| //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass performs global common subexpression elimination on machine |
| // instructions using a scoped hash table based value numbering scheme. It |
| // must be run while the machine function is still in SSA form. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/ScopedHashTable.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/RecyclingAllocator.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <iterator> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "machine-cse" |
| |
| STATISTIC(NumCoalesces, "Number of copies coalesced"); |
| STATISTIC(NumCSEs, "Number of common subexpression eliminated"); |
| STATISTIC(NumPhysCSEs, |
| "Number of physreg referencing common subexpr eliminated"); |
| STATISTIC(NumCrossBBCSEs, |
| "Number of cross-MBB physreg referencing CS eliminated"); |
| STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); |
| |
| namespace { |
| |
| class MachineCSE : public MachineFunctionPass { |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| AliasAnalysis *AA; |
| MachineDominatorTree *DT; |
| MachineRegisterInfo *MRI; |
| |
| public: |
| static char ID; // Pass identification |
| |
| MachineCSE() : MachineFunctionPass(ID) { |
| initializeMachineCSEPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addPreservedID(MachineLoopInfoID); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| } |
| |
| void releaseMemory() override { |
| ScopeMap.clear(); |
| Exps.clear(); |
| } |
| |
| private: |
| using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, |
| ScopedHashTableVal<MachineInstr *, unsigned>>; |
| using ScopedHTType = |
| ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, |
| AllocatorTy>; |
| using ScopeType = ScopedHTType::ScopeTy; |
| |
| unsigned LookAheadLimit = 0; |
| DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; |
| ScopedHTType VNT; |
| SmallVector<MachineInstr *, 64> Exps; |
| unsigned CurrVN = 0; |
| |
| bool PerformTrivialCopyPropagation(MachineInstr *MI, |
| MachineBasicBlock *MBB); |
| bool isPhysDefTriviallyDead(unsigned Reg, |
| MachineBasicBlock::const_iterator I, |
| MachineBasicBlock::const_iterator E) const; |
| bool hasLivePhysRegDefUses(const MachineInstr *MI, |
| const MachineBasicBlock *MBB, |
| SmallSet<unsigned,8> &PhysRefs, |
| SmallVectorImpl<unsigned> &PhysDefs, |
| bool &PhysUseDef) const; |
| bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, |
| SmallSet<unsigned,8> &PhysRefs, |
| SmallVectorImpl<unsigned> &PhysDefs, |
| bool &NonLocal) const; |
| bool isCSECandidate(MachineInstr *MI); |
| bool isProfitableToCSE(unsigned CSReg, unsigned Reg, |
| MachineInstr *CSMI, MachineInstr *MI); |
| void EnterScope(MachineBasicBlock *MBB); |
| void ExitScope(MachineBasicBlock *MBB); |
| bool ProcessBlock(MachineBasicBlock *MBB); |
| void ExitScopeIfDone(MachineDomTreeNode *Node, |
| DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); |
| bool PerformCSE(MachineDomTreeNode *Node); |
| }; |
| |
| } // end anonymous namespace |
| |
| char MachineCSE::ID = 0; |
| |
| char &llvm::MachineCSEID = MachineCSE::ID; |
| |
| INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, |
| "Machine Common Subexpression Elimination", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, |
| "Machine Common Subexpression Elimination", false, false) |
| |
| /// The source register of a COPY machine instruction can be propagated to all |
| /// its users, and this propagation could increase the probability of finding |
| /// common subexpressions. If the COPY has only one user, the COPY itself can |
| /// be removed. |
| bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, |
| MachineBasicBlock *MBB) { |
| bool Changed = false; |
| for (MachineOperand &MO : MI->operands()) { |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| continue; |
| bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); |
| MachineInstr *DefMI = MRI->getVRegDef(Reg); |
| if (!DefMI->isCopy()) |
| continue; |
| unsigned SrcReg = DefMI->getOperand(1).getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) |
| continue; |
| if (DefMI->getOperand(0).getSubReg()) |
| continue; |
| // FIXME: We should trivially coalesce subregister copies to expose CSE |
| // opportunities on instructions with truncated operands (see |
| // cse-add-with-overflow.ll). This can be done here as follows: |
| // if (SrcSubReg) |
| // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, |
| // SrcSubReg); |
| // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); |
| // |
| // The 2-addr pass has been updated to handle coalesced subregs. However, |
| // some machine-specific code still can't handle it. |
| // To handle it properly we also need a way find a constrained subregister |
| // class given a super-reg class and subreg index. |
| if (DefMI->getOperand(1).getSubReg()) |
| continue; |
| if (!MRI->constrainRegAttrs(SrcReg, Reg)) |
| continue; |
| LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); |
| LLVM_DEBUG(dbgs() << "*** to: " << *MI); |
| // Propagate SrcReg of copies to MI. |
| MO.setReg(SrcReg); |
| MRI->clearKillFlags(SrcReg); |
| // Coalesce single use copies. |
| if (OnlyOneUse) { |
| DefMI->eraseFromParent(); |
| ++NumCoalesces; |
| } |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| bool |
| MachineCSE::isPhysDefTriviallyDead(unsigned Reg, |
| MachineBasicBlock::const_iterator I, |
| MachineBasicBlock::const_iterator E) const { |
| unsigned LookAheadLeft = LookAheadLimit; |
| while (LookAheadLeft) { |
| // Skip over dbg_value's. |
| I = skipDebugInstructionsForward(I, E); |
| |
| if (I == E) |
| // Reached end of block, we don't know if register is dead or not. |
| return false; |
| |
| bool SeenDef = false; |
| for (const MachineOperand &MO : I->operands()) { |
| if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) |
| SeenDef = true; |
| if (!MO.isReg() || !MO.getReg()) |
| continue; |
| if (!TRI->regsOverlap(MO.getReg(), Reg)) |
| continue; |
| if (MO.isUse()) |
| // Found a use! |
| return false; |
| SeenDef = true; |
| } |
| if (SeenDef) |
| // See a def of Reg (or an alias) before encountering any use, it's |
| // trivially dead. |
| return true; |
| |
| --LookAheadLeft; |
| ++I; |
| } |
| return false; |
| } |
| |
| /// hasLivePhysRegDefUses - Return true if the specified instruction read/write |
| /// physical registers (except for dead defs of physical registers). It also |
| /// returns the physical register def by reference if it's the only one and the |
| /// instruction does not uses a physical register. |
| bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, |
| const MachineBasicBlock *MBB, |
| SmallSet<unsigned,8> &PhysRefs, |
| SmallVectorImpl<unsigned> &PhysDefs, |
| bool &PhysUseDef) const{ |
| // First, add all uses to PhysRefs. |
| for (const MachineOperand &MO : MI->operands()) { |
| if (!MO.isReg() || MO.isDef()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| continue; |
| // Reading either caller preserved or constant physregs is ok. |
| if (!MRI->isCallerPreservedOrConstPhysReg(Reg)) |
| for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) |
| PhysRefs.insert(*AI); |
| } |
| |
| // Next, collect all defs into PhysDefs. If any is already in PhysRefs |
| // (which currently contains only uses), set the PhysUseDef flag. |
| PhysUseDef = false; |
| MachineBasicBlock::const_iterator I = MI; I = std::next(I); |
| for (const MachineOperand &MO : MI->operands()) { |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| continue; |
| // Check against PhysRefs even if the def is "dead". |
| if (PhysRefs.count(Reg)) |
| PhysUseDef = true; |
