| //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines routines for folding instructions into constants. |
| // |
| // Also, to supplement the basic IR ConstantExpr simplifications, |
| // this file defines some additional folding routines that can make use of |
| // DataLayout information. These functions cannot go in IR due to library |
| // dependency issues. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Config/config.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cassert> |
| #include <cerrno> |
| #include <cfenv> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| //===----------------------------------------------------------------------===// |
| // Constant Folding internal helper functions |
| //===----------------------------------------------------------------------===// |
| |
| static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, |
| Constant *C, Type *SrcEltTy, |
| unsigned NumSrcElts, |
| const DataLayout &DL) { |
| // Now that we know that the input value is a vector of integers, just shift |
| // and insert them into our result. |
| unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); |
| for (unsigned i = 0; i != NumSrcElts; ++i) { |
| Constant *Element; |
| if (DL.isLittleEndian()) |
| Element = C->getAggregateElement(NumSrcElts - i - 1); |
| else |
| Element = C->getAggregateElement(i); |
| |
| if (Element && isa<UndefValue>(Element)) { |
| Result <<= BitShift; |
| continue; |
| } |
| |
| auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); |
| if (!ElementCI) |
| return ConstantExpr::getBitCast(C, DestTy); |
| |
| Result <<= BitShift; |
| Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Constant fold bitcast, symbolically evaluating it with DataLayout. |
| /// This always returns a non-null constant, but it may be a |
| /// ConstantExpr if unfoldable. |
| Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { |
| // Catch the obvious splat cases. |
| if (C->isNullValue() && !DestTy->isX86_MMXTy()) |
| return Constant::getNullValue(DestTy); |
| if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && |
| !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! |
| return Constant::getAllOnesValue(DestTy); |
| |
| if (auto *VTy = dyn_cast<VectorType>(C->getType())) { |
| // Handle a vector->scalar integer/fp cast. |
| if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { |
| unsigned NumSrcElts = VTy->getNumElements(); |
| Type *SrcEltTy = VTy->getElementType(); |
| |
| // If the vector is a vector of floating point, convert it to vector of int |
| // to simplify things. |
| if (SrcEltTy->isFloatingPointTy()) { |
| unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); |
| Type *SrcIVTy = |
| VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts); |
| // Ask IR to do the conversion now that #elts line up. |
| C = ConstantExpr::getBitCast(C, SrcIVTy); |
| } |
| |
| APInt Result(DL.getTypeSizeInBits(DestTy), 0); |
| if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, |
| SrcEltTy, NumSrcElts, DL)) |
| return CE; |
| |
| if (isa<IntegerType>(DestTy)) |
| return ConstantInt::get(DestTy, Result); |
| |
| APFloat FP(DestTy->getFltSemantics(), Result); |
| return ConstantFP::get(DestTy->getContext(), FP); |
| } |
| } |
| |
| // The code below only handles casts to vectors currently. |
| auto *DestVTy = dyn_cast<VectorType>(DestTy); |
| if (!DestVTy) |
| return ConstantExpr::getBitCast(C, DestTy); |
| |
| // If this is a scalar -> vector cast, convert the input into a <1 x scalar> |
| // vector so the code below can handle it uniformly. |
| if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { |
| Constant *Ops = C; // don't take the address of C! |
| return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); |
| } |
| |
| // If this is a bitcast from constant vector -> vector, fold it. |
| if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) |
| return ConstantExpr::getBitCast(C, DestTy); |
| |
| // If the element types match, IR can fold it. |
| unsigned NumDstElt = DestVTy->getNumElements(); |
| unsigned NumSrcElt = C->getType()->getVectorNumElements(); |
| if (NumDstElt == NumSrcElt) |
| return ConstantExpr::getBitCast(C, DestTy); |
| |
| Type *SrcEltTy = C->getType()->getVectorElementType(); |
| Type *DstEltTy = DestVTy->getElementType(); |
| |
| // Otherwise, we're changing the number of elements in a vector, which |
| // requires endianness information to do the right thing. For example, |
| // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) |
| // folds to (little endian): |
| // <4 x i32> <i32 0, i32 0, i32 1, i32 0> |
| // and to (big endian): |
| // <4 x i32> <i32 0, i32 0, i32 0, i32 1> |
| |
| // First thing is first. We only want to think about integer here, so if |
| // we have something in FP form, recast it as integer. |
| if (DstEltTy->isFloatingPointTy()) { |
| // Fold to an vector of integers with same size as our FP type. |
| unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); |
| Type *DestIVTy = |
| VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt); |
| // Recursively handle this integer conversion, if possible. |
| C = FoldBitCast(C, DestIVTy, DL); |
| |
| // Finally, IR can handle this now that #elts line up. |
| return ConstantExpr::getBitCast(C, DestTy); |
| } |
| |
| // Okay, we know the destination is integer, if the input is FP, convert |
| // it to integer first. |
| if (SrcEltTy->isFloatingPointTy()) { |
| unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); |
| Type *SrcIVTy = |
| VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt); |
| // Ask IR to do the conversion now that #elts line up. |
| C = ConstantExpr::getBitCast(C, SrcIVTy); |
| // If IR wasn't able to fold it, bail out. |
| if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. |
| !isa<ConstantDataVector>(C)) |
| return C; |
| } |
| |
| // Now we know that the input and output vectors are both integer vectors |
| // of the same size, and that their #elements is not the same. Do the |
| // conversion here, which depends on whether the input or output has |
| // more elements. |
| bool isLittleEndian = DL.isLittleEndian(); |
| |
| SmallVector<Constant*, 32> Result; |
| if (NumDstElt < NumSrcElt) { |
| // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) |
| Constant *Zero = Constant::getNullValue(DstEltTy); |
| unsigned Ratio = NumSrcElt/NumDstElt; |
| unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); |
| unsigned SrcElt = 0; |
| for (unsigned i = 0; i != NumDstElt; ++i) { |
| // Build each element of the result. |
| Constant *Elt = Zero; |
| unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); |
| for (unsigned j = 0; j != Ratio; ++j) { |
| Constant *Src = C->getAggregateElement(SrcElt++); |
| if (Src && isa<UndefValue>(Src)) |
| Src = Constant::getNullValue(C->getType()->getVectorElementType()); |
| else |
| Src = dyn_cast_or_null<ConstantInt>(Src); |
| if (!Src) // Reject constantexpr elements. |
| return ConstantExpr::getBitCast(C, DestTy); |
| |
| // Zero extend the element to the right size. |
| Src = ConstantExpr::getZExt(Src, Elt->getType()); |
| |
| // Shift it to the right place, depending on endianness. |
| Src = ConstantExpr::getShl(Src, |
| ConstantInt::get(Src->getType(), ShiftAmt)); |
| ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; |
| |
| // Mix it in. |
| Elt = ConstantExpr::getOr(Elt, Src); |
| } |
| Result.push_back(Elt); |
| } |
| return ConstantVector::get(Result); |
| } |
| |
| // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) |
| unsigned Ratio = NumDstElt/NumSrcElt; |
| unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); |
| |
| // Loop over each source value, expanding into multiple results. |
| for (unsigned i = 0; i != NumSrcElt; ++i) { |
| auto *Element = C->getAggregateElement(i); |
| |
| if (!Element) // Reject constantexpr elements. |
| return ConstantExpr::getBitCast(C, DestTy); |
| |
| if (isa<UndefValue>(Element)) { |
| // Correctly Propagate undef values. |
| Result.append(Ratio, UndefValue::get(DstEltTy)); |
| continue; |
| } |
| |
| auto *Src = dyn_cast<ConstantInt>(Element); |
| if (!Src) |
| return ConstantExpr::getBitCast(C, DestTy); |
| |
| unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); |
| for (unsigned j = 0; j != Ratio; ++j) { |
| // Shift the piece of the value into the right place, depending on |
| // endianness. |
| Constant *Elt = ConstantExpr::getLShr(Src, |
| ConstantInt::get(Src->getType(), ShiftAmt)); |
| ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; |
| |
| // Truncate the element to an integer with the same pointer size and |
| // convert the element back to a pointer using a inttoptr. |
| if (DstEltTy->isPointerTy()) { |
| IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); |
| Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); |
| Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); |
| continue; |
| } |
| |
| // Truncate and remember this piece. |
| Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); |
| } |
| } |
| |
| return ConstantVector::get(Result); |
| } |
| |
| } // end anonymous namespace |
| |
| /// If this constant is a constant offset from a global, return the global and |
| /// the constant. Because of constantexprs, this function is recursive. |
| bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, |
| APInt &Offset, const DataLayout &DL) { |
| // Trivial case, constant is the global. |
| if ((GV = dyn_cast<GlobalValue>(C))) { |
| unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); |
| Offset = APInt(BitWidth, 0); |
| return true; |
| } |
| |
| // Otherwise, if this isn't a constant expr, bail out. |
