| //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// \brief Implements the TargetLoweringX8632 class, which consists almost |
| /// entirely of the lowering sequence for each high-level instruction. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "IceTargetLoweringX8632.h" |
| |
| #include "IceTargetLoweringX8632Traits.h" |
| |
| namespace X8632 { |
| std::unique_ptr<::Ice::TargetLowering> createTargetLowering(::Ice::Cfg *Func) { |
| return ::Ice::X8632::TargetX8632::create(Func); |
| } |
| |
| std::unique_ptr<::Ice::TargetDataLowering> |
| createTargetDataLowering(::Ice::GlobalContext *Ctx) { |
| return ::Ice::X8632::TargetDataX8632::create(Ctx); |
| } |
| |
| std::unique_ptr<::Ice::TargetHeaderLowering> |
| createTargetHeaderLowering(::Ice::GlobalContext *Ctx) { |
| return ::Ice::X8632::TargetHeaderX8632::create(Ctx); |
| } |
| |
| void staticInit(::Ice::GlobalContext *Ctx) { |
| ::Ice::X8632::TargetX8632::staticInit(Ctx); |
| } |
| } // end of namespace X8632 |
| |
| namespace Ice { |
| namespace X8632 { |
| |
| //------------------------------------------------------------------------------ |
| // ______ ______ ______ __ ______ ______ |
| // /\__ _\ /\ == \ /\ __ \ /\ \ /\__ _\ /\ ___\ |
| // \/_/\ \/ \ \ __< \ \ __ \ \ \ \ \/_/\ \/ \ \___ \ |
| // \ \_\ \ \_\ \_\ \ \_\ \_\ \ \_\ \ \_\ \/\_____\ |
| // \/_/ \/_/ /_/ \/_/\/_/ \/_/ \/_/ \/_____/ |
| // |
| //------------------------------------------------------------------------------ |
| const TargetX8632Traits::TableFcmpType TargetX8632Traits::TableFcmp[] = { |
| #define X(val, dflt, swapS, C1, C2, swapV, pred) \ |
| { \ |
| dflt, swapS, X8632::Traits::Cond::C1, X8632::Traits::Cond::C2, swapV, \ |
| X8632::Traits::Cond::pred \ |
| } \ |
| , |
| FCMPX8632_TABLE |
| #undef X |
| }; |
| |
| const size_t TargetX8632Traits::TableFcmpSize = llvm::array_lengthof(TableFcmp); |
| |
| const TargetX8632Traits::TableIcmp32Type TargetX8632Traits::TableIcmp32[] = { |
| #define X(val, C_32, C1_64, C2_64, C3_64) \ |
| { X8632::Traits::Cond::C_32 } \ |
| , |
| ICMPX8632_TABLE |
| #undef X |
| }; |
| |
| const size_t TargetX8632Traits::TableIcmp32Size = |
| llvm::array_lengthof(TableIcmp32); |
| |
| const TargetX8632Traits::TableIcmp64Type TargetX8632Traits::TableIcmp64[] = { |
| #define X(val, C_32, C1_64, C2_64, C3_64) \ |
| { \ |
| X8632::Traits::Cond::C1_64, X8632::Traits::Cond::C2_64, \ |
| X8632::Traits::Cond::C3_64 \ |
| } \ |
| , |
| ICMPX8632_TABLE |
| #undef X |
| }; |
| |
| const size_t TargetX8632Traits::TableIcmp64Size = |
| llvm::array_lengthof(TableIcmp64); |
| |
| const TargetX8632Traits::TableTypeX8632AttributesType |
| TargetX8632Traits::TableTypeX8632Attributes[] = { |
| #define X(tag, elementty, cvt, sdss, pdps, spsd, pack, width, fld) \ |
| { IceType_##elementty } \ |
| , |
| ICETYPEX8632_TABLE |
| #undef X |
| }; |
| |
| const size_t TargetX8632Traits::TableTypeX8632AttributesSize = |
| llvm::array_lengthof(TableTypeX8632Attributes); |
| |
| const uint32_t TargetX8632Traits::X86_STACK_ALIGNMENT_BYTES = 16; |
| const char *TargetX8632Traits::TargetName = "X8632"; |
| |
| template <> |
| std::array<llvm::SmallBitVector, RCX86_NUM> |