| // If the def is dead, it's ok. But the def may not marked "dead". That's |
| // common since this pass is run before livevariables. We can scan |
| // forward a few instructions and check if it is obviously dead. |
| if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) |
| PhysDefs.push_back(Reg); |
| } |
| |
| // Finally, add all defs to PhysRefs as well. |
| for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) |
| for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI) |
| PhysRefs.insert(*AI); |
| |
| return !PhysRefs.empty(); |
| } |
| |
| bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, |
| SmallSet<unsigned,8> &PhysRefs, |
| SmallVectorImpl<unsigned> &PhysDefs, |
| bool &NonLocal) const { |
| // For now conservatively returns false if the common subexpression is |
| // not in the same basic block as the given instruction. The only exception |
| // is if the common subexpression is in the sole predecessor block. |
| const MachineBasicBlock *MBB = MI->getParent(); |
| const MachineBasicBlock *CSMBB = CSMI->getParent(); |
| |
| bool CrossMBB = false; |
| if (CSMBB != MBB) { |
| if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) |
| return false; |
| |
| for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { |
| if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i])) |
| // Avoid extending live range of physical registers if they are |
| //allocatable or reserved. |
| return false; |
| } |
| CrossMBB = true; |
| } |
| MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); |
| MachineBasicBlock::const_iterator E = MI; |
| MachineBasicBlock::const_iterator EE = CSMBB->end(); |
| unsigned LookAheadLeft = LookAheadLimit; |
| while (LookAheadLeft) { |
| // Skip over dbg_value's. |
| while (I != E && I != EE && I->isDebugInstr()) |
| ++I; |
| |
| if (I == EE) { |
| assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); |
| (void)CrossMBB; |
| CrossMBB = false; |
| NonLocal = true; |
| I = MBB->begin(); |
| EE = MBB->end(); |
| continue; |
| } |
| |
| if (I == E) |
| return true; |
| |
| for (const MachineOperand &MO : I->operands()) { |
| // RegMasks go on instructions like calls that clobber lots of physregs. |
| // Don't attempt to CSE across such an instruction. |
| if (MO.isRegMask()) |
| return false; |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(MOReg)) |
| continue; |
| if (PhysRefs.count(MOReg)) |
| return false; |
| } |
| |
| --LookAheadLeft; |
| ++I; |
| } |
| |
| return false; |
| } |
| |
| bool MachineCSE::isCSECandidate(MachineInstr *MI) { |
| if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || |
| MI->isInlineAsm() || MI->isDebugInstr()) |
| return false; |
| |
| // Ignore copies. |
| if (MI->isCopyLike()) |
| return false; |
| |
| // Ignore stuff that we obviously can't move. |
| if (MI->mayStore() || MI->isCall() || MI->isTerminator() || |
| MI->hasUnmodeledSideEffects()) |
| return false; |
| |
| if (MI->mayLoad()) { |
| // Okay, this instruction does a load. As a refinement, we allow the target |
| // to decide whether the loaded value is actually a constant. If so, we can |
| // actually use it as a load. |
| if (!MI->isDereferenceableInvariantLoad(AA)) |
| // FIXME: we should be able to hoist loads with no other side effects if |
| // there are no other instructions which can change memory in this loop. |
| // This is a trivial form of alias analysis. |
| return false; |
| } |
| |
| // Ignore stack guard loads, otherwise the register that holds CSEed value may |
| // be spilled and get loaded back with corrupted data. |
| if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) |
| return false; |
| |
| return true; |
| } |
| |
| /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a |
| /// common expression that defines Reg. |
| bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, |
