constraint_ZC: OS << ":ZC"; break; |
| case InlineAsm::Constraint_Zy: OS << ":Zy"; break; |
| default: OS << ":?"; break; |
| } |
| } |
| |
| unsigned TiedTo = 0; |
| if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) |
| OS << " tiedto:$" << TiedTo; |
| |
| OS << ']'; |
| |
| // Compute the index of the next operand descriptor. |
| AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); |
| } else { |
| LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; |
| unsigned TiedOperandIdx = getTiedOperandIdx(i); |
| if (MO.isImm() && isOperandSubregIdx(i)) |
| MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); |
| else |
| MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, |
| ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); |
| } |
| } |
| |
| if (!SkipDebugLoc) { |
| if (const DebugLoc &DL = getDebugLoc()) { |
| if (!FirstOp) |
| OS << ','; |
| OS << " debug-location "; |
| DL->printAsOperand(OS, MST); |
| } |
| } |
| |
| if (!memoperands_empty()) { |
| SmallVector<StringRef, 0> SSNs; |
| const LLVMContext *Context = nullptr; |
| std::unique_ptr<LLVMContext> CtxPtr; |
| const MachineFrameInfo *MFI = nullptr; |
| if (const MachineFunction *MF = getMFIfAvailable(*this)) { |
| MFI = &MF->getFrameInfo(); |
| Context = &MF->getFunction().getContext(); |
| } else { |
| CtxPtr = llvm::make_unique<LLVMContext>(); |
| Context = CtxPtr.get(); |
| } |
| |
| OS << " :: "; |
| bool NeedComma = false; |
| for (const MachineMemOperand *Op : memoperands()) { |
| if (NeedComma) |
| OS << ", "; |
| Op->print(OS, MST, SSNs, *Context, MFI, TII); |
| NeedComma = true; |
| } |
| } |
| |
| if (SkipDebugLoc) |
| return; |
| |
| bool HaveSemi = false; |
| |
| // Print debug location information. |
| if (const DebugLoc &DL = getDebugLoc()) { |
| if (!HaveSemi) { |
| OS << ';'; |
| HaveSemi = true; |
| } |
| OS << ' '; |
| DL.print(OS); |
| } |
| |
| // Print extra comments for DEBUG_VALUE. |
| if (isDebugValue() && getOperand(e - 2).isMetadata()) { |
| if (!HaveSemi) { |
| OS << ";"; |
| HaveSemi = true; |
| } |
| auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); |
| OS << " line no:" << DV->getLine(); |
| if (auto *InlinedAt = debugLoc->getInlinedAt()) { |
| DebugLoc InlinedAtDL(InlinedAt); |
| if (InlinedAtDL && MF) { |
| OS << " inlined @[ "; |
| InlinedAtDL.print(OS); |
| OS << " ]"; |
| } |
| } |
| if (isIndirectDebugValue()) |
| OS << " indirect"; |
| } |
| // TODO: DBG_LABEL |
| |
| if (AddNewLine) |
| OS << '\n'; |
| } |
| |
| bool MachineInstr::addRegisterKilled(unsigned IncomingReg, |
| const TargetRegisterInfo *RegInfo, |
| bool AddIfNotFound) { |
| bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); |
| bool hasAliases = isPhysReg && |
| MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); |
| bool Found = false; |
| SmallVector<unsigned,4> DeadOps; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isUse() || MO.isUndef()) |
| continue; |
| |
| // DEBUG_VALUE nodes do not contribute to code generation and should |
| // always be ignored. Failure to do so may result in trying to modify |
| // KILL flags on DEBUG_VALUE nodes. |
| if (MO.isDebug()) |
| continue; |
| |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| |
| if (Reg == IncomingReg) { |
| if (!Found) { |
| if (MO.isKill()) |
| // The register is already marked kill. |
| return true; |
| if (isPhysReg && isRegTiedToDefOperand(i)) |
| // Two-address uses of physregs must not be marked kill. |
| return true; |
| MO.setIsKill(); |
| Found = true; |
| } |
| } else if (hasAliases && MO.isKill() && |
| TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| // A super-register kill already exists. |
| if (RegInfo->isSuperRegister(IncomingReg, Reg)) |
| return true; |
| if (RegInfo->isSubRegister(IncomingReg, Reg)) |
| DeadOps.push_back(i); |
| } |
| } |
| |
| // Trim unneeded kill operands. |
| while (!DeadOps.empty()) { |
| unsigned OpIdx = DeadOps.back(); |
| if (getOperand(OpIdx).isImplicit()) |
| RemoveOperand(OpIdx); |
| else |
| getOperand(OpIdx).setIsKill(false); |
| DeadOps.pop_back(); |
| } |
| |
| // If not found, this means an alias of one of the operands is killed. Add a |
| // new implicit operand if required. |
| if (!Found && AddIfNotFound) { |