| TargetX86Base<X8632::Traits>::TypeToRegisterSet = {{}}; |
| |
| template <> |
| std::array<llvm::SmallBitVector, |
| TargetX86Base<X8632::Traits>::Traits::RegisterSet::Reg_NUM> |
| TargetX86Base<X8632::Traits>::RegisterAliases = {{}}; |
| |
| template <> |
| FixupKind TargetX86Base<X8632::Traits>::PcRelFixup = |
| TargetX86Base<X8632::Traits>::Traits::FK_PcRel; |
| |
| template <> |
| FixupKind TargetX86Base<X8632::Traits>::AbsFixup = |
| TargetX86Base<X8632::Traits>::Traits::FK_Abs; |
| |
| //------------------------------------------------------------------------------ |
| // __ ______ __ __ ______ ______ __ __ __ ______ |
| // /\ \ /\ __ \/\ \ _ \ \/\ ___\/\ == \/\ \/\ "-.\ \/\ ___\ |
| // \ \ \___\ \ \/\ \ \ \/ ".\ \ \ __\\ \ __<\ \ \ \ \-. \ \ \__ \ |
| // \ \_____\ \_____\ \__/".~\_\ \_____\ \_\ \_\ \_\ \_\\"\_\ \_____\ |
| // \/_____/\/_____/\/_/ \/_/\/_____/\/_/ /_/\/_/\/_/ \/_/\/_____/ |
| // |
| //------------------------------------------------------------------------------ |
| void TargetX8632::_add_sp(Operand *Adjustment) { |
| Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp); |
| _add(esp, Adjustment); |
| } |
| |
| void TargetX8632::_mov_sp(Operand *NewValue) { |
| Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp); |
| _redefined(_mov(esp, NewValue)); |
| } |
| |
| void TargetX8632::_sub_sp(Operand *Adjustment) { |
| Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp); |
| _sub(esp, Adjustment); |
| } |
| |
| void TargetX8632::_link_bp() { |
| Variable *ebp = getPhysicalRegister(Traits::RegisterSet::Reg_ebp); |
| Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp); |
| _push(ebp); |
| _mov(ebp, esp); |
| // Keep ebp live for late-stage liveness analysis (e.g. asm-verbose mode). |
| Context.insert<InstFakeUse>(ebp); |
| } |
| |
| void TargetX8632::_unlink_bp() { |
| Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp); |
| Variable *ebp = getPhysicalRegister(Traits::RegisterSet::Reg_ebp); |
| // For late-stage liveness analysis (e.g. asm-verbose mode), adding a fake |
| // use of esp before the assignment of esp=ebp keeps previous esp |
| // adjustments from being dead-code eliminated. |
| Context.insert<InstFakeUse>(esp); |
| _mov(esp, ebp); |
| _pop(ebp); |
| } |
| |
| void TargetX8632::_push_reg(Variable *Reg) { _push(Reg); } |
| |
| void TargetX8632::emitGetIP(CfgNode *Node) { |
| // If there is a non-deleted InstX86GetIP instruction, we need to move it to |
| // the point after the stack frame has stabilized but before |
| // register-allocated in-args are copied into their home registers. It would |
| // be slightly faster to search for the GetIP instruction before other prolog |
| // instructions are inserted, but it's more clear to do the whole |
| // transformation in a single place. |
| Traits::Insts::GetIP *GetIPInst = nullptr; |
| if (Ctx->getFlags().getUseNonsfi()) { |
| for (Inst &Instr : Node->getInsts()) { |
| if (auto *GetIP = llvm::dyn_cast<Traits::Insts::GetIP>(&Instr)) { |
| if (!Instr.isDeleted()) |
| GetIPInst = GetIP; |
| break; |
| } |
| } |
| } |
| // Delete any existing InstX86GetIP instruction and reinsert it here. Also, |
