| //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the implementation of the FastISel class. |
| // |
| // "Fast" instruction selection is designed to emit very poor code quickly. |
| // Also, it is not designed to be able to do much lowering, so most illegal |
| // types (e.g. i64 on 32-bit targets) and operations are not supported. It is |
| // also not intended to be able to do much optimization, except in a few cases |
| // where doing optimizations reduces overall compile time. For example, folding |
| // constants into immediate fields is often done, because it's cheap and it |
| // reduces the number of instructions later phases have to examine. |
| // |
| // "Fast" instruction selection is able to fail gracefully and transfer |
| // control to the SelectionDAG selector for operations that it doesn't |
| // support. In many cases, this allows us to avoid duplicating a lot of |
| // the complicated lowering logic that SelectionDAG currently has. |
| // |
| // The intended use for "fast" instruction selection is "-O0" mode |
| // compilation, where the quality of the generated code is irrelevant when |
| // weighed against the speed at which the code can be generated. Also, |
| // at -O0, the LLVM optimizers are not running, and this makes the |
| // compile time of codegen a much higher portion of the overall compile |
| // time. Despite its limitations, "fast" instruction selection is able to |
| // handle enough code on its own to provide noticeable overall speedups |
| // in -O0 compiles. |
| // |
| // Basic operations are supported in a target-independent way, by reading |
| // the same instruction descriptions that the SelectionDAG selector reads, |
| // and identifying simple arithmetic operations that can be directly selected |
| // from simple operators. More complicated operations currently require |
| // target-specific code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/Operator.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Debug.h" |
| using namespace llvm; |
| |
| /// startNewBlock - Set the current block to which generated machine |
| /// instructions will be appended, and clear the local CSE map. |
| /// |
| void FastISel::startNewBlock() { |
| LocalValueMap.clear(); |
| |
| EmitStartPt = 0; |
| |
| // Advance the emit start point past any EH_LABEL instructions. |
| MachineBasicBlock::iterator |
| I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end(); |
| while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) { |
| EmitStartPt = I; |
| ++I; |
| } |
| LastLocalValue = EmitStartPt; |
| } |
| |
| void FastISel::flushLocalValueMap() { |
| LocalValueMap.clear(); |
| LastLocalValue = EmitStartPt; |
| recomputeInsertPt(); |
| } |
| |
| bool FastISel::hasTrivialKill(const Value *V) const { |
| // Don't consider constants or arguments to have trivial kills. |
| const Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return false; |
| |
| // No-op casts are trivially coalesced by fast-isel. |
| if (const CastInst *Cast = dyn_cast<CastInst>(I)) |
| if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) && |
| !hasTrivialKill(Cast->getOperand(0))) |
| return false; |
| |
| // Only instructions with a single use in the same basic block are considered |
| // to have trivial kills. |
| return I->hasOneUse() && |
| !(I->getOpcode() == Instruction::BitCast || |
| I->getOpcode() == Instruction::PtrToInt || |
| I->getOpcode() == Instruction::IntToPtr) && |
| cast<Instruction>(*I->use_begin())->getParent() == I->getParent(); |
| } |
| |
| unsigned FastISel::getRegForValue(const Value *V) { |
| EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); |
| // Don't handle non-simple values in FastISel. |
| if (!RealVT.isSimple()) |
| return 0; |
| |
| // Ignore illegal types. We must do this before looking up the value |
| // in ValueMap because Arguments are given virtual registers regardless |
| // of whether FastISel can handle them. |
| MVT VT = RealVT.getSimpleVT(); |
| if (!TLI.isTypeLegal(VT)) { |
| // Handle integer promotions, though, because they're common and easy. |
| if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) |
| VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); |
| else |
| return 0; |
| } |
| |
| // Look up the value to see if we already have a register for it. We |
| // cache values defined by Instructions across blocks, and other values |
| // only locally. This is because Instructions already have the SSA |
| // def-dominates-use requirement enforced. |
| DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); |
| if (I != FuncInfo.ValueMap.end()) |
| return I->second; |
| |
| unsigned Reg = LocalValueMap[V]; |
| if (Reg != 0) |
| return Reg; |
| |
| // In bottom-up mode, just create the virtual register which will be used |
| // to hold the value. It will be materialized later. |
| if (isa<Instruction>(V) && |
| (!isa<AllocaInst>(V) || |
| !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) |
| return FuncInfo.InitializeRegForValue(V); |
| |
| SavePoint SaveInsertPt = enterLocalValueArea(); |
| |
| // Materialize the value in a register. Emit any instructions in the |
| // local value area. |
| Reg = materializeRegForValue(V, VT); |
| |
| leaveLocalValueArea(SaveInsertPt); |
| |
| return Reg; |
| } |
| |
| /// materializeRegForValue - Helper for getRegForValue. This function is |
| /// called when the value isn't already available in a register and must |