| addOperand(MachineOperand::CreateReg(IncomingReg, |
| false /*IsDef*/, |
| true /*IsImp*/, |
| true /*IsKill*/)); |
| return true; |
| } |
| return Found; |
| } |
| |
| void MachineInstr::clearRegisterKills(unsigned Reg, |
| const TargetRegisterInfo *RegInfo) { |
| if (!TargetRegisterInfo::isPhysicalRegister(Reg)) |
| RegInfo = nullptr; |
| for (MachineOperand &MO : operands()) { |
| if (!MO.isReg() || !MO.isUse() || !MO.isKill()) |
| continue; |
| unsigned OpReg = MO.getReg(); |
| if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) |
| MO.setIsKill(false); |
| } |
| } |
| |
| bool MachineInstr::addRegisterDead(unsigned Reg, |
| const TargetRegisterInfo *RegInfo, |
| bool AddIfNotFound) { |
| bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); |
| bool hasAliases = isPhysReg && |
| MCRegAliasIterator(Reg, RegInfo, false).isValid(); |
| bool Found = false; |
| SmallVector<unsigned,4> DeadOps; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (!MOReg) |
| continue; |
| |
| if (MOReg == Reg) { |
| MO.setIsDead(); |
| Found = true; |
| } else if (hasAliases && MO.isDead() && |
| TargetRegisterInfo::isPhysicalRegister(MOReg)) { |
| // There exists a super-register that's marked dead. |
| if (RegInfo->isSuperRegister(Reg, MOReg)) |
| return true; |
| if (RegInfo->isSubRegister(Reg, MOReg)) |
| DeadOps.push_back(i); |
| } |
| } |
| |
| // Trim unneeded dead operands. |
| while (!DeadOps.empty()) { |
| unsigned OpIdx = DeadOps.back(); |
| if (getOperand(OpIdx).isImplicit()) |
| RemoveOperand(OpIdx); |
| else |
| getOperand(OpIdx).setIsDead(false); |
| DeadOps.pop_back(); |
| } |
| |
| // If not found, this means an alias of one of the operands is dead. Add a |
| // new implicit operand if required. |
| if (Found || !AddIfNotFound) |
| return Found; |
| |
| addOperand(MachineOperand::CreateReg(Reg, |
| true /*IsDef*/, |
| true /*IsImp*/, |
| false /*IsKill*/, |
| true /*IsDead*/)); |
| return true; |
| } |
| |
| void MachineInstr::clearRegisterDeads(unsigned Reg) { |
| for (MachineOperand &MO : operands()) { |
| if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) |
| continue; |
| MO.setIsDead(false); |
| } |
| } |
| |
| void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { |
| for (MachineOperand &MO : operands()) { |
| if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) |
| continue; |
| MO.setIsUndef(IsUndef); |
| } |
| } |
| |
| void MachineInstr::addRegisterDefined(unsigned Reg, |
| const TargetRegisterInfo *RegInfo) { |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); |
| if (MO) |
| return; |
| } else { |
| for (const MachineOperand &MO : operands()) { |
| if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && |
| MO.getSubReg() == 0) |
| return; |
| } |
| } |
| addOperand(MachineOperand::CreateReg(Reg, |
| true /*IsDef*/, |
| true /*IsImp*/)); |
| } |
| |
| void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, |
| const TargetRegisterInfo &TRI) { |
| bool HasRegMask = false; |
| for (MachineOperand &MO : operands()) { |
| if (MO.isRegMask()) { |
| HasRegMask = true; |
| continue; |
| } |
| if (!MO.isReg() || !MO.isDef()) continue; |
| unsigned Reg = MO.getReg(); |
| if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; |
| // If there are no uses, including partial uses, the def is dead. |
| if (llvm::none_of(UsedRegs, |
| [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) |
| MO.setIsDead(); |
| } |
| |
| // This is a call with a register mask operand. |
| // Mask clobbers are always dead, so add defs for the non-dead defines. |
| if (HasRegMask) |
| for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); |
| I != E; ++I) |
| addRegisterDefined(*I, &TRI); |
| } |
| |
| unsigned |
| MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { |
| // Build up a buffer of hash code components. |
| SmallVector<size_t, 8> HashComponents; |
| HashComponents.reserve(MI->getNumOperands() + 1); |
| HashComponents.push_back(MI->getOpcode()); |
| for (const MachineOperand &MO : MI->operands()) { |
| if (MO.isReg() && MO.isDef() && |
| TargetRegisterInfo::isVirtualRegister(MO.getReg())) |
| continue; // Skip virtual register defs. |
| |
| HashComponents.push_back(hash_value(MO)); |
| } |