| auto *CE = dyn_cast<ConstantExpr>(C); |
| if (!CE) return false; |
| |
| // Look through ptr->int and ptr->ptr casts. |
| if (CE->getOpcode() == Instruction::PtrToInt || |
| CE->getOpcode() == Instruction::BitCast) |
| return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL); |
| |
| // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) |
| auto *GEP = dyn_cast<GEPOperator>(CE); |
| if (!GEP) |
| return false; |
| |
| unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); |
| APInt TmpOffset(BitWidth, 0); |
| |
| // If the base isn't a global+constant, we aren't either. |
| if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL)) |
| return false; |
| |
| // Otherwise, add any offset that our operands provide. |
| if (!GEP->accumulateConstantOffset(DL, TmpOffset)) |
| return false; |
| |
| Offset = TmpOffset; |
| return true; |
| } |
| |
| Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, |
| const DataLayout &DL) { |
| do { |
| Type *SrcTy = C->getType(); |
| |
| // If the type sizes are the same and a cast is legal, just directly |
| // cast the constant. |
| if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) { |
| Instruction::CastOps Cast = Instruction::BitCast; |
| // If we are going from a pointer to int or vice versa, we spell the cast |
| // differently. |
| if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) |
| Cast = Instruction::IntToPtr; |
| else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) |
| Cast = Instruction::PtrToInt; |
| |
| if (CastInst::castIsValid(Cast, C, DestTy)) |
| return ConstantExpr::getCast(Cast, C, DestTy); |
| } |
| |
| // If this isn't an aggregate type, there is nothing we can do to drill down |
| // and find a bitcastable constant. |
| if (!SrcTy->isAggregateType()) |
| return nullptr; |
| |
| // We're simulating a load through a pointer that was bitcast to point to |
| // a different type, so we can try to walk down through the initial |
| // elements of an aggregate to see if some part of th e aggregate is |
| // castable to implement the "load" semantic model. |
| C = C->getAggregateElement(0u); |
| } while (C); |
| |
| return nullptr; |
| } |
| |
| namespace { |
| |
| /// Recursive helper to read bits out of global. C is the constant being copied |
| /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy |
| /// results into and BytesLeft is the number of bytes left in |
| /// the CurPtr buffer. DL is the DataLayout. |
| bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, |
| unsigned BytesLeft, const DataLayout &DL) { |
| assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && |
| "Out of range access"); |
| |
| // If this element is zero or undefined, we can just return since *CurPtr is |
| // zero initialized. |
| if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) |
| return true; |
| |
| if (auto *CI = dyn_cast<ConstantInt>(C)) { |
| if (CI->getBitWidth() > 64 || |
| (CI->getBitWidth() & 7) != 0) |
| return false; |
| |
| uint64_t Val = CI->getZExtValue(); |
| unsigned IntBytes = unsigned(CI->getBitWidth()/8); |
| |
| for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { |
| int n = ByteOffset; |
| if (!DL.isLittleEndian()) |
| n = IntBytes - n - 1; |
| CurPtr[i] = (unsigned char)(Val >> (n * 8)); |
| ++ByteOffset; |
| } |
| return true; |
| } |
| |
| if (auto *CFP = dyn_cast<ConstantFP>(C)) { |
| if (CFP->getType()->isDoubleTy()) { |
| C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); |
| return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); |
| } |
| if (CFP->getType()->isFloatTy()){ |
| C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); |
| return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); |
| } |
| if (CFP->getType()->isHalfTy()){ |
| C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); |
| return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); |
| } |
| return false; |
| } |
| |
| if (auto *CS = dyn_cast<ConstantStruct>(C)) { |
| const StructLayout *SL = DL.getStructLayout(CS->getType()); |
| unsigned Index = SL->getElementContainingOffset(ByteOffset); |
| uint64_t CurEltOffset = SL->getElementOffset(Index); |
| ByteOffset -= CurEltOffset; |
| |
| while (true) { |
| // If the element access is to the element itself and not to tail padding, |
| // read the bytes from the element. |
| uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); |
| |
| if (ByteOffset < EltSize && |
| !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, |
| BytesLeft, DL)) |
| return false; |
| |
| ++Index; |
| |
| // Check to see if we read from the last struct element, if so we're done. |
| if (Index == CS->getType()->getNumElements()) |
| return true; |
| |
| // If we read all of the bytes we needed from this element we're done. |
| uint64_t NextEltOffset = SL->getElementOffset(Index); |
| |
| if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) |
| return true; |
| |
| // Move to the next element of the struct. |
| CurPtr += NextEltOffset - CurEltOffset - ByteOffset; |
| BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; |
| ByteOffset = 0; |
| CurEltOffset = NextEltOffset; |
| } |
| // not reached. |
| } |
| |
| if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || |
| isa<ConstantDataSequential>(C)) { |
| Type *EltTy = C->getType()->getSequentialElementType(); |
| uint64_t EltSize = DL.getTypeAllocSize(EltTy); |
| uint64_t Index = ByteOffset / EltSize; |
| uint64_t Offset = ByteOffset - Index * EltSize; |
| uint64_t NumElts; |
| if (auto *AT = dyn_cast<ArrayType>(C->getType())) |
| NumElts = AT->getNumElements(); |
| else |
| NumElts = C->getType()->getVectorNumElements(); |
| |
| for (; Index != NumElts; ++Index) { |
| if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, |
| BytesLeft, DL)) |
| return false; |
| |
| uint64_t BytesWritten = EltSize - Offset; |
| assert(BytesWritten <= EltSize && "Not indexing into this element?"); |
| if (BytesWritten >= BytesLeft) |
| return true; |
| |
| Offset = 0; |
| BytesLeft -= BytesWritten; |
| CurPtr += BytesWritten; |
| } |
| return true; |
| } |
| |
| if (auto *CE = dyn_cast<ConstantExpr>(C)) { |
| if (CE->getOpcode() == Instruction::IntToPtr && |
| CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { |
| return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, |
| BytesLeft, DL); |
| } |
| } |
| |
| // Otherwise, unknown initializer type. |
| return false; |
| } |
| |
| Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, |
| const DataLayout &DL) { |
| auto *PTy = cast<PointerType>(C->getType()); |
| auto *IntType = dyn_cast<IntegerType>(LoadTy); |
| |
| // If this isn't an integer load we can't fold it directly. |
| if (!IntType) { |
| unsigned AS = PTy->getAddressSpace(); |
| |
| // If this is a float/double load, we can try folding it as an int32/64 load |
| // and then bitcast the result. This can be useful for union cases. Note |
| // that address spaces don't matter here since we're not going to result in |
| // an actual new load. |
| Type *MapTy; |
| if (LoadTy->isHalfTy()) |
| MapTy = Type::getInt16Ty(C->getContext()); |
| else if (LoadTy->isFloatTy()) |
| MapTy = Type::getInt32Ty(C->getContext()); |
| else if (LoadTy->isDoubleTy()) |
| MapTy = Type::getInt64Ty(C->getContext()); |
| else if (LoadTy->isVectorTy()) { |
| MapTy = PointerType::getIntNTy(C->getContext(), |
| DL.getTypeAllocSizeInBits(LoadTy)); |
| } else |
| return nullptr; |
| |
| C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); |
| if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) |
| return FoldBitCast(Res, LoadTy, DL); |
| return nullptr; |
| } |
| |
| unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; |
| if (BytesLoaded > 32 || BytesLoaded == 0) |
| return nullptr; |
| |
| GlobalValue *GVal; |
| APInt OffsetAI; |
| if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) |
| return nullptr; |
| |
| auto *GV = dyn_cast<GlobalVariable>(GVal); |
| if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || |
| !GV->getInitializer()->getType()->isSized()) |
| return nullptr; |
| |
| int64_t Offset = OffsetAI.getSExtValue(); |
| int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType()); |
| |
| // If we're not accessing anything in this constant, the result is undefined. |
| if (Offset + BytesLoaded <= 0) |
| return UndefValue::get(IntType); |
| |
| // If we're not accessing anything in this constant, the result is undefined. |
| if (Offset >= InitializerSize) |
| return UndefValue::get(IntType); |
| |
| unsigned char RawBytes[32] = {0}; |
| unsigned char *CurPtr = RawBytes; |
| unsigned BytesLeft = BytesLoaded; |
| |
| // If we're loading off the beginning of the global, some bytes may be valid. |
| if (Offset < 0) { |
| CurPtr += -Offset; |
| BytesLeft += Offset; |
| Offset = 0; |
| } |
| |
| if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) |
| return nullptr; |
| |
| APInt ResultVal = APInt(IntType->getBitWidth(), 0); |
| if (DL.isLittleEndian()) { |
| ResultVal = RawBytes[BytesLoaded - 1]; |
| for (unsigned i = 1; i != BytesLoaded; ++i) { |
| ResultVal <<= 8; |
| ResultVal |= RawBytes[BytesLoaded - 1 - i]; |
| } |
| } else { |
| ResultVal = RawBytes[0]; |
| for (unsigned i = 1; i != BytesLoaded; ++i) { |
| ResultVal <<= 8; |
| ResultVal |= RawBytes[i]; |
| } |
| } |
| |
| return ConstantInt::get(IntType->getContext(), ResultVal); |
| } |
| |
| Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy, |
| const DataLayout &DL) { |
| auto *SrcPtr = CE->getOperand(0); |
| auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType()); |
| if (!SrcPtrTy) |
| return nullptr; |
| Type *SrcTy = SrcPtrTy->getPointerElementType(); |
| |
| Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL); |
| if (!C) |
| return nullptr; |
| |
| return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL); |
| } |
| |
| } // end anonymous namespace |
| |
| Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, |
| const DataLayout &DL) { |
| // First, try the easy cases: |
| if (auto *GV = dyn_cast<GlobalVariable>(C)) |
| if (GV->isConstant() && GV->hasDefinitiveInitializer()) |
| return GV->getInitializer(); |
| |
| if (auto *GA = dyn_cast<GlobalAlias>(C)) |
| if (GA->getAliasee() && !GA->isInterposable()) |
| return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); |
| |
| // If the loaded value isn't a constant expr, we can't handle it. |
| auto *CE = dyn_cast<ConstantExpr>(C); |
| if (!CE) |
| return nullptr; |
| |
| if (CE->getOpcode() == Instruction::GetElementPtr) { |
| if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { |
| if (GV->isConstant() && GV->hasDefinitiveInitializer()) { |
| if (Constant *V = |
| ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) |
| return V; |
| } |
| } |
| } |
| |
| if (CE->getOpcode() == Instruction::BitCast) |
| if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL)) |
| return LoadedC; |
| |
| // Instead of loading constant c string, use corresponding integer value |
| // directly if string length is small enough. |
| StringRef Str; |
| if (getConstantStringInfo(CE, Str) && !Str.empty()) { |
| size_t StrLen = Str.size(); |
| unsigned NumBits = Ty->getPrimitiveSizeInBits(); |
| // Replace load with immediate integer if the result is an integer or fp |
| // value. |
| if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && |
| (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) { |
| APInt StrVal(NumBits, 0); |
| APInt SingleChar(NumBits, 0); |
| if (DL.isLittleEndian()) { |
| for (unsigned char C : reverse(Str.bytes())) { |
| SingleChar = static_cast<uint64_t>(C); |
| StrVal = (StrVal << 8) | SingleChar; |
| } |
| } else { |
| for (unsigned char C : Str.bytes()) { |
| SingleChar = static_cast<uint64_t>(C); |
| StrVal = (StrVal << 8) | SingleChar; |
| } |
| // Append NULL at the end. |
| SingleChar = 0; |
| StrVal = (StrVal << 8) | SingleChar; |
| } |
| |
| Constant *Res = ConstantInt::get(CE->getContext(), StrVal); |
| if (Ty->isFloatingPointTy()) |
| Res = ConstantExpr::getBitCast(Res, Ty); |
| return Res; |
| } |
| } |
| |
| // If this load comes from anywhere in a constant global, and if the global |
| // is all undef or zero, we know what it loads. |
| if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) { |
| if (GV->isConstant() && GV->hasDefinitiveInitializer()) { |
| if (GV->getInitializer()->isNullValue()) |
| return Constant::getNullValue(Ty); |
| if (isa<UndefValue>(GV->getInitializer())) |
| return UndefValue::get(Ty); |
| } |
| } |
| |
| // Try hard to fold loads from bitcasted strange and non-type-safe things. |
| return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); |
| } |
| |
| namespace { |
| |
| Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) { |
| if (LI->isVolatile()) return nullptr; |
| |
| if (auto *C = dyn_cast<Constant>(LI->getOperand(0))) |
| return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL); |
| |
| return nullptr; |
| } |
| |
| /// One of Op0/Op1 is a constant expression. |
| /// Attempt to symbolically evaluate the result of a binary operator merging |
| /// these together. If target data info is available, it is provided as DL, |
| /// otherwise DL is null. |
| Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, |
| const DataLayout &DL) { |
| // SROA |
| |
| // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. |
| // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute |
| // bits. |
| |
| if (Opc == Instruction::And) { |
| KnownBits Known0 = computeKnownBits(Op0, DL); |
| KnownBits Known1 = computeKnownBits(Op1, DL); |
| if ((Known1.One | Known0.Zero).isAllOnesValue()) { |
| // All the bits of Op0 that the 'and' could be masking are already zero. |
| return Op0; |
| } |
| if ((Known0.One | Known1.Zero).isAllOnesValue()) { |
| // All the bits of Op1 that the 'and' could be masking are already zero. |
| return Op1; |
| } |
| |
| Known0.Zero |= Known1.Zero; |
| Known0.One &= Known1.One; |
| if (Known0.isConstant()) |
| return ConstantInt::get(Op0->getType(), Known0.getConstant()); |
| } |
| |
| // If the constant expr is something like &A[123] - &A[4].f, fold this into a |
| // constant. This happens frequently when iterating over a global array. |
| if (Opc == Instruction::Sub) { |
| GlobalValue *GV1, *GV2; |
| APInt Offs1, Offs2; |
| |
| if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) |
| if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { |
| unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); |
| |
| // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. |
| // PtrToInt may change the bitwidth so we have convert to the right size |
| // first. |
| return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - |
| Offs2.zextOrTrunc(OpSize)); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// If array indices are not pointer-sized integers, explicitly cast them so |
| /// that they aren't implicitly casted by the getelementptr. |
| Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, |
| Type *ResultTy, Optional<unsigned> InRangeIndex, |
| const DataLayout &DL, const TargetLibraryInfo *TLI) { |
| Type *IntPtrTy = DL.getIntPtrType(ResultTy); |
| Type *IntPtrScalarTy = IntPtrTy->getScalarType(); |
| |
| bool Any = false; |
| SmallVector<Constant*, 32> NewIdxs; |
| for (unsigned i = 1, e = Ops.size(); i != e; ++i) { |
| if ((i == 1 || |
| !isa<StructType>(GetElementPtrInst::getIndexedType( |
| SrcElemTy, Ops.slice(1, i - 1)))) && |
| Ops[i]->getType()->getScalarType() != IntPtrScalarTy) { |
| Any = true; |
| Type *NewType = Ops[i]->getType()->isVectorTy() |
| ? IntPtrTy |
| : IntPtrTy->getScalarType(); |
| NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], |
| true, |
| NewType, |
| true), |
| Ops[i], NewType)); |
| } else |
| NewIdxs.push_back(Ops[i]); |
| } |
| |
| if (!Any) |
| return nullptr; |
| |
| Constant *C = ConstantExpr::getGetElementPtr( |
| SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); |
| if (Constant *Folded = ConstantFoldConstant(C, DL, TLI)) |
| C = Folded; |
| |
| return C; |
| } |
| |
| /// Strip the pointer casts, but preserve the address space information. |
| Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) { |
| assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); |
| auto *OldPtrTy = cast<PointerType>(Ptr->getType()); |
| Ptr = Ptr->stripPointerCasts(); |
| auto *NewPtrTy = cast<PointerType>(Ptr->getType()); |
| |
| ElemTy = NewPtrTy->getPointerElementType(); |
| |
| // Preserve the address space number of the pointer. |
| if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { |
| NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace()); |
| Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy); |
| } |
| return Ptr; |
| } |
| |
| /// If we can symbolically evaluate the GEP constant expression, do so. |
| Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, |
| ArrayRef<Constant *> Ops, |
| const DataLayout &DL, |
| const TargetLibraryInfo *TLI) { |
| const GEPOperator *InnermostGEP = GEP; |
| bool InBounds = GEP->isInBounds(); |
| |
| Type *SrcElemTy = GEP->getSourceElementType(); |
| Type *ResElemTy = GEP->getResultElementType(); |
| Type *ResTy = GEP->getType(); |
| if (!SrcElemTy->isSized()) |
| return nullptr; |
| |
| if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, |
| GEP->getInRangeIndex(), DL, TLI)) |
| return C; |
| |
| Constant *Ptr = Ops[0]; |
| if (!Ptr->getType()->isPointerTy()) |
| return nullptr; |
| |
| Type *IntPtrTy = DL.getIntPtrType(Ptr->getType()); |
| |
| // If this is a constant expr gep that is effectively computing an |
| // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' |
| for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
| if (!isa<ConstantInt>(Ops[i])) { |
| |
| // If this is "gep i8* Ptr, (sub 0, V)", fold this as: |
| // "inttoptr (sub (ptrtoint Ptr), V)" |
| if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { |
| auto *CE = dyn_cast<ConstantExpr>(Ops[1]); |
| assert((!CE || CE->getType() == IntPtrTy) && |
| "CastGEPIndices didn't canonicalize index types!"); |
| if (CE && CE->getOpcode() == Instruction::Sub && |
| CE->getOperand(0)->isNullValue()) { |
| Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); |
| Res = ConstantExpr::getSub(Res, CE->getOperand(1)); |
| Res = ConstantExpr::getIntToPtr(Res, ResTy); |
| if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI)) |
| Res = FoldedRes; |
| return Res; |
| } |
| } |
| return nullptr; |
| } |
| |
| unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy); |
| APInt Offset = |
| APInt(BitWidth, |
| DL.getIndexedOffsetInType( |
| SrcElemTy, |
| makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); |
| Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); |
| |
| // If this is a GEP of a GEP, fold it all into a single GEP. |
| while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { |
| InnermostGEP = GEP; |
| InBounds &= GEP->isInBounds(); |
| |
| SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); |
| |
| // Do not try the incorporate the sub-GEP if some index is not a number. |
| bool AllConstantInt = true; |
| for (Value *NestedOp : NestedOps) |
| if (!isa<ConstantInt>(NestedOp)) { |
| AllConstantInt = false; |
| break; |
| } |
| if (!AllConstantInt) |
| break; |
| |
| Ptr = cast<Constant>(GEP->getOperand(0)); |
| SrcElemTy = GEP->getSourceElementType(); |
| Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); |
| Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); |
| } |
| |
| // If the base value for this address is a literal integer value, fold the |
| // getelementptr to the resulting integer value casted to the pointer type. |
| APInt BasePtr(BitWidth, 0); |
| if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { |
| if (CE->getOpcode() == Instruction::IntToPtr) { |
| if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) |
| BasePtr = Base->getValue().zextOrTrunc(BitWidth); |
| } |
| } |
| |
| auto *PTy = cast<PointerType>(Ptr->getType()); |
| if ((Ptr->isNullValue() || BasePtr != 0) && |
| !DL.isNonIntegralPointerType(PTy)) { |
| Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); |
| return ConstantExpr::getIntToPtr(C, ResTy); |
| } |
| |
| // Otherwise form a regular getelementptr. Recompute the indices so that |
| // we eliminate over-indexing of the notional static type array bounds. |
| // This makes it easy to determine if the getelementptr is "inbounds". |
| // Also, this helps GlobalOpt do SROA on GlobalVariables. |
| Type *Ty = PTy; |
| SmallVector<Constant *, 32> NewIdxs; |
| |
| do { |
| if (!Ty->isStructTy()) { |
| if (Ty->isPointerTy()) { |
| // The only pointer indexing we'll do is on the first index of the GEP. |
| if (!NewIdxs.empty()) |
| break; |
| |
| Ty = SrcElemTy; |
| |
| // Only handle pointers to sized types, not pointers to functions. |
| if (!Ty->isSized()) |
| return nullptr; |
| } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) { |
| Ty = ATy->getElementType(); |
| } else { |
| // We've reached some non-indexable type. |
| break; |
| } |
| |
| // Determine which element of the array the offset points into. |
| APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty)); |
| if (ElemSize == 0) { |
| // The element size is 0. This may be [0 x Ty]*, so just use a zero |
| // index for this level and proceed to the next level to see if it can |
| // accommodate the offset. |
| NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0)); |
| } else { |
| // The element size is non-zero divide the offset by the element |
| // size (rounding down), to compute the index at this level. |
| bool Overflow; |
| APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow); |
| if (Overflow) |
| break; |
| Offset -= NewIdx * ElemSize; |
| NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx)); |
| } |
| } else { |
| auto *STy = cast<StructType>(Ty); |
| // If we end up with an offset that isn't valid for this struct type, we |
| // can't re-form this GEP in a regular form, so bail out. The pointer |
| // operand likely went through casts that are necessary to make the GEP |
| // sensible. |
| const StructLayout &SL = *DL.getStructLayout(STy); |
| if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes())) |
| break; |
| |
| // Determine which field of the struct the offset points into. The |
| // getZExtValue is fine as we've already ensured that the offset is |
| // within the range representable by the StructLayout API. |
| unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); |
| NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), |
| ElIdx)); |
| Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); |
| Ty = STy->getTypeAtIndex(ElIdx); |
| } |
| } while (Ty != ResElemTy); |
| |
| // If we haven't used up the entire offset by descending the static |
| // type, then the offset is pointing into the middle of an indivisible |
| // member, so we can't simplify it. |
| if (Offset != 0) |
| return nullptr; |
| |
| // Preserve the inrange index from the innermost GEP if possible. We must |
| // have calculated the same indices up to and including the inrange index. |
| Optional<unsigned> InRangeIndex; |
| if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) |
| if (SrcElemTy == InnermostGEP->getSourceElementType() && |
| NewIdxs.size() > *LastIRIndex) { |
| InRangeIndex = LastIRIndex; |
| for (unsigned I = 0; I <= *LastIRIndex; ++I) |
| if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) { |
| InRangeIndex = None; |
| break; |
| } |
| } |
| |
| // Create a GEP. |
| Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, |
| InBounds, InRangeIndex); |
| assert(C->getType()->getPointerElementType() == Ty && |
| "Computed GetElementPtr has unexpected type!"); |
| |
| // If we ended up indexing a member with a type that doesn't match |
| // the type of what the original indices indexed, add a cast. |
| if (Ty != ResElemTy) |
| C = FoldBitCast(C, ResTy, DL); |
| |
| return C; |
| } |
| |
| /// Attempt to constant fold an instruction with the |
| /// specified opcode and operands. If successful, the constant result is |
| /// returned, if not, null is returned. Note that this function can fail when |
| /// attempting to fold instructions like loads and stores, which have no |
| /// constant expression form. |
| /// |
| /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/inrange |
| /// etc information, due to only being passed an opcode and operands. Constant |
| /// folding using this function strips this information. |
| /// |
| Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, |
| ArrayRef<Constant *> Ops, |
| const DataLayout &DL, |
| const TargetLibraryInfo *TLI) { |
| Type *DestTy = InstOrCE->getType(); |
| |
| // Handle easy binops first. |
| if (Instruction::isBinaryOp(Opcode)) |
| return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); |
| |
| if (Instruction::isCast(Opcode)) |
| return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); |
| |
| if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { |
| if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) |
| return C; |
| |
| return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], |
| Ops.slice(1), GEP->isInBounds(), |
| GEP->getInRangeIndex()); |
| } |
| |
| if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) |
| return CE->getWithOperands(Ops); |
| |
| switch (Opcode) { |
| default: return nullptr; |
| case Instruction::ICmp: |
| case Instruction::FCmp: llvm_unreachable("Invalid for compares"); |
| case Instruction::Call: |
| if (auto *F = dyn_cast<Function>(Ops.back())) { |
| ImmutableCallSite CS(cast<CallInst>(InstOrCE)); |
| if (canConstantFoldCallTo(CS, F)) |
| return ConstantFoldCall(CS, F, Ops.slice(0, Ops.size() - 1), TLI); |
| } |
| return nullptr; |
| case Instruction::Select: |
| return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); |
| case Instruction::ExtractElement: |
| return ConstantExpr::getExtractElement(Ops[0], Ops[1]); |
| case Instruction::InsertElement: |
| return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); |
| case Instruction::ShuffleVector: |
| return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); |
| } |
| } |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Constant Folding public APIs |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| Constant * |
| ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, |
| const TargetLibraryInfo *TLI, |
| SmallDenseMap<Constant *, Constant *> &FoldedOps) { |
| if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) |
| return nullptr; |
| |
| SmallVector<Constant *, 8> Ops; |
| for (const Use &NewU : C->operands()) { |
| auto *NewC = cast<Constant>(&NewU); |
| // Recursively fold the ConstantExpr's operands. If we have already folded |
| // a ConstantExpr, we don't have to process it again. |
| if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) { |
| auto It = FoldedOps.find(NewC); |
| if (It == FoldedOps.end()) { |
| if (auto *FoldedC = |
| ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) { |
| FoldedOps.insert({NewC, FoldedC}); |
| NewC = FoldedC; |
| } else { |
| FoldedOps.insert({NewC, NewC}); |
| } |
| } else { |
| NewC = It->second; |
| } |
| } |
| Ops.push_back(NewC); |
| } |
| |
| if (auto *CE = dyn_cast<ConstantExpr>(C)) { |
| if (CE->isCompare()) |
| return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], |
| DL, TLI); |
| |
| return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); |
| } |
| |
| assert(isa<ConstantVector>(C)); |
| return ConstantVector::get(Ops); |
| } |
| |
| } // end anonymous namespace |
| |
| Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, |
| const TargetLibraryInfo *TLI) { |
| // Handle PHI nodes quickly here... |
| if (auto *PN = dyn_cast<PHINode>(I)) { |
| Constant *CommonValue = nullptr; |
| |
| SmallDenseMap<Constant *, Constant *> FoldedOps; |
| for (Value *Incoming : PN->incoming_values()) { |
| // If the incoming value is undef then skip it. Note that while we could |
| // skip the value if it is equal to the phi node itself we choose not to |
| // because that would break the rule that constant folding only applies if |
| // all operands are constants. |
| if (isa<UndefValue>(Incoming)) |
| continue; |
| // If the incoming value is not a constant, then give up. |
| auto *C = dyn_cast<Constant>(Incoming); |
| if (!C) |
| return nullptr; |
| // Fold the PHI's operands. |
| if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps)) |
| C = FoldedC; |
| // If the incoming value is a different constant to |
| // the one we saw previously, then give up. |
| if (CommonValue && C != CommonValue) |
| return nullptr; |
| CommonValue = C; |
| } |
| |
| // If we reach here, all incoming values are the same constant or undef. |
| return CommonValue ? CommonValue : UndefValue::get(PN->getType()); |
| } |
| |
| // Scan the operand list, checking to see if they are all constants, if so, |
| // hand off to ConstantFoldInstOperandsImpl. |
| if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) |
| return nullptr; |
| |
