| //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements inline cost analysis. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/InlineCost.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/CodeMetrics.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "inline-cost" |
| |
| STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); |
| |
| static cl::opt<int> InlineThreshold( |
| "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, |
| cl::desc("Control the amount of inlining to perform (default = 225)")); |
| |
| static cl::opt<int> HintThreshold( |
| "inlinehint-threshold", cl::Hidden, cl::init(325), |
| cl::desc("Threshold for inlining functions with inline hint")); |
| |
| static cl::opt<int> |
| ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, |
| cl::init(45), |
| cl::desc("Threshold for inlining cold callsites")); |
| |
| // We introduce this threshold to help performance of instrumentation based |
| // PGO before we actually hook up inliner with analysis passes such as BPI and |
| // BFI. |
| static cl::opt<int> ColdThreshold( |
| "inlinecold-threshold", cl::Hidden, cl::init(45), |
| cl::desc("Threshold for inlining functions with cold attribute")); |
| |
| static cl::opt<int> |
| HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), |
| cl::ZeroOrMore, |
| cl::desc("Threshold for hot callsites ")); |
| |
| static cl::opt<int> LocallyHotCallSiteThreshold( |
| "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, |
| cl::desc("Threshold for locally hot callsites ")); |
| |
| static cl::opt<int> ColdCallSiteRelFreq( |
| "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, |
| cl::desc("Maxmimum block frequency, expressed as a percentage of caller's " |
| "entry frequency, for a callsite to be cold in the absence of " |
| "profile information.")); |
| |
| static cl::opt<int> HotCallSiteRelFreq( |
| "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, |
| cl::desc("Minimum block frequency, expressed as a multiple of caller's " |
| "entry frequency, for a callsite to be hot in the absence of " |
| "profile information.")); |
| |
| static cl::opt<bool> OptComputeFullInlineCost( |
| "inline-cost-full", cl::Hidden, cl::init(false), |
| cl::desc("Compute the full inline cost of a call site even when the cost " |
| "exceeds the threshold.")); |
| |
| namespace { |
| |
| class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { |
| typedef InstVisitor<CallAnalyzer, bool> Base; |
| friend class InstVisitor<CallAnalyzer, bool>; |
| |
| /// The TargetTransformInfo available for this compilation. |
| const TargetTransformInfo &TTI; |
| |
| /// Getter for the cache of @llvm.assume intrinsics. |
| std::function<AssumptionCache &(Function &)> &GetAssumptionCache; |
| |
| /// Getter for BlockFrequencyInfo |
| Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI; |
| |
| /// Profile summary information. |
| ProfileSummaryInfo *PSI; |
| |
| /// The called function. |
| Function &F; |
| |
| // Cache the DataLayout since we use it a lot. |
| const DataLayout &DL; |
| |
| /// The OptimizationRemarkEmitter available for this compilation. |
| OptimizationRemarkEmitter *ORE; |
| |
| /// The candidate callsite being analyzed. Please do not use this to do |
| /// analysis in the caller function; we want the inline cost query to be |
| /// easily cacheable. Instead, use the cover function paramHasAttr. |
| CallSite CandidateCS; |
| |
| /// Tunable parameters that control the analysis. |
| const InlineParams &Params; |
| |
| int Threshold; |
| int Cost; |
| bool ComputeFullInlineCost; |
| |
| bool IsCallerRecursive; |
| bool IsRecursiveCall; |
| bool ExposesReturnsTwice; |
| bool HasDynamicAlloca; |
| bool ContainsNoDuplicateCall; |
| bool HasReturn; |
| bool HasIndirectBr; |
| bool HasUninlineableIntrinsic; |
| bool UsesVarArgs; |
| |
| /// Number of bytes allocated statically by the callee. |
| uint64_t AllocatedSize; |
| unsigned NumInstructions, NumVectorInstructions; |
| int VectorBonus, TenPercentVectorBonus; |
| // Bonus to be applied when the callee has only one reachable basic block. |
| int SingleBBBonus; |
| |
| /// While we walk the potentially-inlined instructions, we build up and |
| /// maintain a mapping of simplified values specific to this callsite. The |
| /// idea is to propagate any special information we have about arguments to |
| /// this call through the inlinable section of the function, and account for |
| /// likely simplifications post-inlining. The most important aspect we track |
| /// is CFG altering simplifications -- when we prove a basic block dead, that |
| /// can cause dramatic shifts in the cost of inlining a function. |
| DenseMap<Value *, Constant *> SimplifiedValues; |
| |
| /// Keep track of the values which map back (through function arguments) to |
| /// allocas on the caller stack which could be simplified through SROA. |
| DenseMap<Value *, Value *> SROAArgValues; |
| |
| /// The mapping of caller Alloca values to their accumulated cost savings. If |
| /// we have to disable SROA for one of the allocas, this tells us how much |
| /// cost must be added. |
| DenseMap<Value *, int> SROAArgCosts; |
| |
| /// Keep track of values which map to a pointer base and constant offset. |
| DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; |
| |
| /// Keep track of dead blocks due to the constant arguments. |
| SetVector<BasicBlock *> DeadBlocks; |
| |
| /// The mapping of the blocks to their known unique successors due to the |
| /// constant arguments. |
| DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; |
| |
| /// Model the elimination of repeated loads that is expected to happen |
| /// whenever we simplify away the stores that would otherwise cause them to be |
| /// loads. |
| bool EnableLoadElimination; |
| SmallPtrSet<Value *, 16> LoadAddrSet; |
| int LoadEliminationCost; |
| |
| // Custom simplification helper routines. |
| bool isAllocaDerivedArg(Value *V); |
| bool lookupSROAArgAndCost(Value *V, Value *&Arg, |
| DenseMap<Value *, int>::iterator &CostIt); |
| void disableSROA(DenseMap<Value *, int>::iterator CostIt); |
| void disableSROA(Value *V); |
| void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); |
| void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, |
| int InstructionCost); |
| void disableLoadElimination(); |
| bool isGEPFree(GetElementPtrInst &GEP); |
| bool canFoldInboundsGEP(GetElementPtrInst &I); |
| bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); |
| bool simplifyCallSite(Function *F, CallSite CS); |
| template <typename Callable> |
| bool simplifyInstruction(Instruction &I, Callable Evaluate); |
| ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); |
| |
| /// Return true if the given argument to the function being considered for |
| /// inlining has the given attribute set either at the call site or the |
| /// function declaration. Primarily used to inspect call site specific |
| /// attributes since these can be more precise than the ones on the callee |
| /// itself. |
| bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); |
| |
| /// Return true if the given value is known non null within the callee if |
| /// inlined through this particular callsite. |
| bool isKnownNonNullInCallee(Value *V); |
| |
| /// Update Threshold based on callsite properties such as callee |
| /// attributes and callee hotness for PGO builds. The Callee is explicitly |
| /// passed to support analyzing indirect calls whose target is inferred by |
| /// analysis. |
| void updateThreshold(CallSite CS, Function &Callee); |
| |
| /// Return true if size growth is allowed when inlining the callee at CS. |
| bool allowSizeGrowth(CallSite CS); |
| |
| /// Return true if \p CS is a cold callsite. |
| bool isColdCallSite(CallSite CS, BlockFrequencyInfo *CallerBFI); |
| |
| /// Return a higher threshold if \p CS is a hot callsite. |
| Optional<int> getHotCallSiteThreshold(CallSite CS, |
| BlockFrequencyInfo *CallerBFI); |
| |
| // Custom analysis routines. |
| bool analyzeBlock(BasicBlock *BB, SmallPtrSetImpl<const Value *> &EphValues); |
| |
| // Disable several entry points to the visitor so we don't accidentally use |
| // them by declaring but not defining them here. |
| void visit(Module *); |
| void visit(Module &); |
| void visit(Function *); |
| void visit(Function &); |
| void visit(BasicBlock *); |
| void visit(BasicBlock &); |
| |
| // Provide base case for our instruction visit. |
| bool visitInstruction(Instruction &I); |
| |
| // Our visit overrides. |
| bool visitAlloca(AllocaInst &I); |
| bool visitPHI(PHINode &I); |
| bool visitGetElementPtr(GetElementPtrInst &I); |
| bool visitBitCast(BitCastInst &I); |
| bool visitPtrToInt(PtrToIntInst &I); |
| bool visitIntToPtr(IntToPtrInst &I); |
| bool visitCastInst(CastInst &I); |
| bool visitUnaryInstruction(UnaryInstruction &I); |
| bool visitCmpInst(CmpInst &I); |
| bool visitSub(BinaryOperator &I); |
| bool visitBinaryOperator(BinaryOperator &I); |
| bool visitLoad(LoadInst &I); |
| bool visitStore(StoreInst &I); |
| bool visitExtractValue(ExtractValueInst &I); |
| bool visitInsertValue(InsertValueInst &I); |
| bool visitCallSite(CallSite CS); |
| bool visitReturnInst(ReturnInst &RI); |
| bool visitBranchInst(BranchInst &BI); |
| bool visitSelectInst(SelectInst &SI); |
| bool visitSwitchInst(SwitchInst &SI); |
| bool visitIndirectBrInst(IndirectBrInst &IBI); |
| bool visitResumeInst(ResumeInst &RI); |
| bool visitCleanupReturnInst(CleanupReturnInst &RI); |
| bool visitCatchReturnInst(CatchReturnInst &RI); |
| bool visitUnreachableInst(UnreachableInst &I); |
| |
| public: |
| CallAnalyzer(const TargetTransformInfo &TTI, |
| std::function<AssumptionCache &(Function &)> &GetAssumptionCache, |
| Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI, |
| ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, |
| Function &Callee, CallSite CSArg, const InlineParams &Params) |
| : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), |
| PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), |
| CandidateCS(CSArg), Params(Params), Threshold(Params.DefaultThreshold), |
| Cost(0), ComputeFullInlineCost(OptComputeFullInlineCost || |
| Params.ComputeFullInlineCost || ORE), |
