| //===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include <limits.h> |
| #include "llvm/ADT/GraphTraits.h" |
| #include "llvm/ADT/SCCIterator.h" |
| #include "gtest/gtest.h" |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| |
| /// Graph<N> - A graph with N nodes. Note that N can be at most 8. |
| template <unsigned N> |
| class Graph { |
| private: |
| // Disable copying. |
| Graph(const Graph&); |
| Graph& operator=(const Graph&); |
| |
| static void ValidateIndex(unsigned Idx) { |
| assert(Idx < N && "Invalid node index!"); |
| } |
| public: |
| |
| /// NodeSubset - A subset of the graph's nodes. |
| class NodeSubset { |
| typedef unsigned char BitVector; // Where the limitation N <= 8 comes from. |
| BitVector Elements; |
| NodeSubset(BitVector e) : Elements(e) {} |
| public: |
| /// NodeSubset - Default constructor, creates an empty subset. |
| NodeSubset() : Elements(0) { |
| assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!"); |
| } |
| /// NodeSubset - Copy constructor. |
| NodeSubset(const NodeSubset &other) : Elements(other.Elements) {} |
| |
| /// Comparison operators. |
| bool operator==(const NodeSubset &other) const { |
| return other.Elements == this->Elements; |
| } |
| bool operator!=(const NodeSubset &other) const { |
| return !(*this == other); |
| } |
| |
| /// AddNode - Add the node with the given index to the subset. |
| void AddNode(unsigned Idx) { |
| ValidateIndex(Idx); |
| Elements |= 1U << Idx; |
| } |
| |
| /// DeleteNode - Remove the node with the given index from the subset. |
| void DeleteNode(unsigned Idx) { |
| ValidateIndex(Idx); |
| Elements &= ~(1U << Idx); |
| } |
| |
| /// count - Return true if the node with the given index is in the subset. |
| bool count(unsigned Idx) { |
| ValidateIndex(Idx); |
| return (Elements & (1U << Idx)) != 0; |
| } |
| |
| /// isEmpty - Return true if this is the empty set. |
| bool isEmpty() const { |
| return Elements == 0; |
| } |
| |
| /// isSubsetOf - Return true if this set is a subset of the given one. |
| bool isSubsetOf(const NodeSubset &other) const { |
| return (this->Elements | other.Elements) == other.Elements; |
| } |
| |
| /// Complement - Return the complement of this subset. |
| NodeSubset Complement() const { |
| return ~(unsigned)this->Elements & ((1U << N) - 1); |
| } |
| |
| /// Join - Return the union of this subset and the given one. |
| NodeSubset Join(const NodeSubset &other) const { |
| return this->Elements | other.Elements; |
| } |
| |
| /// Meet - Return the intersection of this subset and the given one. |
| NodeSubset Meet(const NodeSubset &other) const { |
| return this->Elements & other.Elements; |
| } |
| }; |
| |
| /// NodeType - Node index and set of children of the node. |
| typedef std::pair<unsigned, NodeSubset> NodeType; |
| |
| private: |
| /// Nodes - The list of nodes for this graph. |
| NodeType Nodes[N]; |
| public: |
| |
| /// Graph - Default constructor. Creates an empty graph. |
| Graph() { |
| // Let each node know which node it is. This allows us to find the start of |
| // the Nodes array given a pointer to any element of it. |
| for (unsigned i = 0; i != N; ++i) |
| Nodes[i].first = i; |
| } |
| |
| /// AddEdge - Add an edge from the node with index FromIdx to the node with |
| /// index ToIdx. |
| void AddEdge(unsigned FromIdx, unsigned ToIdx) { |
| ValidateIndex(FromIdx); |
| Nodes[FromIdx].second.AddNode(ToIdx); |
| } |
| |
| /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to |
| /// the node with index ToIdx. |
| void DeleteEdge(unsigned FromIdx, unsigned ToIdx) { |
| ValidateIndex(FromIdx); |
| Nodes[FromIdx].second.DeleteNode(ToIdx); |
| } |
| |
| /// AccessNode - Get a pointer to the node with the given index. |
| NodeType *AccessNode(unsigned Idx) const { |