| SmallDenseMap<Constant *, Constant *> FoldedOps; |
| SmallVector<Constant *, 8> Ops; |
| for (const Use &OpU : I->operands()) { |
| auto *Op = cast<Constant>(&OpU); |
| // Fold the Instruction's operands. |
| if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps)) |
| Op = FoldedOp; |
| |
| Ops.push_back(Op); |
| } |
| |
| if (const auto *CI = dyn_cast<CmpInst>(I)) |
| return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], |
| DL, TLI); |
| |
| if (const auto *LI = dyn_cast<LoadInst>(I)) |
| return ConstantFoldLoadInst(LI, DL); |
| |
| if (auto *IVI = dyn_cast<InsertValueInst>(I)) { |
| return ConstantExpr::getInsertValue( |
| cast<Constant>(IVI->getAggregateOperand()), |
| cast<Constant>(IVI->getInsertedValueOperand()), |
| IVI->getIndices()); |
| } |
| |
| if (auto *EVI = dyn_cast<ExtractValueInst>(I)) { |
| return ConstantExpr::getExtractValue( |
| cast<Constant>(EVI->getAggregateOperand()), |
| EVI->getIndices()); |
| } |
| |
| return ConstantFoldInstOperands(I, Ops, DL, TLI); |
| } |
| |
| Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, |
| const TargetLibraryInfo *TLI) { |
| SmallDenseMap<Constant *, Constant *> FoldedOps; |
| return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); |
| } |
| |
| Constant *llvm::ConstantFoldInstOperands(Instruction *I, |
| ArrayRef<Constant *> Ops, |
| const DataLayout &DL, |
| const TargetLibraryInfo *TLI) { |
| return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); |
| } |
| |
| Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, |
| Constant *Ops0, Constant *Ops1, |
| const DataLayout &DL, |
| const TargetLibraryInfo *TLI) { |
| // fold: icmp (inttoptr x), null -> icmp x, 0 |
| // fold: icmp null, (inttoptr x) -> icmp 0, x |
| // fold: icmp (ptrtoint x), 0 -> icmp x, null |
| // fold: icmp 0, (ptrtoint x) -> icmp null, x |
| // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y |
| // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y |
| // |
| // FIXME: The following comment is out of data and the DataLayout is here now. |
| // ConstantExpr::getCompare cannot do this, because it doesn't have DL |
| // around to know if bit truncation is happening. |
| if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { |
| if (Ops1->isNullValue()) { |
| if (CE0->getOpcode() == Instruction::IntToPtr) { |
| Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); |
| // Convert the integer value to the right size to ensure we get the |
| // proper extension or truncation. |
| Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), |
| IntPtrTy, false); |
| Constant *Null = Constant::getNullValue(C->getType()); |
| return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); |
| } |
| |
| // Only do this transformation if the int is intptrty in size, otherwise |
| // there is a truncation or extension that we aren't modeling. |
| if (CE0->getOpcode() == Instruction::PtrToInt) { |
| Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); |
| if (CE0->getType() == IntPtrTy) { |
| Constant *C = CE0->getOperand(0); |
| Constant *Null = Constant::getNullValue(C->getType()); |
| return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); |
| } |
| } |
| } |
| |
| if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { |
| if (CE0->getOpcode() == CE1->getOpcode()) { |
| if (CE0->getOpcode() == Instruction::IntToPtr) { |
| Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); |
| |
| // Convert the integer value to the right size to ensure we get the |
| // proper extension or truncation. |
| Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), |
| IntPtrTy, false); |
| Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), |
| IntPtrTy, false); |
| return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); |
| } |
| |
| // Only do this transformation if the int is intptrty in size, otherwise |
| // there is a truncation or extension that we aren't modeling. |
| if (CE0->getOpcode() == Instruction::PtrToInt) { |
| Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); |
| if (CE0->getType() == IntPtrTy && |
| CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { |
| return ConstantFoldCompareInstOperands( |
| Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); |
| } |
| } |
| } |
| } |
| |
| // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) |
| // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) |
| if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && |
| CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { |
| Constant *LHS = ConstantFoldCompareInstOperands( |
| Predicate, CE0->getOperand(0), Ops1, DL, TLI); |
| Constant *RHS = ConstantFoldCompareInstOperands( |
| Predicate, CE0->getOperand(1), Ops1, DL, TLI); |
| unsigned OpC = |
| Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; |
| return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); |
| } |
| } else if (isa<ConstantExpr>(Ops1)) { |
| // If RHS is a constant expression, but the left side isn't, swap the |
| // operands and try again. |
| Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); |
| return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); |
| } |
| |
| return ConstantExpr::getCompare(Predicate, Ops0, Ops1); |
| } |
| |
| Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, |
| Constant *RHS, |
| const DataLayout &DL) { |
| assert(Instruction::isBinaryOp(Opcode)); |
| if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) |
| if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) |
| return C; |
| |
| return ConstantExpr::get(Opcode, LHS, RHS); |
| } |
| |
| Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, |
| Type *DestTy, const DataLayout &DL) { |
| assert(Instruction::isCast(Opcode)); |
| switch (Opcode) { |
| default: |
| llvm_unreachable("Missing case"); |
| case Instruction::PtrToInt: |
| // If the input is a inttoptr, eliminate the pair. This requires knowing |
| // the width of a pointer, so it can't be done in ConstantExpr::getCast. |
| if (auto *CE = dyn_cast<ConstantExpr>(C)) { |
| if (CE->getOpcode() == Instruction::IntToPtr) { |
| Constant *Input = CE->getOperand(0); |
| unsigned InWidth = Input->getType()->getScalarSizeInBits(); |
| unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); |
| if (PtrWidth < InWidth) { |
| Constant *Mask = |
| ConstantInt::get(CE->getContext(), |
| APInt::getLowBitsSet(InWidth, PtrWidth)); |
| Input = ConstantExpr::getAnd(Input, Mask); |
| } |
| // Do a zext or trunc to get to the dest size. |
| return ConstantExpr::getIntegerCast(Input, DestTy, false); |
| } |
| } |
| return ConstantExpr::getCast(Opcode, C, DestTy); |
| case Instruction::IntToPtr: |
| // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if |
| // the int size is >= the ptr size and the address spaces are the same. |
| // This requires knowing the width of a pointer, so it can't be done in |
| // ConstantExpr::getCast. |
| if (auto *CE = dyn_cast<ConstantExpr>(C)) { |
| if (CE->getOpcode() == Instruction::PtrToInt) { |
| Constant *SrcPtr = CE->getOperand(0); |
| unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); |
| unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); |
| |
| if (MidIntSize >= SrcPtrSize) { |
| unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); |
| if (SrcAS == DestTy->getPointerAddressSpace()) |
| return FoldBitCast(CE->getOperand(0), DestTy, DL); |
| } |
| } |
| } |
| |
| return ConstantExpr::getCast(Opcode, C, DestTy); |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::AddrSpaceCast: |
| return ConstantExpr::getCast(Opcode, C, DestTy); |
| case Instruction::BitCast: |
| return FoldBitCast(C, DestTy, DL); |
| } |
| } |
| |
| Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, |
| ConstantExpr *CE) { |
| if (!CE->getOperand(1)->isNullValue()) |
| return nullptr; // Do not allow stepping over the value! |
| |
| // Loop over all of the operands, tracking down which value we are |
| // addressing. |
| for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { |
| C = C->getAggregateElement(CE->getOperand(i)); |
| if (!C) |
| return nullptr; |
| } |
| return C; |
| } |
| |
| Constant * |
| llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, |
| ArrayRef<Constant *> Indices) { |
| // Loop over all of the operands, tracking down which value we are |
| // addressing. |
| for (Constant *Index : Indices) { |
| C = C->getAggregateElement(Index); |
| if (!C) |
| return nullptr; |
| } |
| return C; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constant Folding for Calls |
| // |
| |
| bool llvm::canConstantFoldCallTo(ImmutableCallSite CS, const Function *F) { |
| if (CS.isNoBuiltin() || CS.isStrictFP()) |
| return false; |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::fabs: |
| case Intrinsic::minnum: |
| case Intrinsic::maxnum: |
| case Intrinsic::log: |
| case Intrinsic::log2: |
| case Intrinsic::log10: |
| case Intrinsic::exp: |
| case Intrinsic::exp2: |
| case Intrinsic::floor: |
| case Intrinsic::ceil: |
| case Intrinsic::sqrt: |
| case Intrinsic::sin: |
| case Intrinsic::cos: |
| case Intrinsic::trunc: |
| case Intrinsic::rint: |
| case Intrinsic::nearbyint: |
| case Intrinsic::pow: |
| case Intrinsic::powi: |
| case Intrinsic::bswap: |
| case Intrinsic::ctpop: |
| case Intrinsic::ctlz: |
| case Intrinsic::cttz: |
| case Intrinsic::fma: |
| case Intrinsic::fmuladd: |
| case Intrinsic::copysign: |
| case Intrinsic::launder_invariant_group: |
| case Intrinsic::strip_invariant_group: |
| case Intrinsic::round: |
| case Intrinsic::masked_load: |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| case Intrinsic::umul_with_overflow: |
| case Intrinsic::convert_from_fp16: |
| case Intrinsic::convert_to_fp16: |
| case Intrinsic::bitreverse: |
