blob: c023949476080c5e6c75bad4a001fd1fb4d4886e [file] [log] [blame]
//===- subzero/src/IceTargetLoweringX8664.cpp - x86-64 lowering -----------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Implements the TargetLoweringX8664 class, which consists almost
/// entirely of the lowering sequence for each high-level instruction.
///
//===----------------------------------------------------------------------===//
#include "IceTargetLoweringX8664.h"
#include "IceDefs.h"
#include "IceTargetLoweringX8664Traits.h"
namespace X8664 {
std::unique_ptr<::Ice::TargetLowering> createTargetLowering(::Ice::Cfg *Func) {
return ::Ice::X8664::TargetX8664::create(Func);
}
std::unique_ptr<::Ice::TargetDataLowering>
createTargetDataLowering(::Ice::GlobalContext *Ctx) {
return ::Ice::X8664::TargetDataX8664::create(Ctx);
}
std::unique_ptr<::Ice::TargetHeaderLowering>
createTargetHeaderLowering(::Ice::GlobalContext *Ctx) {
return ::Ice::X8664::TargetHeaderX8664::create(Ctx);
}
void staticInit(::Ice::GlobalContext *Ctx) {
::Ice::X8664::TargetX8664::staticInit(Ctx);
}
} // end of namespace X8664
namespace Ice {
namespace X8664 {
//------------------------------------------------------------------------------
// ______ ______ ______ __ ______ ______
// /\__ _\ /\ == \ /\ __ \ /\ \ /\__ _\ /\ ___\
// \/_/\ \/ \ \ __< \ \ __ \ \ \ \ \/_/\ \/ \ \___ \
// \ \_\ \ \_\ \_\ \ \_\ \_\ \ \_\ \ \_\ \/\_____\
// \/_/ \/_/ /_/ \/_/\/_/ \/_/ \/_/ \/_____/
//
//------------------------------------------------------------------------------
const TargetX8664Traits::TableFcmpType TargetX8664Traits::TableFcmp[] = {
#define X(val, dflt, swapS, C1, C2, swapV, pred) \
{ \
dflt, swapS, X8664::Traits::Cond::C1, X8664::Traits::Cond::C2, swapV, \
X8664::Traits::Cond::pred \
} \
,
FCMPX8664_TABLE
#undef X
};
const size_t TargetX8664Traits::TableFcmpSize = llvm::array_lengthof(TableFcmp);
const TargetX8664Traits::TableIcmp32Type TargetX8664Traits::TableIcmp32[] = {
#define X(val, C_32, C1_64, C2_64, C3_64) \
{ X8664::Traits::Cond::C_32 } \
,
ICMPX8664_TABLE
#undef X
};
const size_t TargetX8664Traits::TableIcmp32Size =
llvm::array_lengthof(TableIcmp32);
const TargetX8664Traits::TableIcmp64Type TargetX8664Traits::TableIcmp64[] = {
#define X(val, C_32, C1_64, C2_64, C3_64) \
{ \
X8664::Traits::Cond::C1_64, X8664::Traits::Cond::C2_64, \
X8664::Traits::Cond::C3_64 \
} \
,
ICMPX8664_TABLE
#undef X
};
const size_t TargetX8664Traits::TableIcmp64Size =
llvm::array_lengthof(TableIcmp64);
const TargetX8664Traits::TableTypeX8664AttributesType
TargetX8664Traits::TableTypeX8664Attributes[] = {
#define X(tag, elementty, cvt, sdss, pdps, spsd, pack, width, fld) \
{ IceType_##elementty } \
,
ICETYPEX8664_TABLE
#undef X
};
const size_t TargetX8664Traits::TableTypeX8664AttributesSize =
llvm::array_lengthof(TableTypeX8664Attributes);
const uint32_t TargetX8664Traits::X86_STACK_ALIGNMENT_BYTES = 16;
const char *TargetX8664Traits::TargetName = "X8664";
template <>
std::array<llvm::SmallBitVector, RCX86_NUM>