| ValidateIndex(Idx); |
| // The constant cast is needed when working with GraphTraits, which insists |
| // on taking a constant Graph. |
| return const_cast<NodeType *>(&Nodes[Idx]); |
| } |
| |
| /// NodesReachableFrom - Return the set of all nodes reachable from the given |
| /// node. |
| NodeSubset NodesReachableFrom(unsigned Idx) const { |
| // This algorithm doesn't scale, but that doesn't matter given the small |
| // size of our graphs. |
| NodeSubset Reachable; |
| |
| // The initial node is reachable. |
| Reachable.AddNode(Idx); |
| do { |
| NodeSubset Previous(Reachable); |
| |
| // Add in all nodes which are children of a reachable node. |
| for (unsigned i = 0; i != N; ++i) |
| if (Previous.count(i)) |
| Reachable = Reachable.Join(Nodes[i].second); |
| |
| // If nothing changed then we have found all reachable nodes. |
| if (Reachable == Previous) |
| return Reachable; |
| |
| // Rinse and repeat. |
| } while (1); |
| } |
| |
| /// ChildIterator - Visit all children of a node. |
| class ChildIterator { |
| friend class Graph; |
| |
| /// FirstNode - Pointer to first node in the graph's Nodes array. |
| NodeType *FirstNode; |
| /// Children - Set of nodes which are children of this one and that haven't |
| /// yet been visited. |
| NodeSubset Children; |
| |
| ChildIterator(); // Disable default constructor. |
| protected: |
| ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {} |
| |
| public: |
| /// ChildIterator - Copy constructor. |
| ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode), |
| Children(other.Children) {} |
| |
| /// Comparison operators. |
| bool operator==(const ChildIterator &other) const { |
| return other.FirstNode == this->FirstNode && |
| other.Children == this->Children; |
| } |
| bool operator!=(const ChildIterator &other) const { |
| return !(*this == other); |
| } |
| |
| /// Prefix increment operator. |
| ChildIterator& operator++() { |
| // Find the next unvisited child node. |
| for (unsigned i = 0; i != N; ++i) |
| if (Children.count(i)) { |
| // Remove that child - it has been visited. This is the increment! |
| Children.DeleteNode(i); |
| return *this; |
| } |
| assert(false && "Incrementing end iterator!"); |
| return *this; // Avoid compiler warnings. |
| } |
| |
| /// Postfix increment operator. |
| ChildIterator operator++(int) { |
| ChildIterator Result(*this); |
| ++(*this); |
| return Result; |
| } |
| |
| /// Dereference operator. |
| NodeType *operator*() { |
| // Find the next unvisited child node. |
| for (unsigned i = 0; i != N; ++i) |
| if (Children.count(i)) |
| // Return a pointer to it. |
| return FirstNode + i; |
| assert(false && "Dereferencing end iterator!"); |
| return 0; // Avoid compiler warning. |
| } |
| }; |
| |
| /// child_begin - Return an iterator pointing to the first child of the given |
| /// node. |
| static ChildIterator child_begin(NodeType *Parent) { |
| return ChildIterator(Parent - Parent->first, Parent->second); |
| } |
| |
| /// child_end - Return the end iterator for children of the given node. |
| static ChildIterator child_end(NodeType *Parent) { |
| return ChildIterator(Parent - Parent->first, NodeSubset()); |
| } |
| }; |
| |
| template <unsigned N> |
| struct GraphTraits<Graph<N> > { |
| typedef typename Graph<N>::NodeType NodeType; |
| typedef typename Graph<N>::ChildIterator ChildIteratorType; |
| |
| static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); } |
| static inline ChildIteratorType child_begin(NodeType *Node) { |
| return Graph<N>::child_begin(Node); |
| } |
| static inline ChildIteratorType child_end(NodeType *Node) { |
| return Graph<N>::child_end(Node); |
| } |
| }; |
| |
| TEST(SCCIteratorTest, AllSmallGraphs) { |
| // Test SCC computation against every graph with NUM_NODES nodes or less. |
