| //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements an idiom recognizer that transforms simple loops into a |
| // non-loop form. In cases that this kicks in, it can be a significant |
| // performance win. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // TODO List: |
| // |
| // Future loop memory idioms to recognize: |
| // memcmp, memmove, strlen, etc. |
| // Future floating point idioms to recognize in -ffast-math mode: |
| // fpowi |
| // Future integer operation idioms to recognize: |
| // ctpop, ctlz, cttz |
| // |
| // Beware that isel's default lowering for ctpop is highly inefficient for |
| // i64 and larger types when i64 is legal and the value has few bits set. It |
| // would be good to enhance isel to emit a loop for ctpop in this case. |
| // |
| // We should enhance the memset/memcpy recognition to handle multiple stores in |
| // the loop. This would handle things like: |
| // void foo(_Complex float *P) |
| // for (i) { __real__(*P) = 0; __imag__(*P) = 0; } |
| // |
| // We should enhance this to handle negative strides through memory. |
| // Alternatively (and perhaps better) we could rely on an earlier pass to force |
| // forward iteration through memory, which is generally better for cache |
| // behavior. Negative strides *do* happen for memset/memcpy loops. |
| // |
| // This could recognize common matrix multiplies and dot product idioms and |
| // replace them with calls to BLAS (if linked in??). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "loop-idiom" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/Module.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetLibraryInfo.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/IRBuilder.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/Statistic.h" |
| using namespace llvm; |
| |
| STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); |
| STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); |
| |
| namespace { |
| class LoopIdiomRecognize : public LoopPass { |
| Loop *CurLoop; |
| const TargetData *TD; |
| DominatorTree *DT; |
| ScalarEvolution *SE; |
| TargetLibraryInfo *TLI; |
| public: |
| static char ID; |
| explicit LoopIdiomRecognize() : LoopPass(ID) { |
| initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM); |
| bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, |
| SmallVectorImpl<BasicBlock*> &ExitBlocks); |
| |
| bool processLoopStore(StoreInst *SI, const SCEV *BECount); |
| bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); |
| |
| bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, |
| unsigned StoreAlignment, |
| Value *SplatValue, Instruction *TheStore, |
| const SCEVAddRecExpr *Ev, |
| const SCEV *BECount); |
| bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, |
| const SCEVAddRecExpr *StoreEv, |
| const SCEVAddRecExpr *LoadEv, |
| const SCEV *BECount); |
| |
| /// This transformation requires natural loop information & requires that |
| /// loop preheaders be inserted into the CFG. |
| /// |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LoopInfo>(); |
| AU.addPreserved<LoopInfo>(); |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addRequiredID(LCSSAID); |
| AU.addPreservedID(LCSSAID); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addRequired<ScalarEvolution>(); |
| AU.addPreserved<ScalarEvolution>(); |
| AU.addPreserved<DominatorTree>(); |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<TargetLibraryInfo>(); |
| } |
| }; |
| } |
| |
| char LoopIdiomRecognize::ID = 0; |
| INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| INITIALIZE_PASS_DEPENDENCY(LCSSA) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", |
| false, false) |
| |
| Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); } |
| |
| /// deleteDeadInstruction - Delete this instruction. Before we do, go through |
| /// and zero out all the operands of this instruction. If any of them become |
| /// dead, delete them and the computation tree that feeds them. |
| /// |
| static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE) { |
| SmallVector<Instruction*, 32> NowDeadInsts; |
| |
| NowDeadInsts.push_back(I); |
| |
| // Before we touch this instruction, remove it from SE! |
| do { |
| Instruction *DeadInst = NowDeadInsts.pop_back_val(); |
| |
| // This instruction is dead, zap it, in stages. Start by removing it from |
| // SCEV. |
| SE.forgetValue(DeadInst); |
| |
| for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) { |
| Value *Op = DeadInst->getOperand(op); |
| DeadInst->setOperand(op, 0); |
| |
| // If this operand just became dead, add it to the NowDeadInsts list. |
| if (!Op->use_empty()) continue; |
| |
| if (Instruction *OpI = dyn_cast<Instruction>(Op)) |