| MachineInstr *CSMI, MachineInstr *MI) { |
| // FIXME: Heuristics that works around the lack the live range splitting. |
| |
| // If CSReg is used at all uses of Reg, CSE should not increase register |
| // pressure of CSReg. |
| bool MayIncreasePressure = true; |
| if (TargetRegisterInfo::isVirtualRegister(CSReg) && |
| TargetRegisterInfo::isVirtualRegister(Reg)) { |
| MayIncreasePressure = false; |
| SmallPtrSet<MachineInstr*, 8> CSUses; |
| for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { |
| CSUses.insert(&MI); |
| } |
| for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { |
| if (!CSUses.count(&MI)) { |
| MayIncreasePressure = true; |
| break; |
| } |
| } |
| } |
| if (!MayIncreasePressure) return true; |
| |
| // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in |
| // an immediate predecessor. We don't want to increase register pressure and |
| // end up causing other computation to be spilled. |
| if (TII->isAsCheapAsAMove(*MI)) { |
| MachineBasicBlock *CSBB = CSMI->getParent(); |
| MachineBasicBlock *BB = MI->getParent(); |
| if (CSBB != BB && !CSBB->isSuccessor(BB)) |
| return false; |
| } |
| |
| // Heuristics #2: If the expression doesn't not use a vr and the only use |
| // of the redundant computation are copies, do not cse. |
| bool HasVRegUse = false; |
| for (const MachineOperand &MO : MI->operands()) { |
| if (MO.isReg() && MO.isUse() && |
| TargetRegisterInfo::isVirtualRegister(MO.getReg())) { |
| HasVRegUse = true; |
| break; |
| } |
| } |
| if (!HasVRegUse) { |
| bool HasNonCopyUse = false; |
| for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { |
| // Ignore copies. |
| if (!MI.isCopyLike()) { |
| HasNonCopyUse = true; |
| break; |
| } |
| } |
| if (!HasNonCopyUse) |
| return false; |
| } |
| |
| // Heuristics #3: If the common subexpression is used by PHIs, do not reuse |
| // it unless the defined value is already used in the BB of the new use. |
| bool HasPHI = false; |
| for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { |
| HasPHI |= UseMI.isPHI(); |
| if (UseMI.getParent() == MI->getParent()) |
| return true; |
| } |
| |
| return !HasPHI; |
| } |
| |
| void MachineCSE::EnterScope(MachineBasicBlock *MBB) { |
| LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); |
| ScopeType *Scope = new ScopeType(VNT); |
| ScopeMap[MBB] = Scope; |
| } |
| |
| void MachineCSE::ExitScope(MachineBasicBlock *MBB) { |
| LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); |
| DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); |
| assert(SI != ScopeMap.end()); |
| delete SI->second; |
| ScopeMap.erase(SI); |
| } |
| |
| bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { |
| bool Changed = false; |
| |
| SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; |
| SmallVector<unsigned, 2> ImplicitDefsToUpdate; |
| SmallVector<unsigned, 2> ImplicitDefs; |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { |
| MachineInstr *MI = &*I; |
| ++I; |
| |
| if (!isCSECandidate(MI)) |
| continue; |
| |
| bool FoundCSE = VNT.count(MI); |
| if (!FoundCSE) { |
| // Using trivial copy propagation to find more CSE opportunities. |
| if (PerformTrivialCopyPropagation(MI, MBB)) { |
| Changed = true; |
| |
| // After coalescing MI itself may become a copy. |
| if (MI->isCopyLike()) |
| continue; |
| |
| // Try again to see if CSE is possible. |
| FoundCSE = VNT.count(MI); |
| } |
| } |
| |
| // Commute commutable instructions. |
| bool Commuted = false; |
| if (!FoundCSE && MI->isCommutable()) { |
| if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) { |
| Commuted = true; |
| FoundCSE = VNT.count(NewMI); |
| if (NewMI != MI) { |
| // New instruction. It doesn't need to be kept. |
| NewMI->eraseFromParent(); |
| Changed = true; |
| } else if (!FoundCSE) |
| // MI was changed but it didn't help, commute it back! |