| /// be materialized with new instructions. |
| unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { |
| unsigned Reg = 0; |
| |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| if (CI->getValue().getActiveBits() <= 64) |
| Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); |
| } else if (isa<AllocaInst>(V)) { |
| Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); |
| } else if (isa<ConstantPointerNull>(V)) { |
| // Translate this as an integer zero so that it can be |
| // local-CSE'd with actual integer zeros. |
| Reg = |
| getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext()))); |
| } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { |
| if (CF->isNullValue()) { |
| Reg = TargetMaterializeFloatZero(CF); |
| } else { |
| // Try to emit the constant directly. |
| Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); |
| } |
| |
| if (!Reg) { |
| // Try to emit the constant by using an integer constant with a cast. |
| const APFloat &Flt = CF->getValueAPF(); |
| EVT IntVT = TLI.getPointerTy(); |
| |
| uint64_t x[2]; |
| uint32_t IntBitWidth = IntVT.getSizeInBits(); |
| bool isExact; |
| (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, |
| APFloat::rmTowardZero, &isExact); |
| if (isExact) { |
| APInt IntVal(IntBitWidth, x); |
| |
| unsigned IntegerReg = |
| getRegForValue(ConstantInt::get(V->getContext(), IntVal)); |
| if (IntegerReg != 0) |
| Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, |
| IntegerReg, /*Kill=*/false); |
| } |
| } |
| } else if (const Operator *Op = dyn_cast<Operator>(V)) { |
| if (!SelectOperator(Op, Op->getOpcode())) |
| if (!isa<Instruction>(Op) || |
| !TargetSelectInstruction(cast<Instruction>(Op))) |
| return 0; |
| Reg = lookUpRegForValue(Op); |
| } else if (isa<UndefValue>(V)) { |
| Reg = createResultReg(TLI.getRegClassFor(VT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(TargetOpcode::IMPLICIT_DEF), Reg); |
| } |
| |
| // If target-independent code couldn't handle the value, give target-specific |
| // code a try. |
| if (!Reg && isa<Constant>(V)) |
| Reg = TargetMaterializeConstant(cast<Constant>(V)); |
| |
| // Don't cache constant materializations in the general ValueMap. |
| // To do so would require tracking what uses they dominate. |
| if (Reg != 0) { |
| LocalValueMap[V] = Reg; |
| LastLocalValue = MRI.getVRegDef(Reg); |
| } |
| return Reg; |
| } |
| |
| unsigned FastISel::lookUpRegForValue(const Value *V) { |
| // Look up the value to see if we already have a register for it. We |
| // cache values defined by Instructions across blocks, and other values |
| // only locally. This is because Instructions already have the SSA |
| // def-dominates-use requirement enforced. |
| DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); |
| if (I != FuncInfo.ValueMap.end()) |
| return I->second; |
| return LocalValueMap[V]; |
| } |
| |
| /// UpdateValueMap - Update the value map to include the new mapping for this |
| /// instruction, or insert an extra copy to get the result in a previous |
| /// determined register. |
| /// NOTE: This is only necessary because we might select a block that uses |
| /// a value before we select the block that defines the value. It might be |
| /// possible to fix this by selecting blocks in reverse postorder. |
| void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { |
| if (!isa<Instruction>(I)) { |
| LocalValueMap[I] = Reg; |
| return; |
| } |
| |
| unsigned &AssignedReg = FuncInfo.ValueMap[I]; |
| if (AssignedReg == 0) |
| // Use the new register. |
| AssignedReg = Reg; |
| else if (Reg != AssignedReg) { |
| // Arrange for uses of AssignedReg to be replaced by uses of Reg. |
| for (unsigned i = 0; i < NumRegs; i++) |
| FuncInfo.RegFixups[AssignedReg+i] = Reg+i; |
| |
| AssignedReg = Reg; |
| } |
| } |
| |
| std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { |
| unsigned IdxN = getRegForValue(Idx); |
| if (IdxN == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return std::pair<unsigned, bool>(0, false); |
| |
| bool IdxNIsKill = hasTrivialKill(Idx); |
| |
| // If the index is smaller or larger than intptr_t, truncate or extend it. |
| MVT PtrVT = TLI.getPointerTy(); |
| EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); |
| if (IdxVT.bitsLT(PtrVT)) { |
| IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, |
| IdxN, IdxNIsKill); |
| IdxNIsKill = true; |
| } |
| else if (IdxVT.bitsGT(PtrVT)) { |
| IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, |
| IdxN, IdxNIsKill); |
| IdxNIsKill = true; |
| } |
| return std::pair<unsigned, bool>(IdxN, IdxNIsKill); |
| } |
| |
| void FastISel::recomputeInsertPt() { |
| if (getLastLocalValue()) { |
| FuncInfo.InsertPt = getLastLocalValue(); |
| FuncInfo.MBB = FuncInfo.InsertPt->getParent(); |
| ++FuncInfo.InsertPt; |
| } else |
| FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); |
| |
| // Now skip past any EH_LABELs, which must remain at the beginning. |
| while (FuncInfo.InsertPt != FuncInfo.MBB->end() && |
| FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) |
| ++FuncInfo.InsertPt; |
| } |
| |
| FastISel::SavePoint FastISel::enterLocalValueArea() { |
| MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; |
| DebugLoc OldDL = DL; |
| recomputeInsertPt(); |
| DL = DebugLoc(); |
| SavePoint SP = { OldInsertPt, OldDL }; |
| return SP; |
| } |
| |
| void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { |
| if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) |
| LastLocalValue = llvm::prior(FuncInfo.InsertPt); |
| |
| // Restore the previous insert position. |
| FuncInfo.InsertPt = OldInsertPt.InsertPt; |
| DL = OldInsertPt.DL; |
| } |
| |
| /// SelectBinaryOp - Select and emit code for a binary operator instruction, |
| /// which has an opcode which directly corresponds to the given ISD opcode. |
| /// |
| bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { |
| EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); |
| if (VT == MVT::Other || !VT.isSimple()) |
| // Unhandled type. Halt "fast" selection and bail. |
| return false; |
| |
| // We only handle legal types. For example, on x86-32 the instruction |
| // selector contains all of the 64-bit instructions from x86-64, |
| // under the assumption that i64 won't be used if the target doesn't |
| // support it. |
| if (!TLI.isTypeLegal(VT)) { |
| // MVT::i1 is special. Allow AND, OR, or XOR because they |
| // don't require additional zeroing, which makes them easy. |
| if (VT == MVT::i1 && |
| (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || |
| ISDOpcode == ISD::XOR)) |
| VT = TLI.getTypeToTransformTo(I->getContext(), VT); |
| else |
| return false; |
| } |
| |
| // Check if the first operand is a constant, and handle it as "ri". At -O0, |
| // we don't have anything that canonicalizes operand order. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) |
| if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { |
| unsigned Op1 = getRegForValue(I->getOperand(1)); |
| if (Op1 == 0) return false; |
| |
| bool Op1IsKill = hasTrivialKill(I->getOperand(1)); |
| |
| unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, |
| Op1IsKill, CI->getZExtValue(), |
| VT.getSimpleVT()); |
| if (ResultReg == 0) return false; |
| |
| // We successfully emitted code for the given LLVM Instruction. |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| |
| unsigned Op0 = getRegForValue(I->getOperand(0)); |
| if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| bool Op0IsKill = hasTrivialKill(I->getOperand(0)); |
| |
| // Check if the second operand is a constant and handle it appropriately. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| uint64_t Imm = CI->getZExtValue(); |
| |
| // Transform "sdiv exact X, 8" -> "sra X, 3". |
| if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && |
| cast<BinaryOperator>(I)->isExact() && |
| isPowerOf2_64(Imm)) { |
| Imm = Log2_64(Imm); |
| ISDOpcode = ISD::SRA; |
| } |
| |
| unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, |
| Op0IsKill, Imm, VT.getSimpleVT()); |
| if (ResultReg == 0) return false; |
| |
| // We successfully emitted code for the given LLVM Instruction. |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| // Check if the second operand is a constant float. |
| if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { |
| unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), |
| ISDOpcode, Op0, Op0IsKill, CF); |
| if (ResultReg != 0) { |
| // We successfully emitted code for the given LLVM Instruction. |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| } |
| |
| unsigned Op1 = getRegForValue(I->getOperand(1)); |
| if (Op1 == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| bool Op1IsKill = hasTrivialKill(I->getOperand(1)); |
| |
| // Now we have both operands in registers. Emit the instruction. |
| unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), |
| ISDOpcode, |
| Op0, Op0IsKill, |
| Op1, Op1IsKill); |
| if (ResultReg == 0) |
| // Target-specific code wasn't able to find a machine opcode for |
| // the given ISD opcode and type. Halt "fast" selection and bail. |
| return false; |
| |
| // We successfully emitted code for the given LLVM Instruction. |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool FastISel::SelectGetElementPtr(const User *I) { |
| unsigned N = getRegForValue(I->getOperand(0)); |
| if (N == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| bool NIsKill = hasTrivialKill(I->getOperand(0)); |
| |
| Type *Ty = I->getOperand(0)->getType(); |
| MVT VT = TLI.getPointerTy(); |
| for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, |
| E = I->op_end(); OI != E; ++OI) { |
| const Value *Idx = *OI; |
| if (StructType *StTy = dyn_cast<StructType>(Ty)) { |
| unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); |
| if (Field) { |
| // N = N + Offset |
| uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field); |
| // FIXME: This can be optimized by combining the add with a |
| // subsequent one. |
| N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT); |
| if (N == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| NIsKill = true; |
| } |
| Ty = StTy->getElementType(Field); |
| } else { |
| Ty = cast<SequentialType>(Ty)->getElementType(); |
| |
| // If this is a constant subscript, handle it quickly. |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { |
| if (CI->isZero()) continue; |
| uint64_t Offs = |
| TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); |
| N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT); |
| if (N == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| NIsKill = true; |
| continue; |
| } |
| |
| // N = N + Idx * ElementSize; |
| uint64_t ElementSize = TD.getTypeAllocSize(Ty); |
| std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); |
| unsigned IdxN = Pair.first; |