TargetX86Base<X8664::Traits>::TypeToRegisterSet = {{}};
template <>
std::array<llvm::SmallBitVector,
TargetX86Base<X8664::Traits>::Traits::RegisterSet::Reg_NUM>
TargetX86Base<X8664::Traits>::RegisterAliases = {{}};
template <>
FixupKind TargetX86Base<X8664::Traits>::PcRelFixup =
TargetX86Base<X8664::Traits>::Traits::FK_PcRel;
template <>
FixupKind TargetX86Base<X8664::Traits>::AbsFixup =
TargetX86Base<X8664::Traits>::Traits::FK_Abs;
//------------------------------------------------------------------------------
// __ ______ __ __ ______ ______ __ __ __ ______
// /\ \ /\ __ \/\ \ _ \ \/\ ___\/\ == \/\ \/\ "-.\ \/\ ___\
// \ \ \___\ \ \/\ \ \ \/ ".\ \ \ __\\ \ __<\ \ \ \ \-. \ \ \__ \
// \ \_____\ \_____\ \__/".~\_\ \_____\ \_\ \_\ \_\ \_\\"\_\ \_____\
// \/_____/\/_____/\/_/ \/_/\/_____/\/_/ /_/\/_/\/_/ \/_/\/_____/
//
//------------------------------------------------------------------------------
void TargetX8664::_add_sp(Operand *Adjustment) {
Variable *rsp =
getPhysicalRegister(Traits::RegisterSet::Reg_rsp, IceType_i64);
if (!NeedSandboxing) {
_add(rsp, Adjustment);
return;
}
Variable *esp =
getPhysicalRegister(Traits::RegisterSet::Reg_esp, IceType_i32);
Variable *r15 =
getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64);
// When incrementing rsp, NaCl sandboxing requires the following sequence
//
// .bundle_start
// add Adjustment, %esp
// add %r15, %rsp
// .bundle_end
//
// In Subzero, even though rsp and esp alias each other, defining one does not
// define the other. Therefore, we must emit
//
// .bundle_start
// %esp = fake-def %rsp
// add Adjustment, %esp
// %rsp = fake-def %esp
// add %r15, %rsp
// .bundle_end
//
// The fake-defs ensure that the
//
// add Adjustment, %esp
//
// instruction is not DCE'd.
AutoBundle _(this);
_redefined(Context.insert<InstFakeDef>(esp, rsp));
_add(esp, Adjustment);
_redefined(Context.insert<InstFakeDef>(rsp, esp));
_add(rsp, r15);
}
void TargetX8664::_mov_sp(Operand *NewValue) {
assert(NewValue->getType() == IceType_i32);
Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp);
Variable *rsp =
getPhysicalRegister(Traits::RegisterSet::Reg_rsp, IceType_i64);
AutoBundle _(this);
_redefined(Context.insert<InstFakeDef>(esp, rsp));
_redefined(_mov(esp, NewValue));
_redefined(Context.insert<InstFakeDef>(rsp, esp));
if (!NeedSandboxing) {
return;
}
Variable *r15 =
getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64);
_add(rsp, r15);
}
void TargetX8664::_push_rbp() {
assert(NeedSandboxing);
Constant *_0 = Ctx->getConstantZero(IceType_i32);
Variable *ebp =
getPhysicalRegister(Traits::RegisterSet::Reg_ebp, IceType_i32);
Variable *rsp =
getPhysicalRegister(Traits::RegisterSet::Reg_rsp, IceType_i64);
auto *TopOfStack = llvm::cast<X86OperandMem>(
legalize(X86OperandMem::create(Func, IceType_i32, rsp, _0),
Legal_Reg | Legal_Mem));
// Emits a sequence:
//
// .bundle_start
// push 0
// mov %ebp, %(rsp)
// .bundle_end
//
// to avoid leaking the upper 32-bits (i.e., the sandbox address.)
