| //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/ARMAsmBackend.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "MCTargetDesc/ARMAsmBackendDarwin.h" |
| #include "MCTargetDesc/ARMAsmBackendELF.h" |
| #include "MCTargetDesc/ARMAsmBackendWinCOFF.h" |
| #include "MCTargetDesc/ARMFixupKinds.h" |
| #include "MCTargetDesc/ARMMCTargetDesc.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/BinaryFormat/MachO.h" |
| #include "llvm/MC/MCAsmBackend.h" |
| #include "llvm/MC/MCAssembler.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCDirectives.h" |
| #include "llvm/MC/MCELFObjectWriter.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCFixupKindInfo.h" |
| #include "llvm/MC/MCObjectWriter.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCSectionELF.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/MCValue.h" |
| #include "llvm/MC/MCAsmLayout.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/EndianStream.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/TargetParser.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| namespace { |
| class ARMELFObjectWriter : public MCELFObjectTargetWriter { |
| public: |
| ARMELFObjectWriter(uint8_t OSABI) |
| : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM, |
| /*HasRelocationAddend*/ false) {} |
| }; |
| } // end anonymous namespace |
| |
| Optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const { |
| if (STI.getTargetTriple().isOSBinFormatELF() && Name == "R_ARM_NONE") |
| return FK_NONE; |
| |
| return MCAsmBackend::getFixupKind(Name); |
| } |
| |
| const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { |
| unsigned IsPCRelConstant = |
| MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_Constant; |
| const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = { |
| // This table *must* be in the order that the fixup_* kinds are defined in |
| // ARMFixupKinds.h. |
| // |
| // Name Offset (bits) Size (bits) Flags |
| {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant}, |
| {"fixup_t2_ldst_pcrel_12", 0, 32, |
| IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant}, |
| {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant}, |
| {"fixup_t2_pcrel_10", 0, 32, |
| MCFixupKindInfo::FKF_IsPCRel | |
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_t2_pcrel_9", 0, 32, |
| IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_thumb_adr_pcrel_10", 0, 8, |
| IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant}, |
| {"fixup_t2_adr_pcrel_12", 0, 32, |
| IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_thumb_blx", 0, 32, |
| MCFixupKindInfo::FKF_IsPCRel | |
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_thumb_cp", 0, 8, |
| MCFixupKindInfo::FKF_IsPCRel | |
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel}, |
| // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 |
| // - 19. |
| {"fixup_arm_movt_hi16", 0, 20, 0}, |
| {"fixup_arm_movw_lo16", 0, 20, 0}, |
| {"fixup_t2_movt_hi16", 0, 20, 0}, |
| {"fixup_t2_movw_lo16", 0, 20, 0}, |
| {"fixup_arm_mod_imm", 0, 12, 0}, |
| {"fixup_t2_so_imm", 0, 26, 0}, |
| {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_bfcsel_else_target", 0, 32, 0}, |
| {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel} |
| }; |
| const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = { |
| // This table *must* be in the order that the fixup_* kinds are defined in |
| // ARMFixupKinds.h. |
| // |
| // Name Offset (bits) Size (bits) Flags |
| {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_t2_ldst_pcrel_12", 0, 32, |
| MCFixupKindInfo::FKF_IsPCRel | |
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_t2_pcrel_10", 0, 32, |
| MCFixupKindInfo::FKF_IsPCRel | |
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_t2_pcrel_9", 0, 32, |
| MCFixupKindInfo::FKF_IsPCRel | |
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_thumb_adr_pcrel_10", 8, 8, |
| MCFixupKindInfo::FKF_IsPCRel | |
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_t2_adr_pcrel_12", 0, 32, |
| MCFixupKindInfo::FKF_IsPCRel | |
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_thumb_blx", 0, 32, |
| MCFixupKindInfo::FKF_IsPCRel | |
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_arm_thumb_cp", 8, 8, |
| MCFixupKindInfo::FKF_IsPCRel | |
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, |
| {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel}, |
| // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 |
| // - 19. |
| {"fixup_arm_movt_hi16", 12, 20, 0}, |
| {"fixup_arm_movw_lo16", 12, 20, 0}, |
| {"fixup_t2_movt_hi16", 12, 20, 0}, |
| {"fixup_t2_movw_lo16", 12, 20, 0}, |
| {"fixup_arm_mod_imm", 20, 12, 0}, |
| {"fixup_t2_so_imm", 26, 6, 0}, |
| {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_bfcsel_else_target", 0, 32, 0}, |
| {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, |
| {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel} |
| }; |
| |
| if (Kind < FirstTargetFixupKind) |
| return MCAsmBackend::getFixupKindInfo(Kind); |
| |
| assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && |
| "Invalid kind!"); |
| return (Endian == support::little ? InfosLE |
| : InfosBE)[Kind - FirstTargetFixupKind]; |
| } |
| |
| void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) { |
| switch (Flag) { |
| default: |
| break; |
| case MCAF_Code16: |
| setIsThumb(true); |
| break; |
| case MCAF_Code32: |
| setIsThumb(false); |
| break; |
| } |
| } |
| |
| unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op, |
| const MCSubtargetInfo &STI) const { |
| bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2]; |
| bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps]; |