| bool IdxNIsKill = Pair.second; |
| if (IdxN == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| if (ElementSize != 1) { |
| IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); |
| if (IdxN == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| IdxNIsKill = true; |
| } |
| N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); |
| if (N == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| } |
| } |
| |
| // We successfully emitted code for the given LLVM Instruction. |
| UpdateValueMap(I, N); |
| return true; |
| } |
| |
| bool FastISel::SelectCall(const User *I) { |
| const CallInst *Call = cast<CallInst>(I); |
| |
| // Handle simple inline asms. |
| if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { |
| // Don't attempt to handle constraints. |
| if (!IA->getConstraintString().empty()) |
| return false; |
| |
| unsigned ExtraInfo = 0; |
| if (IA->hasSideEffects()) |
| ExtraInfo |= InlineAsm::Extra_HasSideEffects; |
| if (IA->isAlignStack()) |
| ExtraInfo |= InlineAsm::Extra_IsAlignStack; |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(TargetOpcode::INLINEASM)) |
| .addExternalSymbol(IA->getAsmString().c_str()) |
| .addImm(ExtraInfo); |
| return true; |
| } |
| |
| const Function *F = Call->getCalledFunction(); |
| if (!F) return false; |
| |
| // Handle selected intrinsic function calls. |
| switch (F->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::dbg_declare: { |
| const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call); |
| if (!DIVariable(DI->getVariable()).Verify() || |
| !FuncInfo.MF->getMMI().hasDebugInfo()) |
| return true; |
| |
| const Value *Address = DI->getAddress(); |
| if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address)) |
| return true; |
| |
| unsigned Reg = 0; |
| unsigned Offset = 0; |
| if (const Argument *Arg = dyn_cast<Argument>(Address)) { |
| // Some arguments' frame index is recorded during argument lowering. |
| Offset = FuncInfo.getArgumentFrameIndex(Arg); |
| if (Offset) |
| Reg = TRI.getFrameRegister(*FuncInfo.MF); |
| } |
| if (!Reg) |
| Reg = getRegForValue(Address); |
| |
| if (Reg) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(TargetOpcode::DBG_VALUE)) |
| .addReg(Reg, RegState::Debug).addImm(Offset) |
| .addMetadata(DI->getVariable()); |
| return true; |
| } |
| case Intrinsic::dbg_value: { |
| // This form of DBG_VALUE is target-independent. |
| const DbgValueInst *DI = cast<DbgValueInst>(Call); |
| const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); |
| const Value *V = DI->getValue(); |
| if (!V) { |
| // Currently the optimizer can produce this; insert an undef to |
| // help debugging. Probably the optimizer should not do this. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) |
| .addReg(0U).addImm(DI->getOffset()) |
| .addMetadata(DI->getVariable()); |
| } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| if (CI->getBitWidth() > 64) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) |
| .addCImm(CI).addImm(DI->getOffset()) |
| .addMetadata(DI->getVariable()); |
| else |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) |
| .addImm(CI->getZExtValue()).addImm(DI->getOffset()) |
| .addMetadata(DI->getVariable()); |
| } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) |
| .addFPImm(CF).addImm(DI->getOffset()) |
| .addMetadata(DI->getVariable()); |
| } else if (unsigned Reg = lookUpRegForValue(V)) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) |
| .addReg(Reg, RegState::Debug).addImm(DI->getOffset()) |
| .addMetadata(DI->getVariable()); |
| } else { |
| // We can't yet handle anything else here because it would require |
| // generating code, thus altering codegen because of debug info. |
| DEBUG(dbgs() << "Dropping debug info for " << DI); |
| } |
| return true; |
| } |
| case Intrinsic::eh_exception: { |
| EVT VT = TLI.getValueType(Call->getType()); |
| if (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)!=TargetLowering::Expand) |
| break; |
| |
| assert(FuncInfo.MBB->isLandingPad() && |
| "Call to eh.exception not in landing pad!"); |
| unsigned Reg = TLI.getExceptionAddressRegister(); |
| const TargetRegisterClass *RC = TLI.getRegClassFor(VT); |
| unsigned ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(Reg); |
| UpdateValueMap(Call, ResultReg); |
| return true; |
| } |
| case Intrinsic::eh_selector: { |
| EVT VT = TLI.getValueType(Call->getType()); |
| if (TLI.getOperationAction(ISD::EHSELECTION, VT) != TargetLowering::Expand) |
| break; |
| if (FuncInfo.MBB->isLandingPad()) |
| AddCatchInfo(*Call, &FuncInfo.MF->getMMI(), FuncInfo.MBB); |
| else { |
| #ifndef NDEBUG |
| FuncInfo.CatchInfoLost.insert(Call); |
| #endif |
| // FIXME: Mark exception selector register as live in. Hack for PR1508. |
| unsigned Reg = TLI.getExceptionSelectorRegister(); |
| if (Reg) FuncInfo.MBB->addLiveIn(Reg); |
| } |
| |
| unsigned Reg = TLI.getExceptionSelectorRegister(); |
| EVT SrcVT = TLI.getPointerTy(); |
| const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT); |
| unsigned ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(Reg); |
| |
| bool ResultRegIsKill = hasTrivialKill(Call); |
| |
| // Cast the register to the type of the selector. |
| if (SrcVT.bitsGT(MVT::i32)) |
| ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE, |
| ResultReg, ResultRegIsKill); |
| else if (SrcVT.bitsLT(MVT::i32)) |
| ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, |
| ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill); |
| if (ResultReg == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| UpdateValueMap(Call, ResultReg); |
| |
| return true; |
| } |
| case Intrinsic::objectsize: { |
| ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1)); |
| unsigned long long Res = CI->isZero() ? -1ULL : 0; |
| Constant *ResCI = ConstantInt::get(Call->getType(), Res); |
| unsigned ResultReg = getRegForValue(ResCI); |
| if (ResultReg == 0) |
| return false; |
| UpdateValueMap(Call, ResultReg); |
| return true; |
| } |
| } |
| |
| // Usually, it does not make sense to initialize a value, |
| // make an unrelated function call and use the value, because |
| // it tends to be spilled on the stack. So, we move the pointer |
| // to the last local value to the beginning of the block, so that |
| // all the values which have already been materialized, |
| // appear after the call. It also makes sense to skip intrinsics |
| // since they tend to be inlined. |
| if (!isa<IntrinsicInst>(F)) |
| flushLocalValueMap(); |
| |
| // An arbitrary call. Bail. |
| return false; |
| } |
| |
| bool FastISel::SelectCast(const User *I, unsigned Opcode) { |
| EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(I->getType()); |
| |
| if (SrcVT == MVT::Other || !SrcVT.isSimple() || |
| DstVT == MVT::Other || !DstVT.isSimple()) |
| // Unhandled type. Halt "fast" selection and bail. |
| return false; |
| |
| // Check if the destination type is legal. |
| if (!TLI.isTypeLegal(DstVT)) |
| return false; |
| |
| // Check if the source operand is legal. |
| if (!TLI.isTypeLegal(SrcVT)) |
| return false; |
| |
| unsigned InputReg = getRegForValue(I->getOperand(0)); |
| if (!InputReg) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); |
| |
| unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), |
| DstVT.getSimpleVT(), |
| Opcode, |
| InputReg, InputRegIsKill); |
| if (!ResultReg) |
| return false; |
| |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool FastISel::SelectBitCast(const User *I) { |
| // If the bitcast doesn't change the type, just use the operand value. |
| if (I->getType() == I->getOperand(0)->getType()) { |
| unsigned Reg = getRegForValue(I->getOperand(0)); |
| if (Reg == 0) |
| return false; |
| UpdateValueMap(I, Reg); |
| return true; |
| } |
| |
| // Bitcasts of other values become reg-reg copies or BITCAST operators. |
| EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(I->getType()); |
| |
| if (SrcVT == MVT::Other || !SrcVT.isSimple() || |
| DstVT == MVT::Other || !DstVT.isSimple() || |
| !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT)) |
| // Unhandled type. Halt "fast" selection and bail. |
| return false; |
| |
| unsigned Op0 = getRegForValue(I->getOperand(0)); |
| if (Op0 == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| bool Op0IsKill = hasTrivialKill(I->getOperand(0)); |
| |
| // First, try to perform the bitcast by inserting a reg-reg copy. |
| unsigned ResultReg = 0; |
| if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) { |
| TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); |
| TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); |
| // Don't attempt a cross-class copy. It will likely fail. |
| if (SrcClass == DstClass) { |
| ResultReg = createResultReg(DstClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(Op0); |
| } |
| } |
| |
| // If the reg-reg copy failed, select a BITCAST opcode. |
| if (!ResultReg) |
| ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), |
| ISD::BITCAST, Op0, Op0IsKill); |
| |
| if (!ResultReg) |
| return false; |
| |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool |
| FastISel::SelectInstruction(const Instruction *I) { |
| // Just before the terminator instruction, insert instructions to |
| // feed PHI nodes in successor blocks. |
| if (isa<TerminatorInst>(I)) |
| if (!HandlePHINodesInSuccessorBlocks(I->getParent())) |
| return false; |
| |
| DL = I->getDebugLoc(); |
| |
| // First, try doing target-independent selection. |
| if (SelectOperator(I, I->getOpcode())) { |
| DL = DebugLoc(); |
| return true; |
| } |
| |
| // Next, try calling the target to attempt to handle the instruction. |
| if (TargetSelectInstruction(I)) { |
| DL = DebugLoc(); |
| return true; |
| } |
| |
| DL = DebugLoc(); |
| return false; |
| } |
| |
| /// FastEmitBranch - Emit an unconditional branch to the given block, |
| /// unless it is the immediate (fall-through) successor, and update |
| /// the CFG. |
| void |
| FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) { |
| if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) { |
| // The unconditional fall-through case, which needs no instructions. |
| } else { |
| // The unconditional branch case. |
| TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL, |
| SmallVector<MachineOperand, 0>(), DL); |
| } |
| FuncInfo.MBB->addSuccessor(MSucc); |
| } |
| |
| /// SelectFNeg - Emit an FNeg operation. |
| /// |
| bool |
| FastISel::SelectFNeg(const User *I) { |
| unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); |
| if (OpReg == 0) return false; |
| |
| bool OpRegIsKill = hasTrivialKill(I); |
| |
| // If the target has ISD::FNEG, use it. |
| EVT VT = TLI.getValueType(I->getType()); |
| unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), |
| ISD::FNEG, OpReg, OpRegIsKill); |