AutoBundle _(this);
_push(_0);
Context.insert<typename Traits::Insts::Store>(ebp, TopOfStack);
}
void TargetX8664::_link_bp() {
Variable *esp =
getPhysicalRegister(Traits::RegisterSet::Reg_esp, IceType_i32);
Variable *rsp =
getPhysicalRegister(Traits::RegisterSet::Reg_rsp, Traits::WordType);
Variable *ebp =
getPhysicalRegister(Traits::RegisterSet::Reg_ebp, IceType_i32);
Variable *rbp =
getPhysicalRegister(Traits::RegisterSet::Reg_rbp, Traits::WordType);
Variable *r15 =
getPhysicalRegister(Traits::RegisterSet::Reg_r15, Traits::WordType);
if (!NeedSandboxing) {
_push(rbp);
_mov(rbp, rsp);
} else {
_push_rbp();
AutoBundle _(this);
_redefined(Context.insert<InstFakeDef>(ebp, rbp));
_redefined(Context.insert<InstFakeDef>(esp, rsp));
_mov(ebp, esp);
_redefined(Context.insert<InstFakeDef>(rsp, esp));
_add(rbp, r15);
}
// Keep ebp live for late-stage liveness analysis (e.g. asm-verbose mode).
Context.insert<InstFakeUse>(rbp);
}
void TargetX8664::_unlink_bp() {
Variable *rsp =
getPhysicalRegister(Traits::RegisterSet::Reg_rsp, IceType_i64);
Variable *rbp =
getPhysicalRegister(Traits::RegisterSet::Reg_rbp, IceType_i64);
Variable *ebp =
getPhysicalRegister(Traits::RegisterSet::Reg_ebp, IceType_i32);
// For late-stage liveness analysis (e.g. asm-verbose mode), adding a fake
// use of rsp before the assignment of rsp=rbp keeps previous rsp
// adjustments from being dead-code eliminated.
Context.insert<InstFakeUse>(rsp);
if (!NeedSandboxing) {
_mov(rsp, rbp);
_pop(rbp);
} else {
_mov_sp(ebp);
Variable *r15 =
getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64);
Variable *rcx =
getPhysicalRegister(Traits::RegisterSet::Reg_rcx, IceType_i64);
Variable *ecx =
getPhysicalRegister(Traits::RegisterSet::Reg_ecx, IceType_i32);
_pop(rcx);
Context.insert<InstFakeDef>(ecx, rcx);
AutoBundle _(this);
_mov(ebp, ecx);
_redefined(Context.insert<InstFakeDef>(rbp, ebp));
_add(rbp, r15);
}
}
void TargetX8664::_push_reg(Variable *Reg) {
Variable *rbp =
getPhysicalRegister(Traits::RegisterSet::Reg_rbp, Traits::WordType);
if (Reg != rbp || !NeedSandboxing) {
_push(Reg);
} else {
_push_rbp();
}
}
void TargetX8664::emitGetIP(CfgNode *Node) {
// No IP base register is needed on X86-64.
(void)Node;
}
Traits::X86OperandMem *TargetX8664::_sandbox_mem_reference(X86OperandMem *Mem) {
// In x86_64-nacl, all memory references are relative to %r15 (i.e., %rzp.)
// NaCl sandboxing also requires that any registers that are not %rsp and
// %rbp to be 'truncated' to 32-bit before memory access.
assert(NeedSandboxing);
Variable *Base = Mem->getBase();
Variable *Index = Mem->getIndex();
uint16_t Shift = 0;
Variable *r15 =
getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64);
Constant *Offset = Mem->getOffset();
Variable *T = nullptr;
if (Mem->getIsRebased()) {
// If Mem.IsRebased, then we don't need to update Mem to contain a reference
// to %r15, but we still need to truncate Mem.Index (if any) to 32-bit.
assert(r15 == Base);
T = Index;
Shift = Mem->getShift();
} else if (Base != nullptr && Index != nullptr) {
// Another approach could be to emit an
//
// lea Mem, %T
//
// And then update Mem.Base = r15, Mem.Index = T, Mem.Shift = 0
llvm::report_fatal_error("memory reference contains base and index.");
} else if (Base != nullptr) {
T = Base;
} else if (Index != nullptr) {
T = Index;
Shift = Mem->getShift();
}
// NeedsLea is a flags indicating whether Mem needs to be materialized to a
// GPR prior to being used. A LEA is needed if Mem.Offset is a constant
// relocatable, or if Mem.Offset is negative. In both these cases, the LEA is
// needed to ensure the sandboxed memory operand will only use the lower
// 32-bits of T+Offset.