| (void)TII->commuteInstruction(*MI); |
| } |
| } |
| |
| // If the instruction defines physical registers and the values *may* be |
| // used, then it's not safe to replace it with a common subexpression. |
| // It's also not safe if the instruction uses physical registers. |
| bool CrossMBBPhysDef = false; |
| SmallSet<unsigned, 8> PhysRefs; |
| SmallVector<unsigned, 2> PhysDefs; |
| bool PhysUseDef = false; |
| if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, |
| PhysDefs, PhysUseDef)) { |
| FoundCSE = false; |
| |
| // ... Unless the CS is local or is in the sole predecessor block |
| // and it also defines the physical register which is not clobbered |
| // in between and the physical register uses were not clobbered. |
| // This can never be the case if the instruction both uses and |
| // defines the same physical register, which was detected above. |
| if (!PhysUseDef) { |
| unsigned CSVN = VNT.lookup(MI); |
| MachineInstr *CSMI = Exps[CSVN]; |
| if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) |
| FoundCSE = true; |
| } |
| } |
| |
| if (!FoundCSE) { |
| VNT.insert(MI, CurrVN++); |
| Exps.push_back(MI); |
| continue; |
| } |
| |
| // Found a common subexpression, eliminate it. |
| unsigned CSVN = VNT.lookup(MI); |
| MachineInstr *CSMI = Exps[CSVN]; |
| LLVM_DEBUG(dbgs() << "Examining: " << *MI); |
| LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); |
| |
| // Check if it's profitable to perform this CSE. |
| bool DoCSE = true; |
| unsigned NumDefs = MI->getNumDefs(); |
| |
| for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned OldReg = MO.getReg(); |
| unsigned NewReg = CSMI->getOperand(i).getReg(); |
| |
| // Go through implicit defs of CSMI and MI, if a def is not dead at MI, |
| // we should make sure it is not dead at CSMI. |
| if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) |
| ImplicitDefsToUpdate.push_back(i); |
| |
| // Keep track of implicit defs of CSMI and MI, to clear possibly |
| // made-redundant kill flags. |
| if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) |
| ImplicitDefs.push_back(OldReg); |
| |
| if (OldReg == NewReg) { |
| --NumDefs; |
| continue; |
| } |
| |
| assert(TargetRegisterInfo::isVirtualRegister(OldReg) && |
| TargetRegisterInfo::isVirtualRegister(NewReg) && |
| "Do not CSE physical register defs!"); |
| |
| if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { |
| LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); |
| DoCSE = false; |
| break; |
| } |
| |
| // Don't perform CSE if the result of the new instruction cannot exist |
| // within the constraints (register class, bank, or low-level type) of |
| // the old instruction. |
| if (!MRI->constrainRegAttrs(NewReg, OldReg)) { |
| LLVM_DEBUG( |
| dbgs() << "*** Not the same register constraints, avoid CSE!\n"); |
| DoCSE = false; |
| break; |
| } |
| |
| CSEPairs.push_back(std::make_pair(OldReg, NewReg)); |
| --NumDefs; |
| } |
| |
| // Actually perform the elimination. |
| if (DoCSE) { |
| for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { |
| unsigned OldReg = CSEPair.first; |
| unsigned NewReg = CSEPair.second; |
| // OldReg may have been unused but is used now, clear the Dead flag |
| MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); |
| assert(Def != nullptr && "CSEd register has no unique definition?"); |
| Def->clearRegisterDeads(NewReg); |
| // Replace with NewReg and clear kill flags which may be wrong now. |
| MRI->replaceRegWith(OldReg, NewReg); |
| MRI->clearKillFlags(NewReg); |
| } |
| |
| // Go through implicit defs of CSMI and MI, if a def is not dead at MI, |
| // we should make sure it is not dead at CSMI. |
| for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) |
| CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); |
| |
