| //===- ARMTargetStreamer.cpp - ARMTargetStreamer class --*- C++ -*---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the ARMTargetStreamer class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/ARMMCTargetDesc.h" |
| #include "llvm/MC/ConstantPools.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/Support/ARMBuildAttributes.h" |
| #include "llvm/Support/TargetParser.h" |
| |
| using namespace llvm; |
| |
| // |
| // ARMTargetStreamer Implemenation |
| // |
| |
| ARMTargetStreamer::ARMTargetStreamer(MCStreamer &S) |
| : MCTargetStreamer(S), ConstantPools(new AssemblerConstantPools()) {} |
| |
| ARMTargetStreamer::~ARMTargetStreamer() = default; |
| |
| // The constant pool handling is shared by all ARMTargetStreamer |
| // implementations. |
| const MCExpr *ARMTargetStreamer::addConstantPoolEntry(const MCExpr *Expr, SMLoc Loc) { |
| return ConstantPools->addEntry(Streamer, Expr, 4, Loc); |
| } |
| |
| void ARMTargetStreamer::emitCurrentConstantPool() { |
| ConstantPools->emitForCurrentSection(Streamer); |
| ConstantPools->clearCacheForCurrentSection(Streamer); |
| } |
| |
| // finish() - write out any non-empty assembler constant pools. |
| void ARMTargetStreamer::finish() { ConstantPools->emitAll(Streamer); } |
| |
| // reset() - Reset any state |
| void ARMTargetStreamer::reset() {} |
| |
| void ARMTargetStreamer::emitInst(uint32_t Inst, char Suffix) { |
| unsigned Size; |
| char Buffer[4]; |
| const bool LittleEndian = getStreamer().getContext().getAsmInfo()->isLittleEndian(); |
| |
| switch (Suffix) { |
| case '\0': |
| Size = 4; |
| |
| for (unsigned II = 0, IE = Size; II != IE; II++) { |
| const unsigned I = LittleEndian ? (Size - II - 1) : II; |
| Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT); |
| } |
| |
| break; |
| case 'n': |
| case 'w': |
| Size = (Suffix == 'n' ? 2 : 4); |
| |
| // Thumb wide instructions are emitted as a pair of 16-bit words of the |
| // appropriate endianness. |
| for (unsigned II = 0, IE = Size; II != IE; II = II + 2) { |
| const unsigned I0 = LittleEndian ? II + 0 : II + 1; |
| const unsigned I1 = LittleEndian ? II + 1 : II + 0; |
| Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT); |
| Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT); |
| } |
| |
| break; |
| default: |
| llvm_unreachable("Invalid Suffix"); |
| } |
| getStreamer().EmitBytes(StringRef(Buffer, Size)); |
| } |
| |
| // The remaining callbacks should be handled separately by each |
| // streamer. |
| void ARMTargetStreamer::emitFnStart() {} |
| void ARMTargetStreamer::emitFnEnd() {} |
| void ARMTargetStreamer::emitCantUnwind() {} |
| void ARMTargetStreamer::emitPersonality(const MCSymbol *Personality) {} |
| void ARMTargetStreamer::emitPersonalityIndex(unsigned Index) {} |
| void ARMTargetStreamer::emitHandlerData() {} |
| void ARMTargetStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, |
| int64_t Offset) {} |
| void ARMTargetStreamer::emitMovSP(unsigned Reg, int64_t Offset) {} |
| void ARMTargetStreamer::emitPad(int64_t Offset) {} |
| void ARMTargetStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, |
| bool isVector) {} |
| void ARMTargetStreamer::emitUnwindRaw(int64_t StackOffset, |
| const SmallVectorImpl<uint8_t> &Opcodes) { |
| } |
| void ARMTargetStreamer::switchVendor(StringRef Vendor) {} |
| void ARMTargetStreamer::emitAttribute(unsigned Attribute, unsigned Value) {} |
| void ARMTargetStreamer::emitTextAttribute(unsigned Attribute, |
| StringRef String) {} |
| void ARMTargetStreamer::emitIntTextAttribute(unsigned Attribute, |
| unsigned IntValue, |
| StringRef StringValue) {} |
| void ARMTargetStreamer::emitArch(ARM::ArchKind Arch) {} |
| void ARMTargetStreamer::emitArchExtension(unsigned ArchExt) {} |
| void ARMTargetStreamer::emitObjectArch(ARM::ArchKind Arch) {} |
| void ARMTargetStreamer::emitFPU(unsigned FPU) {} |
