| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "VertexProcessor.hpp" |
| |
| #include "Math.hpp" |
| #include "VertexPipeline.hpp" |
| #include "VertexProgram.hpp" |
| #include "VertexShader.hpp" |
| #include "PixelShader.hpp" |
| #include "Constants.hpp" |
| #include "Debug.hpp" |
| |
| #include <string.h> |
| |
| namespace sw |
| { |
| bool precacheVertex = false; |
| |
| void VertexCache::clear() |
| { |
| for(int i = 0; i < 16; i++) |
| { |
| tag[i] = 0x80000000; |
| } |
| } |
| |
| unsigned int VertexProcessor::States::computeHash() |
| { |
| unsigned int *state = (unsigned int*)this; |
| unsigned int hash = 0; |
| |
| for(unsigned int i = 0; i < sizeof(States) / 4; i++) |
| { |
| hash ^= state[i]; |
| } |
| |
| return hash; |
| } |
| |
| VertexProcessor::State::State() |
| { |
| memset(this, 0, sizeof(State)); |
| } |
| |
| bool VertexProcessor::State::operator==(const State &state) const |
| { |
| if(hash != state.hash) |
| { |
| return false; |
| } |
| |
| return memcmp(static_cast<const States*>(this), static_cast<const States*>(&state), sizeof(States)) == 0; |
| } |
| |
| VertexProcessor::TransformFeedbackInfo::TransformFeedbackInfo() |
| { |
| buffer = nullptr; |
| offset = 0; |
| reg = 0; |
| row = 0; |
| col = 0; |
| stride = 0; |
| } |
| |
| VertexProcessor::UniformBufferInfo::UniformBufferInfo() |
| { |
| buffer = nullptr; |
| offset = 0; |
| } |
| |
| VertexProcessor::VertexProcessor(Context *context) : context(context) |
| { |
| for(int i = 0; i < 12; i++) |
| { |
| M[i] = 1; |
| } |
| |
| V = 1; |
| B = 1; |
| P = 0; |
| PB = 0; |
| PBV = 0; |
| |
| for(int i = 0; i < 12; i++) |
| { |
| PBVM[i] = 0; |
| } |
| |
| setLightingEnable(true); |
| setSpecularEnable(false); |
| |
| for(int i = 0; i < 8; i++) |
| { |
| setLightEnable(i, false); |
| setLightPosition(i, 0); |
| } |
| |
| updateMatrix = true; |
| updateViewMatrix = true; |
| updateBaseMatrix = true; |
| updateProjectionMatrix = true; |
| updateLighting = true; |
| |
| for(int i = 0; i < 12; i++) |
| { |
| updateModelMatrix[i] = true; |
| } |
| |
| routineCache = 0; |
| setRoutineCacheSize(1024); |
| } |
| |
| VertexProcessor::~VertexProcessor() |
| { |
| delete routineCache; |
| routineCache = 0; |
| } |
| |
| void VertexProcessor::setInputStream(int index, const Stream &stream) |
| { |
| context->input[index] = stream; |
| } |
| |
| void VertexProcessor::resetInputStreams(bool preTransformed) |
| { |
| for(int i = 0; i < MAX_VERTEX_INPUTS; i++) |
| { |
| context->input[i].defaults(); |
| } |
| |
| context->preTransformed = preTransformed; |
| } |
| |
| void VertexProcessor::setFloatConstant(unsigned int index, const float value[4]) |
| { |
| if(index < VERTEX_UNIFORM_VECTORS) |
| { |
| c[index][0] = value[0]; |
| c[index][1] = value[1]; |
| c[index][2] = value[2]; |
| c[index][3] = value[3]; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setIntegerConstant(unsigned int index, const int integer[4]) |
| { |
| if(index < 16) |
| { |
| i[index][0] = integer[0]; |
| i[index][1] = integer[1]; |
| i[index][2] = integer[2]; |
| i[index][3] = integer[3]; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setBooleanConstant(unsigned int index, int boolean) |
| { |
| if(index < 16) |
| { |
| b[index] = boolean != 0; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setUniformBuffer(int index, sw::Resource* buffer, int offset) |
| { |
| uniformBufferInfo[index].buffer = buffer; |
| uniformBufferInfo[index].offset = offset; |
| } |
| |
| void VertexProcessor::lockUniformBuffers(byte** u, sw::Resource* uniformBuffers[]) |
