| //===- llvm/Analysis/MaximumSpanningTree.h - Interface ----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This module provides means for calculating a maximum spanning tree for a |
| // given set of weighted edges. The type parameter T is the type of a node. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H |
| #define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H |
| |
| #include "llvm/BasicBlock.h" |
| #include "llvm/ADT/EquivalenceClasses.h" |
| #include <vector> |
| #include <algorithm> |
| |
| namespace llvm { |
| |
| /// MaximumSpanningTree - A MST implementation. |
| /// The type parameter T determines the type of the nodes of the graph. |
| template <typename T> |
| class MaximumSpanningTree { |
| |
| // A comparing class for comparing weighted edges. |
| template <typename CT> |
| struct EdgeWeightCompare { |
| bool operator()(typename MaximumSpanningTree<CT>::EdgeWeight X, |
| typename MaximumSpanningTree<CT>::EdgeWeight Y) const { |
| if (X.second > Y.second) return true; |
| if (X.second < Y.second) return false; |
| if (const BasicBlock *BBX = dyn_cast<BasicBlock>(X.first.first)) { |
| if (const BasicBlock *BBY = dyn_cast<BasicBlock>(Y.first.first)) { |
| if (BBX->size() > BBY->size()) return true; |
| if (BBX->size() < BBY->size()) return false; |
| } |
| } |
| if (const BasicBlock *BBX = dyn_cast<BasicBlock>(X.first.second)) { |
| if (const BasicBlock *BBY = dyn_cast<BasicBlock>(Y.first.second)) { |
| if (BBX->size() > BBY->size()) return true; |
| if (BBX->size() < BBY->size()) return false; |
| } |
| } |
| return false; |
| } |
| }; |
| |
| public: |
| typedef std::pair<const T*, const T*> Edge; |
| typedef std::pair<Edge, double> EdgeWeight; |
| typedef std::vector<EdgeWeight> EdgeWeights; |
| protected: |
| typedef std::vector<Edge> MaxSpanTree; |
| |
| MaxSpanTree MST; |
| |
| public: |
| static char ID; // Class identification, replacement for typeinfo |
| |
| /// MaximumSpanningTree() - Takes a vector of weighted edges and returns a |
| /// spanning tree. |
| MaximumSpanningTree(EdgeWeights &EdgeVector) { |
| |
| std::stable_sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare<T>()); |
| |
| // Create spanning tree, Forest contains a special data structure |
| // that makes checking if two nodes are already in a common (sub-)tree |
| // fast and cheap. |
| EquivalenceClasses<const T*> Forest; |
| for (typename EdgeWeights::iterator EWi = EdgeVector.begin(), |
| EWe = EdgeVector.end(); EWi != EWe; ++EWi) { |
| Edge e = (*EWi).first; |
| |
| Forest.insert(e.first); |
| Forest.insert(e.second); |
| } |
| |
| // Iterate over the sorted edges, biggest first. |
| for (typename EdgeWeights::iterator EWi = EdgeVector.begin(), |
| EWe = EdgeVector.end(); EWi != EWe; ++EWi) { |
| Edge e = (*EWi).first; |
| |
| if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) { |
| Forest.unionSets(e.first, e.second); |
| // So we know now that the edge is not already in a subtree, so we push |
| // the edge to the MST. |
| MST.push_back(e); |
| } |
| } |
| } |
| |
| typename MaxSpanTree::iterator begin() { |
| return MST.begin(); |
| } |
| |
| typename MaxSpanTree::iterator end() { |
| return MST.end(); |
| } |
| }; |
| |
| } // End llvm namespace |
| |
| #endif |