| if (ResultReg != 0) { |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| // Bitcast the value to integer, twiddle the sign bit with xor, |
| // and then bitcast it back to floating-point. |
| if (VT.getSizeInBits() > 64) return false; |
| EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); |
| if (!TLI.isTypeLegal(IntVT)) |
| return false; |
| |
| unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), |
| ISD::BITCAST, OpReg, OpRegIsKill); |
| if (IntReg == 0) |
| return false; |
| |
| unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, |
| IntReg, /*Kill=*/true, |
| UINT64_C(1) << (VT.getSizeInBits()-1), |
| IntVT.getSimpleVT()); |
| if (IntResultReg == 0) |
| return false; |
| |
| ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), |
| ISD::BITCAST, IntResultReg, /*Kill=*/true); |
| if (ResultReg == 0) |
| return false; |
| |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool |
| FastISel::SelectExtractValue(const User *U) { |
| const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); |
| if (!EVI) |
| return false; |
| |
| // Make sure we only try to handle extracts with a legal result. But also |
| // allow i1 because it's easy. |
| EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); |
| if (!RealVT.isSimple()) |
| return false; |
| MVT VT = RealVT.getSimpleVT(); |
| if (!TLI.isTypeLegal(VT) && VT != MVT::i1) |
| return false; |
| |
| const Value *Op0 = EVI->getOperand(0); |
| Type *AggTy = Op0->getType(); |
| |
| // Get the base result register. |
| unsigned ResultReg; |
| DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); |
| if (I != FuncInfo.ValueMap.end()) |
| ResultReg = I->second; |
| else if (isa<Instruction>(Op0)) |
| ResultReg = FuncInfo.InitializeRegForValue(Op0); |
| else |
| return false; // fast-isel can't handle aggregate constants at the moment |
| |
| // Get the actual result register, which is an offset from the base register. |
| unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); |
| |
| SmallVector<EVT, 4> AggValueVTs; |
| ComputeValueVTs(TLI, AggTy, AggValueVTs); |
| |
| for (unsigned i = 0; i < VTIndex; i++) |
| ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); |
| |
| UpdateValueMap(EVI, ResultReg); |
| return true; |
| } |
| |
| bool |
| FastISel::SelectOperator(const User *I, unsigned Opcode) { |
| switch (Opcode) { |
| case Instruction::Add: |
| return SelectBinaryOp(I, ISD::ADD); |
| case Instruction::FAdd: |
| return SelectBinaryOp(I, ISD::FADD); |
| case Instruction::Sub: |
| return SelectBinaryOp(I, ISD::SUB); |
| case Instruction::FSub: |
| // FNeg is currently represented in LLVM IR as a special case of FSub. |
| if (BinaryOperator::isFNeg(I)) |
| return SelectFNeg(I); |
| return SelectBinaryOp(I, ISD::FSUB); |
| case Instruction::Mul: |
| return SelectBinaryOp(I, ISD::MUL); |
| case Instruction::FMul: |
| return SelectBinaryOp(I, ISD::FMUL); |
| case Instruction::SDiv: |
| return SelectBinaryOp(I, ISD::SDIV); |
| case Instruction::UDiv: |
| return SelectBinaryOp(I, ISD::UDIV); |
| case Instruction::FDiv: |
| return SelectBinaryOp(I, ISD::FDIV); |
| case Instruction::SRem: |
| return SelectBinaryOp(I, ISD::SREM); |
| case Instruction::URem: |
| return SelectBinaryOp(I, ISD::UREM); |
| case Instruction::FRem: |
| return SelectBinaryOp(I, ISD::FREM); |
| case Instruction::Shl: |
| return SelectBinaryOp(I, ISD::SHL); |
| case Instruction::LShr: |
| return SelectBinaryOp(I, ISD::SRL); |
| case Instruction::AShr: |
| return SelectBinaryOp(I, ISD::SRA); |
| case Instruction::And: |
| return SelectBinaryOp(I, ISD::AND); |
| case Instruction::Or: |
| return SelectBinaryOp(I, ISD::OR); |
| case Instruction::Xor: |
| return SelectBinaryOp(I, ISD::XOR); |
| |
| case Instruction::GetElementPtr: |
| return SelectGetElementPtr(I); |
| |
| case Instruction::Br: { |
| const BranchInst *BI = cast<BranchInst>(I); |
| |
| if (BI->isUnconditional()) { |
| const BasicBlock *LLVMSucc = BI->getSuccessor(0); |
| MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; |
| FastEmitBranch(MSucc, BI->getDebugLoc()); |
| return true; |
| } |
| |
| // Conditional branches are not handed yet. |
| // Halt "fast" selection and bail. |
| return false; |
| } |
| |
| case Instruction::Unreachable: |
| // Nothing to emit. |
| return true; |
| |
| case Instruction::Alloca: |
| // FunctionLowering has the static-sized case covered. |
| if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) |
| return true; |
| |
| // Dynamic-sized alloca is not handled yet. |
| return false; |
| |
| case Instruction::Call: |
| return SelectCall(I); |
| |
| case Instruction::BitCast: |
| return SelectBitCast(I); |
| |
| case Instruction::FPToSI: |
| return SelectCast(I, ISD::FP_TO_SINT); |
| case Instruction::ZExt: |
| return SelectCast(I, ISD::ZERO_EXTEND); |
| case Instruction::SExt: |
| return SelectCast(I, ISD::SIGN_EXTEND); |
| case Instruction::Trunc: |
| return SelectCast(I, ISD::TRUNCATE); |
| case Instruction::SIToFP: |
| return SelectCast(I, ISD::SINT_TO_FP); |
| |
| case Instruction::IntToPtr: // Deliberate fall-through. |
| case Instruction::PtrToInt: { |
| EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(I->getType()); |
| if (DstVT.bitsGT(SrcVT)) |
| return SelectCast(I, ISD::ZERO_EXTEND); |
| if (DstVT.bitsLT(SrcVT)) |
| return SelectCast(I, ISD::TRUNCATE); |
| unsigned Reg = getRegForValue(I->getOperand(0)); |
| if (Reg == 0) return false; |
| UpdateValueMap(I, Reg); |
| return true; |
| } |
| |
| case Instruction::ExtractValue: |