| { |
| for(int i = 0; i < MAX_UNIFORM_BUFFER_BINDINGS; ++i) |
| { |
| u[i] = uniformBufferInfo[i].buffer ? static_cast<byte*>(uniformBufferInfo[i].buffer->lock(PUBLIC, PRIVATE)) + uniformBufferInfo[i].offset : nullptr; |
| uniformBuffers[i] = uniformBufferInfo[i].buffer; |
| } |
| } |
| |
| void VertexProcessor::setTransformFeedbackBuffer(int index, sw::Resource* buffer, int offset, unsigned int reg, unsigned int row, unsigned int col, unsigned int stride) |
| { |
| transformFeedbackInfo[index].buffer = buffer; |
| transformFeedbackInfo[index].offset = offset; |
| transformFeedbackInfo[index].reg = reg; |
| transformFeedbackInfo[index].row = row; |
| transformFeedbackInfo[index].col = col; |
| transformFeedbackInfo[index].stride = stride; |
| } |
| |
| void VertexProcessor::lockTransformFeedbackBuffers(byte** t, unsigned int* v, unsigned int* r, unsigned int* c, unsigned int* s, sw::Resource* transformFeedbackBuffers[]) |
| { |
| for(int i = 0; i < MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS; ++i) |
| { |
| t[i] = transformFeedbackInfo[i].buffer ? static_cast<byte*>(transformFeedbackInfo[i].buffer->lock(PUBLIC, PRIVATE)) + transformFeedbackInfo[i].offset : nullptr; |
| transformFeedbackBuffers[i] = transformFeedbackInfo[i].buffer; |
| v[i] = transformFeedbackInfo[i].reg; |
| r[i] = transformFeedbackInfo[i].row; |
| c[i] = transformFeedbackInfo[i].col; |
| s[i] = transformFeedbackInfo[i].stride; |
| } |
| } |
| |
| void VertexProcessor::setModelMatrix(const Matrix &M, int i) |
| { |
| if(i < 12) |
| { |
| this->M[i] = M; |
| |
| updateMatrix = true; |
| updateModelMatrix[i] = true; |
| updateLighting = true; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setViewMatrix(const Matrix &V) |
| { |
| this->V = V; |
| |
| updateMatrix = true; |
| updateViewMatrix = true; |
| } |
| |
| void VertexProcessor::setBaseMatrix(const Matrix &B) |
| { |
| this->B = B; |
| |
| updateMatrix = true; |
| updateBaseMatrix = true; |
| } |
| |
| void VertexProcessor::setProjectionMatrix(const Matrix &P) |
| { |
| this->P = P; |
| context->wBasedFog = (P[3][0] != 0.0f) || (P[3][1] != 0.0f) || (P[3][2] != 0.0f) || (P[3][3] != 1.0f); |
| |
| updateMatrix = true; |
| updateProjectionMatrix = true; |
| } |
| |
| void VertexProcessor::setLightingEnable(bool lightingEnable) |
| { |
| context->setLightingEnable(lightingEnable); |
| |
| updateLighting = true; |
| } |
| |
| void VertexProcessor::setLightEnable(unsigned int light, bool lightEnable) |
| { |
| if(light < 8) |
| { |
| context->setLightEnable(light, lightEnable); |
| } |
| else ASSERT(false); |
| |
| updateLighting = true; |
| } |
| |
| void VertexProcessor::setSpecularEnable(bool specularEnable) |
| { |
| context->setSpecularEnable(specularEnable); |
| |
| updateLighting = true; |
| } |
| |
| void VertexProcessor::setLightPosition(unsigned int light, const Point &lightPosition) |
| { |
| if(light < 8) |
| { |
| context->setLightPosition(light, lightPosition); |
| } |
| else ASSERT(false); |
| |
| updateLighting = true; |
| } |
| |
| void VertexProcessor::setLightDiffuse(unsigned int light, const Color<float> &lightDiffuse) |
| { |
| if(light < 8) |
| { |
| ff.lightDiffuse[light][0] = lightDiffuse.r; |
| ff.lightDiffuse[light][1] = lightDiffuse.g; |
| ff.lightDiffuse[light][2] = lightDiffuse.b; |
| ff.lightDiffuse[light][3] = lightDiffuse.a; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setLightSpecular(unsigned int light, const Color<float> &lightSpecular) |
| { |
| if(light < 8) |