| if (isInstructionTriviallyDead(OpI)) |
| NowDeadInsts.push_back(OpI); |
| } |
| |
| DeadInst->eraseFromParent(); |
| |
| } while (!NowDeadInsts.empty()); |
| } |
| |
| /// deleteIfDeadInstruction - If the specified value is a dead instruction, |
| /// delete it and any recursively used instructions. |
| static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| if (isInstructionTriviallyDead(I)) |
| deleteDeadInstruction(I, SE); |
| } |
| |
| bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { |
| CurLoop = L; |
| |
| // Disable loop idiom recognition if the function's name is a common idiom. |
| StringRef Name = L->getHeader()->getParent()->getName(); |
| if (Name == "memset" || Name == "memcpy") |
| return false; |
| |
| // The trip count of the loop must be analyzable. |
| SE = &getAnalysis<ScalarEvolution>(); |
| if (!SE->hasLoopInvariantBackedgeTakenCount(L)) |
| return false; |
| const SCEV *BECount = SE->getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(BECount)) return false; |
| |
| // If this loop executes exactly one time, then it should be peeled, not |
| // optimized by this pass. |
| if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) |
| if (BECst->getValue()->getValue() == 0) |
| return false; |
| |
| // We require target data for now. |
| TD = getAnalysisIfAvailable<TargetData>(); |
| if (TD == 0) return false; |
| |
| DT = &getAnalysis<DominatorTree>(); |
| LoopInfo &LI = getAnalysis<LoopInfo>(); |
| TLI = &getAnalysis<TargetLibraryInfo>(); |
| |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| CurLoop->getUniqueExitBlocks(ExitBlocks); |
| |
| DEBUG(dbgs() << "loop-idiom Scanning: F[" |
| << L->getHeader()->getParent()->getName() |
| << "] Loop %" << L->getHeader()->getName() << "\n"); |
| |
| bool MadeChange = false; |
| // Scan all the blocks in the loop that are not in subloops. |
| for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; |
| ++BI) { |
| // Ignore blocks in subloops. |
| if (LI.getLoopFor(*BI) != CurLoop) |
| continue; |
| |
| MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks); |
| } |
| return MadeChange; |
| } |
| |
| /// runOnLoopBlock - Process the specified block, which lives in a counted loop |
| /// with the specified backedge count. This block is known to be in the current |
| /// loop and not in any subloops. |
| bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, |
| SmallVectorImpl<BasicBlock*> &ExitBlocks) { |
| // We can only promote stores in this block if they are unconditionally |
| // executed in the loop. For a block to be unconditionally executed, it has |
| // to dominate all the exit blocks of the loop. Verify this now. |
| for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) |
| if (!DT->dominates(BB, ExitBlocks[i])) |
| return false; |
| |
| bool MadeChange = false; |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { |
| Instruction *Inst = I++; |
| // Look for store instructions, which may be optimized to memset/memcpy. |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| WeakVH InstPtr(I); |
| if (!processLoopStore(SI, BECount)) continue; |
| MadeChange = true; |
| |
| // If processing the store invalidated our iterator, start over from the |
| // top of the block. |
| if (InstPtr == 0) |
| I = BB->begin(); |
| continue; |
| } |
| |
| // Look for memset instructions, which may be optimized to a larger memset. |
| if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { |
| WeakVH InstPtr(I); |
| if (!processLoopMemSet(MSI, BECount)) continue; |
| MadeChange = true; |
| |
| // If processing the memset invalidated our iterator, start over from the |
| // top of the block. |
| if (InstPtr == 0) |
| I = BB->begin(); |
| continue; |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| |
| /// processLoopStore - See if this store can be promoted to a memset or memcpy. |
| bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) { |
| if (!SI->isSimple()) return false; |
| |
| Value *StoredVal = SI->getValueOperand(); |
| Value *StorePtr = SI->getPointerOperand(); |
| |
| // Reject stores that are so large that they overflow an unsigned. |
| uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType()); |
| if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) |
| return false; |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided store. If we have something else, it's a |
| // random store we can't handle. |
| const SCEVAddRecExpr *StoreEv = |
| dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) |
| return false; |
| |
| // Check to see if the stride matches the size of the store. If so, then we |
| // know that every byte is touched in the loop. |
| unsigned StoreSize = (unsigned)SizeInBits >> 3; |