| |
| switch (Op) { |
| default: |
| return Op; |
| case ARM::tBcc: |
| return HasThumb2 ? (unsigned)ARM::t2Bcc : Op; |
| case ARM::tLDRpci: |
| return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op; |
| case ARM::tADR: |
| return HasThumb2 ? (unsigned)ARM::t2ADR : Op; |
| case ARM::tB: |
| return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op; |
| case ARM::tCBZ: |
| return ARM::tHINT; |
| case ARM::tCBNZ: |
| return ARM::tHINT; |
| } |
| } |
| |
| bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst, |
| const MCSubtargetInfo &STI) const { |
| if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode()) |
| return true; |
| return false; |
| } |
| |
| static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) { |
| int64_t Offset = int64_t(Value) - 4; |
| if (Offset < Min || Offset > Max) |
| return "out of range pc-relative fixup value"; |
| return nullptr; |
| } |
| |
| const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup, |
| uint64_t Value) const { |
| switch (Fixup.getTargetKind()) { |
| case ARM::fixup_arm_thumb_br: { |
| // Relaxing tB to t2B. tB has a signed 12-bit displacement with the |
| // low bit being an implied zero. There's an implied +4 offset for the |
| // branch, so we adjust the other way here to determine what's |
| // encodable. |
| // |
| // Relax if the value is too big for a (signed) i8. |
| int64_t Offset = int64_t(Value) - 4; |
| if (Offset > 2046 || Offset < -2048) |
| return "out of range pc-relative fixup value"; |
| break; |
| } |
| case ARM::fixup_arm_thumb_bcc: { |
| // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the |
| // low bit being an implied zero. There's an implied +4 offset for the |
| // branch, so we adjust the other way here to determine what's |
| // encodable. |
| // |
| // Relax if the value is too big for a (signed) i8. |
| int64_t Offset = int64_t(Value) - 4; |
| if (Offset > 254 || Offset < -256) |
| return "out of range pc-relative fixup value"; |
| break; |
| } |
| case ARM::fixup_thumb_adr_pcrel_10: |
| case ARM::fixup_arm_thumb_cp: { |
| // If the immediate is negative, greater than 1020, or not a multiple |
| // of four, the wide version of the instruction must be used. |
| int64_t Offset = int64_t(Value) - 4; |
| if (Offset & 3) |
| return "misaligned pc-relative fixup value"; |
| else if (Offset > 1020 || Offset < 0) |
| return "out of range pc-relative fixup value"; |
| break; |
| } |
| case ARM::fixup_arm_thumb_cb: { |
| // If we have a Thumb CBZ or CBNZ instruction and its target is the next |
| // instruction it is actually out of range for the instruction. |
| // It will be changed to a NOP. |
| int64_t Offset = (Value & ~1); |
| if (Offset == 2) |
| return "will be converted to nop"; |
| break; |
| } |
| case ARM::fixup_bf_branch: |
| return checkPCRelOffset(Value, 0, 30); |
| case ARM::fixup_bf_target: |
| return checkPCRelOffset(Value, -0x10000, +0xfffe); |
| case ARM::fixup_bfl_target: |
| return checkPCRelOffset(Value, -0x40000, +0x3fffe); |
| case ARM::fixup_bfc_target: |
| return checkPCRelOffset(Value, -0x1000, +0xffe); |
| case ARM::fixup_wls: |
| return checkPCRelOffset(Value, 0, +0xffe); |
| case ARM::fixup_le: |
| // The offset field in the LE and LETP instructions is an 11-bit |
| // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is |
| // interpreted as a negative offset from the value read from pc, |
| // i.e. from instruction_address+4. |
| // |
| // So an LE instruction can in principle address the instruction |
| // immediately after itself, or (not very usefully) the address |
| // half way through the 4-byte LE. |
| return checkPCRelOffset(Value, -0xffe, 0); |
| case ARM::fixup_bfcsel_else_target: { |
| if (Value != 2 && Value != 4) |
| return "out of range label-relative fixup value"; |
| break; |
| } |
| |
| default: |
| llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!"); |
| } |
| return nullptr; |
| } |
| |
| bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, |
| const MCRelaxableFragment *DF, |
| const MCAsmLayout &Layout) const { |
| return reasonForFixupRelaxation(Fixup, Value); |
| } |
| |
| void ARMAsmBackend::relaxInstruction(const MCInst &Inst, |
| const MCSubtargetInfo &STI, |
| MCInst &Res) const { |
| unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI); |
| |
| // Sanity check w/ diagnostic if we get here w/ a bogus instruction. |
| if (RelaxedOp == Inst.getOpcode()) { |
| SmallString<256> Tmp; |
| raw_svector_ostream OS(Tmp); |
| Inst.dump_pretty(OS); |
| OS << "\n"; |
| report_fatal_error("unexpected instruction to relax: " + OS.str()); |
| } |
| |
| // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we |
| // have to change the operands too. |
| if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) && |
| RelaxedOp == ARM::tHINT) { |
| Res.setOpcode(RelaxedOp); |
| Res.addOperand(MCOperand::createImm(0)); |
| Res.addOperand(MCOperand::createImm(14)); |
| Res.addOperand(MCOperand::createReg(0)); |
| return; |
| } |
| |
| // The rest of instructions we're relaxing have the same operands. |
| // We just need to update to the proper opcode. |
| Res = Inst; |
| Res.setOpcode(RelaxedOp); |
| } |
| |
| bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const { |
| const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8 |
| const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP |
| const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0 |
| const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP |
| if (isThumb()) { |
| const uint16_t nopEncoding = |
| hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding; |