| return hash_combine_range(HashComponents.begin(), HashComponents.end()); |
| } |
| |
| void MachineInstr::emitError(StringRef Msg) const { |
| // Find the source location cookie. |
| unsigned LocCookie = 0; |
| const MDNode *LocMD = nullptr; |
| for (unsigned i = getNumOperands(); i != 0; --i) { |
| if (getOperand(i-1).isMetadata() && |
| (LocMD = getOperand(i-1).getMetadata()) && |
| LocMD->getNumOperands() != 0) { |
| if (const ConstantInt *CI = |
| mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { |
| LocCookie = CI->getZExtValue(); |
| break; |
| } |
| } |
| } |
| |
| if (const MachineBasicBlock *MBB = getParent()) |
| if (const MachineFunction *MF = MBB->getParent()) |
| return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); |
| report_fatal_error(Msg); |
| } |
| |
| MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, |
| const MCInstrDesc &MCID, bool IsIndirect, |
| unsigned Reg, const MDNode *Variable, |
| const MDNode *Expr) { |
| assert(isa<DILocalVariable>(Variable) && "not a variable"); |
| assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); |
| assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && |
| "Expected inlined-at fields to agree"); |
| auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); |
| if (IsIndirect) |
| MIB.addImm(0U); |
| else |
| MIB.addReg(0U, RegState::Debug); |
| return MIB.addMetadata(Variable).addMetadata(Expr); |
| } |
| |
| MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, |
| const MCInstrDesc &MCID, bool IsIndirect, |
| MachineOperand &MO, const MDNode *Variable, |
| const MDNode *Expr) { |
| assert(isa<DILocalVariable>(Variable) && "not a variable"); |
| assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); |
| assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && |
| "Expected inlined-at fields to agree"); |
| if (MO.isReg()) |
| return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); |
| |
| auto MIB = BuildMI(MF, DL, MCID).add(MO); |
| if (IsIndirect) |
| MIB.addImm(0U); |
| else |
| MIB.addReg(0U, RegState::Debug); |
| return MIB.addMetadata(Variable).addMetadata(Expr); |
| } |
| |
| MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, |
| MachineBasicBlock::iterator I, |
| const DebugLoc &DL, const MCInstrDesc &MCID, |
| bool IsIndirect, unsigned Reg, |
| const MDNode *Variable, const MDNode *Expr) { |
| MachineFunction &MF = *BB.getParent(); |
| MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); |
| BB.insert(I, MI); |
| return MachineInstrBuilder(MF, MI); |
| } |
| |
| MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, |
| MachineBasicBlock::iterator I, |
| const DebugLoc &DL, const MCInstrDesc &MCID, |
| bool IsIndirect, MachineOperand &MO, |
| const MDNode *Variable, const MDNode *Expr) { |
| MachineFunction &MF = *BB.getParent(); |
| MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); |
| BB.insert(I, MI); |
| return MachineInstrBuilder(MF, *MI); |
| } |
| |
| /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. |
| /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. |
| static const DIExpression *computeExprForSpill(const MachineInstr &MI) { |
| assert(MI.getOperand(0).isReg() && "can't spill non-register"); |
| assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && |
| "Expected inlined-at fields to agree"); |
| |
| const DIExpression *Expr = MI.getDebugExpression(); |
| if (MI.isIndirectDebugValue()) { |
| assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); |
| Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); |
| } |
| return Expr; |
| } |
| |
| MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, |
| MachineBasicBlock::iterator I, |
| const MachineInstr &Orig, |
| int FrameIndex) { |
| const DIExpression *Expr = computeExprForSpill(Orig); |
| return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) |
| .addFrameIndex(FrameIndex) |
| .addImm(0U) |
| .addMetadata(Orig.getDebugVariable()) |
| .addMetadata(Expr); |
| } |
| |
| void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { |
| const DIExpression *Expr = computeExprForSpill(Orig); |
| Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); |
| Orig.getOperand(1).ChangeToImmediate(0U); |
| Orig.getOperand(3).setMetadata(Expr); |
| } |