| IsCallerRecursive(false), IsRecursiveCall(false), |
| ExposesReturnsTwice(false), HasDynamicAlloca(false), |
| ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false), |
| HasUninlineableIntrinsic(false), UsesVarArgs(false), AllocatedSize(0), |
| NumInstructions(0), NumVectorInstructions(0), VectorBonus(0), |
| SingleBBBonus(0), EnableLoadElimination(true), LoadEliminationCost(0), |
| NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), |
| NumConstantPtrCmps(0), NumConstantPtrDiffs(0), |
| NumInstructionsSimplified(0), SROACostSavings(0), |
| SROACostSavingsLost(0) {} |
| |
| bool analyzeCall(CallSite CS); |
| |
| int getThreshold() { return Threshold; } |
| int getCost() { return Cost; } |
| |
| // Keep a bunch of stats about the cost savings found so we can print them |
| // out when debugging. |
| unsigned NumConstantArgs; |
| unsigned NumConstantOffsetPtrArgs; |
| unsigned NumAllocaArgs; |
| unsigned NumConstantPtrCmps; |
| unsigned NumConstantPtrDiffs; |
| unsigned NumInstructionsSimplified; |
| unsigned SROACostSavings; |
| unsigned SROACostSavingsLost; |
| |
| void dump(); |
| }; |
| |
| } // namespace |
| |
| /// Test whether the given value is an Alloca-derived function argument. |
| bool CallAnalyzer::isAllocaDerivedArg(Value *V) { |
| return SROAArgValues.count(V); |
| } |
| |
| /// Lookup the SROA-candidate argument and cost iterator which V maps to. |
| /// Returns false if V does not map to a SROA-candidate. |
| bool CallAnalyzer::lookupSROAArgAndCost( |
| Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) { |
| if (SROAArgValues.empty() || SROAArgCosts.empty()) |
| return false; |
| |
| DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V); |
| if (ArgIt == SROAArgValues.end()) |
| return false; |
| |
| Arg = ArgIt->second; |
| CostIt = SROAArgCosts.find(Arg); |
| return CostIt != SROAArgCosts.end(); |
| } |
| |
| /// Disable SROA for the candidate marked by this cost iterator. |
| /// |
| /// This marks the candidate as no longer viable for SROA, and adds the cost |
| /// savings associated with it back into the inline cost measurement. |
| void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) { |
| // If we're no longer able to perform SROA we need to undo its cost savings |
| // and prevent subsequent analysis. |
| Cost += CostIt->second; |
| SROACostSavings -= CostIt->second; |
| SROACostSavingsLost += CostIt->second; |
| SROAArgCosts.erase(CostIt); |
| disableLoadElimination(); |
| } |
| |
| /// If 'V' maps to a SROA candidate, disable SROA for it. |
| void CallAnalyzer::disableSROA(Value *V) { |
| Value *SROAArg; |
| DenseMap<Value *, int>::iterator CostIt; |
| if (lookupSROAArgAndCost(V, SROAArg, CostIt)) |
| disableSROA(CostIt); |
| } |
| |
| /// Accumulate the given cost for a particular SROA candidate. |
| void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, |
| int InstructionCost) { |
| CostIt->second += InstructionCost; |
| SROACostSavings += InstructionCost; |
| } |
| |
| void CallAnalyzer::disableLoadElimination() { |
| if (EnableLoadElimination) { |
| Cost += LoadEliminationCost; |
| LoadEliminationCost = 0; |
| EnableLoadElimination = false; |
| } |
| } |
| |
| /// Accumulate a constant GEP offset into an APInt if possible. |
| /// |
| /// Returns false if unable to compute the offset for any reason. Respects any |
| /// simplified values known during the analysis of this callsite. |
| bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { |
| unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); |
| assert(IntPtrWidth == Offset.getBitWidth()); |
| |
| for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); |
| GTI != GTE; ++GTI) { |
| ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); |
| if (!OpC) |
| if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) |
| OpC = dyn_cast<ConstantInt>(SimpleOp); |
| if (!OpC) |
| return false; |
| if (OpC->isZero()) |
| continue; |
| |
| // Handle a struct index, which adds its field offset to the pointer. |
| if (StructType *STy = GTI.getStructTypeOrNull()) { |
| unsigned ElementIdx = OpC->getZExtValue(); |
| const StructLayout *SL = DL.getStructLayout(STy); |
| Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); |
| continue; |
| } |
| |
| APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); |
| Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; |
| } |
| return true; |
| } |
| |
| /// Use TTI to check whether a GEP is free. |
| /// |
| /// Respects any simplified values known during the analysis of this callsite. |
| bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { |
| SmallVector<Value *, 4> Operands; |
| Operands.push_back(GEP.getOperand(0)); |
| for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) |
| if (Constant *SimpleOp = SimplifiedValues.lookup(*I)) |
| Operands.push_back(SimpleOp); |
| else |
| Operands.push_back(*I); |
| return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands); |
| } |
| |
| bool CallAnalyzer::visitAlloca(AllocaInst &I) { |
| // Check whether inlining will turn a dynamic alloca into a static |
| // alloca and handle that case. |
| if (I.isArrayAllocation()) { |
| Constant *Size = SimplifiedValues.lookup(I.getArraySize()); |
| if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { |
| Type *Ty = I.getAllocatedType(); |
| AllocatedSize = SaturatingMultiplyAdd( |
| AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty), AllocatedSize); |
| return Base::visitAlloca(I); |
| } |
| } |
| |
| // Accumulate the allocated size. |
| if (I.isStaticAlloca()) { |
| Type *Ty = I.getAllocatedType(); |
| AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty), AllocatedSize); |
| } |
| |
| // We will happily inline static alloca instructions. |
| if (I.isStaticAlloca()) |
| return Base::visitAlloca(I); |
| |
| // FIXME: This is overly conservative. Dynamic allocas are inefficient for |
| // a variety of reasons, and so we would like to not inline them into |
| // functions which don't currently have a dynamic alloca. This simply |
| // disables inlining altogether in the presence of a dynamic alloca. |
| HasDynamicAlloca = true; |
| return false; |
| } |
| |
| bool CallAnalyzer::visitPHI(PHINode &I) { |
| // FIXME: We need to propagate SROA *disabling* through phi nodes, even |
| // though we don't want to propagate it's bonuses. The idea is to disable |
| // SROA if it *might* be used in an inappropriate manner. |
| |
| // Phi nodes are always zero-cost. |
| // FIXME: Pointer sizes may differ between different address spaces, so do we |
| // need to use correct address space in the call to getPointerSizeInBits here? |
| // Or could we skip the getPointerSizeInBits call completely? As far as I can |
| // see the ZeroOffset is used as a dummy value, so we can probably use any |
| // bit width for the ZeroOffset? |
| APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); |
| bool CheckSROA = I.getType()->isPointerTy(); |
| |
| // Track the constant or pointer with constant offset we've seen so far. |
| Constant *FirstC = nullptr; |
| std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; |
| Value *FirstV = nullptr; |
| |
| for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *Pred = I.getIncomingBlock(i); |
| // If the incoming block is dead, skip the incoming block. |
| if (DeadBlocks.count(Pred)) |
| continue; |
| // If the parent block of phi is not the known successor of the incoming |
| // block, skip the incoming block. |
| BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; |
| if (KnownSuccessor && KnownSuccessor != I.getParent()) |
| continue; |
| |
| Value *V = I.getIncomingValue(i); |
| // If the incoming value is this phi itself, skip the incoming value. |
| if (&I == V) |
| continue; |
| |
| Constant *C = dyn_cast<Constant>(V); |
| if (!C) |
| C = SimplifiedValues.lookup(V); |
| |
| std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; |
| if (!C && CheckSROA) |
| BaseAndOffset = ConstantOffsetPtrs.lookup(V); |
| |
| if (!C && !BaseAndOffset.first) |
| // The incoming value is neither a constant nor a pointer with constant |
| // offset, exit early. |
| return true; |
| |
| if (FirstC) { |
| if (FirstC == C) |
| // If we've seen a constant incoming value before and it is the same |
| // constant we see this time, continue checking the next incoming value. |
| continue; |
| // Otherwise early exit because we either see a different constant or saw |
| // a constant before but we have a pointer with constant offset this time. |
| return true; |
| } |
| |
| if (FirstV) { |
| // The same logic as above, but check pointer with constant offset here. |
| if (FirstBaseAndOffset == BaseAndOffset) |
| continue; |
| return true; |
| } |
| |
| if (C) { |
| // This is the 1st time we've seen a constant, record it. |
| FirstC = C; |
| continue; |
| } |
| |
| // The remaining case is that this is the 1st time we've seen a pointer with |
| // constant offset, record it. |
| FirstV = V; |
| FirstBaseAndOffset = BaseAndOffset; |
| } |
| |
| // Check if we can map phi to a constant. |
| if (FirstC) { |
| SimplifiedValues[&I] = FirstC; |
| return true; |
| } |
| |
| // Check if we can map phi to a pointer with constant offset. |
| if (FirstBaseAndOffset.first) { |
| ConstantOffsetPtrs[&I] = FirstBaseAndOffset; |
| |
| Value *SROAArg; |
| DenseMap<Value *, int>::iterator CostIt; |
| if (lookupSROAArgAndCost(FirstV, SROAArg, CostIt)) |
| SROAArgValues[&I] = SROAArg; |
| } |
| |
| return true; |
| } |
| |
| /// Check we can fold GEPs of constant-offset call site argument pointers. |
| /// This requires target data and inbounds GEPs. |
| /// |
| /// \return true if the specified GEP can be folded. |
| bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { |
| // Check if we have a base + offset for the pointer. |
| std::pair<Value *, APInt> BaseAndOffset = |
| ConstantOffsetPtrs.lookup(I.getPointerOperand()); |
| if (!BaseAndOffset.first) |
| return false; |
| |
| // Check if the offset of this GEP is constant, and if so accumulate it |
| // into Offset. |
| if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) |
| return false; |
| |
| // Add the result as a new mapping to Base + Offset. |
| ConstantOffsetPtrs[&I] = BaseAndOffset; |
| |
| return true; |
| } |
| |
| bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { |
| Value *SROAArg; |
| DenseMap<Value *, int>::iterator CostIt; |
| bool SROACandidate = |
| lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt); |
| |
| // Lambda to check whether a GEP's indices are all constant. |
| auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { |
| for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) |
| if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) |
| return false; |
| return true; |
| }; |
| |
| if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { |
| if (SROACandidate) |
| SROAArgValues[&I] = SROAArg; |
| |
| // Constant GEPs are modeled as free. |
| return true; |
| } |
| |
| // Variable GEPs will require math and will disable SROA. |
| if (SROACandidate) |
| disableSROA(CostIt); |
| return isGEPFree(I); |
| } |
| |
| /// Simplify \p I if its operands are constants and update SimplifiedValues. |
| /// \p Evaluate is a callable specific to instruction type that evaluates the |
| /// instruction when all the operands are constants. |
| template <typename Callable> |
| bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { |
| SmallVector<Constant *, 2> COps; |
| for (Value *Op : I.operands()) { |
| Constant *COp = dyn_cast<Constant>(Op); |
| if (!COp) |
| COp = SimplifiedValues.lookup(Op); |
| if (!COp) |
| return false; |
| COps.push_back(COp); |
| } |
| auto *C = Evaluate(COps); |
| if (!C) |
| return false; |
| SimplifiedValues[&I] = C; |
| return true; |
| } |
| |
| bool CallAnalyzer::visitBitCast(BitCastInst &I) { |
| // Propagate constants through bitcasts. |
| if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { |
| return ConstantExpr::getBitCast(COps[0], I.getType()); |
| })) |
| return true; |
| |
| // Track base/offsets through casts |
| std::pair<Value *, APInt> BaseAndOffset = |
| ConstantOffsetPtrs.lookup(I.getOperand(0)); |
| // Casts don't change the offset, just wrap it up. |
| if (BaseAndOffset.first) |
| ConstantOffsetPtrs[&I] = BaseAndOffset; |
| |
| // Also look for SROA candidates here. |
| Value *SROAArg; |
| DenseMap<Value *, int>::iterator CostIt; |
| if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) |
| SROAArgValues[&I] = SROAArg; |
| |
| // Bitcasts are always zero cost. |
| return true; |
| } |
| |
| bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { |
| // Propagate constants through ptrtoint. |
| if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { |
| return ConstantExpr::getPtrToInt(COps[0], I.getType()); |
| })) |
| return true; |
| |
| // Track base/offset pairs when converted to a plain integer provided the |
| // integer is large enough to represent the pointer. |
| unsigned IntegerSize = I.getType()->getScalarSizeInBits(); |
| unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); |
| if (IntegerSize >= DL.getPointerSizeInBits(AS)) { |
| std::pair<Value *, APInt> BaseAndOffset = |
| ConstantOffsetPtrs.lookup(I.getOperand(0)); |
| if (BaseAndOffset.first) |
| ConstantOffsetPtrs[&I] = BaseAndOffset; |
| } |
| |
| // This is really weird. Technically, ptrtoint will disable SROA. However, |
| // unless that ptrtoint is *used* somewhere in the live basic blocks after |
| // inlining, it will be nuked, and SROA should proceed. All of the uses which |
| // would block SROA would also block SROA if applied directly to a pointer, |
| // and so we can just add the integer in here. The only places where SROA is |
| // preserved either cannot fire on an integer, or won't in-and-of themselves |
| // disable SROA (ext) w/o some later use that we would see and disable. |
| Value *SROAArg; |
| DenseMap<Value *, int>::iterator CostIt; |
| if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) |
| SROAArgValues[&I] = SROAArg; |
| |
| return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); |
| } |
| |
| bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { |
| // Propagate constants through ptrtoint. |
| if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { |
| return ConstantExpr::getIntToPtr(COps[0], I.getType()); |
| })) |
| return true; |
| |
| // Track base/offset pairs when round-tripped through a pointer without |
| // modifications provided the integer is not too large. |
| Value *Op = I.getOperand(0); |
| unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); |
| if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { |
| std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); |
| if (BaseAndOffset.first) |
| ConstantOffsetPtrs[&I] = BaseAndOffset; |
| } |
| |
| // "Propagate" SROA here in the same manner as we do for ptrtoint above. |
| Value *SROAArg; |
| DenseMap<Value *, int>::iterator CostIt; |
| if (lookupSROAArgAndCost(Op, SROAArg, CostIt)) |
| SROAArgValues[&I] = SROAArg; |
| |
| return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); |
| } |
| |
| bool CallAnalyzer::visitCastInst(CastInst &I) { |
| // Propagate constants through ptrtoint. |
| if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { |
| return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); |
| })) |
| return true; |
| |
| // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. |
| disableSROA(I.getOperand(0)); |
| |
| // If this is a floating-point cast, and the target says this operation |
| // is expensive, this may eventually become a library call. Treat the cost |
| // as such. |
| switch (I.getOpcode()) { |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) |
| Cost += InlineConstants::CallPenalty; |
| default: |
| break; |
| } |
| |
| return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); |
| } |
| |
| bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { |
| Value *Operand = I.getOperand(0); |
| if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { |
| return ConstantFoldInstOperands(&I, COps[0], DL); |
| })) |
| return true; |
| |
| // Disable any SROA on the argument to arbitrary unary operators. |
| disableSROA(Operand); |
| |
| return false; |
| } |
| |
| bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { |
| return CandidateCS.paramHasAttr(A->getArgNo(), Attr); |
| } |
| |
| bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { |
| // Does the *call site* have the NonNull attribute set on an argument? We |
| // use the attribute on the call site to memoize any analysis done in the |
| // caller. This will also trip if the callee function has a non-null |
| // parameter attribute, but that's a less interesting case because hopefully |
| // the callee would already have been simplified based on that. |
| if (Argument *A = dyn_cast<Argument>(V)) |
| if (paramHasAttr(A, Attribute::NonNull)) |
| return true; |
| |
| // Is this an alloca in the caller? This is distinct from the attribute case |
| // above because attributes aren't updated within the inliner itself and we |
| // always want to catch the alloca derived case. |
| if (isAllocaDerivedArg(V)) |
| // We can actually predict the result of comparisons between an |
| // alloca-derived value and null. Note that this fires regardless of |
| // SROA firing. |
| return true; |
| |
| return false; |
| } |
| |
| bool CallAnalyzer::allowSizeGrowth(CallSite CS) { |
| // If the normal destination of the invoke or the parent block of the call |
| // site is unreachable-terminated, there is little point in inlining this |
| // unless there is literally zero cost. |
| // FIXME: Note that it is possible that an unreachable-terminated block has a |
| // hot entry. For example, in below scenario inlining hot_call_X() may be |
| // beneficial : |
| // main() { |
| // hot_call_1(); |
| // ... |
| // hot_call_N() |
| // exit(0); |
| // } |
| // For now, we are not handling this corner case here as it is rare in real |
| // code. In future, we should elaborate this based on BPI and BFI in more |
| // general threshold adjusting heuristics in updateThreshold(). |
| Instruction *Instr = CS.getInstruction(); |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) { |
| if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) |
| return false; |
| } else if (isa<UnreachableInst>(Instr->getParent()->getTerminator())) |
| return false; |
| |
| return true; |
| } |
| |
| bool CallAnalyzer::isColdCallSite(CallSite CS, BlockFrequencyInfo *CallerBFI) { |
| // If global profile summary is available, then callsite's coldness is |
| // determined based on that. |
| if (PSI && PSI->hasProfileSummary()) |
| return PSI->isColdCallSite(CS, CallerBFI); |
| |
| // Otherwise we need BFI to be available. |
| if (!CallerBFI) |
| return false; |
| |
| // Determine if the callsite is cold relative to caller's entry. We could |
| // potentially cache the computation of scaled entry frequency, but the added |
| // complexity is not worth it unless this scaling shows up high in the |
| // profiles. |
| const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); |
| auto CallSiteBB = CS.getInstruction()->getParent(); |
| auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); |
| auto CallerEntryFreq = |
| CallerBFI->getBlockFreq(&(CS.getCaller()->getEntryBlock())); |
| return CallSiteFreq < CallerEntryFreq * ColdProb; |
| } |
| |
| Optional<int> |
| CallAnalyzer::getHotCallSiteThreshold(CallSite CS, |
| BlockFrequencyInfo *CallerBFI) { |
| |
| // If global profile summary is available, then callsite's hotness is |
| // determined based on that. |
| if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(CS, CallerBFI)) |
| return Params.HotCallSiteThreshold; |
| |
| // Otherwise we need BFI to be available and to have a locally hot callsite |
| // threshold. |
| if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) |
| return None; |
| |
| // Determine if the callsite is hot relative to caller's entry. We could |
| // potentially cache the computation of scaled entry frequency, but the added |
| // complexity is not worth it unless this scaling shows up high in the |
| // profiles. |
| auto CallSiteBB = CS.getInstruction()->getParent(); |
| auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); |
| auto CallerEntryFreq = CallerBFI->getEntryFreq(); |
| if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) |
| return Params.LocallyHotCallSiteThreshold; |
| |
| // Otherwise treat it normally. |
| return None; |
| } |
| |