| return SelectExtractValue(I); |
| |
| case Instruction::PHI: |
| llvm_unreachable("FastISel shouldn't visit PHI nodes!"); |
| |
| default: |
| // Unhandled instruction. Halt "fast" selection and bail. |
| return false; |
| } |
| } |
| |
| FastISel::FastISel(FunctionLoweringInfo &funcInfo) |
| : FuncInfo(funcInfo), |
| MRI(FuncInfo.MF->getRegInfo()), |
| MFI(*FuncInfo.MF->getFrameInfo()), |
| MCP(*FuncInfo.MF->getConstantPool()), |
| TM(FuncInfo.MF->getTarget()), |
| TD(*TM.getTargetData()), |
| TII(*TM.getInstrInfo()), |
| TLI(*TM.getTargetLowering()), |
| TRI(*TM.getRegisterInfo()) { |
| } |
| |
| FastISel::~FastISel() {} |
| |
| unsigned FastISel::FastEmit_(MVT, MVT, |
| unsigned) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_r(MVT, MVT, |
| unsigned, |
| unsigned /*Op0*/, bool /*Op0IsKill*/) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_rr(MVT, MVT, |
| unsigned, |
| unsigned /*Op0*/, bool /*Op0IsKill*/, |
| unsigned /*Op1*/, bool /*Op1IsKill*/) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_f(MVT, MVT, |
| unsigned, const ConstantFP * /*FPImm*/) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_ri(MVT, MVT, |
| unsigned, |
| unsigned /*Op0*/, bool /*Op0IsKill*/, |
| uint64_t /*Imm*/) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_rf(MVT, MVT, |
| unsigned, |
| unsigned /*Op0*/, bool /*Op0IsKill*/, |
| const ConstantFP * /*FPImm*/) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_rri(MVT, MVT, |
| unsigned, |
| unsigned /*Op0*/, bool /*Op0IsKill*/, |
| unsigned /*Op1*/, bool /*Op1IsKill*/, |
| uint64_t /*Imm*/) { |
| return 0; |
| } |
| |
| /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries |
| /// to emit an instruction with an immediate operand using FastEmit_ri. |
| /// If that fails, it materializes the immediate into a register and try |
| /// FastEmit_rr instead. |
| unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, |
| unsigned Op0, bool Op0IsKill, |
| uint64_t Imm, MVT ImmType) { |
| // If this is a multiply by a power of two, emit this as a shift left. |
| if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { |
| Opcode = ISD::SHL; |
| Imm = Log2_64(Imm); |
| } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { |
| // div x, 8 -> srl x, 3 |
| Opcode = ISD::SRL; |
| Imm = Log2_64(Imm); |
| } |
| |
| // Horrible hack (to be removed), check to make sure shift amounts are |
| // in-range. |
| if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && |
| Imm >= VT.getSizeInBits()) |
| return 0; |
| |
| // First check if immediate type is legal. If not, we can't use the ri form. |
| unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); |
| if (ResultReg != 0) |
| return ResultReg; |
| unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); |
| if (MaterialReg == 0) { |
| // This is a bit ugly/slow, but failing here means falling out of |
| // fast-isel, which would be very slow. |
| IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), |
| VT.getSizeInBits()); |
| MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); |
| } |
| return FastEmit_rr(VT, VT, Opcode, |
| Op0, Op0IsKill, |
| MaterialReg, /*Kill=*/true); |
| } |
| |
| unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { |
| return MRI.createVirtualRegister(RC); |
| } |
| |
| unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, |
| const TargetRegisterClass* RC) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg); |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, bool Op0IsKill) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) |
| .addReg(Op0, Op0IsKill * RegState::Kill); |
| else { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) |
| .addReg(Op0, Op0IsKill * RegState::Kill); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(II.ImplicitDefs[0]); |
| } |
| |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, bool Op0IsKill, |
| unsigned Op1, bool Op1IsKill) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) |
| .addReg(Op0, Op0IsKill * RegState::Kill) |
| .addReg(Op1, Op1IsKill * RegState::Kill); |
| else { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) |
| .addReg(Op0, Op0IsKill * RegState::Kill) |
| .addReg(Op1, Op1IsKill * RegState::Kill); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(II.ImplicitDefs[0]); |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, bool Op0IsKill, |
| unsigned Op1, bool Op1IsKill, |
| unsigned Op2, bool Op2IsKill) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) |
| .addReg(Op0, Op0IsKill * RegState::Kill) |
| .addReg(Op1, Op1IsKill * RegState::Kill) |
| .addReg(Op2, Op2IsKill * RegState::Kill); |
| else { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) |
| .addReg(Op0, Op0IsKill * RegState::Kill) |
| .addReg(Op1, Op1IsKill * RegState::Kill) |
| .addReg(Op2, Op2IsKill * RegState::Kill); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(II.ImplicitDefs[0]); |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, bool Op0IsKill, |
| uint64_t Imm) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) |
| .addReg(Op0, Op0IsKill * RegState::Kill) |
| .addImm(Imm); |
| else { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) |
| .addReg(Op0, Op0IsKill * RegState::Kill) |
| .addImm(Imm); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(II.ImplicitDefs[0]); |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, bool Op0IsKill, |
| uint64_t Imm1, uint64_t Imm2) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) |