| void ARMTargetStreamer::finishAttributeSection() {} |
| void |
| ARMTargetStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) {} |
| void ARMTargetStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {} |
| |
| static ARMBuildAttrs::CPUArch getArchForCPU(const MCSubtargetInfo &STI) { |
| if (STI.getCPU() == "xscale") |
| return ARMBuildAttrs::v5TEJ; |
| |
| if (STI.hasFeature(ARM::HasV8Ops)) { |
| if (STI.hasFeature(ARM::FeatureRClass)) |
| return ARMBuildAttrs::v8_R; |
| return ARMBuildAttrs::v8_A; |
| } else if (STI.hasFeature(ARM::HasV8_1MMainlineOps)) |
| return ARMBuildAttrs::v8_1_M_Main; |
| else if (STI.hasFeature(ARM::HasV8MMainlineOps)) |
| return ARMBuildAttrs::v8_M_Main; |
| else if (STI.hasFeature(ARM::HasV7Ops)) { |
| if (STI.hasFeature(ARM::FeatureMClass) && STI.hasFeature(ARM::FeatureDSP)) |
| return ARMBuildAttrs::v7E_M; |
| return ARMBuildAttrs::v7; |
| } else if (STI.hasFeature(ARM::HasV6T2Ops)) |
| return ARMBuildAttrs::v6T2; |
| else if (STI.hasFeature(ARM::HasV8MBaselineOps)) |
| return ARMBuildAttrs::v8_M_Base; |
| else if (STI.hasFeature(ARM::HasV6MOps)) |
| return ARMBuildAttrs::v6S_M; |
| else if (STI.hasFeature(ARM::HasV6Ops)) |
| return ARMBuildAttrs::v6; |
| else if (STI.hasFeature(ARM::HasV5TEOps)) |
| return ARMBuildAttrs::v5TE; |
| else if (STI.hasFeature(ARM::HasV5TOps)) |
| return ARMBuildAttrs::v5T; |
| else if (STI.hasFeature(ARM::HasV4TOps)) |
| return ARMBuildAttrs::v4T; |
| else |
| return ARMBuildAttrs::v4; |
| } |
| |
| static bool isV8M(const MCSubtargetInfo &STI) { |
| // Note that v8M Baseline is a subset of v6T2! |
| return (STI.hasFeature(ARM::HasV8MBaselineOps) && |
| !STI.hasFeature(ARM::HasV6T2Ops)) || |
| STI.hasFeature(ARM::HasV8MMainlineOps); |
| } |
| |
| /// Emit the build attributes that only depend on the hardware that we expect |
| // /to be available, and not on the ABI, or any source-language choices. |
| void ARMTargetStreamer::emitTargetAttributes(const MCSubtargetInfo &STI) { |
| switchVendor("aeabi"); |
| |
| const StringRef CPUString = STI.getCPU(); |
| if (!CPUString.empty() && !CPUString.startswith("generic")) { |
| // FIXME: remove krait check when GNU tools support krait cpu |
| if (STI.hasFeature(ARM::ProcKrait)) { |
| emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9"); |
| // We consider krait as a "cortex-a9" + hwdiv CPU |
| // Enable hwdiv through ".arch_extension idiv" |
| if (STI.hasFeature(ARM::FeatureHWDivThumb) || |
| STI.hasFeature(ARM::FeatureHWDivARM)) |
| emitArchExtension(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM); |
| } else { |
| emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); |
| } |
| } |
| |
| emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(STI)); |
| |
| if (STI.hasFeature(ARM::FeatureAClass)) { |
| emitAttribute(ARMBuildAttrs::CPU_arch_profile, |
| ARMBuildAttrs::ApplicationProfile); |
| } else if (STI.hasFeature(ARM::FeatureRClass)) { |
| emitAttribute(ARMBuildAttrs::CPU_arch_profile, |
| ARMBuildAttrs::RealTimeProfile); |
| } else if (STI.hasFeature(ARM::FeatureMClass)) { |
| emitAttribute(ARMBuildAttrs::CPU_arch_profile, |
| ARMBuildAttrs::MicroControllerProfile); |
| } |
| |
| emitAttribute(ARMBuildAttrs::ARM_ISA_use, STI.hasFeature(ARM::FeatureNoARM) |
| ? ARMBuildAttrs::Not_Allowed |
| : ARMBuildAttrs::Allowed); |
| |
| if (isV8M(STI)) { |
| emitAttribute(ARMBuildAttrs::THUMB_ISA_use, |
| ARMBuildAttrs::AllowThumbDerived); |
| } else if (STI.hasFeature(ARM::FeatureThumb2)) { |
| emitAttribute(ARMBuildAttrs::THUMB_ISA_use, |
| ARMBuildAttrs::AllowThumb32); |
| } else if (STI.hasFeature(ARM::HasV4TOps)) { |
| emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); |
| } |
| |
| if (STI.hasFeature(ARM::FeatureNEON)) { |
| /* NEON is not exactly a VFP architecture, but GAS emit one of |
| * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ |
| if (STI.hasFeature(ARM::FeatureFPARMv8)) { |
| if (STI.hasFeature(ARM::FeatureCrypto)) |
| emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8); |
| else |
| emitFPU(ARM::FK_NEON_FP_ARMV8); |
| } else if (STI.hasFeature(ARM::FeatureVFP4)) |
| emitFPU(ARM::FK_NEON_VFPV4); |
| else |
| emitFPU(STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_NEON_FP16 |
| : ARM::FK_NEON); |
| // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture |
| if (STI.hasFeature(ARM::HasV8Ops)) |
| emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, |
| STI.hasFeature(ARM::HasV8_1aOps) |
| ? ARMBuildAttrs::AllowNeonARMv8_1a |
| : ARMBuildAttrs::AllowNeonARMv8); |
| } else { |
| if (STI.hasFeature(ARM::FeatureFPARMv8_D16_SP)) |
| // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one |
| // FPU, but there are two different names for it depending on the CPU. |
| emitFPU(STI.hasFeature(ARM::FeatureD32) |
| ? ARM::FK_FP_ARMV8 |
| : (STI.hasFeature(ARM::FeatureFP64) ? ARM::FK_FPV5_D16 |
| : ARM::FK_FPV5_SP_D16)); |
| else if (STI.hasFeature(ARM::FeatureVFP4_D16_SP)) |
| emitFPU(STI.hasFeature(ARM::FeatureD32) |
| ? ARM::FK_VFPV4 |
| : (STI.hasFeature(ARM::FeatureFP64) ? ARM::FK_VFPV4_D16 |
| : ARM::FK_FPV4_SP_D16)); |
| else if (STI.hasFeature(ARM::FeatureVFP3_D16_SP)) |
| emitFPU( |
| STI.hasFeature(ARM::FeatureD32) |
| // +d32 |
| ? (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3_FP16 |
| : ARM::FK_VFPV3) |
| // -d32 |
| : (STI.hasFeature(ARM::FeatureFP64) |
| ? (STI.hasFeature(ARM::FeatureFP16) |
| ? ARM::FK_VFPV3_D16_FP16 |
| : ARM::FK_VFPV3_D16) |
| : (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3XD_FP16 |
| : ARM::FK_VFPV3XD))); |
| else if (STI.hasFeature(ARM::FeatureVFP2_SP)) |
| emitFPU(ARM::FK_VFPV2); |
| } |
| |
| // ABI_HardFP_use attribute to indicate single precision FP. |
| if (STI.hasFeature(ARM::FeatureVFP2_SP) && !STI.hasFeature(ARM::FeatureFP64)) |
| emitAttribute(ARMBuildAttrs::ABI_HardFP_use, |
| ARMBuildAttrs::HardFPSinglePrecision); |
| |
| if (STI.hasFeature(ARM::FeatureFP16)) |
| emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); |
| |
| if (STI.hasFeature(ARM::FeatureMP)) |
| emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); |
| |
| if (STI.hasFeature(ARM::HasMVEFloatOps)) |
| emitAttribute(ARMBuildAttrs::MVE_arch, ARMBuildAttrs::AllowMVEIntegerAndFloat); |
| else if (STI.hasFeature(ARM::HasMVEIntegerOps)) |
| emitAttribute(ARMBuildAttrs::MVE_arch, ARMBuildAttrs::AllowMVEInteger); |
| |
| // Hardware divide in ARM mode is part of base arch, starting from ARMv8. |
| // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). |
| // It is not possible to produce DisallowDIV: if hwdiv is present in the base |
| // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. |
| // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; |
| // otherwise, the default value (AllowDIVIfExists) applies. |
| if (STI.hasFeature(ARM::FeatureHWDivARM) && !STI.hasFeature(ARM::HasV8Ops)) |
| emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); |
| |
| if (STI.hasFeature(ARM::FeatureDSP) && isV8M(STI)) |
| emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed); |
| |
| if (STI.hasFeature(ARM::FeatureStrictAlign)) |
| emitAttribute(ARMBuildAttrs::CPU_unaligned_access, |
| ARMBuildAttrs::Not_Allowed); |
| else |
| emitAttribute(ARMBuildAttrs::CPU_unaligned_access, |
| ARMBuildAttrs::Allowed); |
| |
| if (STI.hasFeature(ARM::FeatureTrustZone) && |
| STI.hasFeature(ARM::FeatureVirtualization)) |
| emitAttribute(ARMBuildAttrs::Virtualization_use, |
| ARMBuildAttrs::AllowTZVirtualization); |
| else if (STI.hasFeature(ARM::FeatureTrustZone)) |
| emitAttribute(ARMBuildAttrs::Virtualization_use, ARMBuildAttrs::AllowTZ); |
| else if (STI.hasFeature(ARM::FeatureVirtualization)) |
| emitAttribute(ARMBuildAttrs::Virtualization_use, |
| ARMBuildAttrs::AllowVirtualization); |
| } |