| // insert the call to the helper function and the spill to the stack, to |
| // simplify emission. |
| if (GetIPInst) { |
| GetIPInst->setDeleted(); |
| Variable *Dest = GetIPInst->getDest(); |
| Variable *CallDest = |
| Dest->hasReg() ? Dest |
| : getPhysicalRegister(Traits::RegisterSet::Reg_eax); |
| // Call the getIP_<reg> helper. |
| IceString RegName = Traits::getRegName(CallDest->getRegNum()); |
| Constant *CallTarget = Ctx->getConstantExternSym(H_getIP_prefix + RegName); |
| Context.insert<Traits::Insts::Call>(CallDest, CallTarget); |
| // Insert a new version of InstX86GetIP. |
| Context.insert<Traits::Insts::GetIP>(CallDest); |
| // Spill the register to its home stack location if necessary. |
| if (!Dest->hasReg()) { |
| _mov(Dest, CallDest); |
| } |
| } |
| } |
| |
| void TargetX8632::lowerIndirectJump(Variable *JumpTarget) { |
| AutoBundle _(this); |
| |
| if (NeedSandboxing) { |
| const SizeT BundleSize = |
| 1 << Func->getAssembler<>()->getBundleAlignLog2Bytes(); |
| _and(JumpTarget, Ctx->getConstantInt32(~(BundleSize - 1))); |
| } |
| |
| _jmp(JumpTarget); |
| } |
| |
| Inst *TargetX8632::emitCallToTarget(Operand *CallTarget, Variable *ReturnReg) { |
| std::unique_ptr<AutoBundle> Bundle; |
| if (NeedSandboxing) { |
| if (llvm::isa<Constant>(CallTarget)) { |
| Bundle = makeUnique<AutoBundle>(this, InstBundleLock::Opt_AlignToEnd); |
| } else { |
| Variable *CallTargetVar = nullptr; |
| _mov(CallTargetVar, CallTarget); |
| Bundle = makeUnique<AutoBundle>(this, InstBundleLock::Opt_AlignToEnd); |
| const SizeT BundleSize = |
| 1 << Func->getAssembler<>()->getBundleAlignLog2Bytes(); |
| _and(CallTargetVar, Ctx->getConstantInt32(~(BundleSize - 1))); |
| CallTarget = CallTargetVar; |
| } |
| } |
| return Context.insert<Traits::Insts::Call>(ReturnReg, CallTarget); |
| } |
| |
| Variable *TargetX8632::moveReturnValueToRegister(Operand *Value, |
| Type ReturnType) { |
| if (isVectorType(ReturnType)) { |
| return legalizeToReg(Value, Traits::RegisterSet::Reg_xmm0); |
| } else if (isScalarFloatingType(ReturnType)) { |
| _fld(Value); |
| return nullptr; |
| } else { |
| assert(ReturnType == IceType_i32 || ReturnType == IceType_i64); |
| if (ReturnType == IceType_i64) { |
| Variable *eax = |
| legalizeToReg(loOperand(Value), Traits::RegisterSet::Reg_eax); |
| Variable *edx = |
| legalizeToReg(hiOperand(Value), Traits::RegisterSet::Reg_edx); |
| Context.insert<InstFakeUse>(edx); |
| return eax; |
| } else { |
| Variable *Reg = nullptr; |
| _mov(Reg, Value, Traits::RegisterSet::Reg_eax); |
| return Reg; |
| } |
| } |
| } |
| |
| void TargetX8632::emitSandboxedReturn() { |
| // Change the original ret instruction into a sandboxed return sequence. |
| // t:ecx = pop |
| // bundle_lock |
| // and t, ~31 |
| // jmp *t |
| // bundle_unlock |
| // FakeUse <original_ret_operand> |
| Variable *T_ecx = makeReg(IceType_i32, Traits::RegisterSet::Reg_ecx); |
| _pop(T_ecx); |
| lowerIndirectJump(T_ecx); |
| } |
| |
| void TargetX8632::emitJumpTable(const Cfg *Func, |
| const InstJumpTable *JumpTable) const { |
| if (!BuildDefs::dump()) |
| return; |