| case Intrinsic::x86_sse_cvtss2si: |
| case Intrinsic::x86_sse_cvtss2si64: |
| case Intrinsic::x86_sse_cvttss2si: |
| case Intrinsic::x86_sse_cvttss2si64: |
| case Intrinsic::x86_sse2_cvtsd2si: |
| case Intrinsic::x86_sse2_cvtsd2si64: |
| case Intrinsic::x86_sse2_cvttsd2si: |
| case Intrinsic::x86_sse2_cvttsd2si64: |
| return true; |
| default: |
| return false; |
| case Intrinsic::not_intrinsic: break; |
| } |
| |
| if (!F->hasName()) |
| return false; |
| StringRef Name = F->getName(); |
| |
| // In these cases, the check of the length is required. We don't want to |
| // return true for a name like "cos\0blah" which strcmp would return equal to |
| // "cos", but has length 8. |
| switch (Name[0]) { |
| default: |
| return false; |
| case 'a': |
| return Name == "acos" || Name == "asin" || Name == "atan" || |
| Name == "atan2" || Name == "acosf" || Name == "asinf" || |
| Name == "atanf" || Name == "atan2f"; |
| case 'c': |
| return Name == "ceil" || Name == "cos" || Name == "cosh" || |
| Name == "ceilf" || Name == "cosf" || Name == "coshf"; |
| case 'e': |
| return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f"; |
| case 'f': |
| return Name == "fabs" || Name == "floor" || Name == "fmod" || |
| Name == "fabsf" || Name == "floorf" || Name == "fmodf"; |
| case 'l': |
| return Name == "log" || Name == "log10" || Name == "logf" || |
| Name == "log10f"; |
| case 'p': |
| return Name == "pow" || Name == "powf"; |
| case 'r': |
| return Name == "round" || Name == "roundf"; |
| case 's': |
| return Name == "sin" || Name == "sinh" || Name == "sqrt" || |
| Name == "sinf" || Name == "sinhf" || Name == "sqrtf"; |
| case 't': |
| return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf"; |
| case '_': |
| |
| // Check for various function names that get used for the math functions |
| // when the header files are preprocessed with the macro |
| // __FINITE_MATH_ONLY__ enabled. |
| // The '12' here is the length of the shortest name that can match. |
| // We need to check the size before looking at Name[1] and Name[2] |
| // so we may as well check a limit that will eliminate mismatches. |
| if (Name.size() < 12 || Name[1] != '_') |
| return false; |
| switch (Name[2]) { |
| default: |
| return false; |
| case 'a': |
| return Name == "__acos_finite" || Name == "__acosf_finite" || |
| Name == "__asin_finite" || Name == "__asinf_finite" || |
| Name == "__atan2_finite" || Name == "__atan2f_finite"; |
| case 'c': |
| return Name == "__cosh_finite" || Name == "__coshf_finite"; |
| case 'e': |
| return Name == "__exp_finite" || Name == "__expf_finite" || |
| Name == "__exp2_finite" || Name == "__exp2f_finite"; |
| case 'l': |
| return Name == "__log_finite" || Name == "__logf_finite" || |
| Name == "__log10_finite" || Name == "__log10f_finite"; |
| case 'p': |
| return Name == "__pow_finite" || Name == "__powf_finite"; |
| case 's': |
| return Name == "__sinh_finite" || Name == "__sinhf_finite"; |
| } |
| } |
| } |
| |
| namespace { |
| |
| Constant *GetConstantFoldFPValue(double V, Type *Ty) { |
| if (Ty->isHalfTy()) { |
| APFloat APF(V); |
| bool unused; |
| APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &unused); |
| return ConstantFP::get(Ty->getContext(), APF); |
| } |
| if (Ty->isFloatTy()) |
| return ConstantFP::get(Ty->getContext(), APFloat((float)V)); |
| if (Ty->isDoubleTy()) |
| return ConstantFP::get(Ty->getContext(), APFloat(V)); |
| llvm_unreachable("Can only constant fold half/float/double"); |
| } |
| |
| /// Clear the floating-point exception state. |
| inline void llvm_fenv_clearexcept() { |
| #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT |
| feclearexcept(FE_ALL_EXCEPT); |
| #endif |
| errno = 0; |
| } |
| |
| /// Test if a floating-point exception was raised. |
| inline bool llvm_fenv_testexcept() { |
| int errno_val = errno; |
| if (errno_val == ERANGE || errno_val == EDOM) |
| return true; |
| #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT |
| if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) |
| return true; |
| #endif |
| return false; |
| } |
| |
| Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) { |
| llvm_fenv_clearexcept(); |
| V = NativeFP(V); |
| if (llvm_fenv_testexcept()) { |
| llvm_fenv_clearexcept(); |
| return nullptr; |
| } |
| |
| return GetConstantFoldFPValue(V, Ty); |
| } |
| |
| Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, |
| double W, Type *Ty) { |
| llvm_fenv_clearexcept(); |
| V = NativeFP(V, W); |
| if (llvm_fenv_testexcept()) { |
| llvm_fenv_clearexcept(); |
| return nullptr; |
| } |
| |
| return GetConstantFoldFPValue(V, Ty); |
| } |
| |
| /// Attempt to fold an SSE floating point to integer conversion of a constant |
| /// floating point. If roundTowardZero is false, the default IEEE rounding is |
| /// used (toward nearest, ties to even). This matches the behavior of the |
| /// non-truncating SSE instructions in the default rounding mode. The desired |
| /// integer type Ty is used to select how many bits are available for the |
| /// result. Returns null if the conversion cannot be performed, otherwise |
| /// returns the Constant value resulting from the conversion. |
| Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, |
| Type *Ty) { |
| // All of these conversion intrinsics form an integer of at most 64bits. |
| unsigned ResultWidth = Ty->getIntegerBitWidth(); |
| assert(ResultWidth <= 64 && |
| "Can only constant fold conversions to 64 and 32 bit ints"); |
| |
| uint64_t UIntVal; |
| bool isExact = false; |
| APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero |
| : APFloat::rmNearestTiesToEven; |
| APFloat::opStatus status = |
| Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, |
| /*isSigned=*/true, mode, &isExact); |
| if (status != APFloat::opOK && |
| (!roundTowardZero || status != APFloat::opInexact)) |
| return nullptr; |
| return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true); |
| } |
| |
| double getValueAsDouble(ConstantFP *Op) { |
| Type *Ty = Op->getType(); |
| |
| if (Ty->isFloatTy()) |
| return Op->getValueAPF().convertToFloat(); |
| |
| if (Ty->isDoubleTy()) |
| return Op->getValueAPF().convertToDouble(); |
| |
| bool unused; |
| APFloat APF = Op->getValueAPF(); |
| APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); |
| return APF.convertToDouble(); |
| } |
| |
| Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty, |
| ArrayRef<Constant *> Operands, |
| const TargetLibraryInfo *TLI, |
| ImmutableCallSite CS) { |
| if (Operands.size() == 1) { |
| if (isa<UndefValue>(Operands[0])) { |
| // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN |
| if (IntrinsicID == Intrinsic::cos) |
| return Constant::getNullValue(Ty); |
| if (IntrinsicID == Intrinsic::bswap || |
| IntrinsicID == Intrinsic::bitreverse || |
| IntrinsicID == Intrinsic::launder_invariant_group || |
| IntrinsicID == Intrinsic::strip_invariant_group) |
| return Operands[0]; |
| } |
| |
| if (isa<ConstantPointerNull>(Operands[0])) { |
| // launder(null) == null == strip(null) iff in addrspace 0 |
| if (IntrinsicID == Intrinsic::launder_invariant_group || |
| IntrinsicID == Intrinsic::strip_invariant_group) { |
| // If instruction is not yet put in a basic block (e.g. when cloning |
| // a function during inlining), CS caller may not be available. |
| // So check CS's BB first before querying CS.getCaller. |
| const Function *Caller = CS.getParent() ? CS.getCaller() : nullptr; |
| if (Caller && |
| !NullPointerIsDefined( |
| Caller, Operands[0]->getType()->getPointerAddressSpace())) { |
| return Operands[0]; |
| } |
| return nullptr; |
| } |
| } |
| |
| if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { |
| if (IntrinsicID == Intrinsic::convert_to_fp16) { |
| APFloat Val(Op->getValueAPF()); |
| |
| bool lost = false; |
| Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); |
| |
| return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); |
| } |
| |
| if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) |
| return nullptr; |
| |
| if (IntrinsicID == Intrinsic::round) { |
| APFloat V = Op->getValueAPF(); |
| V.roundToIntegral(APFloat::rmNearestTiesToAway); |
| return ConstantFP::get(Ty->getContext(), V); |
| } |
| |
| if (IntrinsicID == Intrinsic::floor) { |
| APFloat V = Op->getValueAPF(); |
| V.roundToIntegral(APFloat::rmTowardNegative); |
| return ConstantFP::get(Ty->getContext(), V); |
| } |
| |
| if (IntrinsicID == Intrinsic::ceil) { |
| APFloat V = Op->getValueAPF(); |
| V.roundToIntegral(APFloat::rmTowardPositive); |
| return ConstantFP::get(Ty->getContext(), V); |
| } |
| |
| if (IntrinsicID == Intrinsic::trunc) { |
| APFloat V = Op->getValueAPF(); |
| V.roundToIntegral(APFloat::rmTowardZero); |
| return ConstantFP::get(Ty->getContext(), V); |
| } |
| |
| if (IntrinsicID == Intrinsic::rint) { |
| APFloat V = Op->getValueAPF(); |
| V.roundToIntegral(APFloat::rmNearestTiesToEven); |
| return ConstantFP::get(Ty->getContext(), V); |
| } |
| |
| if (IntrinsicID == Intrinsic::nearbyint) { |
| APFloat V = Op->getValueAPF(); |
| V.roundToIntegral(APFloat::rmNearestTiesToEven); |
| return ConstantFP::get(Ty->getContext(), V); |
| } |
| |
| /// We only fold functions with finite arguments. Folding NaN and inf is |
| /// likely to be aborted with an exception anyway, and some host libms |
| /// have known errors raising exceptions. |
| if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity()) |
| return nullptr; |
| |
| /// Currently APFloat versions of these functions do not exist, so we use |
| /// the host native double versions. Float versions are not called |
| /// directly but for all these it is true (float)(f((double)arg)) == |