| void CallAnalyzer::updateThreshold(CallSite CS, Function &Callee) { |
| // If no size growth is allowed for this inlining, set Threshold to 0. |
| if (!allowSizeGrowth(CS)) { |
| Threshold = 0; |
| return; |
| } |
| |
| Function *Caller = CS.getCaller(); |
| |
| // return min(A, B) if B is valid. |
| auto MinIfValid = [](int A, Optional<int> B) { |
| return B ? std::min(A, B.getValue()) : A; |
| }; |
| |
| // return max(A, B) if B is valid. |
| auto MaxIfValid = [](int A, Optional<int> B) { |
| return B ? std::max(A, B.getValue()) : A; |
| }; |
| |
| // Various bonus percentages. These are multiplied by Threshold to get the |
| // bonus values. |
| // SingleBBBonus: This bonus is applied if the callee has a single reachable |
| // basic block at the given callsite context. This is speculatively applied |
| // and withdrawn if more than one basic block is seen. |
| // |
| // Vector bonuses: We want to more aggressively inline vector-dense kernels |
| // and apply this bonus based on the percentage of vector instructions. A |
| // bonus is applied if the vector instructions exceed 50% and half that amount |
| // is applied if it exceeds 10%. Note that these bonuses are some what |
| // arbitrary and evolved over time by accident as much as because they are |
| // principled bonuses. |
| // FIXME: It would be nice to base the bonus values on something more |
| // scientific. |
| // |
| // LstCallToStaticBonus: This large bonus is applied to ensure the inlining |
| // of the last call to a static function as inlining such functions is |
| // guaranteed to reduce code size. |
| // |
| // These bonus percentages may be set to 0 based on properties of the caller |
| // and the callsite. |
| int SingleBBBonusPercent = 50; |
| int VectorBonusPercent = 150; |
| int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; |
| |
| // Lambda to set all the above bonus and bonus percentages to 0. |
| auto DisallowAllBonuses = [&]() { |
| SingleBBBonusPercent = 0; |
| VectorBonusPercent = 0; |
| LastCallToStaticBonus = 0; |
| }; |
| |
| // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available |
| // and reduce the threshold if the caller has the necessary attribute. |
| if (Caller->optForMinSize()) { |
| Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); |
| // For minsize, we want to disable the single BB bonus and the vector |
| // bonuses, but not the last-call-to-static bonus. Inlining the last call to |
| // a static function will, at the minimum, eliminate the parameter setup and |
| // call/return instructions. |
| SingleBBBonusPercent = 0; |
| VectorBonusPercent = 0; |
| } else if (Caller->optForSize()) |
| Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); |
| |
| // Adjust the threshold based on inlinehint attribute and profile based |
| // hotness information if the caller does not have MinSize attribute. |
| if (!Caller->optForMinSize()) { |
| if (Callee.hasFnAttribute(Attribute::InlineHint)) |
| Threshold = MaxIfValid(Threshold, Params.HintThreshold); |
| |
| // FIXME: After switching to the new passmanager, simplify the logic below |
| // by checking only the callsite hotness/coldness as we will reliably |
| // have local profile information. |
| // |
| // Callsite hotness and coldness can be determined if sample profile is |
| // used (which adds hotness metadata to calls) or if caller's |
| // BlockFrequencyInfo is available. |
| BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr; |
| auto HotCallSiteThreshold = getHotCallSiteThreshold(CS, CallerBFI); |
| if (!Caller->optForSize() && HotCallSiteThreshold) { |
| LLVM_DEBUG(dbgs() << "Hot callsite.\n"); |
| // FIXME: This should update the threshold only if it exceeds the |
| // current threshold, but AutoFDO + ThinLTO currently relies on this |
| // behavior to prevent inlining of hot callsites during ThinLTO |
| // compile phase. |
| Threshold = HotCallSiteThreshold.getValue(); |
| } else if (isColdCallSite(CS, CallerBFI)) { |
| LLVM_DEBUG(dbgs() << "Cold callsite.\n"); |
| // Do not apply bonuses for a cold callsite including the |
| // LastCallToStatic bonus. While this bonus might result in code size |
| // reduction, it can cause the size of a non-cold caller to increase |
| // preventing it from being inlined. |
| DisallowAllBonuses(); |
| Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); |
| } else if (PSI) { |
| // Use callee's global profile information only if we have no way of |
| // determining this via callsite information. |
| if (PSI->isFunctionEntryHot(&Callee)) { |
| LLVM_DEBUG(dbgs() << "Hot callee.\n"); |
| // If callsite hotness can not be determined, we may still know |
| // that the callee is hot and treat it as a weaker hint for threshold |
| // increase. |
| Threshold = MaxIfValid(Threshold, Params.HintThreshold); |
| } else if (PSI->isFunctionEntryCold(&Callee)) { |
| LLVM_DEBUG(dbgs() << "Cold callee.\n"); |
| // Do not apply bonuses for a cold callee including the |
| // LastCallToStatic bonus. While this bonus might result in code size |
| // reduction, it can cause the size of a non-cold caller to increase |
| // preventing it from being inlined. |
| DisallowAllBonuses(); |
| Threshold = MinIfValid(Threshold, Params.ColdThreshold); |
| } |
| } |
| } |
| |
| // Finally, take the target-specific inlining threshold multiplier into |
| // account. |
| Threshold *= TTI.getInliningThresholdMultiplier(); |
| |
| SingleBBBonus = Threshold * SingleBBBonusPercent / 100; |
| VectorBonus = Threshold * VectorBonusPercent / 100; |
| |
| bool OnlyOneCallAndLocalLinkage = |
| F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction(); |
| // If there is only one call of the function, and it has internal linkage, |
| // the cost of inlining it drops dramatically. It may seem odd to update |
| // Cost in updateThreshold, but the bonus depends on the logic in this method. |
| if (OnlyOneCallAndLocalLinkage) |
| Cost -= LastCallToStaticBonus; |
| } |
| |
| bool CallAnalyzer::visitCmpInst(CmpInst &I) { |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| // First try to handle simplified comparisons. |
| if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { |
| return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); |
| })) |
| return true; |
| |
| if (I.getOpcode() == Instruction::FCmp) |
| return false; |
| |
| // Otherwise look for a comparison between constant offset pointers with |
| // a common base. |
| Value *LHSBase, *RHSBase; |
| APInt LHSOffset, RHSOffset; |
| std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); |
| if (LHSBase) { |
| std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); |
| if (RHSBase && LHSBase == RHSBase) { |
| // We have common bases, fold the icmp to a constant based on the |
| // offsets. |
| Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); |
| Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); |
| if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { |
| SimplifiedValues[&I] = C; |
| ++NumConstantPtrCmps; |
| return true; |
| } |
| } |
| } |
| |
| // If the comparison is an equality comparison with null, we can simplify it |
| // if we know the value (argument) can't be null |
| if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && |
| isKnownNonNullInCallee(I.getOperand(0))) { |
| bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; |
| SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) |
| : ConstantInt::getFalse(I.getType()); |
| return true; |
| } |
| // Finally check for SROA candidates in comparisons. |
| Value *SROAArg; |
| DenseMap<Value *, int>::iterator CostIt; |
| if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { |
| if (isa<ConstantPointerNull>(I.getOperand(1))) { |
| accumulateSROACost(CostIt, InlineConstants::InstrCost); |
| return true; |
| } |
| |
| disableSROA(CostIt); |
| } |
| |
| return false; |
| } |
| |
| bool CallAnalyzer::visitSub(BinaryOperator &I) { |
| // Try to handle a special case: we can fold computing the difference of two |
| // constant-related pointers. |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| Value *LHSBase, *RHSBase; |
| APInt LHSOffset, RHSOffset; |
| std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); |
| if (LHSBase) { |
| std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); |
| if (RHSBase && LHSBase == RHSBase) { |
| // We have common bases, fold the subtract to a constant based on the |
| // offsets. |
| Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); |
| Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); |
| if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { |
| SimplifiedValues[&I] = C; |
| ++NumConstantPtrDiffs; |
| return true; |
| } |
| } |
| } |
| |
| // Otherwise, fall back to the generic logic for simplifying and handling |
| // instructions. |
| return Base::visitSub(I); |
| } |
| |
| bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| Constant *CLHS = dyn_cast<Constant>(LHS); |
| if (!CLHS) |
| CLHS = SimplifiedValues.lookup(LHS); |
| Constant *CRHS = dyn_cast<Constant>(RHS); |
| if (!CRHS) |
| CRHS = SimplifiedValues.lookup(RHS); |
| |
| Value *SimpleV = nullptr; |
| if (auto FI = dyn_cast<FPMathOperator>(&I)) |
| SimpleV = SimplifyFPBinOp(I.getOpcode(), CLHS ? CLHS : LHS, |
| CRHS ? CRHS : RHS, FI->getFastMathFlags(), DL); |
| else |
| SimpleV = |
| SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); |
| |
| if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) |
| SimplifiedValues[&I] = C; |
| |
| if (SimpleV) |
| return true; |
| |
| // Disable any SROA on arguments to arbitrary, unsimplified binary operators. |
| disableSROA(LHS); |
| disableSROA(RHS); |
| |
| // If the instruction is floating point, and the target says this operation |
| // is expensive, this may eventually become a library call. Treat the cost |
| // as such. |
| if (I.getType()->isFloatingPointTy() && |
| TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) |
| Cost += InlineConstants::CallPenalty; |
| |
| return false; |
| } |
| |
| bool CallAnalyzer::visitLoad(LoadInst &I) { |
| Value *SROAArg; |
| DenseMap<Value *, int>::iterator CostIt; |
| if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) { |
| if (I.isSimple()) { |
| accumulateSROACost(CostIt, InlineConstants::InstrCost); |