| // Go through implicit defs of CSMI and MI, and clear the kill flags on |
| // their uses in all the instructions between CSMI and MI. |
| // We might have made some of the kill flags redundant, consider: |
| // subs ... implicit-def %nzcv <- CSMI |
| // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore |
| // subs ... implicit-def %nzcv <- MI, to be eliminated |
| // csinc ... implicit killed %nzcv |
| // Since we eliminated MI, and reused a register imp-def'd by CSMI |
| // (here %nzcv), that register, if it was killed before MI, should have |
| // that kill flag removed, because it's lifetime was extended. |
| if (CSMI->getParent() == MI->getParent()) { |
| for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II) |
| for (auto ImplicitDef : ImplicitDefs) |
| if (MachineOperand *MO = II->findRegisterUseOperand( |
| ImplicitDef, /*isKill=*/true, TRI)) |
| MO->setIsKill(false); |
| } else { |
| // If the instructions aren't in the same BB, bail out and clear the |
| // kill flag on all uses of the imp-def'd register. |
| for (auto ImplicitDef : ImplicitDefs) |
| MRI->clearKillFlags(ImplicitDef); |
| } |
| |
| if (CrossMBBPhysDef) { |
| // Add physical register defs now coming in from a predecessor to MBB |
| // livein list. |
| while (!PhysDefs.empty()) { |
| unsigned LiveIn = PhysDefs.pop_back_val(); |
| if (!MBB->isLiveIn(LiveIn)) |
| MBB->addLiveIn(LiveIn); |
| } |
| ++NumCrossBBCSEs; |
| } |
| |
| MI->eraseFromParent(); |
| ++NumCSEs; |
| if (!PhysRefs.empty()) |
| ++NumPhysCSEs; |
| if (Commuted) |
| ++NumCommutes; |
| Changed = true; |
| } else { |
| VNT.insert(MI, CurrVN++); |
| Exps.push_back(MI); |
| } |
| CSEPairs.clear(); |
| ImplicitDefsToUpdate.clear(); |
| ImplicitDefs.clear(); |
| } |
| |
| return Changed; |
| } |
| |
| /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given |
| /// dominator tree node if its a leaf or all of its children are done. Walk |
| /// up the dominator tree to destroy ancestors which are now done. |
| void |
| MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, |
| DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { |
| if (OpenChildren[Node]) |
| return; |
| |
| // Pop scope. |
| ExitScope(Node->getBlock()); |
| |
| // Now traverse upwards to pop ancestors whose offsprings are all done. |
| while (MachineDomTreeNode *Parent = Node->getIDom()) { |
| unsigned Left = --OpenChildren[Parent]; |
| if (Left != 0) |
| break; |
| ExitScope(Parent->getBlock()); |
| Node = Parent; |
| } |
| } |
| |
| bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { |
| SmallVector<MachineDomTreeNode*, 32> Scopes; |
| SmallVector<MachineDomTreeNode*, 8> WorkList; |
| DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; |
| |
| CurrVN = 0; |
| |
| // Perform a DFS walk to determine the order of visit. |
| WorkList.push_back(Node); |
| do { |
| Node = WorkList.pop_back_val(); |
| Scopes.push_back(Node); |
| const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); |
| OpenChildren[Node] = Children.size(); |
| for (MachineDomTreeNode *Child : Children) |
| WorkList.push_back(Child); |
| } while (!WorkList.empty()); |
| |
| // Now perform CSE. |
| bool Changed = false; |
| for (MachineDomTreeNode *Node : Scopes) { |
| MachineBasicBlock *MBB = Node->getBlock(); |
| EnterScope(MBB); |
| Changed |= ProcessBlock(MBB); |
| // If it's a leaf node, it's done. Traverse upwards to pop ancestors. |
| ExitScopeIfDone(Node, OpenChildren); |
| } |
| |
| return Changed; |
| } |
| |
| bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| TII = MF.getSubtarget().getInstrInfo(); |
| TRI = MF.getSubtarget().getRegisterInfo(); |
| MRI = &MF.getRegInfo(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| DT = &getAnalysis<MachineDominatorTree>(); |
| LookAheadLimit = TII->getMachineCSELookAheadLimit(); |
| return PerformCSE(DT->getRootNode()); |
| } |