blob: a9516e869b05a0213e96557245d9ef270f513493 [file] [log] [blame]
//===- subzero/src/assembler.cpp - Assembler base class -------------------===//
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
//
// Modified by the Subzero authors.
//
//===----------------------------------------------------------------------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Assembler class.
//
//===----------------------------------------------------------------------===//
#include "assembler.h"
#include "IceGlobalContext.h"
#include "IceOperand.h"
namespace Ice {
static uintptr_t NewContents(Assembler &assembler, intptr_t capacity) {
uintptr_t result = assembler.AllocateBytes(capacity);
return result;
}
#ifndef NDEBUG
AssemblerBuffer::EnsureCapacity::EnsureCapacity(AssemblerBuffer *buffer) {
if (buffer->cursor() >= buffer->limit())
buffer->ExtendCapacity();
// In debug mode, we save the assembler buffer along with the gap
// size before we start emitting to the buffer. This allows us to
// check that any single generated instruction doesn't overflow the
// limit implied by the minimum gap size.
buffer_ = buffer;
gap_ = ComputeGap();
// Make sure that extending the capacity leaves a big enough gap
// for any kind of instruction.
assert(gap_ >= kMinimumGap);
// Mark the buffer as having ensured the capacity.
assert(!buffer->HasEnsuredCapacity()); // Cannot nest.
buffer->has_ensured_capacity_ = true;
}
AssemblerBuffer::EnsureCapacity::~EnsureCapacity() {
// Unmark the buffer, so we cannot emit after this.
buffer_->has_ensured_capacity_ = false;
// Make sure the generated instruction doesn't take up more
// space than the minimum gap.
intptr_t delta = gap_ - ComputeGap();
assert(delta <= kMinimumGap);
}
#endif // !NDEBUG
AssemblerBuffer::AssemblerBuffer(Assembler &assembler) : assembler_(assembler) {
const intptr_t OneKB = 1024;
static const intptr_t kInitialBufferCapacity = 4 * OneKB;
contents_ = NewContents(assembler_, kInitialBufferCapacity);
cursor_ = contents_;
limit_ = ComputeLimit(contents_, kInitialBufferCapacity);
#ifndef NDEBUG
has_ensured_capacity_ = false;
fixups_processed_ = false;
#endif // !NDEBUG
// Verify internal state.
assert(Capacity() == kInitialBufferCapacity);
assert(Size() == 0);
}
AssemblerBuffer::~AssemblerBuffer() {}
void AssemblerBuffer::ExtendCapacity() {
intptr_t old_size = Size();
intptr_t old_capacity = Capacity();
const intptr_t OneMB = 1 << 20;
intptr_t new_capacity = std::min(old_capacity * 2, old_capacity + OneMB);
if (new_capacity < old_capacity) {
// FATAL
llvm_unreachable("Unexpected overflow in AssemblerBuffer::ExtendCapacity");
}
// Allocate the new data area and copy contents of the old one to it.
uintptr_t new_contents = NewContents(assembler_, new_capacity);
memmove(reinterpret_cast<void *>(new_contents),
reinterpret_cast<void *>(contents_), old_size);
// Compute the relocation delta and switch to the new contents area.
intptr_t delta = new_contents - contents_;
contents_ = new_contents;
// Update the cursor and recompute the limit.
cursor_ += delta;
limit_ = ComputeLimit(new_contents, new_capacity);
// Verify internal state.
assert(Capacity() == new_capacity);
assert(Size() == old_size);
}
llvm::StringRef Assembler::getBufferView() const {
return llvm::StringRef(reinterpret_cast<const char *>(buffer_.contents()),
buffer_.Size());
}
void Assembler::emitIASBytes(GlobalContext *Ctx) const {
Ostream &Str = Ctx->getStrEmit();
intptr_t EndPosition = buffer_.Size();
intptr_t CurPosition = 0;
const intptr_t FixupSize = 4;
for (AssemblerBuffer::FixupList::const_iterator
FixupI = buffer_.fixups_begin(),
FixupE = buffer_.fixups_end(); FixupI != FixupE; ++FixupI) {
AssemblerFixup *NextFixup = *FixupI;
intptr_t NextFixupLoc = NextFixup->position();
for (intptr_t i = CurPosition; i < NextFixupLoc; ++i) {
Str << "\t.byte 0x";
Str.write_hex(buffer_.Load<uint8_t>(i));
Str << "\n";
}
Str << "\t.long ";
const ConstantRelocatable *Reloc = NextFixup->value();
if (Reloc->getSuppressMangling())
Str << Reloc->getName();
else
Str << Ctx->mangleName(Reloc->getName());
if (Reloc->getOffset()) {
Str << " + " << Reloc->getOffset();
}
bool IsPCRel = NextFixup->kind() == FK_PcRel_4;
if (IsPCRel)
Str << " - (. + " << FixupSize << ")";
Str << "\n";
CurPosition = NextFixupLoc + FixupSize;
assert(CurPosition <= EndPosition);
}
// Handle any bytes that are not prefixed by a fixup.
for (intptr_t i = CurPosition; i < EndPosition; ++i) {
Str << "\t.byte 0x";
Str.write_hex(buffer_.Load<uint8_t>(i));
Str << "\n";
}
}
} // end of namespace Ice