| { |
| ff.lightSpecular[light][0] = lightSpecular.r; |
| ff.lightSpecular[light][1] = lightSpecular.g; |
| ff.lightSpecular[light][2] = lightSpecular.b; |
| ff.lightSpecular[light][3] = lightSpecular.a; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setLightAmbient(unsigned int light, const Color<float> &lightAmbient) |
| { |
| if(light < 8) |
| { |
| ff.lightAmbient[light][0] = lightAmbient.r; |
| ff.lightAmbient[light][1] = lightAmbient.g; |
| ff.lightAmbient[light][2] = lightAmbient.b; |
| ff.lightAmbient[light][3] = lightAmbient.a; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setLightAttenuation(unsigned int light, float constant, float linear, float quadratic) |
| { |
| if(light < 8) |
| { |
| ff.attenuationConstant[light] = replicate(constant); |
| ff.attenuationLinear[light] = replicate(linear); |
| ff.attenuationQuadratic[light] = replicate(quadratic); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setLightRange(unsigned int light, float lightRange) |
| { |
| if(light < 8) |
| { |
| ff.lightRange[light] = lightRange; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setFogEnable(bool fogEnable) |
| { |
| context->fogEnable = fogEnable; |
| } |
| |
| void VertexProcessor::setVertexFogMode(FogMode fogMode) |
| { |
| context->vertexFogMode = fogMode; |
| } |
| |
| void VertexProcessor::setInstanceID(int instanceID) |
| { |
| context->instanceID = instanceID; |
| } |
| |
| void VertexProcessor::setColorVertexEnable(bool colorVertexEnable) |
| { |
| context->setColorVertexEnable(colorVertexEnable); |
| } |
| |
| void VertexProcessor::setDiffuseMaterialSource(MaterialSource diffuseMaterialSource) |
| { |
| context->setDiffuseMaterialSource(diffuseMaterialSource); |
| } |
| |
| void VertexProcessor::setSpecularMaterialSource(MaterialSource specularMaterialSource) |
| { |
| context->setSpecularMaterialSource(specularMaterialSource); |
| } |
| |
| void VertexProcessor::setAmbientMaterialSource(MaterialSource ambientMaterialSource) |
| { |
| context->setAmbientMaterialSource(ambientMaterialSource); |
| } |
| |
| void VertexProcessor::setEmissiveMaterialSource(MaterialSource emissiveMaterialSource) |
| { |
| context->setEmissiveMaterialSource(emissiveMaterialSource); |
| } |
| |
| void VertexProcessor::setGlobalAmbient(const Color<float> &globalAmbient) |
| { |
| ff.globalAmbient[0] = globalAmbient.r; |
| ff.globalAmbient[1] = globalAmbient.g; |
| ff.globalAmbient[2] = globalAmbient.b; |
| ff.globalAmbient[3] = globalAmbient.a; |
| } |
| |
| void VertexProcessor::setMaterialEmission(const Color<float> &emission) |
| { |
| ff.materialEmission[0] = emission.r; |
| ff.materialEmission[1] = emission.g; |
| ff.materialEmission[2] = emission.b; |
| ff.materialEmission[3] = emission.a; |
| } |
| |
| void VertexProcessor::setMaterialAmbient(const Color<float> &materialAmbient) |
| { |
| ff.materialAmbient[0] = materialAmbient.r; |
| ff.materialAmbient[1] = materialAmbient.g; |
| ff.materialAmbient[2] = materialAmbient.b; |
| ff.materialAmbient[3] = materialAmbient.a; |
| } |
| |
| void VertexProcessor::setMaterialDiffuse(const Color<float> &diffuseColor) |
| { |
| ff.materialDiffuse[0] = diffuseColor.r; |
| ff.materialDiffuse[1] = diffuseColor.g; |
| ff.materialDiffuse[2] = diffuseColor.b; |
| ff.materialDiffuse[3] = diffuseColor.a; |
| } |
| |
| void VertexProcessor::setMaterialSpecular(const Color<float> &specularColor) |
| { |
| ff.materialSpecular[0] = specularColor.r; |
| ff.materialSpecular[1] = specularColor.g; |
| ff.materialSpecular[2] = specularColor.b; |