| uint64_t NumNops = Count / 2; |
| for (uint64_t i = 0; i != NumNops; ++i) |
| support::endian::write(OS, nopEncoding, Endian); |
| if (Count & 1) |
| OS << '\0'; |
| return true; |
| } |
| // ARM mode |
| const uint32_t nopEncoding = |
| hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding; |
| uint64_t NumNops = Count / 4; |
| for (uint64_t i = 0; i != NumNops; ++i) |
| support::endian::write(OS, nopEncoding, Endian); |
| // FIXME: should this function return false when unable to write exactly |
| // 'Count' bytes with NOP encodings? |
| switch (Count % 4) { |
| default: |
| break; // No leftover bytes to write |
| case 1: |
| OS << '\0'; |
| break; |
| case 2: |
| OS.write("\0\0", 2); |
| break; |
| case 3: |
| OS.write("\0\0\xa0", 3); |
| break; |
| } |
| |
| return true; |
| } |
| |
| static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) { |
| if (IsLittleEndian) { |
| // Note that the halfwords are stored high first and low second in thumb; |
| // so we need to swap the fixup value here to map properly. |
| uint32_t Swapped = (Value & 0xFFFF0000) >> 16; |
| Swapped |= (Value & 0x0000FFFF) << 16; |
| return Swapped; |
| } else |
| return Value; |
| } |
| |
| static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf, |
| bool IsLittleEndian) { |
| uint32_t Value; |
| |
| if (IsLittleEndian) { |
| Value = (SecondHalf & 0xFFFF) << 16; |
| Value |= (FirstHalf & 0xFFFF); |
| } else { |
| Value = (SecondHalf & 0xFFFF); |
| Value |= (FirstHalf & 0xFFFF) << 16; |
| } |
| |
| return Value; |
| } |
| |
| unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm, |
| const MCFixup &Fixup, |
| const MCValue &Target, uint64_t Value, |
| bool IsResolved, MCContext &Ctx, |
| const MCSubtargetInfo* STI) const { |
| unsigned Kind = Fixup.getKind(); |
| |
| // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT |
| // and .word relocations they put the Thumb bit into the addend if possible. |
| // Other relocation types don't want this bit though (branches couldn't encode |
| // it if it *was* present, and no other relocations exist) and it can |
| // interfere with checking valid expressions. |
| if (const MCSymbolRefExpr *A = Target.getSymA()) { |
| if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) && |
| A->getSymbol().isExternal() && |
| (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 || |
| Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 || |
| Kind == ARM::fixup_t2_movt_hi16)) |
| Value |= 1; |
| } |
| |
| switch (Kind) { |
| default: |
| Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type"); |
| return 0; |
| case FK_NONE: |
| case FK_Data_1: |
| case FK_Data_2: |
| case FK_Data_4: |
| return Value; |
| case FK_SecRel_2: |
| return Value; |
| case FK_SecRel_4: |
| return Value; |
| case ARM::fixup_arm_movt_hi16: |
| assert(STI != nullptr); |
| if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF()) |
| Value >>= 16; |
| LLVM_FALLTHROUGH; |
| case ARM::fixup_arm_movw_lo16: { |
| unsigned Hi4 = (Value & 0xF000) >> 12; |
| unsigned Lo12 = Value & 0x0FFF; |
| // inst{19-16} = Hi4; |
| // inst{11-0} = Lo12; |
| Value = (Hi4 << 16) | (Lo12); |
| return Value; |
| } |
| case ARM::fixup_t2_movt_hi16: |
| assert(STI != nullptr); |
| if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF()) |
| Value >>= 16; |
| LLVM_FALLTHROUGH; |
| case ARM::fixup_t2_movw_lo16: { |
| unsigned Hi4 = (Value & 0xF000) >> 12; |
| unsigned i = (Value & 0x800) >> 11; |
| unsigned Mid3 = (Value & 0x700) >> 8; |
| unsigned Lo8 = Value & 0x0FF; |
| // inst{19-16} = Hi4; |
| // inst{26} = i; |
| // inst{14-12} = Mid3; |
| // inst{7-0} = Lo8; |
| Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8); |
| return swapHalfWords(Value, Endian == support::little); |
| } |
| case ARM::fixup_arm_ldst_pcrel_12: |
| // ARM PC-relative values are offset by 8. |
| Value -= 4; |
| LLVM_FALLTHROUGH; |
| case ARM::fixup_t2_ldst_pcrel_12: { |
| // Offset by 4, adjusted by two due to the half-word ordering of thumb. |
| Value -= 4; |
| bool isAdd = true; |
| if ((int64_t)Value < 0) { |
| Value = -Value; |
| isAdd = false; |
| } |
| if (Value >= 4096) { |
| Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); |
| return 0; |
| } |
| Value |= isAdd << 23; |
| |
| // Same addressing mode as fixup_arm_pcrel_10, |
| // but with 16-bit halfwords swapped. |
| if (Kind == ARM::fixup_t2_ldst_pcrel_12) |
| return swapHalfWords(Value, Endian == support::little); |
| |
| return Value; |
| } |
| case ARM::fixup_arm_adr_pcrel_12: { |
| // ARM PC-relative values are offset by 8. |
| Value -= 8; |
| unsigned opc = 4; // bits {24-21}. Default to add: 0b0100 |
| if ((int64_t)Value < 0) { |
| Value = -Value; |
| opc = 2; // 0b0010 |
| } |
| if (ARM_AM::getSOImmVal(Value) == -1) { |
| Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); |
| return 0; |
| } |
| // Encode the immediate and shift the opcode into place. |
| return ARM_AM::getSOImmVal(Value) | (opc << 21); |
| } |
| |
| case ARM::fixup_t2_adr_pcrel_12: { |
| Value -= 4; |
| unsigned opc = 0; |
| if ((int64_t)Value < 0) { |
| Value = -Value; |
| opc = 5; |
| } |
| |
| uint32_t out = (opc << 21); |
| out |= (Value & 0x800) << 15; |
| out |= (Value & 0x700) << 4; |
| out |= (Value & 0x0FF); |
| |
| return swapHalfWords(out, Endian == support::little); |
| } |
| |
| case ARM::fixup_arm_condbranch: |
| case ARM::fixup_arm_uncondbranch: |
| case ARM::fixup_arm_uncondbl: |
| case ARM::fixup_arm_condbl: |
| case ARM::fixup_arm_blx: |
| // These values don't encode the low two bits since they're always zero. |
| // Offset by 8 just as above. |
| if (const MCSymbolRefExpr *SRE = |
| dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) |
| if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL) |
| return 0; |
| return 0xffffff & ((Value - 8) >> 2); |
| case ARM::fixup_t2_uncondbranch: { |
| Value = Value - 4; |
| if (!isInt<25>(Value)) { |
| Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); |
| return 0; |
| } |
| |
| Value >>= 1; // Low bit is not encoded. |
| |
| uint32_t out = 0; |
| bool I = Value & 0x800000; |
| bool J1 = Value & 0x400000; |
| bool J2 = Value & 0x200000; |
| J1 ^= I; |
| J2 ^= I; |
| |
| out |= I << 26; // S bit |
| out |= !J1 << 13; // J1 bit |
| out |= !J2 << 11; // J2 bit |
| out |= (Value & 0x1FF800) << 5; // imm6 field |
| out |= (Value & 0x0007FF); // imm11 field |
| |
| return swapHalfWords(out, Endian == support::little); |
| } |
| case ARM::fixup_t2_condbranch: { |
| Value = Value - 4; |
| if (!isInt<21>(Value)) { |
| Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); |
| return 0; |
| } |
| |
| Value >>= 1; // Low bit is not encoded. |
| |
| uint64_t out = 0; |
| out |= (Value & 0x80000) << 7; // S bit |
| out |= (Value & 0x40000) >> 7; // J2 bit |
| out |= (Value & 0x20000) >> 4; // J1 bit |
| out |= (Value & 0x1F800) << 5; // imm6 field |
| out |= (Value & 0x007FF); // imm11 field |
| |
| return swapHalfWords(out, Endian == support::little); |
| } |
| case ARM::fixup_arm_thumb_bl: { |
| if (!isInt<25>(Value - 4) || |
| (!STI->getFeatureBits()[ARM::FeatureThumb2] && |
| !STI->getFeatureBits()[ARM::HasV8MBaselineOps] && |
| !STI->getFeatureBits()[ARM::HasV6MOps] && |
| !isInt<23>(Value - 4))) { |
| Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); |
| return 0; |
| } |
| |
| // The value doesn't encode the low bit (always zero) and is offset by |
| // four. The 32-bit immediate value is encoded as |
| // imm32 = SignExtend(S:I1:I2:imm10:imm11:0) |
| // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). |
| // The value is encoded into disjoint bit positions in the destination |
| // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, |
| // J = either J1 or J2 bit |
| // |
| // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII |
| // |
| // Note that the halfwords are stored high first, low second; so we need |
| // to transpose the fixup value here to map properly. |
| uint32_t offset = (Value - 4) >> 1; |
| uint32_t signBit = (offset & 0x800000) >> 23; |
| uint32_t I1Bit = (offset & 0x400000) >> 22; |
| uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; |
| uint32_t I2Bit = (offset & 0x200000) >> 21; |
| uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; |
| uint32_t imm10Bits = (offset & 0x1FF800) >> 11; |
| uint32_t imm11Bits = (offset & 0x000007FF); |
| |
| uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits); |
| uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | |
| (uint16_t)imm11Bits); |
| return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little); |
| } |
| case ARM::fixup_arm_thumb_blx: { |
| // The value doesn't encode the low two bits (always zero) and is offset by |
| // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as |
| // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00) |
| // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). |
| // The value is encoded into disjoint bit positions in the destination |
| // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, |
| // J = either J1 or J2 bit, 0 = zero. |
| // |
| // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0 |
| // |
| // Note that the halfwords are stored high first, low second; so we need |
| // to transpose the fixup value here to map properly. |
| if (Value % 4 != 0) { |
| Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination"); |
| return 0; |
| } |
| |
| uint32_t offset = (Value - 4) >> 2; |
| if (const MCSymbolRefExpr *SRE = |
| dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) |
| if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL) |
| offset = 0; |
| uint32_t signBit = (offset & 0x400000) >> 22; |
| uint32_t I1Bit = (offset & 0x200000) >> 21; |
| uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; |
| uint32_t I2Bit = (offset & 0x100000) >> 20; |
| uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; |
| uint32_t imm10HBits = (offset & 0xFFC00) >> 10; |
| uint32_t imm10LBits = (offset & 0x3FF); |
| |
| uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits); |
| uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | |
| ((uint16_t)imm10LBits) << 1); |
| return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little); |
| } |
| case ARM::fixup_thumb_adr_pcrel_10: |
| case ARM::fixup_arm_thumb_cp: |
| // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we |
| // could have an error on our hands. |
| assert(STI != nullptr); |
| if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) { |
| const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); |
| if (FixupDiagnostic) { |
| Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); |
| return 0; |
| } |
| } |
| // Offset by 4, and don't encode the low two bits. |
| return ((Value - 4) >> 2) & 0xff; |
| case ARM::fixup_arm_thumb_cb: { |
| // CB instructions can only branch to offsets in [4, 126] in multiples of 2 |
| // so ensure that the raw value LSB is zero and it lies in [2, 130]. |
| // An offset of 2 will be relaxed to a NOP. |
| if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) { |
| Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); |
| return 0; |
| } |
| // Offset by 4 and don't encode the lower bit, which is always 0. |
| // FIXME: diagnose if no Thumb2 |
| uint32_t Binary = (Value - 4) >> 1; |