| Ostream &Str = Ctx->getStrEmit(); |
| const bool UseNonsfi = Ctx->getFlags().getUseNonsfi(); |
| const IceString MangledName = Ctx->mangleName(Func->getFunctionName()); |
| const IceString Prefix = UseNonsfi ? ".data.rel.ro." : ".rodata."; |
| Str << "\t.section\t" << Prefix << MangledName |
| << "$jumptable,\"a\",@progbits\n"; |
| Str << "\t.align\t" << typeWidthInBytes(getPointerType()) << "\n"; |
| Str << InstJumpTable::makeName(MangledName, JumpTable->getId()) << ":"; |
| |
| // On X8632 pointers are 32-bit hence the use of .long |
| for (SizeT I = 0; I < JumpTable->getNumTargets(); ++I) |
| Str << "\n\t.long\t" << JumpTable->getTarget(I)->getAsmName(); |
| Str << "\n"; |
| } |
| |
| TargetDataX8632::TargetDataX8632(GlobalContext *Ctx) |
| : TargetDataLowering(Ctx) {} |
| |
| namespace { |
| template <typename T> struct PoolTypeConverter {}; |
| |
| template <> struct PoolTypeConverter<float> { |
| using PrimitiveIntType = uint32_t; |
| using IceType = ConstantFloat; |
| static const Type Ty = IceType_f32; |
| static const char *TypeName; |
| static const char *AsmTag; |
| static const char *PrintfString; |
| }; |
| const char *PoolTypeConverter<float>::TypeName = "float"; |
| const char *PoolTypeConverter<float>::AsmTag = ".long"; |
| const char *PoolTypeConverter<float>::PrintfString = "0x%x"; |
| |
| template <> struct PoolTypeConverter<double> { |
| using PrimitiveIntType = uint64_t; |
| using IceType = ConstantDouble; |
| static const Type Ty = IceType_f64; |
| static const char *TypeName; |
| static const char *AsmTag; |
| static const char *PrintfString; |
| }; |
| const char *PoolTypeConverter<double>::TypeName = "double"; |
| const char *PoolTypeConverter<double>::AsmTag = ".quad"; |
| const char *PoolTypeConverter<double>::PrintfString = "0x%llx"; |
| |
| // Add converter for int type constant pooling |
| template <> struct PoolTypeConverter<uint32_t> { |
| using PrimitiveIntType = uint32_t; |
| using IceType = ConstantInteger32; |
| static const Type Ty = IceType_i32; |
| static const char *TypeName; |
| static const char *AsmTag; |
| static const char *PrintfString; |
| }; |
| const char *PoolTypeConverter<uint32_t>::TypeName = "i32"; |
| const char *PoolTypeConverter<uint32_t>::AsmTag = ".long"; |
| const char *PoolTypeConverter<uint32_t>::PrintfString = "0x%x"; |
| |
| // Add converter for int type constant pooling |
| template <> struct PoolTypeConverter<uint16_t> { |
| using PrimitiveIntType = uint32_t; |
| using IceType = ConstantInteger32; |
| static const Type Ty = IceType_i16; |
| static const char *TypeName; |
| static const char *AsmTag; |
| static const char *PrintfString; |
| }; |
| const char *PoolTypeConverter<uint16_t>::TypeName = "i16"; |
| const char *PoolTypeConverter<uint16_t>::AsmTag = ".short"; |
| const char *PoolTypeConverter<uint16_t>::PrintfString = "0x%x"; |
| |
| // Add converter for int type constant pooling |
| template <> struct PoolTypeConverter<uint8_t> { |
| using PrimitiveIntType = uint32_t; |
| using IceType = ConstantInteger32; |
| static const Type Ty = IceType_i8; |
| static const char *TypeName; |
| static const char *AsmTag; |
