| //===-- ARMUnwindOpAsm.cpp - ARM Unwind Opcodes Assembler -------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the unwind opcode assembler for ARM exception handling |
| // table. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMUnwindOpAsm.h" |
| #include "llvm/Support/ARMEHABI.h" |
| #include "llvm/Support/LEB128.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cassert> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| /// UnwindOpcodeStreamer - The simple wrapper over SmallVector to emit bytes |
| /// with MSB to LSB per uint32_t ordering. For example, the first byte will |
| /// be placed in Vec[3], and the following bytes will be placed in 2, 1, 0, |
| /// 7, 6, 5, 4, 11, 10, 9, 8, and so on. |
| class UnwindOpcodeStreamer { |
| private: |
| SmallVectorImpl<uint8_t> &Vec; |
| size_t Pos = 3; |
| |
| public: |
| UnwindOpcodeStreamer(SmallVectorImpl<uint8_t> &V) : Vec(V) {} |
| |
| /// Emit the byte in MSB to LSB per uint32_t order. |
| void EmitByte(uint8_t elem) { |
| Vec[Pos] = elem; |
| Pos = (((Pos ^ 0x3u) + 1) ^ 0x3u); |
| } |
| |
| /// Emit the size prefix. |
| void EmitSize(size_t Size) { |
| size_t SizeInWords = (Size + 3) / 4; |
| assert(SizeInWords <= 0x100u && |
| "Only 256 additional words are allowed for unwind opcodes"); |
| EmitByte(static_cast<uint8_t>(SizeInWords - 1)); |
| } |
| |
| /// Emit the personality index prefix. |
| void EmitPersonalityIndex(unsigned PI) { |
| assert(PI < ARM::EHABI::NUM_PERSONALITY_INDEX && |
| "Invalid personality prefix"); |
| EmitByte(ARM::EHABI::EHT_COMPACT | PI); |
| } |
| |
| /// Fill the rest of bytes with FINISH opcode. |
| void FillFinishOpcode() { |
| while (Pos < Vec.size()) |
| EmitByte(ARM::EHABI::UNWIND_OPCODE_FINISH); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| void UnwindOpcodeAssembler::EmitRegSave(uint32_t RegSave) { |
| if (RegSave == 0u) |
| return; |
| |
| // One byte opcode to save register r14 and r11-r4 |
| if (RegSave & (1u << 4)) { |
| // The one byte opcode will always save r4, thus we can't use the one byte |
| // opcode when r4 is not in .save directive. |
| |
| // Compute the consecutive registers from r4 to r11. |
| uint32_t Mask = RegSave & 0xff0u; |
| uint32_t Range = countTrailingOnes(Mask >> 5); // Exclude r4. |
| // Mask off non-consecutive registers. Keep r4. |
| Mask &= ~(0xffffffe0u << Range); |
| |
| // Emit this opcode when the mask covers every registers. |
| uint32_t UnmaskedReg = RegSave & 0xfff0u & (~Mask); |
| if (UnmaskedReg == 0u) { |
| // Pop r[4 : (4 + n)] |
| EmitInt8(ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4 | Range); |
| RegSave &= 0x000fu; |
| } else if (UnmaskedReg == (1u << 14)) { |
| // Pop r[14] + r[4 : (4 + n)] |
| EmitInt8(ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4_R14 | Range); |
| RegSave &= 0x000fu; |
| } |
| } |
| |
| // Two bytes opcode to save register r15-r4 |
| if ((RegSave & 0xfff0u) != 0) |
| EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK_R4 | (RegSave >> 4)); |
| |
| // Opcode to save register r3-r0 |
| if ((RegSave & 0x000fu) != 0) |
| EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK | (RegSave & 0x000fu)); |
| } |
| |
| /// Emit unwind opcodes for .vsave directives |
| void UnwindOpcodeAssembler::EmitVFPRegSave(uint32_t VFPRegSave) { |
| // We only have 4 bits to save the offset in the opcode so look at the lower |