bool NeedsLea = false;
if (const auto *Offset = Mem->getOffset()) {
if (llvm::isa<ConstantRelocatable>(Offset)) {
NeedsLea = true;
} else if (const auto *Imm = llvm::cast<ConstantInteger32>(Offset)) {
NeedsLea = Imm->getValue() < 0;
}
}
int32_t RegNum = Variable::NoRegister;
int32_t RegNum32 = Variable::NoRegister;
if (T != nullptr) {
if (T->hasReg()) {
RegNum = Traits::getGprForType(IceType_i64, T->getRegNum());
RegNum32 = Traits::getGprForType(IceType_i32, RegNum);
switch (RegNum) {
case Traits::RegisterSet::Reg_rsp:
case Traits::RegisterSet::Reg_rbp:
// Memory operands referencing rsp/rbp do not need to be sandboxed.
return Mem;
}
}
switch (T->getType()) {
default:
case IceType_i64:
// Even though "default:" would also catch T.Type == IceType_i64, an
// explicit 'case IceType_i64' shows that memory operands are always
// supposed to be 32-bits.
llvm::report_fatal_error("Mem pointer should be 32-bit.");
case IceType_i32: {
Variable *T64 = makeReg(IceType_i64, RegNum);
auto *Movzx = _movzx(T64, T);
if (!NeedsLea) {
// This movzx is only needed when Mem does not need to be lea'd into a
// temporary. If an lea is going to be emitted, then eliding this movzx
// is safe because the emitted lea will write a 32-bit result --
// implicitly zero-extended to 64-bit.
Movzx->setMustKeep();
}
T = T64;
} break;
}
}
if (NeedsLea) {
Variable *NewT = makeReg(IceType_i32, RegNum32);
Variable *Base = T;
Variable *Index = T;
static constexpr bool NotRebased = false;
if (Shift == 0) {
Index = nullptr;
} else {
Base = nullptr;
}
_lea(NewT, Traits::X86OperandMem::create(
Func, Mem->getType(), Base, Offset, Index, Shift,
Traits::X86OperandMem::DefaultSegment, NotRebased));
T = makeReg(IceType_i64, RegNum);
_movzx(T, NewT);
Shift = 0;
Offset = nullptr;
}
static constexpr bool IsRebased = true;
return Traits::X86OperandMem::create(
Func, Mem->getType(), r15, Offset, T, Shift,
Traits::X86OperandMem::DefaultSegment, IsRebased);
}
void TargetX8664::_sub_sp(Operand *Adjustment) {
Variable *rsp =
getPhysicalRegister(Traits::RegisterSet::Reg_rsp, Traits::WordType);
if (!NeedSandboxing) {
_sub(rsp, Adjustment);
return;
}
Variable *esp =
getPhysicalRegister(Traits::RegisterSet::Reg_esp, IceType_i32);
Variable *r15 =
getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64);
// .bundle_start
// sub Adjustment, %esp
// add %r15, %rsp
// .bundle_end
AutoBundle _(this);
_redefined(Context.insert<InstFakeDef>(esp, rsp));
_sub(esp, Adjustment);
_redefined(Context.insert<InstFakeDef>(rsp, esp));
_add(rsp, r15);
}
void TargetX8664::initSandbox() {
assert(NeedSandboxing);
Context.init(Func->getEntryNode());
Context.setInsertPoint(Context.getCur());
Variable *r15 =
getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64);
Context.insert<InstFakeDef>(r15);
Context.insert<InstFakeUse>(r15);
}
void TargetX8664::lowerIndirectJump(Variable *JumpTarget) {
std::unique_ptr<AutoBundle> Bundler;
if (!NeedSandboxing) {
Variable *T = makeReg(IceType_i64);
_movzx(T, JumpTarget);
JumpTarget = T;
} else {
Variable *T = makeReg(IceType_i32);
Variable *T64 = makeReg(IceType_i64);
Variable *r15 =
getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64);
_mov(T, JumpTarget);
Bundler = makeUnique<AutoBundle>(this);
const SizeT BundleSize =
1 << Func->getAssembler<>()->getBundleAlignLog2Bytes();
_and(T, Ctx->getConstantInt32(~(BundleSize - 1)));
_movzx(T64, T);
_add(T64, r15);