| static const char *PrintfString; |
| }; |
| const char *PoolTypeConverter<uint8_t>::TypeName = "i8"; |
| const char *PoolTypeConverter<uint8_t>::AsmTag = ".byte"; |
| const char *PoolTypeConverter<uint8_t>::PrintfString = "0x%x"; |
| } // end of anonymous namespace |
| |
| template <typename T> |
| void TargetDataX8632::emitConstantPool(GlobalContext *Ctx) { |
| if (!BuildDefs::dump()) |
| return; |
| Ostream &Str = Ctx->getStrEmit(); |
| Type Ty = T::Ty; |
| SizeT Align = typeAlignInBytes(Ty); |
| ConstantList Pool = Ctx->getConstantPool(Ty); |
| |
| Str << "\t.section\t.rodata.cst" << Align << ",\"aM\",@progbits," << Align |
| << "\n"; |
| Str << "\t.align\t" << Align << "\n"; |
| |
| // If reorder-pooled-constants option is set to true, we need to shuffle the |
| // constant pool before emitting it. |
| if (Ctx->getFlags().shouldReorderPooledConstants() && !Pool.empty()) { |
| // Use the constant's kind value as the salt for creating random number |
| // generator. |
| Operand::OperandKind K = (*Pool.begin())->getKind(); |
| |
| RandomNumberGenerator RNG(Ctx->getFlags().getRandomSeed(), |
| RPE_PooledConstantReordering, K); |
| RandomShuffle(Pool.begin(), Pool.end(), |
| [&RNG](uint64_t N) { return (uint32_t)RNG.next(N); }); |
| } |
| |
| for (Constant *C : Pool) { |
| if (!C->getShouldBePooled()) |
| continue; |
| auto *Const = llvm::cast<typename T::IceType>(C); |
| typename T::IceType::PrimType Value = Const->getValue(); |
| // Use memcpy() to copy bits from Value into RawValue in a way that avoids |
| // breaking strict-aliasing rules. |
| typename T::PrimitiveIntType RawValue; |
| memcpy(&RawValue, &Value, sizeof(Value)); |
| char buf[30]; |
| int CharsPrinted = |
| snprintf(buf, llvm::array_lengthof(buf), T::PrintfString, RawValue); |
| assert(CharsPrinted >= 0 && |
| (size_t)CharsPrinted < llvm::array_lengthof(buf)); |
| (void)CharsPrinted; // avoid warnings if asserts are disabled |
| Const->emitPoolLabel(Str, Ctx); |
| Str << ":\n\t" << T::AsmTag << "\t" << buf << "\t/* " << T::TypeName << " " |
| << Value << " */\n"; |
| } |
| } |
| |
| void TargetDataX8632::lowerConstants() { |
| if (Ctx->getFlags().getDisableTranslation()) |
| return; |
| // No need to emit constants from the int pool since (for x86) they are |
| // embedded as immediates in the instructions, just emit float/double. |
| switch (Ctx->getFlags().getOutFileType()) { |
| case FT_Elf: { |
| ELFObjectWriter *Writer = Ctx->getObjectWriter(); |
| |
| Writer->writeConstantPool<ConstantInteger32>(IceType_i8); |
| Writer->writeConstantPool<ConstantInteger32>(IceType_i16); |
| Writer->writeConstantPool<ConstantInteger32>(IceType_i32); |
| |
| Writer->writeConstantPool<ConstantFloat>(IceType_f32); |
| Writer->writeConstantPool<ConstantDouble>(IceType_f64); |
| } break; |
| case FT_Asm: |
| case FT_Iasm: { |
| OstreamLocker L(Ctx); |
| |
| emitConstantPool<PoolTypeConverter<uint8_t>>(Ctx); |
| emitConstantPool<PoolTypeConverter<uint16_t>>(Ctx); |
| emitConstantPool<PoolTypeConverter<uint32_t>>(Ctx); |
| |
| emitConstantPool<PoolTypeConverter<float>>(Ctx); |
| emitConstantPool<PoolTypeConverter<double>>(Ctx); |
| } break; |