| // and upper 16 bits separately. |
| for (uint32_t Regs : {VFPRegSave & 0xffff0000u, VFPRegSave & 0x0000ffffu}) { |
| while (Regs) { |
| // Now look for a run of set bits. Remember the MSB and LSB of the run. |
| auto RangeMSB = 32 - countLeadingZeros(Regs); |
| auto RangeLen = countLeadingOnes(Regs << (32 - RangeMSB)); |
| auto RangeLSB = RangeMSB - RangeLen; |
| |
| int Opcode = RangeLSB >= 16 |
| ? ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD_D16 |
| : ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD; |
| |
| EmitInt16(Opcode | ((RangeLSB % 16) << 4) | (RangeLen - 1)); |
| |
| // Zero out bits we're done with. |
| Regs &= ~(-1u << RangeLSB); |
| } |
| } |
| } |
| |
| /// Emit unwind opcodes to copy address from source register to $sp. |
| void UnwindOpcodeAssembler::EmitSetSP(uint16_t Reg) { |
| EmitInt8(ARM::EHABI::UNWIND_OPCODE_SET_VSP | Reg); |
| } |
| |
| /// Emit unwind opcodes to add $sp with an offset. |
| void UnwindOpcodeAssembler::EmitSPOffset(int64_t Offset) { |
| if (Offset > 0x200) { |
| uint8_t Buff[16]; |
| Buff[0] = ARM::EHABI::UNWIND_OPCODE_INC_VSP_ULEB128; |
| size_t ULEBSize = encodeULEB128((Offset - 0x204) >> 2, Buff + 1); |
| EmitBytes(Buff, ULEBSize + 1); |
| } else if (Offset > 0) { |
| if (Offset > 0x100) { |
| EmitInt8(ARM::EHABI::UNWIND_OPCODE_INC_VSP | 0x3fu); |
| Offset -= 0x100; |
| } |
| EmitInt8(ARM::EHABI::UNWIND_OPCODE_INC_VSP | |
| static_cast<uint8_t>((Offset - 4) >> 2)); |
| } else if (Offset < 0) { |
| while (Offset < -0x100) { |
| EmitInt8(ARM::EHABI::UNWIND_OPCODE_DEC_VSP | 0x3fu); |
| Offset += 0x100; |
| } |
| EmitInt8(ARM::EHABI::UNWIND_OPCODE_DEC_VSP | |
| static_cast<uint8_t>(((-Offset) - 4) >> 2)); |
| } |
| } |
| |
| void UnwindOpcodeAssembler::Finalize(unsigned &PersonalityIndex, |
| SmallVectorImpl<uint8_t> &Result) { |
| UnwindOpcodeStreamer OpStreamer(Result); |
| |
| if (HasPersonality) { |
| // User-specifed personality routine: [ SIZE , OP1 , OP2 , ... ] |
| PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; |
| size_t TotalSize = Ops.size() + 1; |
| size_t RoundUpSize = (TotalSize + 3) / 4 * 4; |
| Result.resize(RoundUpSize); |
| OpStreamer.EmitSize(RoundUpSize); |
| } else { |
| // If no personalityindex is specified, select ane |
| if (PersonalityIndex == ARM::EHABI::NUM_PERSONALITY_INDEX) |
| PersonalityIndex = (Ops.size() <= 3) ? ARM::EHABI::AEABI_UNWIND_CPP_PR0 |
| : ARM::EHABI::AEABI_UNWIND_CPP_PR1; |
| if (PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) { |
| // __aeabi_unwind_cpp_pr0: [ 0x80 , OP1 , OP2 , OP3 ] |
| assert(Ops.size() <= 3 && "too many opcodes for __aeabi_unwind_cpp_pr0"); |
| Result.resize(4); |
| OpStreamer.EmitPersonalityIndex(PersonalityIndex); |
| } else { |
| // __aeabi_unwind_cpp_pr{1,2}: [ {0x81,0x82} , SIZE , OP1 , OP2 , ... ] |
| size_t TotalSize = Ops.size() + 2; |
| size_t RoundUpSize = (TotalSize + 3) / 4 * 4; |
| Result.resize(RoundUpSize); |
| OpStreamer.EmitPersonalityIndex(PersonalityIndex); |
| OpStreamer.EmitSize(RoundUpSize); |
| } |
| } |
| |
| // Copy the unwind opcodes |
| for (size_t i = OpBegins.size() - 1; i > 0; --i) |
| for (size_t j = OpBegins[i - 1], end = OpBegins[i]; j < end; ++j) |
| OpStreamer.EmitByte(Ops[j]); |
| |
| // Emit the padding finish opcodes if the size is not multiple of 4. |
| OpStreamer.FillFinishOpcode(); |
| |
| // Reset the assembler state |
| Reset(); |
| } |