| return true; |
| } |
| |
| disableSROA(CostIt); |
| } |
| |
| // If the data is already loaded from this address and hasn't been clobbered |
| // by any stores or calls, this load is likely to be redundant and can be |
| // eliminated. |
| if (EnableLoadElimination && |
| !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { |
| LoadEliminationCost += InlineConstants::InstrCost; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool CallAnalyzer::visitStore(StoreInst &I) { |
| Value *SROAArg; |
| DenseMap<Value *, int>::iterator CostIt; |
| if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) { |
| if (I.isSimple()) { |
| accumulateSROACost(CostIt, InlineConstants::InstrCost); |
| return true; |
| } |
| |
| disableSROA(CostIt); |
| } |
| |
| // The store can potentially clobber loads and prevent repeated loads from |
| // being eliminated. |
| // FIXME: |
| // 1. We can probably keep an initial set of eliminatable loads substracted |
| // from the cost even when we finally see a store. We just need to disable |
| // *further* accumulation of elimination savings. |
| // 2. We should probably at some point thread MemorySSA for the callee into |
| // this and then use that to actually compute *really* precise savings. |
| disableLoadElimination(); |
| return false; |
| } |
| |
| bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { |
| // Constant folding for extract value is trivial. |
| if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { |
| return ConstantExpr::getExtractValue(COps[0], I.getIndices()); |
| })) |
| return true; |
| |
| // SROA can look through these but give them a cost. |
| return false; |
| } |
| |
| bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { |
| // Constant folding for insert value is trivial. |
| if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { |
| return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], |
| /*InsertedValueOperand*/ COps[1], |
| I.getIndices()); |
| })) |
| return true; |
| |
| // SROA can look through these but give them a cost. |
| return false; |
| } |
| |
| /// Try to simplify a call site. |
| /// |
| /// Takes a concrete function and callsite and tries to actually simplify it by |
| /// analyzing the arguments and call itself with instsimplify. Returns true if |
| /// it has simplified the callsite to some other entity (a constant), making it |
| /// free. |
| bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) { |
| // FIXME: Using the instsimplify logic directly for this is inefficient |
| // because we have to continually rebuild the argument list even when no |
| // simplifications can be performed. Until that is fixed with remapping |
| // inside of instsimplify, directly constant fold calls here. |
| if (!canConstantFoldCallTo(CS, F)) |
| return false; |
| |
| // Try to re-map the arguments to constants. |
| SmallVector<Constant *, 4> ConstantArgs; |
| ConstantArgs.reserve(CS.arg_size()); |
| for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; |
| ++I) { |
| Constant *C = dyn_cast<Constant>(*I); |
| if (!C) |
| C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I)); |
| if (!C) |
| return false; // This argument doesn't map to a constant. |
| |
| ConstantArgs.push_back(C); |
| } |
| if (Constant *C = ConstantFoldCall(CS, F, ConstantArgs)) { |
| SimplifiedValues[CS.getInstruction()] = C; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool CallAnalyzer::visitCallSite(CallSite CS) { |
| if (CS.hasFnAttr(Attribute::ReturnsTwice) && |
| !F.hasFnAttribute(Attribute::ReturnsTwice)) { |
| // This aborts the entire analysis. |
| ExposesReturnsTwice = true; |
| return false; |
| } |
| if (CS.isCall() && cast<CallInst>(CS.getInstruction())->cannotDuplicate()) |
| ContainsNoDuplicateCall = true; |
| |
| if (Function *F = CS.getCalledFunction()) { |
| // When we have a concrete function, first try to simplify it directly. |
| if (simplifyCallSite(F, CS)) |
| return true; |
| |
| // Next check if it is an intrinsic we know about. |
| // FIXME: Lift this into part of the InstVisitor. |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { |
| switch (II->getIntrinsicID()) { |
| default: |
| if (!CS.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) |
| disableLoadElimination(); |
| return Base::visitCallSite(CS); |
| |
| case Intrinsic::load_relative: |
| // This is normally lowered to 4 LLVM instructions. |
| Cost += 3 * InlineConstants::InstrCost; |
| return false; |
| |
| case Intrinsic::memset: |
| case Intrinsic::memcpy: |
| case Intrinsic::memmove: |
| disableLoadElimination(); |
| // SROA can usually chew through these intrinsics, but they aren't free. |
| return false; |
| case Intrinsic::icall_branch_funnel: |
| case Intrinsic::localescape: |
| HasUninlineableIntrinsic = true; |
| return false; |
| case Intrinsic::vastart: |
| case Intrinsic::vaend: |
| UsesVarArgs = true; |
| return false; |
| } |
| } |
| |
| if (F == CS.getInstruction()->getFunction()) { |
| // This flag will fully abort the analysis, so don't bother with anything |
| // else. |
| IsRecursiveCall = true; |
| return false; |
| } |
| |
| if (TTI.isLoweredToCall(F)) { |
| // We account for the average 1 instruction per call argument setup |
| // here. |
| Cost += CS.arg_size() * InlineConstants::InstrCost; |
| |
| // Everything other than inline ASM will also have a significant cost |
| // merely from making the call. |
| if (!isa<InlineAsm>(CS.getCalledValue())) |
| Cost += InlineConstants::CallPenalty; |
| } |
| |
| if (!CS.onlyReadsMemory()) |
| disableLoadElimination(); |
| return Base::visitCallSite(CS); |
| } |
| |
| // Otherwise we're in a very special case -- an indirect function call. See |
| // if we can be particularly clever about this. |
| Value *Callee = CS.getCalledValue(); |
| |
| // First, pay the price of the argument setup. We account for the average |
| // 1 instruction per call argument setup here. |
| Cost += CS.arg_size() * InlineConstants::InstrCost; |
| |
| // Next, check if this happens to be an indirect function call to a known |
| // function in this inline context. If not, we've done all we can. |
| Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); |
| if (!F) { |
| if (!CS.onlyReadsMemory()) |
| disableLoadElimination(); |
| return Base::visitCallSite(CS); |
| } |
| |
| // If we have a constant that we are calling as a function, we can peer |
| // through it and see the function target. This happens not infrequently |
| // during devirtualization and so we want to give it a hefty bonus for |
| // inlining, but cap that bonus in the event that inlining wouldn't pan |
| // out. Pretend to inline the function, with a custom threshold. |
| auto IndirectCallParams = Params; |
| IndirectCallParams.DefaultThreshold = InlineConstants::IndirectCallThreshold; |
| CallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, CS, |
| IndirectCallParams); |
| if (CA.analyzeCall(CS)) { |
| // We were able to inline the indirect call! Subtract the cost from the |
| // threshold to get the bonus we want to apply, but don't go below zero. |
| Cost -= std::max(0, CA.getThreshold() - CA.getCost()); |
| } |
| |
| if (!F->onlyReadsMemory()) |
| disableLoadElimination(); |
| return Base::visitCallSite(CS); |
| } |
| |
| bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { |
| // At least one return instruction will be free after inlining. |
| bool Free = !HasReturn; |
| HasReturn = true; |
| return Free; |
| } |
| |
| bool CallAnalyzer::visitBranchInst(BranchInst &BI) { |
| // We model unconditional branches as essentially free -- they really |
| // shouldn't exist at all, but handling them makes the behavior of the |
| // inliner more regular and predictable. Interestingly, conditional branches |
| // which will fold away are also free. |
| return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || |
| dyn_cast_or_null<ConstantInt>( |
| SimplifiedValues.lookup(BI.getCondition())); |
| } |
| |
| bool CallAnalyzer::visitSelectInst(SelectInst &SI) { |
| bool CheckSROA = SI.getType()->isPointerTy(); |
| Value *TrueVal = SI.getTrueValue(); |
| Value *FalseVal = SI.getFalseValue(); |
| |
| Constant *TrueC = dyn_cast<Constant>(TrueVal); |
| if (!TrueC) |
| TrueC = SimplifiedValues.lookup(TrueVal); |
| Constant *FalseC = dyn_cast<Constant>(FalseVal); |
| if (!FalseC) |
| FalseC = SimplifiedValues.lookup(FalseVal); |
| Constant *CondC = |
| dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); |
| |
| if (!CondC) { |
| // Select C, X, X => X |
| if (TrueC == FalseC && TrueC) { |
| SimplifiedValues[&SI] = TrueC; |
| return true; |
| } |
| |
| if (!CheckSROA) |
| return Base::visitSelectInst(SI); |
| |
| std::pair<Value *, APInt> TrueBaseAndOffset = |
| ConstantOffsetPtrs.lookup(TrueVal); |
| std::pair<Value *, APInt> FalseBaseAndOffset = |
| ConstantOffsetPtrs.lookup(FalseVal); |
| if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { |
| ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; |
| |
| Value *SROAArg; |
| DenseMap<Value *, int>::iterator CostIt; |
| if (lookupSROAArgAndCost(TrueVal, SROAArg, CostIt)) |
| SROAArgValues[&SI] = SROAArg; |
| return true; |
| } |
| |
| return Base::visitSelectInst(SI); |
| } |
| |
| // Select condition is a constant. |
| Value *SelectedV = CondC->isAllOnesValue() |
| ? TrueVal |
| : (CondC->isNullValue()) ? FalseVal : nullptr; |
| if (!SelectedV) { |
| // Condition is a vector constant that is not all 1s or all 0s. If all |
| // operands are constants, ConstantExpr::getSelect() can handle the cases |
| // such as select vectors. |
| if (TrueC && FalseC) { |
| if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { |
| SimplifiedValues[&SI] = C; |
| return true; |
| } |
| } |
| return Base::visitSelectInst(SI); |
| } |
| |
| // Condition is either all 1s or all 0s. SI can be simplified. |
| if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { |
| SimplifiedValues[&SI] = SelectedC; |
| return true; |
| } |
| |
| if (!CheckSROA) |
| return true; |
| |
| std::pair<Value *, APInt> BaseAndOffset = |
| ConstantOffsetPtrs.lookup(SelectedV); |
| if (BaseAndOffset.first) { |
| ConstantOffsetPtrs[&SI] = BaseAndOffset; |
| |
| Value *SROAArg; |
| DenseMap<Value *, int>::iterator CostIt; |