| // Since SCC considers every node to have an implicit self-edge, we only |
| // create graphs for which every node has a self-edge. |
| #define NUM_NODES 4 |
| #define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1)) |
| typedef Graph<NUM_NODES> GT; |
| |
| /// Enumerate all graphs using NUM_GRAPHS bits. |
| assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT && "Too many graphs!"); |
| for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS); |
| ++GraphDescriptor) { |
| GT G; |
| |
| // Add edges as specified by the descriptor. |
| unsigned DescriptorCopy = GraphDescriptor; |
| for (unsigned i = 0; i != NUM_NODES; ++i) |
| for (unsigned j = 0; j != NUM_NODES; ++j) { |
| // Always add a self-edge. |
| if (i == j) { |
| G.AddEdge(i, j); |
| continue; |
| } |
| if (DescriptorCopy & 1) |
| G.AddEdge(i, j); |
| DescriptorCopy >>= 1; |
| } |
| |
| // Test the SCC logic on this graph. |
| |
| /// NodesInSomeSCC - Those nodes which are in some SCC. |
| GT::NodeSubset NodesInSomeSCC; |
| |
| for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) { |
| std::vector<GT::NodeType*> &SCC = *I; |
| |
| // Get the nodes in this SCC as a NodeSubset rather than a vector. |
| GT::NodeSubset NodesInThisSCC; |
| for (unsigned i = 0, e = SCC.size(); i != e; ++i) |
| NodesInThisSCC.AddNode(SCC[i]->first); |
| |
| // There should be at least one node in every SCC. |
| EXPECT_FALSE(NodesInThisSCC.isEmpty()); |
| |
| // Check that every node in the SCC is reachable from every other node in |
| // the SCC. |
| for (unsigned i = 0; i != NUM_NODES; ++i) |
| if (NodesInThisSCC.count(i)) |
| EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i))); |
| |
| // OK, now that we now that every node in the SCC is reachable from every |
| // other, this means that the set of nodes reachable from any node in the |
| // SCC is the same as the set of nodes reachable from every node in the |
| // SCC. Check that for every node N not in the SCC but reachable from the |
| // SCC, no element of the SCC is reachable from N. |
| for (unsigned i = 0; i != NUM_NODES; ++i) |
| if (NodesInThisSCC.count(i)) { |
| GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i); |
| GT::NodeSubset ReachableButNotInSCC = |
| NodesReachableFromSCC.Meet(NodesInThisSCC.Complement()); |
| |
| for (unsigned j = 0; j != NUM_NODES; ++j) |
| if (ReachableButNotInSCC.count(j)) |
| EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty()); |
| |
| // The result must be the same for all other nodes in this SCC, so |
| // there is no point in checking them. |
| break; |
| } |
| |
| // This is indeed a SCC: a maximal set of nodes for which each node is |
| // reachable from every other. |
| |
| // Check that we didn't already see this SCC. |
| EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty()); |
| |
| NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC); |
| |
| // Check a property that is specific to the LLVM SCC iterator and |
| // guaranteed by it: if a node in SCC S1 has an edge to a node in |
| // SCC S2, then S1 is visited *after* S2. This means that the set |
| // of nodes reachable from this SCC must be contained either in the |
| // union of this SCC and all previously visited SCC's. |
| |
| for (unsigned i = 0; i != NUM_NODES; ++i) |
| if (NodesInThisSCC.count(i)) { |
| GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i); |
| EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC)); |
| // The result must be the same for all other nodes in this SCC, so |
| // there is no point in checking them. |
| break; |
| } |
| } |
| |
| // Finally, check that the nodes in some SCC are exactly those that are |
| // reachable from the initial node. |
| EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0)); |
| } |
| } |
| |
| } |