| const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); |
| |
| if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) { |
| // TODO: Could also handle negative stride here someday, that will require |
| // the validity check in mayLoopAccessLocation to be updated though. |
| // Enable this to print exact negative strides. |
| if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) { |
| dbgs() << "NEGATIVE STRIDE: " << *SI << "\n"; |
| dbgs() << "BB: " << *SI->getParent(); |
| } |
| |
| return false; |
| } |
| |
| // See if we can optimize just this store in isolation. |
| if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(), |
| StoredVal, SI, StoreEv, BECount)) |
| return true; |
| |
| // If the stored value is a strided load in the same loop with the same stride |
| // this this may be transformable into a memcpy. This kicks in for stuff like |
| // for (i) A[i] = B[i]; |
| if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { |
| const SCEVAddRecExpr *LoadEv = |
| dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0))); |
| if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() && |
| StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple()) |
| if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount)) |
| return true; |
| } |
| //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n"; |
| |
| return false; |
| } |
| |
| /// processLoopMemSet - See if this memset can be promoted to a large memset. |
| bool LoopIdiomRecognize:: |
| processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) { |
| // We can only handle non-volatile memsets with a constant size. |
| if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false; |
| |
| // If we're not allowed to hack on memset, we fail. |
| if (!TLI->has(LibFunc::memset)) |
| return false; |
| |
| Value *Pointer = MSI->getDest(); |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided store. If we have something else, it's a |
| // random store we can't handle. |
| const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); |
| if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine()) |
| return false; |
| |
| // Reject memsets that are so large that they overflow an unsigned. |
| uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); |
| if ((SizeInBytes >> 32) != 0) |
| return false; |
| |
| // Check to see if the stride matches the size of the memset. If so, then we |
| // know that every byte is touched in the loop. |
| const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); |
| |
| // TODO: Could also handle negative stride here someday, that will require the |
| // validity check in mayLoopAccessLocation to be updated though. |
| if (Stride == 0 || MSI->getLength() != Stride->getValue()) |
| return false; |
| |
| return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, |
| MSI->getAlignment(), MSI->getValue(), |
| MSI, Ev, BECount); |
| } |
| |
| |
| /// mayLoopAccessLocation - Return true if the specified loop might access the |
| /// specified pointer location, which is a loop-strided access. The 'Access' |
| /// argument specifies what the verboten forms of access are (read or write). |
| static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access, |
| Loop *L, const SCEV *BECount, |
| unsigned StoreSize, AliasAnalysis &AA, |
| Instruction *IgnoredStore) { |
| // Get the location that may be stored across the loop. Since the access is |
| // strided positively through memory, we say that the modified location starts |
| // at the pointer and has infinite size. |
| uint64_t AccessSize = AliasAnalysis::UnknownSize; |
| |
| // If the loop iterates a fixed number of times, we can refine the access size |
| // to be exactly the size of the memset, which is (BECount+1)*StoreSize |
| if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) |
| AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize; |
| |
| // TODO: For this to be really effective, we have to dive into the pointer |
| // operand in the store. Store to &A[i] of 100 will always return may alias |
| // with store of &A[100], we need to StoreLoc to be "A" with size of 100, |
| // which will then no-alias a store to &A[100]. |
| AliasAnalysis::Location StoreLoc(Ptr, AccessSize); |
| |
| for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; |
| ++BI) |
| for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) |
| if (&*I != IgnoredStore && |
| (AA.getModRefInfo(I, StoreLoc) & Access)) |
| return true; |
| |
| return false; |
| } |
| |
| /// getMemSetPatternValue - If a strided store of the specified value is safe to |
| /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should |
| /// be passed in. Otherwise, return null. |