| ff.materialSpecular[3] = specularColor.a; |
| } |
| |
| void VertexProcessor::setMaterialShininess(float specularPower) |
| { |
| ff.materialShininess = specularPower; |
| } |
| |
| void VertexProcessor::setLightViewPosition(unsigned int light, const Point &P) |
| { |
| if(light < 8) |
| { |
| ff.lightPosition[light][0] = P.x; |
| ff.lightPosition[light][1] = P.y; |
| ff.lightPosition[light][2] = P.z; |
| ff.lightPosition[light][3] = 1; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setRangeFogEnable(bool enable) |
| { |
| context->rangeFogEnable = enable; |
| } |
| |
| void VertexProcessor::setIndexedVertexBlendEnable(bool indexedVertexBlendEnable) |
| { |
| context->indexedVertexBlendEnable = indexedVertexBlendEnable; |
| } |
| |
| void VertexProcessor::setVertexBlendMatrixCount(unsigned int vertexBlendMatrixCount) |
| { |
| if(vertexBlendMatrixCount <= 4) |
| { |
| context->vertexBlendMatrixCount = vertexBlendMatrixCount; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setTextureWrap(unsigned int stage, int mask) |
| { |
| if(stage < TEXTURE_IMAGE_UNITS) |
| { |
| context->textureWrap[stage] = mask; |
| } |
| else ASSERT(false); |
| |
| context->textureWrapActive = false; |
| |
| for(int i = 0; i < TEXTURE_IMAGE_UNITS; i++) |
| { |
| context->textureWrapActive |= (context->textureWrap[i] != 0x00); |
| } |
| } |
| |
| void VertexProcessor::setTexGen(unsigned int stage, TexGen texGen) |
| { |
| if(stage < 8) |
| { |
| context->texGen[stage] = texGen; |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setLocalViewer(bool localViewer) |
| { |
| context->localViewer = localViewer; |
| } |
| |
| void VertexProcessor::setNormalizeNormals(bool normalizeNormals) |
| { |
| context->normalizeNormals = normalizeNormals; |
| } |
| |
| void VertexProcessor::setTextureMatrix(int stage, const Matrix &T) |
| { |
| for(int i = 0; i < 4; i++) |
| { |
| for(int j = 0; j < 4; j++) |
| { |
| ff.textureTransform[stage][i][j] = T[i][j]; |
| } |
| } |
| } |
| |
| void VertexProcessor::setTextureTransform(int stage, int count, bool project) |
| { |
| context->textureTransformCount[stage] = count; |
| context->textureTransformProject[stage] = project; |
| } |
| |
| void VertexProcessor::setTextureFilter(unsigned int sampler, FilterType textureFilter) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setTextureFilter(textureFilter); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setMipmapFilter(unsigned int sampler, MipmapType mipmapFilter) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMipmapFilter(mipmapFilter); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setGatherEnable(unsigned int sampler, bool enable) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setGatherEnable(enable); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setAddressingModeU(unsigned int sampler, AddressingMode addressMode) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setAddressingModeU(addressMode); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setAddressingModeV(unsigned int sampler, AddressingMode addressMode) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setAddressingModeV(addressMode); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setAddressingModeW(unsigned int sampler, AddressingMode addressMode) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setAddressingModeW(addressMode); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setReadSRGB(unsigned int sampler, bool