| return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3); |
| } |
| case ARM::fixup_arm_thumb_br: |
| // Offset by 4 and don't encode the lower bit, which is always 0. |
| assert(STI != nullptr); |
| if (!STI->getFeatureBits()[ARM::FeatureThumb2] && |
| !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) { |
| const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); |
| if (FixupDiagnostic) { |
| Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); |
| return 0; |
| } |
| } |
| return ((Value - 4) >> 1) & 0x7ff; |
| case ARM::fixup_arm_thumb_bcc: |
| // Offset by 4 and don't encode the lower bit, which is always 0. |
| assert(STI != nullptr); |
| if (!STI->getFeatureBits()[ARM::FeatureThumb2]) { |
| const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); |
| if (FixupDiagnostic) { |
| Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); |
| return 0; |
| } |
| } |
| return ((Value - 4) >> 1) & 0xff; |
| case ARM::fixup_arm_pcrel_10_unscaled: { |
| Value = Value - 8; // ARM fixups offset by an additional word and don't |
| // need to adjust for the half-word ordering. |
| bool isAdd = true; |
| if ((int64_t)Value < 0) { |
| Value = -Value; |
| isAdd = false; |
| } |
| // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8]. |
| if (Value >= 256) { |
| Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); |
| return 0; |
| } |
| Value = (Value & 0xf) | ((Value & 0xf0) << 4); |
| return Value | (isAdd << 23); |
| } |
| case ARM::fixup_arm_pcrel_10: |
| Value = Value - 4; // ARM fixups offset by an additional word and don't |
| // need to adjust for the half-word ordering. |
| LLVM_FALLTHROUGH; |
| case ARM::fixup_t2_pcrel_10: { |
| // Offset by 4, adjusted by two due to the half-word ordering of thumb. |
| Value = Value - 4; |
| bool isAdd = true; |
| if ((int64_t)Value < 0) { |
| Value = -Value; |
| isAdd = false; |
| } |
| // These values don't encode the low two bits since they're always zero. |
| Value >>= 2; |
| if (Value >= 256) { |
| Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); |
| return 0; |
| } |
| Value |= isAdd << 23; |
| |
| // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords |
| // swapped. |
| if (Kind == ARM::fixup_t2_pcrel_10) |
| return swapHalfWords(Value, Endian == support::little); |
| |
| return Value; |
| } |
| case ARM::fixup_arm_pcrel_9: |
| Value = Value - 4; // ARM fixups offset by an additional word and don't |
| // need to adjust for the half-word ordering. |
| LLVM_FALLTHROUGH; |
| case ARM::fixup_t2_pcrel_9: { |
| // Offset by 4, adjusted by two due to the half-word ordering of thumb. |
| Value = Value - 4; |
| bool isAdd = true; |
| if ((int64_t)Value < 0) { |
| Value = -Value; |
| isAdd = false; |
| } |
| // These values don't encode the low bit since it's always zero. |
| if (Value & 1) { |
| Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup"); |
| return 0; |
| } |
| Value >>= 1; |
| if (Value >= 256) { |
| Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); |
| return 0; |
| } |
| Value |= isAdd << 23; |
| |
| // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords |
| // swapped. |
| if (Kind == ARM::fixup_t2_pcrel_9) |
| return swapHalfWords(Value, Endian == support::little); |
| |
| return Value; |
| } |
| case ARM::fixup_arm_mod_imm: |
| Value = ARM_AM::getSOImmVal(Value); |
| if (Value >> 12) { |
| Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value"); |
| return 0; |
| } |
| return Value; |
| case ARM::fixup_t2_so_imm: { |
| Value = ARM_AM::getT2SOImmVal(Value); |
| if ((int64_t)Value < 0) { |
| Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value"); |
| return 0; |
| } |
| // Value will contain a 12-bit value broken up into a 4-bit shift in bits |
| // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate |
| // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit |
| // 10 of the upper half-word and imm3 is placed at 14:12 of the lower |
| // half-word. |
| uint64_t EncValue = 0; |
| EncValue |= (Value & 0x800) << 15; |
| EncValue |= (Value & 0x700) << 4; |
| EncValue |= (Value & 0xff); |
| return swapHalfWords(EncValue, Endian == support::little); |
| } |
| case ARM::fixup_bf_branch: { |
| const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); |
| if (FixupDiagnostic) { |
| Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); |
| return 0; |
| } |
| uint32_t out = (((Value - 4) >> 1) & 0xf) << 23; |
| return swapHalfWords(out, Endian == support::little); |
| } |
| case ARM::fixup_bf_target: |
| case ARM::fixup_bfl_target: |
| case ARM::fixup_bfc_target: { |
| const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); |
| if (FixupDiagnostic) { |
| Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); |
| return 0; |
| } |
| uint32_t out = 0; |
| uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 : |
| Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800); |
| out |= (((Value - 4) >> 1) & 0x1) << 11; |
| out |= (((Value - 4) >> 1) & 0x7fe); |
| out |= (((Value - 4) >> 1) & HighBitMask) << 5; |
| return swapHalfWords(out, Endian == support::little); |
| } |
| case ARM::fixup_bfcsel_else_target: { |
| // If this is a fixup of a branch future's else target then it should be a |
| // constant MCExpr representing the distance between the branch targetted |
| // and the instruction after that same branch. |
| Value = Target.getConstant(); |
| |
| const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); |
| if (FixupDiagnostic) { |
| Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); |
| return 0; |
| } |
| uint32_t out = ((Value >> 2) & 1) << 17; |
| return swapHalfWords(out, Endian == support::little); |
| } |