JumpTarget = T64;
}
_jmp(JumpTarget);
}
Inst *TargetX8664::emitCallToTarget(Operand *CallTarget, Variable *ReturnReg) {
Inst *NewCall = nullptr;
auto *CallTargetR = llvm::dyn_cast<Variable>(CallTarget);
if (NeedSandboxing) {
InstX86Label *ReturnAddress = InstX86Label::create(Func, this);
ReturnAddress->setIsReturnLocation(true);
constexpr bool SuppressMangling = true;
/* AutoBundle scoping */ {
std::unique_ptr<AutoBundle> Bundler;
if (CallTargetR == nullptr) {
Bundler = makeUnique<AutoBundle>(this, InstBundleLock::Opt_PadToEnd);
_push(Ctx->getConstantSym(0, ReturnAddress->getName(Func),
SuppressMangling));
} else {
Variable *T = makeReg(IceType_i32);
Variable *T64 = makeReg(IceType_i64);
Variable *r15 =
getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64);
_mov(T, CallTargetR);
Bundler = makeUnique<AutoBundle>(this, InstBundleLock::Opt_PadToEnd);
_push(Ctx->getConstantSym(0, ReturnAddress->getName(Func),
SuppressMangling));
const SizeT BundleSize =
1 << Func->getAssembler<>()->getBundleAlignLog2Bytes();
_and(T, Ctx->getConstantInt32(~(BundleSize - 1)));
_movzx(T64, T);
_add(T64, r15);
CallTarget = T64;
}
NewCall = Context.insert<Traits::Insts::Jmp>(CallTarget);
}
if (ReturnReg != nullptr) {
Context.insert<InstFakeDef>(ReturnReg);
}
Context.insert(ReturnAddress);
} else {
if (CallTargetR != nullptr) {
// x86-64 in Subzero is ILP32. Therefore, CallTarget is i32, but the
// emitted call needs a i64 register (for textual asm.)
Variable *T = makeReg(IceType_i64);
_movzx(T, CallTargetR);
CallTarget = T;
}
NewCall = Context.insert<Traits::Insts::Call>(ReturnReg, CallTarget);
}
return NewCall;
}
Variable *TargetX8664::moveReturnValueToRegister(Operand *Value,
Type ReturnType) {
if (isVectorType(ReturnType) || isScalarFloatingType(ReturnType)) {
return legalizeToReg(Value, Traits::RegisterSet::Reg_xmm0);
} else {
assert(ReturnType == IceType_i32 || ReturnType == IceType_i64);
Variable *Reg = nullptr;
_mov(Reg, Value,
Traits::getGprForType(ReturnType, Traits::RegisterSet::Reg_rax));
return Reg;
}
}
void TargetX8664::emitSandboxedReturn() {
Variable *T_rcx = makeReg(IceType_i64, Traits::RegisterSet::Reg_rcx);
Variable *T_ecx = makeReg(IceType_i32, Traits::RegisterSet::Reg_ecx);
_pop(T_rcx);
_mov(T_ecx, T_rcx);
// lowerIndirectJump(T_ecx);
Variable *r15 =
getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64);
/* AutoBundle scoping */ {
AutoBundle _(this);
const SizeT BundleSize =
1 << Func->getAssembler<>()->getBundleAlignLog2Bytes();
_and(T_ecx, Ctx->getConstantInt32(~(BundleSize - 1)));
Context.insert<InstFakeDef>(T_rcx, T_ecx);
_add(T_rcx, r15);
_jmp(T_rcx);
}
}
void TargetX8664::emitJumpTable(const Cfg *Func,
const InstJumpTable *JumpTable) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Ctx->getStrEmit();
IceString MangledName = Ctx->mangleName(Func->getFunctionName());
Str << "\t.section\t.rodata." << MangledName
<< "$jumptable,\"a\",@progbits\n";
Str << "\t.align\t" << typeWidthInBytes(getPointerType()) << "\n";
Str << InstJumpTable::makeName(MangledName, JumpTable->getId()) << ":";
// On X8664 ILP32 pointers are 32-bit hence the use of .long
for (SizeT I = 0; I < JumpTable->getNumTargets(); ++I)
Str << "\n\t.long\t" << JumpTable->getTarget(I)->getAsmName();
Str << "\n";
}
namespace {
template <typename T> struct PoolTypeConverter {};
template <> struct PoolTypeConverter<float> {
using PrimitiveIntType = uint32_t;