sRGB) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setReadSRGB(sRGB); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setMipmapLOD(unsigned int sampler, float bias) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMipmapLOD(bias); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setBorderColor(unsigned int sampler, const Color<float> &borderColor) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setBorderColor(borderColor); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setMaxAnisotropy(unsigned int sampler, float maxAnisotropy) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMaxAnisotropy(maxAnisotropy); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setSwizzleR(unsigned int sampler, SwizzleType swizzleR) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setSwizzleR(swizzleR); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setSwizzleG(unsigned int sampler, SwizzleType swizzleG) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setSwizzleG(swizzleG); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setSwizzleB(unsigned int sampler, SwizzleType swizzleB) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setSwizzleB(swizzleB); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setSwizzleA(unsigned int sampler, SwizzleType swizzleA) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setSwizzleA(swizzleA); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setBaseLevel(unsigned int sampler, int baseLevel) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setBaseLevel(baseLevel); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setMaxLevel(unsigned int sampler, int maxLevel) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMaxLevel(maxLevel); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setMinLod(unsigned int sampler, float minLod) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMinLod(minLod); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setMaxLod(unsigned int sampler, float maxLod) |
| { |
| if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMaxLod(maxLod); |
| } |
| else ASSERT(false); |
| } |
| |
| void VertexProcessor::setPointSize(float pointSize) |
| { |
| point.pointSize = replicate(pointSize); |
| } |
| |
| void VertexProcessor::setPointSizeMin(float pointSizeMin) |
| { |
| point.pointSizeMin = pointSizeMin; |
| } |
| |
| void VertexProcessor::setPointSizeMax(float pointSizeMax) |
| { |
| point.pointSizeMax = pointSizeMax; |
| } |
| |
| void VertexProcessor::setPointScaleA(float pointScaleA) |
| { |
| point.pointScaleA = pointScaleA; |
| } |
| |
| void VertexProcessor::setPointScaleB(float pointScaleB) |
| { |
| point.pointScaleB = pointScaleB; |
| } |
| |
| void VertexProcessor::setPointScaleC(float pointScaleC) |
| { |
| point.pointScaleC = pointScaleC; |
| } |
| |
| void VertexProcessor::setTransformFeedbackQueryEnabled(bool enable) |
| { |
| context->transformFeedbackQueryEnabled = enable; |
| } |
| |
| void VertexProcessor::enableTransformFeedback(uint64_t enable) |
| { |
| context->transformFeedbackEnabled = enable; |
| } |
| |
| const Matrix &VertexProcessor::getModelTransform(int i) |
| { |
| updateTransform(); |
| return PBVM[i]; |
| } |
| |
| const Matrix &VertexProcessor::getViewTransform() |
| { |
| updateTransform(); |
| return PBV; |
| } |
| |
| bool VertexProcessor::isFixedFunction() |
| { |
| return !context->vertexShader; |
| } |
| |
| void VertexProcessor::setTransform(const Matrix &M, int i) |
| { |
| ff.transformT[i][0][0] = M[0][0]; |
| ff.transformT[i][0][1] = M[1][0]; |
| ff.transformT[i][0][2] = M[2][0]; |