| if (lookupSROAArgAndCost(SelectedV, SROAArg, CostIt)) |
| SROAArgValues[&SI] = SROAArg; |
| } |
| |
| return true; |
| } |
| |
| bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { |
| // We model unconditional switches as free, see the comments on handling |
| // branches. |
| if (isa<ConstantInt>(SI.getCondition())) |
| return true; |
| if (Value *V = SimplifiedValues.lookup(SI.getCondition())) |
| if (isa<ConstantInt>(V)) |
| return true; |
| |
| // Assume the most general case where the switch is lowered into |
| // either a jump table, bit test, or a balanced binary tree consisting of |
| // case clusters without merging adjacent clusters with the same |
| // destination. We do not consider the switches that are lowered with a mix |
| // of jump table/bit test/binary search tree. The cost of the switch is |
| // proportional to the size of the tree or the size of jump table range. |
| // |
| // NB: We convert large switches which are just used to initialize large phi |
| // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent |
| // inlining those. It will prevent inlining in cases where the optimization |
| // does not (yet) fire. |
| |
| // Maximum valid cost increased in this function. |
| int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; |
| |
| // Exit early for a large switch, assuming one case needs at least one |
| // instruction. |
| // FIXME: This is not true for a bit test, but ignore such case for now to |
| // save compile-time. |
| int64_t CostLowerBound = |
| std::min((int64_t)CostUpperBound, |
| (int64_t)SI.getNumCases() * InlineConstants::InstrCost + Cost); |
| |
| if (CostLowerBound > Threshold && !ComputeFullInlineCost) { |
| Cost = CostLowerBound; |
| return false; |
| } |
| |
| unsigned JumpTableSize = 0; |
| unsigned NumCaseCluster = |
| TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize); |
| |
| // If suitable for a jump table, consider the cost for the table size and |
| // branch to destination. |
| if (JumpTableSize) { |
| int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost + |
| 4 * InlineConstants::InstrCost; |
| |
| Cost = std::min((int64_t)CostUpperBound, JTCost + Cost); |
| return false; |
| } |
| |
| // Considering forming a binary search, we should find the number of nodes |
| // which is same as the number of comparisons when lowered. For a given |
| // number of clusters, n, we can define a recursive function, f(n), to find |
| // the number of nodes in the tree. The recursion is : |
| // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, |
| // and f(n) = n, when n <= 3. |
| // This will lead a binary tree where the leaf should be either f(2) or f(3) |
| // when n > 3. So, the number of comparisons from leaves should be n, while |
| // the number of non-leaf should be : |
| // 2^(log2(n) - 1) - 1 |
| // = 2^log2(n) * 2^-1 - 1 |
| // = n / 2 - 1. |
| // Considering comparisons from leaf and non-leaf nodes, we can estimate the |
| // number of comparisons in a simple closed form : |
| // n + n / 2 - 1 = n * 3 / 2 - 1 |
| if (NumCaseCluster <= 3) { |
| // Suppose a comparison includes one compare and one conditional branch. |
| Cost += NumCaseCluster * 2 * InlineConstants::InstrCost; |
| return false; |
| } |
| |
| int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1; |
| int64_t SwitchCost = |
| ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; |
| |
| Cost = std::min((int64_t)CostUpperBound, SwitchCost + Cost); |
| return false; |
| } |
| |
| bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { |
| // We never want to inline functions that contain an indirectbr. This is |
| // incorrect because all the blockaddress's (in static global initializers |
| // for example) would be referring to the original function, and this |
| // indirect jump would jump from the inlined copy of the function into the |
| // original function which is extremely undefined behavior. |
| // FIXME: This logic isn't really right; we can safely inline functions with |
| // indirectbr's as long as no other function or global references the |
| // blockaddress of a block within the current function. |
| HasIndirectBr = true; |
| return false; |
| } |
| |
| bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { |
| // FIXME: It's not clear that a single instruction is an accurate model for |
| // the inline cost of a resume instruction. |
| return false; |
| } |
| |
| bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { |
| // FIXME: It's not clear that a single instruction is an accurate model for |
| // the inline cost of a cleanupret instruction. |
| return false; |
| } |
| |
| bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { |
| // FIXME: It's not clear that a single instruction is an accurate model for |
| // the inline cost of a catchret instruction. |
| return false; |
| } |
| |
| bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { |
| // FIXME: It might be reasonably to discount the cost of instructions leading |
| // to unreachable as they have the lowest possible impact on both runtime and |
| // code size. |
| return true; // No actual code is needed for unreachable. |
| } |
| |
| bool CallAnalyzer::visitInstruction(Instruction &I) { |
| // Some instructions are free. All of the free intrinsics can also be |
| // handled by SROA, etc. |
| if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I)) |
| return true; |
| |
| // We found something we don't understand or can't handle. Mark any SROA-able |
| // values in the operand list as no longer viable. |
| for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) |
| disableSROA(*OI); |
| |
| return false; |
| } |
| |
| /// Analyze a basic block for its contribution to the inline cost. |
| /// |
| /// This method walks the analyzer over every instruction in the given basic |
| /// block and accounts for their cost during inlining at this callsite. It |
| /// aborts early if the threshold has been exceeded or an impossible to inline |
| /// construct has been detected. It returns false if inlining is no longer |
| /// viable, and true if inlining remains viable. |
| bool CallAnalyzer::analyzeBlock(BasicBlock *BB, |
| SmallPtrSetImpl<const Value *> &EphValues) { |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { |
| // FIXME: Currently, the number of instructions in a function regardless of |
| // our ability to simplify them during inline to constants or dead code, |
| // are actually used by the vector bonus heuristic. As long as that's true, |
| // we have to special case debug intrinsics here to prevent differences in |
| // inlining due to debug symbols. Eventually, the number of unsimplified |
| // instructions shouldn't factor into the cost computation, but until then, |
| // hack around it here. |
| if (isa<DbgInfoIntrinsic>(I)) |
| continue; |
| |
| // Skip ephemeral values. |
| if (EphValues.count(&*I)) |
| continue; |
| |
| ++NumInstructions; |
| if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) |
| ++NumVectorInstructions; |
| |
| // If the instruction simplified to a constant, there is no cost to this |
| // instruction. Visit the instructions using our InstVisitor to account for |
| // all of the per-instruction logic. The visit tree returns true if we |
| // consumed the instruction in any way, and false if the instruction's base |
| // cost should count against inlining. |
| if (Base::visit(&*I)) |
| ++NumInstructionsSimplified; |
| else |
| Cost += InlineConstants::InstrCost; |
| |
| using namespace ore; |
| // If the visit this instruction detected an uninlinable pattern, abort. |
| if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca || |
| HasIndirectBr || HasUninlineableIntrinsic || UsesVarArgs) { |
| if (ORE) |
| ORE->emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", |
| CandidateCS.getInstruction()) |
| << NV("Callee", &F) |
| << " has uninlinable pattern and cost is not fully computed"; |
| }); |
| return false; |
| } |
| |
| // If the caller is a recursive function then we don't want to inline |
| // functions which allocate a lot of stack space because it would increase |
| // the caller stack usage dramatically. |
| if (IsCallerRecursive && |
| AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { |
| if (ORE) |
| ORE->emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", |
| CandidateCS.getInstruction()) |
| << NV("Callee", &F) |
| << " is recursive and allocates too much stack space. Cost is " |
| "not fully computed"; |
| }); |
| return false; |
| } |
| |
| // Check if we've past the maximum possible threshold so we don't spin in |
| // huge basic blocks that will never inline. |
| if (Cost >= Threshold && !ComputeFullInlineCost) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Compute the base pointer and cumulative constant offsets for V. |
| /// |
| /// This strips all constant offsets off of V, leaving it the base pointer, and |
| /// accumulates the total constant offset applied in the returned constant. It |
| /// returns 0 if V is not a pointer, and returns the constant '0' if there are |
| /// no constant offsets applied. |
| ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { |
| if (!V->getType()->isPointerTy()) |
| return nullptr; |
| |
| unsigned AS = V->getType()->getPointerAddressSpace(); |
| unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); |
| APInt Offset = APInt::getNullValue(IntPtrWidth); |
| |
| // Even though we don't look through PHI nodes, we could be called on an |
| // instruction in an unreachable block, which may be on a cycle. |
| SmallPtrSet<Value *, 4> Visited; |
| Visited.insert(V); |
| do { |
| if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { |
| if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) |
| return nullptr; |
| V = GEP->getPointerOperand(); |
| } else if (Operator::getOpcode(V) == Instruction::BitCast) { |
| V = cast<Operator>(V)->getOperand(0); |
| } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { |
| if (GA->isInterposable()) |
| break; |
| V = GA->getAliasee(); |
| } else { |
| break; |
| } |
| assert(V->getType()->isPointerTy() && "Unexpected operand type!"); |
| } while (Visited.insert(V).second); |
| |
| Type *IntPtrTy = DL.getIntPtrType(V->getContext(), AS); |