| case ARM::fixup_wls: |
| case ARM::fixup_le: { |
| const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); |
| if (FixupDiagnostic) { |
| Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); |
| return 0; |
| } |
| uint64_t real_value = Value - 4; |
| uint32_t out = 0; |
| if (Kind == ARM::fixup_le) |
| real_value = -real_value; |
| out |= ((real_value >> 1) & 0x1) << 11; |
| out |= ((real_value >> 1) & 0x7fe); |
| return swapHalfWords(out, Endian == support::little); |
| } |
| } |
| } |
| |
| bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm, |
| const MCFixup &Fixup, |
| const MCValue &Target) { |
| const MCSymbolRefExpr *A = Target.getSymA(); |
| const MCSymbol *Sym = A ? &A->getSymbol() : nullptr; |
| const unsigned FixupKind = Fixup.getKind(); |
| if (FixupKind == FK_NONE) |
| return true; |
| if (FixupKind == ARM::fixup_arm_thumb_bl) { |
| assert(Sym && "How did we resolve this?"); |
| |
| // If the symbol is external the linker will handle it. |
| // FIXME: Should we handle it as an optimization? |
| |
| // If the symbol is out of range, produce a relocation and hope the |
| // linker can handle it. GNU AS produces an error in this case. |
| if (Sym->isExternal()) |
| return true; |
| } |
| // Create relocations for unconditional branches to function symbols with |
| // different execution mode in ELF binaries. |
| if (Sym && Sym->isELF()) { |
| unsigned Type = cast<MCSymbolELF>(Sym)->getType(); |
| if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) { |
| if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch)) |
| return true; |
| if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br || |
| FixupKind == ARM::fixup_arm_thumb_bl || |
| FixupKind == ARM::fixup_t2_condbranch || |
| FixupKind == ARM::fixup_t2_uncondbranch)) |
| return true; |
| } |
| } |
| // We must always generate a relocation for BL/BLX instructions if we have |
| // a symbol to reference, as the linker relies on knowing the destination |
| // symbol's thumb-ness to get interworking right. |
| if (A && (FixupKind == ARM::fixup_arm_thumb_blx || |
| FixupKind == ARM::fixup_arm_blx || |
| FixupKind == ARM::fixup_arm_uncondbl || |
| FixupKind == ARM::fixup_arm_condbl)) |
| return true; |
| return false; |
| } |
| |
| /// getFixupKindNumBytes - The number of bytes the fixup may change. |
| static unsigned getFixupKindNumBytes(unsigned Kind) { |
| switch (Kind) { |
| default: |
| llvm_unreachable("Unknown fixup kind!"); |
| |
| case FK_NONE: |
| return 0; |
| |
| case FK_Data_1: |
| case ARM::fixup_arm_thumb_bcc: |
| case ARM::fixup_arm_thumb_cp: |
| case ARM::fixup_thumb_adr_pcrel_10: |
| return 1; |
| |
| case FK_Data_2: |
| case ARM::fixup_arm_thumb_br: |
| case ARM::fixup_arm_thumb_cb: |
| case ARM::fixup_arm_mod_imm: |
| return 2; |
| |
| case ARM::fixup_arm_pcrel_10_unscaled: |
| case ARM::fixup_arm_ldst_pcrel_12: |
| case ARM::fixup_arm_pcrel_10: |
| case ARM::fixup_arm_pcrel_9: |
| case ARM::fixup_arm_adr_pcrel_12: |
| case ARM::fixup_arm_uncondbl: |
| case ARM::fixup_arm_condbl: |
| case ARM::fixup_arm_blx: |
| case ARM::fixup_arm_condbranch: |
| case ARM::fixup_arm_uncondbranch: |
| return 3; |
| |
| case FK_Data_4: |
| case ARM::fixup_t2_ldst_pcrel_12: |
| case ARM::fixup_t2_condbranch: |
| case ARM::fixup_t2_uncondbranch: |
| case ARM::fixup_t2_pcrel_10: |
| case ARM::fixup_t2_pcrel_9: |
| case ARM::fixup_t2_adr_pcrel_12: |
| case ARM::fixup_arm_thumb_bl: |
| case ARM::fixup_arm_thumb_blx: |
| case ARM::fixup_arm_movt_hi16: |
| case ARM::fixup_arm_movw_lo16: |
| case ARM::fixup_t2_movt_hi16: |
| case ARM::fixup_t2_movw_lo16: |
| case ARM::fixup_t2_so_imm: |
| case ARM::fixup_bf_branch: |
| case ARM::fixup_bf_target: |
| case ARM::fixup_bfl_target: |
| case ARM::fixup_bfc_target: |
| case ARM::fixup_bfcsel_else_target: |
| case ARM::fixup_wls: |
| case ARM::fixup_le: |
| return 4; |
| |
| case FK_SecRel_2: |
| return 2; |
| case FK_SecRel_4: |
| return 4; |
| } |
| } |
| |
| /// getFixupKindContainerSizeBytes - The number of bytes of the |
| /// container involved in big endian. |
| static unsigned getFixupKindContainerSizeBytes(unsigned Kind) { |
| switch (Kind) { |
| default: |
| llvm_unreachable("Unknown fixup kind!"); |
| |
| case FK_NONE: |
| return 0; |
| |
| case FK_Data_1: |
| return 1; |
| case FK_Data_2: |
| return 2; |
| case FK_Data_4: |
| return 4; |
| |
| case ARM::fixup_arm_thumb_bcc: |
| case ARM::fixup_arm_thumb_cp: |
| case ARM::fixup_thumb_adr_pcrel_10: |
| case ARM::fixup_arm_thumb_br: |
| case ARM::fixup_arm_thumb_cb: |
| // Instruction size is 2 bytes. |
| return 2; |
| |
| case ARM::fixup_arm_pcrel_10_unscaled: |
| case ARM::fixup_arm_ldst_pcrel_12: |
| case ARM::fixup_arm_pcrel_10: |
| case ARM::fixup_arm_pcrel_9: |
| case ARM::fixup_arm_adr_pcrel_12: |
| case ARM::fixup_arm_uncondbl: |
| case ARM::fixup_arm_condbl: |
| case ARM::fixup_arm_blx: |
| case ARM::fixup_arm_condbranch: |
| case ARM::fixup_arm_uncondbranch: |
| case ARM::fixup_t2_ldst_pcrel_12: |
| case ARM::fixup_t2_condbranch: |
| case ARM::fixup_t2_uncondbranch: |
| case ARM::fixup_t2_pcrel_10: |
| case ARM::fixup_t2_adr_pcrel_12: |
| case ARM::fixup_arm_thumb_bl: |
| case ARM::fixup_arm_thumb_blx: |
| case ARM::fixup_arm_movt_hi16: |
| case ARM::fixup_arm_movw_lo16: |
| case ARM::fixup_t2_movt_hi16: |
| case ARM::fixup_t2_movw_lo16: |
| case ARM::fixup_arm_mod_imm: |
| case ARM::fixup_t2_so_imm: |
| case ARM::fixup_bf_branch: |
| case ARM::fixup_bf_target: |
| case ARM::fixup_bfl_target: |
| case ARM::fixup_bfc_target: |
| case ARM::fixup_bfcsel_else_target: |
| case ARM::fixup_wls: |
| case ARM::fixup_le: |
| // Instruction size is 4 bytes. |