| .addReg(Op0, Op0IsKill * RegState::Kill) |
| .addImm(Imm1) |
| .addImm(Imm2); |
| else { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) |
| .addReg(Op0, Op0IsKill * RegState::Kill) |
| .addImm(Imm1) |
| .addImm(Imm2); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(II.ImplicitDefs[0]); |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, bool Op0IsKill, |
| const ConstantFP *FPImm) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) |
| .addReg(Op0, Op0IsKill * RegState::Kill) |
| .addFPImm(FPImm); |
| else { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) |
| .addReg(Op0, Op0IsKill * RegState::Kill) |
| .addFPImm(FPImm); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(II.ImplicitDefs[0]); |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, bool Op0IsKill, |
| unsigned Op1, bool Op1IsKill, |
| uint64_t Imm) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) |
| .addReg(Op0, Op0IsKill * RegState::Kill) |
| .addReg(Op1, Op1IsKill * RegState::Kill) |
| .addImm(Imm); |
| else { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) |
| .addReg(Op0, Op0IsKill * RegState::Kill) |
| .addReg(Op1, Op1IsKill * RegState::Kill) |
| .addImm(Imm); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(II.ImplicitDefs[0]); |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| uint64_t Imm) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm); |
| else { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(II.ImplicitDefs[0]); |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| uint64_t Imm1, uint64_t Imm2) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) |
| .addImm(Imm1).addImm(Imm2); |
| else { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(II.ImplicitDefs[0]); |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, |
| unsigned Op0, bool Op0IsKill, |
| uint32_t Idx) { |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); |
| assert(TargetRegisterInfo::isVirtualRegister(Op0) && |
| "Cannot yet extract from physregs"); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, |
| DL, TII.get(TargetOpcode::COPY), ResultReg) |
| .addReg(Op0, getKillRegState(Op0IsKill), Idx); |
| return ResultReg; |
| } |
| |
| /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op |
| /// with all but the least significant bit set to zero. |
| unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { |
| return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); |
| } |
| |
| /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. |
| /// Emit code to ensure constants are copied into registers when needed. |
| /// Remember the virtual registers that need to be added to the Machine PHI |
| /// nodes as input. We cannot just directly add them, because expansion |
| /// might result in multiple MBB's for one BB. As such, the start of the |
| /// BB might correspond to a different MBB than the end. |
| bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { |
| const TerminatorInst *TI = LLVMBB->getTerminator(); |
| |
| SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; |
| unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); |
| |
| // Check successor nodes' PHI nodes that expect a constant to be available |
| // from this block. |
| for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { |
| const BasicBlock *SuccBB = TI->getSuccessor(succ); |
| if (!isa<PHINode>(SuccBB->begin())) continue; |
| MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; |
| |
| // If this terminator has multiple identical successors (common for |
| // switches), only handle each succ once. |
| if (!SuccsHandled.insert(SuccMBB)) continue; |
| |
| MachineBasicBlock::iterator MBBI = SuccMBB->begin(); |
| |
| // At this point we know that there is a 1-1 correspondence between LLVM PHI |
| // nodes and Machine PHI nodes, but the incoming operands have not been |
| // emitted yet. |
| for (BasicBlock::const_iterator I = SuccBB->begin(); |
| const PHINode *PN = dyn_cast<PHINode>(I); ++I) { |
| |
| // Ignore dead phi's. |
| if (PN->use_empty()) continue; |
| |
| // Only handle legal types. Two interesting things to note here. First, |
| // by bailing out early, we may leave behind some dead instructions, |
| // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its |
| // own moves. Second, this check is necessary because FastISel doesn't |
| // use CreateRegs to create registers, so it always creates |
| // exactly one register for each non-void instruction. |
| EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); |
| if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { |
| // Promote MVT::i1. |
| if (VT == MVT::i1) |
| VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); |
| else { |
| FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); |
| return false; |
| } |
| } |
| |
| const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); |
| |
| // Set the DebugLoc for the copy. Prefer the location of the operand |
| // if there is one; use the location of the PHI otherwise. |
| DL = PN->getDebugLoc(); |
| if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) |
| DL = Inst->getDebugLoc(); |
| |
| unsigned Reg = getRegForValue(PHIOp); |
| if (Reg == 0) { |
| FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); |
| return false; |
| } |
| FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); |
| DL = DebugLoc(); |
| } |
| } |
| |
| return true; |
| } |