| /// |
| /// Note that we don't ever attempt to use memset_pattern8 or 4, because these |
| /// just replicate their input array and then pass on to memset_pattern16. |
| static Constant *getMemSetPatternValue(Value *V, const TargetData &TD) { |
| // If the value isn't a constant, we can't promote it to being in a constant |
| // array. We could theoretically do a store to an alloca or something, but |
| // that doesn't seem worthwhile. |
| Constant *C = dyn_cast<Constant>(V); |
| if (C == 0) return 0; |
| |
| // Only handle simple values that are a power of two bytes in size. |
| uint64_t Size = TD.getTypeSizeInBits(V->getType()); |
| if (Size == 0 || (Size & 7) || (Size & (Size-1))) |
| return 0; |
| |
| // Don't care enough about darwin/ppc to implement this. |
| if (TD.isBigEndian()) |
| return 0; |
| |
| // Convert to size in bytes. |
| Size /= 8; |
| |
| // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see |
| // if the top and bottom are the same (e.g. for vectors and large integers). |
| if (Size > 16) return 0; |
| |
| // If the constant is exactly 16 bytes, just use it. |
| if (Size == 16) return C; |
| |
| // Otherwise, we'll use an array of the constants. |
| unsigned ArraySize = 16/Size; |
| ArrayType *AT = ArrayType::get(V->getType(), ArraySize); |
| return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C)); |
| } |
| |
| |
| /// processLoopStridedStore - We see a strided store of some value. If we can |
| /// transform this into a memset or memset_pattern in the loop preheader, do so. |
| bool LoopIdiomRecognize:: |
| processLoopStridedStore(Value *DestPtr, unsigned StoreSize, |
| unsigned StoreAlignment, Value *StoredVal, |
| Instruction *TheStore, const SCEVAddRecExpr *Ev, |
| const SCEV *BECount) { |
| |
| // If the stored value is a byte-wise value (like i32 -1), then it may be |
| // turned into a memset of i8 -1, assuming that all the consecutive bytes |
| // are stored. A store of i32 0x01020304 can never be turned into a memset, |
| // but it can be turned into memset_pattern if the target supports it. |
| Value *SplatValue = isBytewiseValue(StoredVal); |
| Constant *PatternValue = 0; |
| |
| // If we're allowed to form a memset, and the stored value would be acceptable |
| // for memset, use it. |
| if (SplatValue && TLI->has(LibFunc::memset) && |
| // Verify that the stored value is loop invariant. If not, we can't |
| // promote the memset. |
| CurLoop->isLoopInvariant(SplatValue)) { |
| // Keep and use SplatValue. |
| PatternValue = 0; |
| } else if (TLI->has(LibFunc::memset_pattern16) && |
| (PatternValue = getMemSetPatternValue(StoredVal, *TD))) { |
| // It looks like we can use PatternValue! |
| SplatValue = 0; |
| } else { |
| // Otherwise, this isn't an idiom we can transform. For example, we can't |
| // do anything with a 3-byte store. |
| return false; |
| } |
| |
| // The trip count of the loop and the base pointer of the addrec SCEV is |
| // guaranteed to be loop invariant, which means that it should dominate the |
| // header. This allows us to insert code for it in the preheader. |
| BasicBlock *Preheader = CurLoop->getLoopPreheader(); |
| IRBuilder<> Builder(Preheader->getTerminator()); |
| SCEVExpander Expander(*SE, "loop-idiom"); |
| |
| // Okay, we have a strided store "p[i]" of a splattable value. We can turn |
| // this into a memset in the loop preheader now if we want. However, this |
| // would be unsafe to do if there is anything else in the loop that may read |
| // or write to the aliased location. Check for any overlap by generating the |
| // base pointer and checking the region. |
| unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace(); |
| Value *BasePtr = |
| Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace), |
| Preheader->getTerminator()); |
| |
| |
| if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef, |
| CurLoop, BECount, |
| StoreSize, getAnalysis<AliasAnalysis>(), TheStore)){ |
| Expander.clear(); |
| // If we generated new code for the base pointer, clean up. |
| deleteIfDeadInstruction(BasePtr, *SE); |
| return false; |
| } |
| |
| // Okay, everything looks good, insert the memset. |
| |
| // The # stored bytes is (BECount+1)*Size. Expand the trip count out to |
| // pointer size if it isn't already. |
| Type *IntPtr = TD->getIntPtrType(DestPtr->getContext()); |
| BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); |
| |
| const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), |
| SCEV::FlagNUW); |
| if (StoreSize != 1) |
| NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), |
| SCEV::FlagNUW); |
| |
| Value *NumBytes = |
| Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); |
| |