| return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset)); |
| } |
| |
| /// Find dead blocks due to deleted CFG edges during inlining. |
| /// |
| /// If we know the successor of the current block, \p CurrBB, has to be \p |
| /// NextBB, the other successors of \p CurrBB are dead if these successors have |
| /// no live incoming CFG edges. If one block is found to be dead, we can |
| /// continue growing the dead block list by checking the successors of the dead |
| /// blocks to see if all their incoming edges are dead or not. |
| void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { |
| auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { |
| // A CFG edge is dead if the predecessor is dead or the predessor has a |
| // known successor which is not the one under exam. |
| return (DeadBlocks.count(Pred) || |
| (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); |
| }; |
| |
| auto IsNewlyDead = [&](BasicBlock *BB) { |
| // If all the edges to a block are dead, the block is also dead. |
| return (!DeadBlocks.count(BB) && |
| llvm::all_of(predecessors(BB), |
| [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); |
| }; |
| |
| for (BasicBlock *Succ : successors(CurrBB)) { |
| if (Succ == NextBB || !IsNewlyDead(Succ)) |
| continue; |
| SmallVector<BasicBlock *, 4> NewDead; |
| NewDead.push_back(Succ); |
| while (!NewDead.empty()) { |
| BasicBlock *Dead = NewDead.pop_back_val(); |
| if (DeadBlocks.insert(Dead)) |
| // Continue growing the dead block lists. |
| for (BasicBlock *S : successors(Dead)) |
| if (IsNewlyDead(S)) |
| NewDead.push_back(S); |
| } |
| } |
| } |
| |
| /// Analyze a call site for potential inlining. |
| /// |
| /// Returns true if inlining this call is viable, and false if it is not |
| /// viable. It computes the cost and adjusts the threshold based on numerous |
| /// factors and heuristics. If this method returns false but the computed cost |
| /// is below the computed threshold, then inlining was forcibly disabled by |
| /// some artifact of the routine. |
| bool CallAnalyzer::analyzeCall(CallSite CS) { |
| ++NumCallsAnalyzed; |
| |
| // Perform some tweaks to the cost and threshold based on the direct |
| // callsite information. |
| |
| // We want to more aggressively inline vector-dense kernels, so up the |
| // threshold, and we'll lower it if the % of vector instructions gets too |
| // low. Note that these bonuses are some what arbitrary and evolved over time |
| // by accident as much as because they are principled bonuses. |
| // |
| // FIXME: It would be nice to remove all such bonuses. At least it would be |
| // nice to base the bonus values on something more scientific. |
| assert(NumInstructions == 0); |
| assert(NumVectorInstructions == 0); |
| |
| // Update the threshold based on callsite properties |
| updateThreshold(CS, F); |
| |
| // Speculatively apply all possible bonuses to Threshold. If cost exceeds |
| // this Threshold any time, and cost cannot decrease, we can stop processing |
| // the rest of the function body. |
| Threshold += (SingleBBBonus + VectorBonus); |
| |
| // Give out bonuses for the callsite, as the instructions setting them up |
| // will be gone after inlining. |
| Cost -= getCallsiteCost(CS, DL); |
| |
| // If this function uses the coldcc calling convention, prefer not to inline |
| // it. |
| if (F.getCallingConv() == CallingConv::Cold) |
| Cost += InlineConstants::ColdccPenalty; |
| |
| // Check if we're done. This can happen due to bonuses and penalties. |
| if (Cost >= Threshold && !ComputeFullInlineCost) |
| return false; |
| |
| if (F.empty()) |
| return true; |
| |
| Function *Caller = CS.getInstruction()->getFunction(); |
| // Check if the caller function is recursive itself. |
| for (User *U : Caller->users()) { |
| CallSite Site(U); |
| if (!Site) |
| continue; |
| Instruction *I = Site.getInstruction(); |
| if (I->getFunction() == Caller) { |
| IsCallerRecursive = true; |
| break; |
| } |
| } |
| |
| // Populate our simplified values by mapping from function arguments to call |
| // arguments with known important simplifications. |
| CallSite::arg_iterator CAI = CS.arg_begin(); |
| for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); |
| FAI != FAE; ++FAI, ++CAI) { |
| assert(CAI != CS.arg_end()); |
| if (Constant *C = dyn_cast<Constant>(CAI)) |
| SimplifiedValues[&*FAI] = C; |
| |
| Value *PtrArg = *CAI; |
| if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { |
| ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue()); |
| |
| // We can SROA any pointer arguments derived from alloca instructions. |
| if (isa<AllocaInst>(PtrArg)) { |
| SROAArgValues[&*FAI] = PtrArg; |
| SROAArgCosts[PtrArg] = 0; |
| } |
| } |
| } |
| NumConstantArgs = SimplifiedValues.size(); |
| NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); |
| NumAllocaArgs = SROAArgValues.size(); |
| |
| // FIXME: If a caller has multiple calls to a callee, we end up recomputing |
| // the ephemeral values multiple times (and they're completely determined by |
| // the callee, so this is purely duplicate work). |
| SmallPtrSet<const Value *, 32> EphValues; |
| CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); |
| |
| // The worklist of live basic blocks in the callee *after* inlining. We avoid |
| // adding basic blocks of the callee which can be proven to be dead for this |
| // particular call site in order to get more accurate cost estimates. This |
| // requires a somewhat heavyweight iteration pattern: we need to walk the |
| // basic blocks in a breadth-first order as we insert live successors. To |
| // accomplish this, prioritizing for small iterations because we exit after |
| // crossing our threshold, we use a small-size optimized SetVector. |
| typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, |
| SmallPtrSet<BasicBlock *, 16>> |
| BBSetVector; |
| BBSetVector BBWorklist; |
| BBWorklist.insert(&F.getEntryBlock()); |
| bool SingleBB = true; |
| // Note that we *must not* cache the size, this loop grows the worklist. |
| for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { |
| // Bail out the moment we cross the threshold. This means we'll under-count |
| // the cost, but only when undercounting doesn't matter. |
| if (Cost >= Threshold && !ComputeFullInlineCost) |
| break; |
| |
| BasicBlock *BB = BBWorklist[Idx]; |
| if (BB->empty()) |
| continue; |
| |
| // Disallow inlining a blockaddress. A blockaddress only has defined |
| // behavior for an indirect branch in the same function, and we do not |
| // currently support inlining indirect branches. But, the inliner may not |
| // see an indirect branch that ends up being dead code at a particular call |
| // site. If the blockaddress escapes the function, e.g., via a global |
| // variable, inlining may lead to an invalid cross-function reference. |
| if (BB->hasAddressTaken()) |
| return false; |
| |
| // Analyze the cost of this block. If we blow through the threshold, this |
| // returns false, and we can bail on out. |
| if (!analyzeBlock(BB, EphValues)) |
| return false; |
| |
| TerminatorInst *TI = BB->getTerminator(); |
| |
| // Add in the live successors by first checking whether we have terminator |
| // that may be simplified based on the values simplified by this call. |
| if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| if (BI->isConditional()) { |
| Value *Cond = BI->getCondition(); |
| if (ConstantInt *SimpleCond = |
| dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { |
| BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); |
| BBWorklist.insert(NextBB); |
| KnownSuccessors[BB] = NextBB; |
| findDeadBlocks(BB, NextBB); |
| continue; |
| } |
| } |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| Value *Cond = SI->getCondition(); |
| if (ConstantInt *SimpleCond = |
| dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { |
| BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); |
| BBWorklist.insert(NextBB); |
| KnownSuccessors[BB] = NextBB; |
| findDeadBlocks(BB, NextBB); |
| continue; |
| } |
| } |
| |
| // If we're unable to select a particular successor, just count all of |
| // them. |
| for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; |
| ++TIdx) |
| BBWorklist.insert(TI->getSuccessor(TIdx)); |
| |
| // If we had any successors at this point, than post-inlining is likely to |
| // have them as well. Note that we assume any basic blocks which existed |
| // due to branches or switches which folded above will also fold after |
| // inlining. |
| if (SingleBB && TI->getNumSuccessors() > 1) { |
| // Take off the bonus we applied to the threshold. |
| Threshold -= SingleBBBonus; |
| SingleBB = false; |
| } |
| } |
| |
| bool OnlyOneCallAndLocalLinkage = |
| F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction(); |
| // If this is a noduplicate call, we can still inline as long as |
| // inlining this would cause the removal of the caller (so the instruction |
| // is not actually duplicated, just moved). |
| if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) |
| return false; |
| |
| // We applied the maximum possible vector bonus at the beginning. Now, |
| // subtract the excess bonus, if any, from the Threshold before |
| // comparing against Cost. |
| if (NumVectorInstructions <= NumInstructions / 10) |
| Threshold -= VectorBonus; |
| else if (NumVectorInstructions <= NumInstructions / 2) |
| Threshold -= VectorBonus/2; |
| |
| return Cost < std::max(1, Threshold); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Dump stats about this call's analysis. |
| LLVM_DUMP_METHOD void CallAnalyzer::dump() { |
| #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" |
| DEBUG_PRINT_STAT(NumConstantArgs); |
| DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); |
| DEBUG_PRINT_STAT(NumAllocaArgs); |
| DEBUG_PRINT_STAT(NumConstantPtrCmps); |
| DEBUG_PRINT_STAT(NumConstantPtrDiffs); |
| DEBUG_PRINT_STAT(NumInstructionsSimplified); |
| DEBUG_PRINT_STAT(NumInstructions); |
| DEBUG_PRINT_STAT(SROACostSavings); |
| DEBUG_PRINT_STAT(SROACostSavingsLost); |
| DEBUG_PRINT_STAT(LoadEliminationCost); |
| DEBUG_PRINT_STAT(ContainsNoDuplicateCall); |
| DEBUG_PRINT_STAT(Cost); |
| DEBUG_PRINT_STAT(Threshold); |
| #undef DEBUG_PRINT_STAT |