| } |
| } |
| |
| void TargetDataX8632::lowerJumpTables() { |
| const bool IsPIC = Ctx->getFlags().getUseNonsfi(); |
| switch (Ctx->getFlags().getOutFileType()) { |
| case FT_Elf: { |
| ELFObjectWriter *Writer = Ctx->getObjectWriter(); |
| for (const JumpTableData &JT : Ctx->getJumpTables()) |
| Writer->writeJumpTable(JT, TargetX8632::Traits::FK_Abs, IsPIC); |
| } break; |
| case FT_Asm: |
| // Already emitted from Cfg |
| break; |
| case FT_Iasm: { |
| if (!BuildDefs::dump()) |
| return; |
| Ostream &Str = Ctx->getStrEmit(); |
| const IceString Prefix = IsPIC ? ".data.rel.ro." : ".rodata."; |
| for (const JumpTableData &JT : Ctx->getJumpTables()) { |
| Str << "\t.section\t" << Prefix << JT.getFunctionName() |
| << "$jumptable,\"a\",@progbits\n"; |
| Str << "\t.align\t" << typeWidthInBytes(getPointerType()) << "\n"; |
| Str << InstJumpTable::makeName(JT.getFunctionName(), JT.getId()) << ":"; |
| |
| // On X8632 pointers are 32-bit hence the use of .long |
| for (intptr_t TargetOffset : JT.getTargetOffsets()) |
| Str << "\n\t.long\t" << JT.getFunctionName() << "+" << TargetOffset; |
| Str << "\n"; |
| } |
| } break; |
| } |
| } |
| |
| void TargetDataX8632::lowerGlobals(const VariableDeclarationList &Vars, |
| const IceString &SectionSuffix) { |
| const bool IsPIC = Ctx->getFlags().getUseNonsfi(); |
| switch (Ctx->getFlags().getOutFileType()) { |
| case FT_Elf: { |
| ELFObjectWriter *Writer = Ctx->getObjectWriter(); |
| Writer->writeDataSection(Vars, TargetX8632::Traits::FK_Abs, SectionSuffix, |
| IsPIC); |
| } break; |
| case FT_Asm: |
| case FT_Iasm: { |
| const IceString &TranslateOnly = Ctx->getFlags().getTranslateOnly(); |
| OstreamLocker L(Ctx); |
| for (const VariableDeclaration *Var : Vars) { |
| if (GlobalContext::matchSymbolName(Var->getName(), TranslateOnly)) { |
| emitGlobal(*Var, SectionSuffix); |
| } |
| } |
| } break; |
| } |
| } |
| |
| TargetHeaderX8632::TargetHeaderX8632(GlobalContext *Ctx) |
| : TargetHeaderLowering(Ctx) {} |
| |
| // In some cases, there are x-macros tables for both high-level and low-level |
| // instructions/operands that use the same enum key value. The tables are kept |
| // separate to maintain a proper separation between abstraction layers. There |
| // is a risk that the tables could get out of sync if enum values are reordered |
| // or if entries are added or deleted. The following dummy namespaces use |
| // static_asserts to ensure everything is kept in sync. |
| |
| namespace { |
| // Validate the enum values in FCMPX8632_TABLE. |
| namespace dummy1 { |
| // Define a temporary set of enum values based on low-level table entries. |
| enum _tmp_enum { |
| #define X(val, dflt, swapS, C1, C2, swapV, pred) _tmp_##val, |
| FCMPX8632_TABLE |
| #undef X |
| _num |
| }; |
| // Define a set of constants based on high-level table entries. |
| #define X(tag, str) static const int _table1_##tag = InstFcmp::tag; |
| ICEINSTFCMP_TABLE |
| #undef X |
| // Define a set of constants based on low-level table entries, and ensure the |
| // table entry keys are consistent. |
| #define X(val, dflt, swapS, C1, C2, swapV, pred) \ |