| /// f(arg). Long double not supported yet. |
| double V = getValueAsDouble(Op); |
| |
| switch (IntrinsicID) { |
| default: break; |
| case Intrinsic::fabs: |
| return ConstantFoldFP(fabs, V, Ty); |
| case Intrinsic::log2: |
| return ConstantFoldFP(Log2, V, Ty); |
| case Intrinsic::log: |
| return ConstantFoldFP(log, V, Ty); |
| case Intrinsic::log10: |
| return ConstantFoldFP(log10, V, Ty); |
| case Intrinsic::exp: |
| return ConstantFoldFP(exp, V, Ty); |
| case Intrinsic::exp2: |
| return ConstantFoldFP(exp2, V, Ty); |
| case Intrinsic::sin: |
| return ConstantFoldFP(sin, V, Ty); |
| case Intrinsic::cos: |
| return ConstantFoldFP(cos, V, Ty); |
| case Intrinsic::sqrt: |
| return ConstantFoldFP(sqrt, V, Ty); |
| } |
| |
| if (!TLI) |
| return nullptr; |
| |
| char NameKeyChar = Name[0]; |
| if (Name[0] == '_' && Name.size() > 2 && Name[1] == '_') |
| NameKeyChar = Name[2]; |
| |
| switch (NameKeyChar) { |
| case 'a': |
| if ((Name == "acos" && TLI->has(LibFunc_acos)) || |
| (Name == "acosf" && TLI->has(LibFunc_acosf)) || |
| (Name == "__acos_finite" && TLI->has(LibFunc_acos_finite)) || |
| (Name == "__acosf_finite" && TLI->has(LibFunc_acosf_finite))) |
| return ConstantFoldFP(acos, V, Ty); |
| else if ((Name == "asin" && TLI->has(LibFunc_asin)) || |
| (Name == "asinf" && TLI->has(LibFunc_asinf)) || |
| (Name == "__asin_finite" && TLI->has(LibFunc_asin_finite)) || |
| (Name == "__asinf_finite" && TLI->has(LibFunc_asinf_finite))) |
| return ConstantFoldFP(asin, V, Ty); |
| else if ((Name == "atan" && TLI->has(LibFunc_atan)) || |
| (Name == "atanf" && TLI->has(LibFunc_atanf))) |
| return ConstantFoldFP(atan, V, Ty); |
| break; |
| case 'c': |
| if ((Name == "ceil" && TLI->has(LibFunc_ceil)) || |
| (Name == "ceilf" && TLI->has(LibFunc_ceilf))) |
| return ConstantFoldFP(ceil, V, Ty); |
| else if ((Name == "cos" && TLI->has(LibFunc_cos)) || |
| (Name == "cosf" && TLI->has(LibFunc_cosf))) |
| return ConstantFoldFP(cos, V, Ty); |
| else if ((Name == "cosh" && TLI->has(LibFunc_cosh)) || |
| (Name == "coshf" && TLI->has(LibFunc_coshf)) || |
| (Name == "__cosh_finite" && TLI->has(LibFunc_cosh_finite)) || |
| (Name == "__coshf_finite" && TLI->has(LibFunc_coshf_finite))) |
| return ConstantFoldFP(cosh, V, Ty); |
| break; |
| case 'e': |
| if ((Name == "exp" && TLI->has(LibFunc_exp)) || |
| (Name == "expf" && TLI->has(LibFunc_expf)) || |
| (Name == "__exp_finite" && TLI->has(LibFunc_exp_finite)) || |
| (Name == "__expf_finite" && TLI->has(LibFunc_expf_finite))) |
| return ConstantFoldFP(exp, V, Ty); |
| if ((Name == "exp2" && TLI->has(LibFunc_exp2)) || |
| (Name == "exp2f" && TLI->has(LibFunc_exp2f)) || |
| (Name == "__exp2_finite" && TLI->has(LibFunc_exp2_finite)) || |
| (Name == "__exp2f_finite" && TLI->has(LibFunc_exp2f_finite))) |
| // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a |
| // C99 library. |
| return ConstantFoldBinaryFP(pow, 2.0, V, Ty); |
| break; |
| case 'f': |
| if ((Name == "fabs" && TLI->has(LibFunc_fabs)) || |
| (Name == "fabsf" && TLI->has(LibFunc_fabsf))) |
| return ConstantFoldFP(fabs, V, Ty); |
| else if ((Name == "floor" && TLI->has(LibFunc_floor)) || |
| (Name == "floorf" && TLI->has(LibFunc_floorf))) |
| return ConstantFoldFP(floor, V, Ty); |
| break; |
| case 'l': |
| if ((Name == "log" && V > 0 && TLI->has(LibFunc_log)) || |
| (Name == "logf" && V > 0 && TLI->has(LibFunc_logf)) || |
| (Name == "__log_finite" && V > 0 && |
| TLI->has(LibFunc_log_finite)) || |
| (Name == "__logf_finite" && V > 0 && |
| TLI->has(LibFunc_logf_finite))) |
| return ConstantFoldFP(log, V, Ty); |
| else if ((Name == "log10" && V > 0 && TLI->has(LibFunc_log10)) || |
| (Name == "log10f" && V > 0 && TLI->has(LibFunc_log10f)) || |
| (Name == "__log10_finite" && V > 0 && |
| TLI->has(LibFunc_log10_finite)) || |
| (Name == "__log10f_finite" && V > 0 && |
| TLI->has(LibFunc_log10f_finite))) |
| return ConstantFoldFP(log10, V, Ty); |
| break; |
| case 'r': |
| if ((Name == "round" && TLI->has(LibFunc_round)) || |
| (Name == "roundf" && TLI->has(LibFunc_roundf))) |
| return ConstantFoldFP(round, V, Ty); |
| break; |
| case 's': |
| if ((Name == "sin" && TLI->has(LibFunc_sin)) || |
| (Name == "sinf" && TLI->has(LibFunc_sinf))) |
| return ConstantFoldFP(sin, V, Ty); |
| else if ((Name == "sinh" && TLI->has(LibFunc_sinh)) || |
| (Name == "sinhf" && TLI->has(LibFunc_sinhf)) || |
| (Name == "__sinh_finite" && TLI->has(LibFunc_sinh_finite)) || |
| (Name == "__sinhf_finite" && TLI->has(LibFunc_sinhf_finite))) |
| return ConstantFoldFP(sinh, V, Ty); |
| else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc_sqrt)) || |
| (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc_sqrtf))) |
| return ConstantFoldFP(sqrt, V, Ty); |
| break; |
| case 't': |
| if ((Name == "tan" && TLI->has(LibFunc_tan)) || |
| (Name == "tanf" && TLI->has(LibFunc_tanf))) |
| return ConstantFoldFP(tan, V, Ty); |
| else if ((Name == "tanh" && TLI->has(LibFunc_tanh)) || |
| (Name == "tanhf" && TLI->has(LibFunc_tanhf))) |
| return ConstantFoldFP(tanh, V, Ty); |
| break; |
| default: |
| break; |
| } |
| return nullptr; |
| } |
| |
| if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { |
| switch (IntrinsicID) { |
| case Intrinsic::bswap: |
| return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); |
| case Intrinsic::ctpop: |
| return ConstantInt::get(Ty, Op->getValue().countPopulation()); |
| case Intrinsic::bitreverse: |
| return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); |
| case Intrinsic::convert_from_fp16: { |
| APFloat Val(APFloat::IEEEhalf(), Op->getValue()); |
| |
| bool lost = false; |
| APFloat::opStatus status = Val.convert( |
| Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); |
| |
| // Conversion is always precise. |
| (void)status; |
| assert(status == APFloat::opOK && !lost && |
| "Precision lost during fp16 constfolding"); |
| |
| return ConstantFP::get(Ty->getContext(), Val); |
| } |
| default: |
| return nullptr; |
| } |
| } |
| |
| // Support ConstantVector in case we have an Undef in the top. |
| if (isa<ConstantVector>(Operands[0]) || |
| isa<ConstantDataVector>(Operands[0])) { |
| auto *Op = cast<Constant>(Operands[0]); |
| switch (IntrinsicID) { |
| default: break; |
| case Intrinsic::x86_sse_cvtss2si: |
| case Intrinsic::x86_sse_cvtss2si64: |
| case Intrinsic::x86_sse2_cvtsd2si: |
| case Intrinsic::x86_sse2_cvtsd2si64: |
| if (ConstantFP *FPOp = |
| dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) |
| return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), |
| /*roundTowardZero=*/false, Ty); |
| break; |
| case Intrinsic::x86_sse_cvttss2si: |
| case Intrinsic::x86_sse_cvttss2si64: |
| case Intrinsic::x86_sse2_cvttsd2si: |
| case Intrinsic::x86_sse2_cvttsd2si64: |
| if (ConstantFP *FPOp = |
| dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) |
| return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), |
| /*roundTowardZero=*/true, Ty); |
| break; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| if (Operands.size() == 2) { |
| if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { |
| if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) |
| return nullptr; |
| double Op1V = getValueAsDouble(Op1); |
| |
| if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { |
| if (Op2->getType() != Op1->getType()) |
| return nullptr; |
| |
| double Op2V = getValueAsDouble(Op2); |
| if (IntrinsicID == Intrinsic::pow) { |
| return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); |
| } |
| if (IntrinsicID == Intrinsic::copysign) { |
| APFloat V1 = Op1->getValueAPF(); |
| const APFloat &V2 = Op2->getValueAPF(); |
| V1.copySign(V2); |
| return ConstantFP::get(Ty->getContext(), V1); |
| } |
| |
| if (IntrinsicID == Intrinsic::minnum) { |
| const APFloat &C1 = Op1->getValueAPF(); |
| const APFloat &C2 = Op2->getValueAPF(); |
| return ConstantFP::get(Ty->getContext(), minnum(C1, C2)); |
| } |
| |
| if (IntrinsicID == Intrinsic::maxnum) { |
| const APFloat &C1 = Op1->getValueAPF(); |
| const APFloat &C2 = Op2->getValueAPF(); |
| return ConstantFP::get(Ty->getContext(), maxnum(C1, C2)); |
| } |
| |
| if (!TLI) |
| return nullptr; |
| if ((Name == "pow" && TLI->has(LibFunc_pow)) || |
| (Name == "powf" && TLI->has(LibFunc_powf)) || |
| (Name == "__pow_finite" && TLI->has(LibFunc_pow_finite)) || |
| (Name == "__powf_finite" && TLI->has(LibFunc_powf_finite))) |
| return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); |
| if ((Name == "fmod" && TLI->has(LibFunc_fmod)) || |
| (Name == "fmodf" && TLI->has(LibFunc_fmodf))) |
| return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty); |
| if ((Name == "atan2" && TLI->has(LibFunc_atan2)) || |
| (Name == "atan2f" && TLI->has(LibFunc_atan2f)) || |
| (Name == "__atan2_finite" && TLI->has(LibFunc_atan2_finite)) || |
| (Name == "__atan2f_finite" && TLI->has(LibFunc_atan2f_finite))) |
| return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); |
| } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { |
| if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) |
| return ConstantFP::get(Ty->getContext(), |
| APFloat((float)std::pow((float)Op1V, |
| (int)Op2C->getZExtValue()))); |
| if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) |
| return ConstantFP::get(Ty->getContext(), |
| APFloat((float)std::pow((float)Op1V, |
| (int)Op2C->getZExtValue()))); |
| if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) |
| return ConstantFP::get(Ty->getContext(), |
| APFloat((double)std::pow((double)Op1V, |
| (int)Op2C->getZExtValue()))); |
| } |
| return nullptr; |
| } |
| |
| if (auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) { |