| } |
| #endif |
| |
| /// Test that there are no attribute conflicts between Caller and Callee |
| /// that prevent inlining. |
| static bool functionsHaveCompatibleAttributes(Function *Caller, |
| Function *Callee, |
| TargetTransformInfo &TTI) { |
| return TTI.areInlineCompatible(Caller, Callee) && |
| AttributeFuncs::areInlineCompatible(*Caller, *Callee); |
| } |
| |
| int llvm::getCallsiteCost(CallSite CS, const DataLayout &DL) { |
| int Cost = 0; |
| for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) { |
| if (CS.isByValArgument(I)) { |
| // We approximate the number of loads and stores needed by dividing the |
| // size of the byval type by the target's pointer size. |
| PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType()); |
| unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); |
| unsigned AS = PTy->getAddressSpace(); |
| unsigned PointerSize = DL.getPointerSizeInBits(AS); |
| // Ceiling division. |
| unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; |
| |
| // If it generates more than 8 stores it is likely to be expanded as an |
| // inline memcpy so we take that as an upper bound. Otherwise we assume |
| // one load and one store per word copied. |
| // FIXME: The maxStoresPerMemcpy setting from the target should be used |
| // here instead of a magic number of 8, but it's not available via |
| // DataLayout. |
| NumStores = std::min(NumStores, 8U); |
| |
| Cost += 2 * NumStores * InlineConstants::InstrCost; |
| } else { |
| // For non-byval arguments subtract off one instruction per call |
| // argument. |
| Cost += InlineConstants::InstrCost; |
| } |
| } |
| // The call instruction also disappears after inlining. |
| Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty; |
| return Cost; |
| } |
| |
| InlineCost llvm::getInlineCost( |
| CallSite CS, const InlineParams &Params, TargetTransformInfo &CalleeTTI, |
| std::function<AssumptionCache &(Function &)> &GetAssumptionCache, |
| Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI, |
| ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { |
| return getInlineCost(CS, CS.getCalledFunction(), Params, CalleeTTI, |
| GetAssumptionCache, GetBFI, PSI, ORE); |
| } |
| |
| InlineCost llvm::getInlineCost( |
| CallSite CS, Function *Callee, const InlineParams &Params, |
| TargetTransformInfo &CalleeTTI, |
| std::function<AssumptionCache &(Function &)> &GetAssumptionCache, |
| Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI, |
| ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { |
| |
| // Cannot inline indirect calls. |
| if (!Callee) |
| return llvm::InlineCost::getNever(); |
| |
| // Never inline calls with byval arguments that does not have the alloca |
| // address space. Since byval arguments can be replaced with a copy to an |
| // alloca, the inlined code would need to be adjusted to handle that the |
| // argument is in the alloca address space (so it is a little bit complicated |
| // to solve). |
| unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); |
| for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) |
| if (CS.isByValArgument(I)) { |
| PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType()); |
| if (PTy->getAddressSpace() != AllocaAS) |
| return llvm::InlineCost::getNever(); |
| } |
| |
| // Calls to functions with always-inline attributes should be inlined |
| // whenever possible. |
| if (CS.hasFnAttr(Attribute::AlwaysInline)) { |
| if (isInlineViable(*Callee)) |
| return llvm::InlineCost::getAlways(); |
| return llvm::InlineCost::getNever(); |
| } |
| |
| // Never inline functions with conflicting attributes (unless callee has |
| // always-inline attribute). |
| Function *Caller = CS.getCaller(); |
| if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI)) |
| return llvm::InlineCost::getNever(); |
| |
| // Don't inline this call if the caller has the optnone attribute. |
| if (Caller->hasFnAttribute(Attribute::OptimizeNone)) |
| return llvm::InlineCost::getNever(); |
| |
| // Don't inline a function that treats null pointer as valid into a caller |
| // that does not have this attribute. |
| if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) |
| return llvm::InlineCost::getNever(); |
| |
| // Don't inline functions which can be interposed at link-time. Don't inline |
| // functions marked noinline or call sites marked noinline. |
| // Note: inlining non-exact non-interposable functions is fine, since we know |
| // we have *a* correct implementation of the source level function. |
| if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) || |
| CS.isNoInline()) |
| return llvm::InlineCost::getNever(); |
| |
| LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() |
| << "... (caller:" << Caller->getName() << ")\n"); |
| |
| CallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, *Callee, CS, |
| Params); |
| bool ShouldInline = CA.analyzeCall(CS); |
| |
| LLVM_DEBUG(CA.dump()); |
| |
| // Check if there was a reason to force inlining or no inlining. |
| if (!ShouldInline && CA.getCost() < CA.getThreshold()) |
| return InlineCost::getNever(); |
| if (ShouldInline && CA.getCost() >= CA.getThreshold()) |
| return InlineCost::getAlways(); |
| |
| return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); |
| } |
| |
| bool llvm::isInlineViable(Function &F) { |
| bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); |
| for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { |
| // Disallow inlining of functions which contain indirect branches or |
| // blockaddresses. |
| if (isa<IndirectBrInst>(BI->getTerminator()) || BI->hasAddressTaken()) |
| return false; |
| |
| for (auto &II : *BI) { |
| CallSite CS(&II); |
| if (!CS) |
| continue; |
| |
| // Disallow recursive calls. |
| if (&F == CS.getCalledFunction()) |
| return false; |
| |
| // Disallow calls which expose returns-twice to a function not previously |
| // attributed as such. |
| if (!ReturnsTwice && CS.isCall() && |
| cast<CallInst>(CS.getInstruction())->canReturnTwice()) |
| return false; |
| |
| if (CS.getCalledFunction()) |
| switch (CS.getCalledFunction()->getIntrinsicID()) { |
| default: |
| break; |
| // Disallow inlining of @llvm.icall.branch.funnel because current |
| // backend can't separate call targets from call arguments. |
| case llvm::Intrinsic::icall_branch_funnel: |
| // Disallow inlining functions that call @llvm.localescape. Doing this |
| // correctly would require major changes to the inliner. |
| case llvm::Intrinsic::localescape: |
| // Disallow inlining of functions that access VarArgs. |
| case llvm::Intrinsic::vastart: |
| case llvm::Intrinsic::vaend: |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // APIs to create InlineParams based on command line flags and/or other |
| // parameters. |
| |
| InlineParams llvm::getInlineParams(int Threshold) { |
| InlineParams Params; |
| |
| // This field is the threshold to use for a callee by default. This is |
| // derived from one or more of: |
| // * optimization or size-optimization levels, |
| // * a value passed to createFunctionInliningPass function, or |
| // * the -inline-threshold flag. |
| // If the -inline-threshold flag is explicitly specified, that is used |
| // irrespective of anything else. |
| if (InlineThreshold.getNumOccurrences() > 0) |
| Params.DefaultThreshold = InlineThreshold; |
| else |
| Params.DefaultThreshold = Threshold; |
| |
| // Set the HintThreshold knob from the -inlinehint-threshold. |
| Params.HintThreshold = HintThreshold; |
| |
| // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. |
| Params.HotCallSiteThreshold = HotCallSiteThreshold; |
| |
| // If the -locally-hot-callsite-threshold is explicitly specified, use it to |
| // populate LocallyHotCallSiteThreshold. Later, we populate |
| // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if |
| // we know that optimization level is O3 (in the getInlineParams variant that |
| // takes the opt and size levels). |
| // FIXME: Remove this check (and make the assignment unconditional) after |
| // addressing size regression issues at O2. |
| if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) |
| Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; |
| |
| // Set the ColdCallSiteThreshold knob from the -inline-cold-callsite-threshold. |
| Params.ColdCallSiteThreshold = ColdCallSiteThreshold; |
| |
| // Set the OptMinSizeThreshold and OptSizeThreshold params only if the |
| // -inlinehint-threshold commandline option is not explicitly given. If that |
| // option is present, then its value applies even for callees with size and |
| // minsize attributes. |
| // If the -inline-threshold is not specified, set the ColdThreshold from the |
| // -inlinecold-threshold even if it is not explicitly passed. If |
| // -inline-threshold is specified, then -inlinecold-threshold needs to be |
| // explicitly specified to set the ColdThreshold knob |
| if (InlineThreshold.getNumOccurrences() == 0) { |
| Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; |
| Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; |
| Params.ColdThreshold = ColdThreshold; |
| } else if (ColdThreshold.getNumOccurrences() > 0) { |
| Params.ColdThreshold = ColdThreshold; |
| } |
| return Params; |
| } |
| |
| InlineParams llvm::getInlineParams() { |
| return getInlineParams(InlineThreshold); |
| } |
| |
| // Compute the default threshold for inlining based on the opt level and the |
| // size opt level. |
| static int computeThresholdFromOptLevels(unsigned OptLevel, |
| unsigned SizeOptLevel) { |
| if (OptLevel > 2) |
| return InlineConstants::OptAggressiveThreshold; |
| if (SizeOptLevel == 1) // -Os |
| return InlineConstants::OptSizeThreshold; |
| if (SizeOptLevel == 2) // -Oz |
| return InlineConstants::OptMinSizeThreshold; |
| return InlineThreshold; |
| } |
| |
| InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { |
| auto Params = |
| getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); |
| // At O3, use the value of -locally-hot-callsite-threshold option to populate |
| // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only |
| // when it is specified explicitly. |
| if (OptLevel > 2) |
| Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; |
| return Params; |
| } |