| ff.transformT[i][0][3] = M[3][0]; |
| |
| ff.transformT[i][1][0] = M[0][1]; |
| ff.transformT[i][1][1] = M[1][1]; |
| ff.transformT[i][1][2] = M[2][1]; |
| ff.transformT[i][1][3] = M[3][1]; |
| |
| ff.transformT[i][2][0] = M[0][2]; |
| ff.transformT[i][2][1] = M[1][2]; |
| ff.transformT[i][2][2] = M[2][2]; |
| ff.transformT[i][2][3] = M[3][2]; |
| |
| ff.transformT[i][3][0] = M[0][3]; |
| ff.transformT[i][3][1] = M[1][3]; |
| ff.transformT[i][3][2] = M[2][3]; |
| ff.transformT[i][3][3] = M[3][3]; |
| } |
| |
| void VertexProcessor::setCameraTransform(const Matrix &M, int i) |
| { |
| ff.cameraTransformT[i][0][0] = M[0][0]; |
| ff.cameraTransformT[i][0][1] = M[1][0]; |
| ff.cameraTransformT[i][0][2] = M[2][0]; |
| ff.cameraTransformT[i][0][3] = M[3][0]; |
| |
| ff.cameraTransformT[i][1][0] = M[0][1]; |
| ff.cameraTransformT[i][1][1] = M[1][1]; |
| ff.cameraTransformT[i][1][2] = M[2][1]; |
| ff.cameraTransformT[i][1][3] = M[3][1]; |
| |
| ff.cameraTransformT[i][2][0] = M[0][2]; |
| ff.cameraTransformT[i][2][1] = M[1][2]; |
| ff.cameraTransformT[i][2][2] = M[2][2]; |
| ff.cameraTransformT[i][2][3] = M[3][2]; |
| |
| ff.cameraTransformT[i][3][0] = M[0][3]; |
| ff.cameraTransformT[i][3][1] = M[1][3]; |
| ff.cameraTransformT[i][3][2] = M[2][3]; |
| ff.cameraTransformT[i][3][3] = M[3][3]; |
| } |
| |
| void VertexProcessor::setNormalTransform(const Matrix &M, int i) |
| { |
| ff.normalTransformT[i][0][0] = M[0][0]; |
| ff.normalTransformT[i][0][1] = M[1][0]; |
| ff.normalTransformT[i][0][2] = M[2][0]; |
| ff.normalTransformT[i][0][3] = M[3][0]; |
| |
| ff.normalTransformT[i][1][0] = M[0][1]; |
| ff.normalTransformT[i][1][1] = M[1][1]; |
| ff.normalTransformT[i][1][2] = M[2][1]; |
| ff.normalTransformT[i][1][3] = M[3][1]; |
| |
| ff.normalTransformT[i][2][0] = M[0][2]; |
| ff.normalTransformT[i][2][1] = M[1][2]; |
| ff.normalTransformT[i][2][2] = M[2][2]; |
| ff.normalTransformT[i][2][3] = M[3][2]; |
| |
| ff.normalTransformT[i][3][0] = M[0][3]; |
| ff.normalTransformT[i][3][1] = M[1][3]; |
| ff.normalTransformT[i][3][2] = M[2][3]; |
| ff.normalTransformT[i][3][3] = M[3][3]; |
| } |
| |
| void VertexProcessor::updateTransform() |
| { |
| if(!updateMatrix) return; |
| |
| int activeMatrices = context->indexedVertexBlendEnable ? 12 : max(context->vertexBlendMatrixCount, 1); |
| |
| if(updateProjectionMatrix) |
| { |
| PB = P * B; |
| PBV = PB * V; |
| |
| for(int i = 0; i < activeMatrices; i++) |
| { |
| PBVM[i] = PBV * M[i]; |
| updateModelMatrix[i] = false; |
| } |
| |
| updateProjectionMatrix = false; |
| updateBaseMatrix = false; |
| updateViewMatrix = false; |
| } |
| |
| if(updateBaseMatrix) |
| { |
| PB = P * B; |
| PBV = PB * V; |
| |
| for(int i = 0; i < activeMatrices; i++) |
| { |
| PBVM[i] = PBV * M[i]; |
| updateModelMatrix[i] = false; |
| } |
| |
| updateBaseMatrix = false; |
| updateViewMatrix = false; |
| } |
| |
| if(updateViewMatrix) |
| { |
| PBV = PB * V; |
| |
| for(int i = 0; i < activeMatrices; i++) |
| { |
| PBVM[i] = PBV * M[i]; |
| updateModelMatrix[i] = false; |
| } |
| |
| updateViewMatrix = false; |
| } |
| |
| for(int i = 0; i < activeMatrices; i++) |
| { |
| if(updateModelMatrix[i]) |
| { |
| PBVM[i] = PBV * M[i]; |
| updateModelMatrix[i] = false; |
| } |
| } |
| |
| for(int i = 0; i < activeMatrices; i++) |
| { |
| setTransform(PBVM[i], i); |
| setCameraTransform(B * V * M[i], i); |
| setNormalTransform(~!(B * V * M[i]), i); |
| } |
| |
| updateMatrix = false; |
| } |
| |
| void VertexProcessor::setRoutineCacheSize(int cacheSize) |
| { |
| delete routineCache; |