| return 4; |
| } |
| } |
| |
| void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, |
| const MCValue &Target, |
| MutableArrayRef<char> Data, uint64_t Value, |
| bool IsResolved, |
| const MCSubtargetInfo* STI) const { |
| unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind()); |
| MCContext &Ctx = Asm.getContext(); |
| Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI); |
| if (!Value) |
| return; // Doesn't change encoding. |
| |
| unsigned Offset = Fixup.getOffset(); |
| assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); |
| |
| // Used to point to big endian bytes. |
| unsigned FullSizeBytes; |
| if (Endian == support::big) { |
| FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind()); |
| assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!"); |
| assert(NumBytes <= FullSizeBytes && "Invalid fixup size!"); |
| } |
| |
| // For each byte of the fragment that the fixup touches, mask in the bits from |
| // the fixup value. The Value has been "split up" into the appropriate |
| // bitfields above. |
| for (unsigned i = 0; i != NumBytes; ++i) { |
| unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i); |
| Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); |
| } |
| } |
| |
| namespace CU { |
| |
| /// Compact unwind encoding values. |
| enum CompactUnwindEncodings { |
| UNWIND_ARM_MODE_MASK = 0x0F000000, |
| UNWIND_ARM_MODE_FRAME = 0x01000000, |
| UNWIND_ARM_MODE_FRAME_D = 0x02000000, |
| UNWIND_ARM_MODE_DWARF = 0x04000000, |
| |
| UNWIND_ARM_FRAME_STACK_ADJUST_MASK = 0x00C00000, |
| |
| UNWIND_ARM_FRAME_FIRST_PUSH_R4 = 0x00000001, |
| UNWIND_ARM_FRAME_FIRST_PUSH_R5 = 0x00000002, |
| UNWIND_ARM_FRAME_FIRST_PUSH_R6 = 0x00000004, |
| |
| UNWIND_ARM_FRAME_SECOND_PUSH_R8 = 0x00000008, |
| UNWIND_ARM_FRAME_SECOND_PUSH_R9 = 0x00000010, |
| UNWIND_ARM_FRAME_SECOND_PUSH_R10 = 0x00000020, |
| UNWIND_ARM_FRAME_SECOND_PUSH_R11 = 0x00000040, |
| UNWIND_ARM_FRAME_SECOND_PUSH_R12 = 0x00000080, |
| |
| UNWIND_ARM_FRAME_D_REG_COUNT_MASK = 0x00000F00, |
| |
| UNWIND_ARM_DWARF_SECTION_OFFSET = 0x00FFFFFF |
| }; |
| |
| } // end CU namespace |
| |
| /// Generate compact unwind encoding for the function based on the CFI |
| /// instructions. If the CFI instructions describe a frame that cannot be |
| /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which |
| /// tells the runtime to fallback and unwind using dwarf. |
| uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding( |
| ArrayRef<MCCFIInstruction> Instrs) const { |
| DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n"); |
| // Only armv7k uses CFI based unwinding. |
| if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K) |
| return 0; |
| // No .cfi directives means no frame. |
| if (Instrs.empty()) |
| return 0; |
| // Start off assuming CFA is at SP+0. |
| unsigned CFARegister = ARM::SP; |
| int CFARegisterOffset = 0; |
| // Mark savable registers as initially unsaved |
| DenseMap<unsigned, int> RegOffsets; |
| int FloatRegCount = 0; |
| // Process each .cfi directive and build up compact unwind info. |
| for (size_t i = 0, e = Instrs.size(); i != e; ++i) { |
| unsigned Reg; |
| const MCCFIInstruction &Inst = Instrs[i]; |
| switch (Inst.getOperation()) { |
| case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa |
| CFARegisterOffset = -Inst.getOffset(); |
| CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true); |
| break; |
| case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset |
| CFARegisterOffset = -Inst.getOffset(); |
| break; |
| case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register |
| CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true); |
| break; |
| case MCCFIInstruction::OpOffset: // DW_CFA_offset |
| Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true); |
| if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
| RegOffsets[Reg] = Inst.getOffset(); |
| else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { |
| RegOffsets[Reg] = Inst.getOffset(); |
| ++FloatRegCount; |
| } else { |
| DEBUG_WITH_TYPE("compact-unwind", |
| llvm::dbgs() << ".cfi_offset on unknown register=" |
| << Inst.getRegister() << "\n"); |
| return CU::UNWIND_ARM_MODE_DWARF; |
| } |
| break; |
| case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc |
| // Ignore |
| break; |
| default: |
| // Directive not convertable to compact unwind, bail out. |
| DEBUG_WITH_TYPE("compact-unwind", |
| llvm::dbgs() |
| << "CFI directive not compatiable with comact " |
| "unwind encoding, opcode=" << Inst.getOperation() |
| << "\n"); |
| return CU::UNWIND_ARM_MODE_DWARF; |
| break; |
| } |
| } |
| |
| // If no frame set up, return no unwind info. |
| if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0)) |
| return 0; |
| |
| // Verify standard frame (lr/r7) was used. |
| if (CFARegister != ARM::R7) { |
| DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is " |
| << CFARegister |
| << " instead of r7\n"); |
| return CU::UNWIND_ARM_MODE_DWARF; |
| } |
| int StackAdjust = CFARegisterOffset - 8; |
| if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) { |
| DEBUG_WITH_TYPE("compact-unwind", |
| llvm::dbgs() |
| << "LR not saved as standard frame, StackAdjust=" |
| << StackAdjust |
| << ", CFARegisterOffset=" << CFARegisterOffset |
| << ", lr save at offset=" << RegOffsets[14] << "\n"); |
| return CU::UNWIND_ARM_MODE_DWARF; |
| } |
| if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) { |
| DEBUG_WITH_TYPE("compact-unwind", |
| llvm::dbgs() << "r7 not saved as standard frame\n"); |
| return CU::UNWIND_ARM_MODE_DWARF; |
| } |
| uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME; |