using IceType = ConstantFloat;
static const Type Ty = IceType_f32;
static const char *TypeName;
static const char *AsmTag;
static const char *PrintfString;
};
const char *PoolTypeConverter<float>::TypeName = "float";
const char *PoolTypeConverter<float>::AsmTag = ".long";
const char *PoolTypeConverter<float>::PrintfString = "0x%x";
template <> struct PoolTypeConverter<double> {
using PrimitiveIntType = uint64_t;
using IceType = ConstantDouble;
static const Type Ty = IceType_f64;
static const char *TypeName;
static const char *AsmTag;
static const char *PrintfString;
};
const char *PoolTypeConverter<double>::TypeName = "double";
const char *PoolTypeConverter<double>::AsmTag = ".quad";
const char *PoolTypeConverter<double>::PrintfString = "0x%llx";
// Add converter for int type constant pooling
template <> struct PoolTypeConverter<uint32_t> {
using PrimitiveIntType = uint32_t;
using IceType = ConstantInteger32;
static const Type Ty = IceType_i32;
static const char *TypeName;
static const char *AsmTag;
static const char *PrintfString;
};
const char *PoolTypeConverter<uint32_t>::TypeName = "i32";
const char *PoolTypeConverter<uint32_t>::AsmTag = ".long";
const char *PoolTypeConverter<uint32_t>::PrintfString = "0x%x";
// Add converter for int type constant pooling
template <> struct PoolTypeConverter<uint16_t> {
using PrimitiveIntType = uint32_t;
using IceType = ConstantInteger32;
static const Type Ty = IceType_i16;
static const char *TypeName;
static const char *AsmTag;
static const char *PrintfString;
};
const char *PoolTypeConverter<uint16_t>::TypeName = "i16";
const char *PoolTypeConverter<uint16_t>::AsmTag = ".short";
const char *PoolTypeConverter<uint16_t>::PrintfString = "0x%x";
// Add converter for int type constant pooling
template <> struct PoolTypeConverter<uint8_t> {
using PrimitiveIntType = uint32_t;
using IceType = ConstantInteger32;
static const Type Ty = IceType_i8;
static const char *TypeName;
static const char *AsmTag;
static const char *PrintfString;
};
const char *PoolTypeConverter<uint8_t>::TypeName = "i8";
const char *PoolTypeConverter<uint8_t>::AsmTag = ".byte";
const char *PoolTypeConverter<uint8_t>::PrintfString = "0x%x";
} // end of anonymous namespace
template <typename T>
void TargetDataX8664::emitConstantPool(GlobalContext *Ctx) {
if (!BuildDefs::dump())
return;
Ostream &Str = Ctx->getStrEmit();
Type Ty = T::Ty;
SizeT Align = typeAlignInBytes(Ty);
ConstantList Pool = Ctx->getConstantPool(Ty);
Str << "\t.section\t.rodata.cst" << Align << ",\"aM\",@progbits," << Align
<< "\n";
Str << "\t.align\t" << Align << "\n";
// If reorder-pooled-constants option is set to true, we need to shuffle the
// constant pool before emitting it.
if (Ctx->getFlags().shouldReorderPooledConstants()) {
// Use the constant's kind value as the salt for creating random number
// generator.
Operand::OperandKind K = (*Pool.begin())->getKind();
RandomNumberGenerator RNG(Ctx->getFlags().getRandomSeed(),
RPE_PooledConstantReordering, K);
RandomShuffle(Pool.begin(), Pool.end(),
[&RNG](uint64_t N) { return (uint32_t)RNG.next(N); });
}
for (Constant *C : Pool) {
if (!C->getShouldBePooled())
continue;
auto *Const = llvm::cast<typename T::IceType>(C);
typename T::IceType::PrimType Value = Const->getValue();
// Use memcpy() to copy bits from Value into RawValue in a way that avoids
// breaking strict-aliasing rules.