| routineCache = new RoutineCache<State>(clamp(cacheSize, 1, 65536), precacheVertex ? "sw-vertex" : 0); |
| } |
| |
| const VertexProcessor::State VertexProcessor::update(DrawType drawType) |
| { |
| if(isFixedFunction()) |
| { |
| updateTransform(); |
| |
| if(updateLighting) |
| { |
| for(int i = 0; i < 8; i++) |
| { |
| if(context->vertexLightActive(i)) |
| { |
| // Light position in camera coordinates |
| setLightViewPosition(i, B * V * context->getLightPosition(i)); |
| } |
| } |
| |
| updateLighting = false; |
| } |
| } |
| |
| State state; |
| |
| if(context->vertexShader) |
| { |
| state.shaderID = context->vertexShader->getSerialID(); |
| } |
| else |
| { |
| state.shaderID = 0; |
| } |
| |
| state.fixedFunction = !context->vertexShader && context->pixelShaderVersion() < 0x0300; |
| state.textureSampling = context->vertexShader ? context->vertexShader->containsTextureSampling() : false; |
| state.positionRegister = context->vertexShader ? context->vertexShader->getPositionRegister() : Pos; |
| state.pointSizeRegister = context->vertexShader ? context->vertexShader->getPointSizeRegister() : Pts; |
| |
| state.vertexBlendMatrixCount = context->vertexBlendMatrixCountActive(); |
| state.indexedVertexBlendEnable = context->indexedVertexBlendActive(); |
| state.vertexNormalActive = context->vertexNormalActive(); |
| state.normalizeNormals = context->normalizeNormalsActive(); |
| state.vertexLightingActive = context->vertexLightingActive(); |
| state.diffuseActive = context->diffuseActive(); |
| state.specularActive = context->specularActive(); |
| state.vertexSpecularActive = context->vertexSpecularActive(); |
| |
| state.vertexLightActive = context->vertexLightActive(0) << 0 | |
| context->vertexLightActive(1) << 1 | |
| context->vertexLightActive(2) << 2 | |
| context->vertexLightActive(3) << 3 | |
| context->vertexLightActive(4) << 4 | |
| context->vertexLightActive(5) << 5 | |
| context->vertexLightActive(6) << 6 | |
| context->vertexLightActive(7) << 7; |
| |
| state.vertexDiffuseMaterialSourceActive = context->vertexDiffuseMaterialSourceActive(); |
| state.vertexSpecularMaterialSourceActive = context->vertexSpecularMaterialSourceActive(); |
| state.vertexAmbientMaterialSourceActive = context->vertexAmbientMaterialSourceActive(); |
| state.vertexEmissiveMaterialSourceActive = context->vertexEmissiveMaterialSourceActive(); |
| state.fogActive = context->fogActive(); |
| state.vertexFogMode = context->vertexFogModeActive(); |
| state.rangeFogActive = context->rangeFogActive(); |
| state.localViewerActive = context->localViewerActive(); |
| state.pointSizeActive = context->pointSizeActive(); |
| state.pointScaleActive = context->pointScaleActive(); |
| |
| state.preTransformed = context->preTransformed; |
| state.superSampling = context->getSuperSampleCount() > 1; |
| state.multiSampling = context->getMultiSampleCount() > 1; |
| |
| state.transformFeedbackQueryEnabled = context->transformFeedbackQueryEnabled; |
| state.transformFeedbackEnabled = context->transformFeedbackEnabled; |
| |
| // Note: Quads aren't handled for verticesPerPrimitive, but verticesPerPrimitive is used for transform feedback, |
| // which is an OpenGL ES 3.0 feature, and OpenGL ES 3.0 doesn't support quads as a primitive type. |
| DrawType type = static_cast<DrawType>(static_cast<unsigned int>(drawType) & 0xF); |
| state.verticesPerPrimitive = 1 + (type >= DRAW_LINELIST) + (type >= DRAW_TRIANGLELIST); |
| |
| for(int i = 0; i < MAX_VERTEX_INPUTS; i++) |
| { |
