| //===-- CFG.cpp - BasicBlock analysis --------------------------------------==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This family of functions performs analyses on basic blocks, and instructions |
| // contained within basic blocks. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/IR/Dominators.h" |
| |
| using namespace llvm; |
| |
| /// FindFunctionBackedges - Analyze the specified function to find all of the |
| /// loop backedges in the function and return them. This is a relatively cheap |
| /// (compared to computing dominators and loop info) analysis. |
| /// |
| /// The output is added to Result, as pairs of <from,to> edge info. |
| void llvm::FindFunctionBackedges(const Function &F, |
| SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { |
| const BasicBlock *BB = &F.getEntryBlock(); |
| if (succ_empty(BB)) |
| return; |
| |
| SmallPtrSet<const BasicBlock*, 8> Visited; |
| SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; |
| SmallPtrSet<const BasicBlock*, 8> InStack; |
| |
| Visited.insert(BB); |
| VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); |
| InStack.insert(BB); |
| do { |
| std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); |
| const BasicBlock *ParentBB = Top.first; |
| succ_const_iterator &I = Top.second; |
| |
| bool FoundNew = false; |
| while (I != succ_end(ParentBB)) { |
| BB = *I++; |
| if (Visited.insert(BB).second) { |
| FoundNew = true; |
| break; |
| } |
| // Successor is in VisitStack, it's a back edge. |
| if (InStack.count(BB)) |
| Result.push_back(std::make_pair(ParentBB, BB)); |
| } |
| |
| if (FoundNew) { |
| // Go down one level if there is a unvisited successor. |
| InStack.insert(BB); |
| VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); |
| } else { |
| // Go up one level. |
| InStack.erase(VisitStack.pop_back_val().first); |
| } |
| } while (!VisitStack.empty()); |
| } |
| |
| /// GetSuccessorNumber - Search for the specified successor of basic block BB |
| /// and return its position in the terminator instruction's list of |
| /// successors. It is an error to call this with a block that is not a |
| /// successor. |
| unsigned llvm::GetSuccessorNumber(const BasicBlock *BB, |
| const BasicBlock *Succ) { |
| const TerminatorInst *Term = BB->getTerminator(); |
| #ifndef NDEBUG |
| unsigned e = Term->getNumSuccessors(); |
| #endif |
| for (unsigned i = 0; ; ++i) { |
| assert(i != e && "Didn't find edge?"); |
| if (Term->getSuccessor(i) == Succ) |
| return i; |
| } |
| } |
| |
| /// isCriticalEdge - Return true if the specified edge is a critical edge. |
| /// Critical edges are edges from a block with multiple successors to a block |
| /// with multiple predecessors. |
| bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum, |
| bool AllowIdenticalEdges) { |
| assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!"); |
| if (TI->getNumSuccessors() == 1) return false; |
| |
| const BasicBlock *Dest = TI->getSuccessor(SuccNum); |
| const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest); |
| |
| // If there is more than one predecessor, this is a critical edge... |
| assert(I != E && "No preds, but we have an edge to the block?"); |
| const BasicBlock *FirstPred = *I; |
| ++I; // Skip one edge due to the incoming arc from TI. |
| if (!AllowIdenticalEdges) |
| return I != E; |
| |
| // If AllowIdenticalEdges is true, then we allow this edge to be considered |
| // non-critical iff all preds come from TI's block. |
| for (; I != E; ++I) |
| if (*I != FirstPred) |
| return true; |
| return false; |
| } |
| |
| // LoopInfo contains a mapping from basic block to the innermost loop. Find |
| // the outermost loop in the loop nest that contains BB. |
| static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) { |
| const Loop *L = LI->getLoopFor(BB); |
| if (L) { |
| while (const Loop *Parent = L->getParentLoop()) |
| L = Parent; |
| } |
| return L; |
| } |
| |
| // True if there is a loop which contains both BB1 and BB2. |
| static bool loopContainsBoth(const LoopInfo *LI, |
| const BasicBlock *BB1, const BasicBlock *BB2) { |