| if (auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) { |
| switch (IntrinsicID) { |
| default: break; |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| case Intrinsic::umul_with_overflow: { |
| APInt Res; |
| bool Overflow; |
| switch (IntrinsicID) { |
| default: llvm_unreachable("Invalid case"); |
| case Intrinsic::sadd_with_overflow: |
| Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow); |
| break; |
| case Intrinsic::uadd_with_overflow: |
| Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow); |
| break; |
| case Intrinsic::ssub_with_overflow: |
| Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow); |
| break; |
| case Intrinsic::usub_with_overflow: |
| Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow); |
| break; |
| case Intrinsic::smul_with_overflow: |
| Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow); |
| break; |
| case Intrinsic::umul_with_overflow: |
| Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow); |
| break; |
| } |
| Constant *Ops[] = { |
| ConstantInt::get(Ty->getContext(), Res), |
| ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) |
| }; |
| return ConstantStruct::get(cast<StructType>(Ty), Ops); |
| } |
| case Intrinsic::cttz: |
| if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef. |
| return UndefValue::get(Ty); |
| return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros()); |
| case Intrinsic::ctlz: |
| if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef. |
| return UndefValue::get(Ty); |
| return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros()); |
| } |
| } |
| |
| return nullptr; |
| } |
| return nullptr; |
| } |
| |
| if (Operands.size() != 3) |
| return nullptr; |
| |
| if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { |
| if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { |
| if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { |
| switch (IntrinsicID) { |
| default: break; |
| case Intrinsic::fma: |
| case Intrinsic::fmuladd: { |
| APFloat V = Op1->getValueAPF(); |
| APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(), |
| Op3->getValueAPF(), |
| APFloat::rmNearestTiesToEven); |
| if (s != APFloat::opInvalidOp) |
| return ConstantFP::get(Ty->getContext(), V); |
| |
| return nullptr; |
| } |
| } |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID, |
| VectorType *VTy, ArrayRef<Constant *> Operands, |
| const DataLayout &DL, |
| const TargetLibraryInfo *TLI, |
| ImmutableCallSite CS) { |
| SmallVector<Constant *, 4> Result(VTy->getNumElements()); |
| SmallVector<Constant *, 4> Lane(Operands.size()); |
| Type *Ty = VTy->getElementType(); |
| |
| if (IntrinsicID == Intrinsic::masked_load) { |
| auto *SrcPtr = Operands[0]; |
| auto *Mask = Operands[2]; |
| auto *Passthru = Operands[3]; |
| |
| Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL); |
| |
| SmallVector<Constant *, 32> NewElements; |
| for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { |
| auto *MaskElt = Mask->getAggregateElement(I); |
| if (!MaskElt) |
| break; |
| auto *PassthruElt = Passthru->getAggregateElement(I); |
| auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; |
| if (isa<UndefValue>(MaskElt)) { |
| if (PassthruElt) |
| NewElements.push_back(PassthruElt); |
| else if (VecElt) |
| NewElements.push_back(VecElt); |
| else |
| return nullptr; |
| } |
| if (MaskElt->isNullValue()) { |
| if (!PassthruElt) |
| return nullptr; |
| NewElements.push_back(PassthruElt); |
| } else if (MaskElt->isOneValue()) { |
| if (!VecElt) |
| return nullptr; |
| NewElements.push_back(VecElt); |
| } else { |
| return nullptr; |
| } |
| } |
| if (NewElements.size() != VTy->getNumElements()) |
| return nullptr; |
| return ConstantVector::get(NewElements); |
| } |
| |
| for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { |
| // Gather a column of constants. |
| for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { |
| // These intrinsics use a scalar type for their second argument. |
| if (J == 1 && |
| (IntrinsicID == Intrinsic::cttz || IntrinsicID == Intrinsic::ctlz || |
| IntrinsicID == Intrinsic::powi)) { |
| Lane[J] = Operands[J]; |
| continue; |
| } |
| |
| Constant *Agg = Operands[J]->getAggregateElement(I); |
| if (!Agg) |
| return nullptr; |
| |
| Lane[J] = Agg; |
| } |
| |
| // Use the regular scalar folding to simplify this column. |
| Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, CS); |
| if (!Folded) |
| return nullptr; |
| Result[I] = Folded; |
| } |
| |
| return ConstantVector::get(Result); |
| } |
| |
| } // end anonymous namespace |
| |
| Constant * |
| llvm::ConstantFoldCall(ImmutableCallSite CS, Function *F, |
| ArrayRef<Constant *> Operands, |
| const TargetLibraryInfo *TLI) { |
| if (CS.isNoBuiltin() || CS.isStrictFP()) |
| return nullptr; |
| if (!F->hasName()) |
| return nullptr; |
| StringRef Name = F->getName(); |
| |
| Type *Ty = F->getReturnType(); |
| |
| if (auto *VTy = dyn_cast<VectorType>(Ty)) |
| return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, |
| F->getParent()->getDataLayout(), TLI, CS); |
| |
| return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, CS); |
| } |
| |
| bool llvm::isMathLibCallNoop(CallSite CS, const TargetLibraryInfo *TLI) { |
| // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap |
| // (and to some extent ConstantFoldScalarCall). |
| if (CS.isNoBuiltin() || CS.isStrictFP()) |
| return false; |
| Function *F = CS.getCalledFunction(); |
| if (!F) |
| return false; |
| |
| LibFunc Func; |
| if (!TLI || !TLI->getLibFunc(*F, Func)) |
| return false; |
| |
| if (CS.getNumArgOperands() == 1) { |
| if (ConstantFP *OpC = dyn_cast<ConstantFP>(CS.getArgOperand(0))) { |
| const APFloat &Op = OpC->getValueAPF(); |
| switch (Func) { |
| case LibFunc_logl: |
| case LibFunc_log: |
| case LibFunc_logf: |
| case LibFunc_log2l: |
| case LibFunc_log2: |
| case LibFunc_log2f: |
| case LibFunc_log10l: |
| case LibFunc_log10: |
| case LibFunc_log10f: |
| return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); |
| |
| case LibFunc_expl: |
| case LibFunc_exp: |
| case LibFunc_expf: |
| // FIXME: These boundaries are slightly conservative. |
| if (OpC->getType()->isDoubleTy()) |
| return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan && |
| Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan; |
| if (OpC->getType()->isFloatTy()) |
| return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan && |
| Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan; |
| break; |
| |
| case LibFunc_exp2l: |
| case LibFunc_exp2: |
| case LibFunc_exp2f: |
| // FIXME: These boundaries are slightly conservative. |
| if (OpC->getType()->isDoubleTy()) |
| return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan && |
| Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan; |
| if (OpC->getType()->isFloatTy()) |
| return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan && |
| Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan; |
| break; |
| |
| case LibFunc_sinl: |
| case LibFunc_sin: |
| case LibFunc_sinf: |
| case LibFunc_cosl: |
| case LibFunc_cos: |
| case LibFunc_cosf: |
| return !Op.isInfinity(); |
| |
| case LibFunc_tanl: |
| case LibFunc_tan: |
| case LibFunc_tanf: { |
| // FIXME: Stop using the host math library. |
| // FIXME: The computation isn't done in the right precision. |
| Type *Ty = OpC->getType(); |
| if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { |
| double OpV = getValueAsDouble(OpC); |
| return ConstantFoldFP(tan, OpV, Ty) != nullptr; |
| } |
| break; |
| } |
| |
| case LibFunc_asinl: |
| case LibFunc_asin: |
| case LibFunc_asinf: |
| case LibFunc_acosl: |
| case LibFunc_acos: |
| case LibFunc_acosf: |
| return Op.compare(APFloat(Op.getSemantics(), "-1")) != |
| APFloat::cmpLessThan && |
| Op.compare(APFloat(Op.getSemantics(), "1")) != |
| APFloat::cmpGreaterThan; |
| |
| case LibFunc_sinh: |
| case LibFunc_cosh: |
| case LibFunc_sinhf: |
| case LibFunc_coshf: |
| case LibFunc_sinhl: |
| case LibFunc_coshl: |
| // FIXME: These boundaries are slightly conservative. |
| if (OpC->getType()->isDoubleTy()) |
| return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan && |
| Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan; |
| if (OpC->getType()->isFloatTy()) |
| return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan && |
| Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan; |
| break; |
| |
| case LibFunc_sqrtl: |
| case LibFunc_sqrt: |
| case LibFunc_sqrtf: |
| return Op.isNaN() || Op.isZero() || !Op.isNegative(); |
| |
| // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, |
| // maybe others? |
| default: |
| break; |
| } |
| } |
| } |
| |
| if (CS.getNumArgOperands() == 2) { |
| ConstantFP *Op0C = dyn_cast<ConstantFP>(CS.getArgOperand(0)); |
| ConstantFP *Op1C = dyn_cast<ConstantFP>(CS.getArgOperand(1)); |
| if (Op0C && Op1C) { |
| const APFloat &Op0 = Op0C->getValueAPF(); |
| const APFloat &Op1 = Op1C->getValueAPF(); |
| |
| switch (Func) { |
| case LibFunc_powl: |
| case LibFunc_pow: |
| case LibFunc_powf: { |
| // FIXME: Stop using the host math library. |
| // FIXME: The computation isn't done in the right precision. |
| Type *Ty = Op0C->getType(); |
| if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { |
| if (Ty == Op1C->getType()) { |
| double Op0V = getValueAsDouble(Op0C); |
| double Op1V = getValueAsDouble(Op1C); |
| return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr; |
| } |
| } |
| break; |
| } |
| |
| case LibFunc_fmodl: |
| case LibFunc_fmod: |
| case LibFunc_fmodf: |
| return Op0.isNaN() || Op1.isNaN() || |
| (!Op0.isInfinity() && !Op1.isZero()); |
| |
| default: |
| break; |
| } |
| } |
| } |
| |
| return false; |
| } |