| CallInst *NewCall; |
| if (SplatValue) |
| NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment); |
| else { |
| Module *M = TheStore->getParent()->getParent()->getParent(); |
| Value *MSP = M->getOrInsertFunction("memset_pattern16", |
| Builder.getVoidTy(), |
| Builder.getInt8PtrTy(), |
| Builder.getInt8PtrTy(), IntPtr, |
| (void*)0); |
| |
| // Otherwise we should form a memset_pattern16. PatternValue is known to be |
| // an constant array of 16-bytes. Plop the value into a mergable global. |
| GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, |
| GlobalValue::InternalLinkage, |
| PatternValue, ".memset_pattern"); |
| GV->setUnnamedAddr(true); // Ok to merge these. |
| GV->setAlignment(16); |
| Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy()); |
| NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes); |
| } |
| |
| DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" |
| << " from store to: " << *Ev << " at: " << *TheStore << "\n"); |
| NewCall->setDebugLoc(TheStore->getDebugLoc()); |
| |
| // Okay, the memset has been formed. Zap the original store and anything that |
| // feeds into it. |
| deleteDeadInstruction(TheStore, *SE); |
| ++NumMemSet; |
| return true; |
| } |
| |
| /// processLoopStoreOfLoopLoad - We see a strided store whose value is a |
| /// same-strided load. |
| bool LoopIdiomRecognize:: |
| processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, |
| const SCEVAddRecExpr *StoreEv, |
| const SCEVAddRecExpr *LoadEv, |
| const SCEV *BECount) { |
| // If we're not allowed to form memcpy, we fail. |
| if (!TLI->has(LibFunc::memcpy)) |
| return false; |
| |
| LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); |
| |
| // The trip count of the loop and the base pointer of the addrec SCEV is |
| // guaranteed to be loop invariant, which means that it should dominate the |
| // header. This allows us to insert code for it in the preheader. |
| BasicBlock *Preheader = CurLoop->getLoopPreheader(); |
| IRBuilder<> Builder(Preheader->getTerminator()); |
| SCEVExpander Expander(*SE, "loop-idiom"); |
| |
| // Okay, we have a strided store "p[i]" of a loaded value. We can turn |
| // this into a memcpy in the loop preheader now if we want. However, this |
| // would be unsafe to do if there is anything else in the loop that may read |
| // or write the memory region we're storing to. This includes the load that |
| // feeds the stores. Check for an alias by generating the base address and |
| // checking everything. |
| Value *StoreBasePtr = |
| Expander.expandCodeFor(StoreEv->getStart(), |
| Builder.getInt8PtrTy(SI->getPointerAddressSpace()), |
| Preheader->getTerminator()); |
| |
| if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef, |
| CurLoop, BECount, StoreSize, |
| getAnalysis<AliasAnalysis>(), SI)) { |
| Expander.clear(); |
| // If we generated new code for the base pointer, clean up. |
| deleteIfDeadInstruction(StoreBasePtr, *SE); |
| return false; |
| } |
| |
| // For a memcpy, we have to make sure that the input array is not being |
| // mutated by the loop. |
| Value *LoadBasePtr = |
| Expander.expandCodeFor(LoadEv->getStart(), |
| Builder.getInt8PtrTy(LI->getPointerAddressSpace()), |
| Preheader->getTerminator()); |
| |
| if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount, |
| StoreSize, getAnalysis<AliasAnalysis>(), SI)) { |
| Expander.clear(); |
| // If we generated new code for the base pointer, clean up. |
| deleteIfDeadInstruction(LoadBasePtr, *SE); |
| deleteIfDeadInstruction(StoreBasePtr, *SE); |
| return false; |
| } |
| |
| // Okay, everything is safe, we can transform this! |
| |
| |
| // The # stored bytes is (BECount+1)*Size. Expand the trip count out to |
| // pointer size if it isn't already. |
| Type *IntPtr = TD->getIntPtrType(SI->getContext()); |
| BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); |
| |
| const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), |
| SCEV::FlagNUW); |
| if (StoreSize != 1) |
| NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), |
| SCEV::FlagNUW); |
| |
| Value *NumBytes = |
| Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); |
| |
| CallInst *NewCall = |
| Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, |
| std::min(SI->getAlignment(), LI->getAlignment())); |
| NewCall->setDebugLoc(SI->getDebugLoc()); |
| |
| DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" |
| << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" |
| << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); |
| |
| |
| // Okay, the memset has been formed. Zap the original store and anything that |
| // feeds into it. |
| deleteDeadInstruction(SI, *SE); |
| ++NumMemCpy; |
| return true; |
| } |