| const Loop *L1 = getOutermostLoop(LI, BB1); |
| const Loop *L2 = getOutermostLoop(LI, BB2); |
| return L1 != nullptr && L1 == L2; |
| } |
| |
| bool llvm::isPotentiallyReachableFromMany( |
| SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB, |
| const DominatorTree *DT, const LoopInfo *LI) { |
| // When the stop block is unreachable, it's dominated from everywhere, |
| // regardless of whether there's a path between the two blocks. |
| if (DT && !DT->isReachableFromEntry(StopBB)) |
| DT = nullptr; |
| |
| // Limit the number of blocks we visit. The goal is to avoid run-away compile |
| // times on large CFGs without hampering sensible code. Arbitrarily chosen. |
| unsigned Limit = 32; |
| SmallPtrSet<const BasicBlock*, 32> Visited; |
| do { |
| BasicBlock *BB = Worklist.pop_back_val(); |
| if (!Visited.insert(BB).second) |
| continue; |
| if (BB == StopBB) |
| return true; |
| if (DT && DT->dominates(BB, StopBB)) |
| return true; |
| if (LI && loopContainsBoth(LI, BB, StopBB)) |
| return true; |
| |
| if (!--Limit) { |
| // We haven't been able to prove it one way or the other. Conservatively |
| // answer true -- that there is potentially a path. |
| return true; |
| } |
| |
| if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : nullptr) { |
| // All blocks in a single loop are reachable from all other blocks. From |
| // any of these blocks, we can skip directly to the exits of the loop, |
| // ignoring any other blocks inside the loop body. |
| Outer->getExitBlocks(Worklist); |
| } else { |
| Worklist.append(succ_begin(BB), succ_end(BB)); |
| } |
| } while (!Worklist.empty()); |
| |
| // We have exhausted all possible paths and are certain that 'To' can not be |
| // reached from 'From'. |
| return false; |
| } |
| |
| bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B, |
| const DominatorTree *DT, const LoopInfo *LI) { |
| assert(A->getParent() == B->getParent() && |
| "This analysis is function-local!"); |
| |
| SmallVector<BasicBlock*, 32> Worklist; |
| Worklist.push_back(const_cast<BasicBlock*>(A)); |
| |
| return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B), |
| DT, LI); |
| } |
| |
| bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B, |
| const DominatorTree *DT, const LoopInfo *LI) { |
| assert(A->getParent()->getParent() == B->getParent()->getParent() && |
| "This analysis is function-local!"); |
| |
| SmallVector<BasicBlock*, 32> Worklist; |
| |
| if (A->getParent() == B->getParent()) { |
| // The same block case is special because it's the only time we're looking |
| // within a single block to see which instruction comes first. Once we |
| // start looking at multiple blocks, the first instruction of the block is |
| // reachable, so we only need to determine reachability between whole |
| // blocks. |
| BasicBlock *BB = const_cast<BasicBlock *>(A->getParent()); |
| |
| // If the block is in a loop then we can reach any instruction in the block |
| // from any other instruction in the block by going around a backedge. |
| if (LI && LI->getLoopFor(BB) != nullptr) |
| return true; |
| |
| // Linear scan, start at 'A', see whether we hit 'B' or the end first. |
| for (BasicBlock::const_iterator I = A->getIterator(), E = BB->end(); I != E; |
| ++I) { |
| if (&*I == B) |
| return true; |
| } |
| |
| // Can't be in a loop if it's the entry block -- the entry block may not |
| // have predecessors. |
| if (BB == &BB->getParent()->getEntryBlock()) |
| return false; |
| |
| // Otherwise, continue doing the normal per-BB CFG walk. |
| Worklist.append(succ_begin(BB), succ_end(BB)); |
| |
| if (Worklist.empty()) { |
| // We've proven that there's no path! |
| return false; |
| } |
| } else { |
| Worklist.push_back(const_cast<BasicBlock*>(A->getParent())); |
| } |
| |
| if (A->getParent() == &A->getParent()->getParent()->getEntryBlock()) |
| return true; |
| if (B->getParent() == &A->getParent()->getParent()->getEntryBlock()) |
| return false; |
| |
| return isPotentiallyReachableFromMany( |
| Worklist, const_cast<BasicBlock *>(B->getParent()), DT, LI); |
| } |