typename T::PrimitiveIntType RawValue;
memcpy(&RawValue, &Value, sizeof(Value));
char buf[30];
int CharsPrinted =
snprintf(buf, llvm::array_lengthof(buf), T::PrintfString, RawValue);
assert(CharsPrinted >= 0 &&
(size_t)CharsPrinted < llvm::array_lengthof(buf));
(void)CharsPrinted; // avoid warnings if asserts are disabled
Const->emitPoolLabel(Str, Ctx);
Str << ":\n\t" << T::AsmTag << "\t" << buf << "\t/* " << T::TypeName << " "
<< Value << " */\n";
}
}
void TargetDataX8664::lowerConstants() {
if (Ctx->getFlags().getDisableTranslation())
return;
// No need to emit constants from the int pool since (for x86) they are
// embedded as immediates in the instructions, just emit float/double.
switch (Ctx->getFlags().getOutFileType()) {
case FT_Elf: {
ELFObjectWriter *Writer = Ctx->getObjectWriter();
Writer->writeConstantPool<ConstantInteger32>(IceType_i8);
Writer->writeConstantPool<ConstantInteger32>(IceType_i16);
Writer->writeConstantPool<ConstantInteger32>(IceType_i32);
Writer->writeConstantPool<ConstantFloat>(IceType_f32);
Writer->writeConstantPool<ConstantDouble>(IceType_f64);
} break;
case FT_Asm:
case FT_Iasm: {
OstreamLocker L(Ctx);
emitConstantPool<PoolTypeConverter<uint8_t>>(Ctx);
emitConstantPool<PoolTypeConverter<uint16_t>>(Ctx);
emitConstantPool<PoolTypeConverter<uint32_t>>(Ctx);
emitConstantPool<PoolTypeConverter<float>>(Ctx);
emitConstantPool<PoolTypeConverter<double>>(Ctx);
} break;
}
}
void TargetDataX8664::lowerJumpTables() {
const bool IsPIC = Ctx->getFlags().getUseNonsfi();
switch (Ctx->getFlags().getOutFileType()) {
case FT_Elf: {
ELFObjectWriter *Writer = Ctx->getObjectWriter();
for (const JumpTableData &JumpTable : Ctx->getJumpTables())
Writer->writeJumpTable(JumpTable, TargetX8664::Traits::FK_Abs, IsPIC);
} break;
case FT_Asm:
// Already emitted from Cfg
break;
case FT_Iasm: {
if (!BuildDefs::dump())
return;
Ostream &Str = Ctx->getStrEmit();
for (const JumpTableData &JT : Ctx->getJumpTables()) {
Str << "\t.section\t.rodata." << JT.getFunctionName()
<< "$jumptable,\"a\",@progbits\n";
Str << "\t.align\t" << typeWidthInBytes(getPointerType()) << "\n";
Str << InstJumpTable::makeName(JT.getFunctionName(), JT.getId()) << ":";
// On X8664 ILP32 pointers are 32-bit hence the use of .long
for (intptr_t TargetOffset : JT.getTargetOffsets())
Str << "\n\t.long\t" << JT.getFunctionName() << "+" << TargetOffset;
Str << "\n";
}
} break;
}
}
void TargetDataX8664::lowerGlobals(const VariableDeclarationList &Vars,
const IceString &SectionSuffix) {
const bool IsPIC = Ctx->getFlags().getUseNonsfi();
switch (Ctx->getFlags().getOutFileType()) {
case FT_Elf: {
ELFObjectWriter *Writer = Ctx->getObjectWriter();
Writer->writeDataSection(Vars, TargetX8664::Traits::FK_Abs, SectionSuffix,
IsPIC);
} break;
case FT_Asm:
case FT_Iasm: {
const IceString &TranslateOnly = Ctx->getFlags().getTranslateOnly();
OstreamLocker L(Ctx);
for (const VariableDeclaration *Var : Vars) {
if (GlobalContext::matchSymbolName(Var->getName(), TranslateOnly)) {
emitGlobal(*Var, SectionSuffix);
}
}
} break;
}
}
// In some cases, there are x-macros tables for both high-level and low-level
// instructions/operands that use the same enum key value. The tables are kept
// separate to maintain a proper separation between abstraction layers. There
// is a risk that the tables could get out of sync if enum values are reordered
// or if entries are added or deleted. The following dummy namespaces use
// static_asserts to ensure everything is kept in sync.
namespace {
// Validate the enum values in FCMPX8664_TABLE.
namespace dummy1 {
// Define a temporary set of enum values based on low-level table entries.
enum _tmp_enum {
#define X(val, dflt, swapS, C1, C2, swapV, pred) _tmp_##val,
FCMPX8664_TABLE
#undef X
_num
};
// Define a set of constants based on high-level table entries.