| |
| // If var-args are used, there may be a stack adjust required. |
| switch (StackAdjust) { |
| case 0: |
| break; |
| case 4: |
| CompactUnwindEncoding |= 0x00400000; |
| break; |
| case 8: |
| CompactUnwindEncoding |= 0x00800000; |
| break; |
| case 12: |
| CompactUnwindEncoding |= 0x00C00000; |
| break; |
| default: |
| DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() |
| << ".cfi_def_cfa stack adjust (" |
| << StackAdjust << ") out of range\n"); |
| return CU::UNWIND_ARM_MODE_DWARF; |
| } |
| |
| // If r6 is saved, it must be right below r7. |
| static struct { |
| unsigned Reg; |
| unsigned Encoding; |
| } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6}, |
| {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5}, |
| {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4}, |
| {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12}, |
| {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11}, |
| {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10}, |
| {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9}, |
| {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}}; |
| |
| int CurOffset = -8 - StackAdjust; |
| for (auto CSReg : GPRCSRegs) { |
| auto Offset = RegOffsets.find(CSReg.Reg); |
| if (Offset == RegOffsets.end()) |
| continue; |
| |
| int RegOffset = Offset->second; |
| if (RegOffset != CurOffset - 4) { |
| DEBUG_WITH_TYPE("compact-unwind", |
| llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at " |
| << RegOffset << " but only supported at " |
| << CurOffset << "\n"); |
| return CU::UNWIND_ARM_MODE_DWARF; |
| } |
| CompactUnwindEncoding |= CSReg.Encoding; |
| CurOffset -= 4; |
| } |
| |
| // If no floats saved, we are done. |
| if (FloatRegCount == 0) |
| return CompactUnwindEncoding; |
| |
| // Switch mode to include D register saving. |
| CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK; |
| CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D; |
| |
| // FIXME: supporting more than 4 saved D-registers compactly would be trivial, |
| // but needs coordination with the linker and libunwind. |
| if (FloatRegCount > 4) { |
| DEBUG_WITH_TYPE("compact-unwind", |
| llvm::dbgs() << "unsupported number of D registers saved (" |
| << FloatRegCount << ")\n"); |
| return CU::UNWIND_ARM_MODE_DWARF; |
| } |
| |
| // Floating point registers must either be saved sequentially, or we defer to |
| // DWARF. No gaps allowed here so check that each saved d-register is |
| // precisely where it should be. |
| static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 }; |
| for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) { |
| auto Offset = RegOffsets.find(FPRCSRegs[Idx]); |
| if (Offset == RegOffsets.end()) { |
| DEBUG_WITH_TYPE("compact-unwind", |
| llvm::dbgs() << FloatRegCount << " D-regs saved, but " |
| << MRI.getName(FPRCSRegs[Idx]) |
| << " not saved\n"); |
| return CU::UNWIND_ARM_MODE_DWARF; |
| } else if (Offset->second != CurOffset - 8) { |
| DEBUG_WITH_TYPE("compact-unwind", |
| llvm::dbgs() << FloatRegCount << " D-regs saved, but " |
| << MRI.getName(FPRCSRegs[Idx]) |
| << " saved at " << Offset->second |
| << ", expected at " << CurOffset - 8 |
| << "\n"); |
| return CU::UNWIND_ARM_MODE_DWARF; |
| } |
| CurOffset -= 8; |
| } |
| |
| return CompactUnwindEncoding | ((FloatRegCount - 1) << 8); |
| } |
| |
| static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) { |
| ARM::ArchKind AK = ARM::parseArch(Arch); |
| switch (AK) { |
| default: |
| return MachO::CPU_SUBTYPE_ARM_V7; |
| case ARM::ArchKind::ARMV4T: |
| return MachO::CPU_SUBTYPE_ARM_V4T; |
| case ARM::ArchKind::ARMV5T: |
| case ARM::ArchKind::ARMV5TE: |
| case ARM::ArchKind::ARMV5TEJ: |
| return MachO::CPU_SUBTYPE_ARM_V5; |
| case ARM::ArchKind::ARMV6: |
| case ARM::ArchKind::ARMV6K: |
| return MachO::CPU_SUBTYPE_ARM_V6; |
| case ARM::ArchKind::ARMV7A: |
| return MachO::CPU_SUBTYPE_ARM_V7; |
| case ARM::ArchKind::ARMV7S: |
| return MachO::CPU_SUBTYPE_ARM_V7S; |
| case ARM::ArchKind::ARMV7K: |
| return MachO::CPU_SUBTYPE_ARM_V7K; |
| case ARM::ArchKind::ARMV6M: |
| return MachO::CPU_SUBTYPE_ARM_V6M; |
| case ARM::ArchKind::ARMV7M: |
| return MachO::CPU_SUBTYPE_ARM_V7M; |
| case ARM::ArchKind::ARMV7EM: |
| return MachO::CPU_SUBTYPE_ARM_V7EM; |
| } |
| } |
| |
| static MCAsmBackend *createARMAsmBackend(const Target &T, |
| const MCSubtargetInfo &STI, |
| const MCRegisterInfo &MRI, |
| const MCTargetOptions &Options, |
| support::endianness Endian) { |
| const Triple &TheTriple = STI.getTargetTriple(); |
| switch (TheTriple.getObjectFormat()) { |
| default: |
| llvm_unreachable("unsupported object format"); |
| case Triple::MachO: { |
| MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName()); |
| return new ARMAsmBackendDarwin(T, STI, MRI, CS); |
| } |
| case Triple::COFF: |
| assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported"); |
| return new ARMAsmBackendWinCOFF(T, STI); |
| case Triple::ELF: |
| assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target"); |
| uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); |
| return new ARMAsmBackendELF(T, STI, OSABI, Endian); |
| } |
| } |
| |
| MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T, |
| const MCSubtargetInfo &STI, |
| const MCRegisterInfo &MRI, |
| const MCTargetOptions &Options) { |
| return createARMAsmBackend(T, STI, MRI, Options, support::little); |
| } |
| |
| MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T, |
| const MCSubtargetInfo &STI, |
| const MCRegisterInfo &MRI, |
| const MCTargetOptions &Options) { |
| return createARMAsmBackend(T, STI, MRI, Options, support::big); |
| } |