| state.input[i].type = context->input[i].type; |
| state.input[i].count = context->input[i].count; |
| state.input[i].normalized = context->input[i].normalized; |
| state.input[i].attribType = context->vertexShader ? context->vertexShader->getAttribType(i) : VertexShader::ATTRIBTYPE_FLOAT; |
| } |
| |
| if(!context->vertexShader) |
| { |
| for(int i = 0; i < 8; i++) |
| { |
| // state.textureState[i].vertexTextureActive = context->vertexTextureActive(i, 0); |
| state.textureState[i].texGenActive = context->texGenActive(i); |
| state.textureState[i].textureTransformCountActive = context->textureTransformCountActive(i); |
| state.textureState[i].texCoordIndexActive = context->texCoordIndexActive(i); |
| } |
| } |
| else |
| { |
| for(unsigned int i = 0; i < VERTEX_TEXTURE_IMAGE_UNITS; i++) |
| { |
| if(context->vertexShader->usesSampler(i)) |
| { |
| state.samplerState[i] = context->sampler[TEXTURE_IMAGE_UNITS + i].samplerState(); |
| } |
| } |
| } |
| |
| if(context->vertexShader) // FIXME: Also when pre-transformed? |
| { |
| for(int i = 0; i < MAX_VERTEX_OUTPUTS; i++) |
| { |
| state.output[i].xWrite = context->vertexShader->getOutput(i, 0).active(); |
| state.output[i].yWrite = context->vertexShader->getOutput(i, 1).active(); |
| state.output[i].zWrite = context->vertexShader->getOutput(i, 2).active(); |
| state.output[i].wWrite = context->vertexShader->getOutput(i, 3).active(); |
| } |
| } |
| else if(!context->preTransformed || context->pixelShaderVersion() < 0x0300) |
| { |
| state.output[Pos].write = 0xF; |
| |
| if(context->diffuseActive() && (context->lightingEnable || context->input[Color0])) |
| { |
| state.output[C0].write = 0xF; |
| } |
| |
| if(context->specularActive()) |
| { |
| state.output[C1].write = 0xF; |
| } |
| |
| for(int stage = 0; stage < 8; stage++) |
| { |
| if(context->texCoordActive(stage, 0)) state.output[T0 + stage].write |= 0x01; |
| if(context->texCoordActive(stage, 1)) state.output[T0 + stage].write |= 0x02; |
| if(context->texCoordActive(stage, 2)) state.output[T0 + stage].write |= 0x04; |
| if(context->texCoordActive(stage, 3)) state.output[T0 + stage].write |= 0x08; |
| } |
| |
| if(context->fogActive()) |
| { |
| state.output[Fog].xWrite = true; |
| } |
| |
| if(context->pointSizeActive()) |
| { |
| state.output[Pts].yWrite = true; |
| } |
| } |
| else |
| { |
| state.output[Pos].write = 0xF; |
| |
| for(int i = 0; i < 2; i++) |
| { |
| if(context->input[Color0 + i]) |
| { |
| state.output[C0 + i].write = 0xF; |
| } |
| } |
| |
| for(int i = 0; i < 8; i++) |
| { |
| if(context->input[TexCoord0 + i]) |
| { |
| state.output[T0 + i].write = 0xF; |
| } |
| } |
| |
| if(context->input[PointSize]) |
| { |
| state.output[Pts].yWrite = true; |
| } |
| } |
| |
| if(context->vertexShaderVersion() < 0x0300) |
| { |
| state.output[C0].clamp = 0xF; |
| state.output[C1].clamp = 0xF; |
| state.output[Fog].xClamp = true; |
| } |
| |
| state.hash = state.computeHash(); |
| |
| return state; |
| } |
| |
| Routine *VertexProcessor::routine(const State &state) |
| { |
| Routine *routine = routineCache->query(state); |
| |
| if(!routine) // Create one |
| { |
| VertexRoutine *generator = nullptr; |
| |
| if(state.fixedFunction) |
| { |
| generator = new VertexPipeline(state); |
| } |
| else |
| { |
| generator = new VertexProgram(state, context->vertexShader); |
| } |
| |
| generator->generate(); |
| routine = (*generator)(L"VertexRoutine_%0.8X", state.shaderID); |
| delete generator; |
| |
| routineCache->add(state, routine); |
| } |
| |
| return routine; |
| } |
| } |