#define X(tag, str) static const int _table1_##tag = InstFcmp::tag;
ICEINSTFCMP_TABLE
#undef X
// Define a set of constants based on low-level table entries, and ensure the
// table entry keys are consistent.
#define X(val, dflt, swapS, C1, C2, swapV, pred) \
static const int _table2_##val = _tmp_##val; \
static_assert( \
_table1_##val == _table2_##val, \
"Inconsistency between FCMPX8664_TABLE and ICEINSTFCMP_TABLE");
FCMPX8664_TABLE
#undef X
// Repeat the static asserts with respect to the high-level table entries in
// case the high-level table has extra entries.
#define X(tag, str) \
static_assert( \
_table1_##tag == _table2_##tag, \
"Inconsistency between FCMPX8664_TABLE and ICEINSTFCMP_TABLE");
ICEINSTFCMP_TABLE
#undef X
} // end of namespace dummy1
// Validate the enum values in ICMPX8664_TABLE.
namespace dummy2 {
// Define a temporary set of enum values based on low-level table entries.
enum _tmp_enum {
#define X(val, C_32, C1_64, C2_64, C3_64) _tmp_##val,
ICMPX8664_TABLE
#undef X
_num
};
// Define a set of constants based on high-level table entries.
#define X(tag, str) static const int _table1_##tag = InstIcmp::tag;
ICEINSTICMP_TABLE
#undef X
// Define a set of constants based on low-level table entries, and ensure the
// table entry keys are consistent.
#define X(val, C_32, C1_64, C2_64, C3_64) \
static const int _table2_##val = _tmp_##val; \
static_assert( \
_table1_##val == _table2_##val, \
"Inconsistency between ICMPX8664_TABLE and ICEINSTICMP_TABLE");
ICMPX8664_TABLE
#undef X
// Repeat the static asserts with respect to the high-level table entries in
// case the high-level table has extra entries.
#define X(tag, str) \
static_assert( \
_table1_##tag == _table2_##tag, \
"Inconsistency between ICMPX8664_TABLE and ICEINSTICMP_TABLE");
ICEINSTICMP_TABLE
#undef X
} // end of namespace dummy2
// Validate the enum values in ICETYPEX8664_TABLE.
namespace dummy3 {
// Define a temporary set of enum values based on low-level table entries.
enum _tmp_enum {
#define X(tag, elementty, cvt, sdss, pdps, spsd, pack, width, fld) _tmp_##tag,
ICETYPEX8664_TABLE
#undef X
_num
};
// Define a set of constants based on high-level table entries.
#define X(tag, sizeLog2, align, elts, elty, str) \
static const int _table1_##tag = IceType_##tag;
ICETYPE_TABLE
#undef X
// Define a set of constants based on low-level table entries, and ensure the
// table entry keys are consistent.
#define X(tag, elementty, cvt, sdss, pdps, spsd, pack, width, fld) \
static const int _table2_##tag = _tmp_##tag; \
static_assert(_table1_##tag == _table2_##tag, \
"Inconsistency between ICETYPEX8664_TABLE and ICETYPE_TABLE");
ICETYPEX8664_TABLE
#undef X
// Repeat the static asserts with respect to the high-level table entries in
// case the high-level table has extra entries.
#define X(tag, sizeLog2, align, elts, elty, str) \
static_assert(_table1_##tag == _table2_##tag, \
"Inconsistency between ICETYPEX8664_TABLE and ICETYPE_TABLE");
ICETYPE_TABLE
#undef X
} // end of namespace dummy3
} // end of anonymous namespace
} // end of namespace X8664
} // end of namespace Ice