| static const int _table2_##val = _tmp_##val; \ |
| static_assert( \ |
| _table1_##val == _table2_##val, \ |
| "Inconsistency between FCMPX8632_TABLE and ICEINSTFCMP_TABLE"); |
| FCMPX8632_TABLE |
| #undef X |
| // Repeat the static asserts with respect to the high-level table entries in |
| // case the high-level table has extra entries. |
| #define X(tag, str) \ |
| static_assert( \ |
| _table1_##tag == _table2_##tag, \ |
| "Inconsistency between FCMPX8632_TABLE and ICEINSTFCMP_TABLE"); |
| ICEINSTFCMP_TABLE |
| #undef X |
| } // end of namespace dummy1 |
| |
| // Validate the enum values in ICMPX8632_TABLE. |
| namespace dummy2 { |
| // Define a temporary set of enum values based on low-level table entries. |
| enum _tmp_enum { |
| #define X(val, C_32, C1_64, C2_64, C3_64) _tmp_##val, |
| ICMPX8632_TABLE |
| #undef X |
| _num |
| }; |
| // Define a set of constants based on high-level table entries. |
| #define X(tag, str) static const int _table1_##tag = InstIcmp::tag; |
| ICEINSTICMP_TABLE |
| #undef X |
| // Define a set of constants based on low-level table entries, and ensure the |
| // table entry keys are consistent. |
| #define X(val, C_32, C1_64, C2_64, C3_64) \ |
| static const int _table2_##val = _tmp_##val; \ |
| static_assert( \ |
| _table1_##val == _table2_##val, \ |
| "Inconsistency between ICMPX8632_TABLE and ICEINSTICMP_TABLE"); |
| ICMPX8632_TABLE |
| #undef X |
| // Repeat the static asserts with respect to the high-level table entries in |
| // case the high-level table has extra entries. |
| #define X(tag, str) \ |
| static_assert( \ |
| _table1_##tag == _table2_##tag, \ |
| "Inconsistency between ICMPX8632_TABLE and ICEINSTICMP_TABLE"); |
| ICEINSTICMP_TABLE |
| #undef X |
| } // end of namespace dummy2 |
| |
| // Validate the enum values in ICETYPEX8632_TABLE. |
| namespace dummy3 { |
| // Define a temporary set of enum values based on low-level table entries. |
| enum _tmp_enum { |
| #define X(tag, elementty, cvt, sdss, pdps, spsd, pack, width, fld) _tmp_##tag, |
| ICETYPEX8632_TABLE |
| #undef X |
| _num |
| }; |
| // Define a set of constants based on high-level table entries. |
| #define X(tag, sizeLog2, align, elts, elty, str) \ |
| static const int _table1_##tag = IceType_##tag; |
| ICETYPE_TABLE |
| #undef X |
| // Define a set of constants based on low-level table entries, and ensure the |
| // table entry keys are consistent. |
| #define X(tag, elementty, cvt, sdss, pdps, spsd, pack, width, fld) \ |
| static const int _table2_##tag = _tmp_##tag; \ |
| static_assert(_table1_##tag == _table2_##tag, \ |
| "Inconsistency between ICETYPEX8632_TABLE and ICETYPE_TABLE"); |
| ICETYPEX8632_TABLE |
| #undef X |
| // Repeat the static asserts with respect to the high-level table entries in |
| // case the high-level table has extra entries. |
| #define X(tag, sizeLog2, align, elts, elty, str) \ |
| static_assert(_table1_##tag == _table2_##tag, \ |
| "Inconsistency between ICETYPEX8632_TABLE and ICETYPE_TABLE"); |
| ICETYPE_TABLE |
| #undef X |
| } // end of namespace dummy3 |
| } // end of anonymous namespace |
| |
| } // end of namespace X8632 |
| } // end of namespace Ice |