blob: 4d8b75a184feebbefbe357dc1b5a9743ad626077 [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Texture.cpp: Implements the Texture class and its derived classes
// Texture2D and TextureCubeMap. Implements GL texture objects and related
// functionality. [OpenGL ES 2.0.24] section 3.7 page 63.
#include "Texture.h"
#include "main.h"
#include "mathutil.h"
#include "Framebuffer.h"
#include "Device.hpp"
#include "libEGL/Display.h"
#include "common/Surface.hpp"
#include "common/debug.h"
#include <algorithm>
namespace es1
{
Texture::Texture(GLuint name) : egl::Texture(name)
{
mMinFilter = GL_NEAREST_MIPMAP_LINEAR;
mMagFilter = GL_LINEAR;
mWrapS = GL_REPEAT;
mWrapT = GL_REPEAT;
mMaxAnisotropy = 1.0f;
generateMipmap = GL_FALSE;
cropRectU = 0;
cropRectV = 0;
cropRectW = 0;
cropRectH = 0;
resource = new sw::Resource(0);
}
Texture::~Texture()
{
resource->destruct();
}
sw::Resource *Texture::getResource() const
{
return resource;
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMinFilter(GLenum filter)
{
switch(filter)
{
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
if(getTarget() == GL_TEXTURE_EXTERNAL_OES)
{
return false;
}
// Fall through
case GL_NEAREST:
case GL_LINEAR:
mMinFilter = filter;
return true;
default:
return false;
}
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMagFilter(GLenum filter)
{
switch(filter)
{
case GL_NEAREST:
case GL_LINEAR:
mMagFilter = filter;
return true;
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapS(GLenum wrap)
{
switch(wrap)
{
case GL_REPEAT:
case GL_MIRRORED_REPEAT_OES:
if(getTarget() == GL_TEXTURE_EXTERNAL_OES)
{
return false;
}
// Fall through
case GL_CLAMP_TO_EDGE:
mWrapS = wrap;
return true;
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapT(GLenum wrap)
{
switch(wrap)
{
case GL_REPEAT:
case GL_MIRRORED_REPEAT_OES:
if(getTarget() == GL_TEXTURE_EXTERNAL_OES)
{
return false;
}
// Fall through
case GL_CLAMP_TO_EDGE:
mWrapT = wrap;
return true;
default:
return false;
}
}
// Returns true on successful max anisotropy update (valid anisotropy value)
bool Texture::setMaxAnisotropy(float textureMaxAnisotropy)
{
textureMaxAnisotropy = std::min(textureMaxAnisotropy, MAX_TEXTURE_MAX_ANISOTROPY);
if(textureMaxAnisotropy < 1.0f)
{
return false;
}
if(mMaxAnisotropy != textureMaxAnisotropy)
{
mMaxAnisotropy = textureMaxAnisotropy;
}
return true;
}
void Texture::setGenerateMipmap(GLboolean enable)
{
generateMipmap = enable;
}
void Texture::setCropRect(GLint u, GLint v, GLint w, GLint h)
{
cropRectU = u;
cropRectV = v;
cropRectW = w;
cropRectH = h;
}
GLenum Texture::getMinFilter() const
{
return mMinFilter;
}
GLenum Texture::getMagFilter() const
{
return mMagFilter;
}
GLenum Texture::getWrapS() const
{
return mWrapS;
}
GLenum Texture::getWrapT() const
{
return mWrapT;
}
GLfloat Texture::getMaxAnisotropy() const
{
return mMaxAnisotropy;
}
GLboolean Texture::getGenerateMipmap() const
{
return generateMipmap;
}
GLint Texture::getCropRectU() const
{
return cropRectU;
}
GLint Texture::getCropRectV() const
{
return cropRectV;
}
GLint Texture::getCropRectW() const
{
return cropRectW;
}
GLint Texture::getCropRectH() const
{
return cropRectH;
}
egl::Image *Texture::createSharedImage(GLenum target, unsigned int level)
{
egl::Image *image = getRenderTarget(target, level); // Increments reference count
if(image)
{
image->markShared();
}
return image;
}
void Texture::setImage(GLenum format, GLenum type, GLint unpackAlignment, const void *pixels, egl::Image *image)
{
if(pixels && image)
{
gl::PixelStorageModes unpackParameters;
unpackParameters.alignment = unpackAlignment;
image->loadImageData(0, 0, 0, image->getWidth(), image->getHeight(), 1, format, type, unpackParameters, pixels);
}
}
void Texture::setCompressedImage(GLsizei imageSize, const void *pixels, egl::Image *image)
{
if(pixels && image && (imageSize > 0)) // imageSize's correlation to width and height is already validated with gl::ComputeCompressedSize() at the API level
{
image->loadCompressedData(0, 0, 0, image->getWidth(), image->getHeight(), 1, imageSize, pixels);
}
}
void Texture::subImage(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels, egl::Image *image)
{
if(!image)
{
return error(GL_INVALID_OPERATION);
}
if(pixels)
{
gl::PixelStorageModes unpackParameters;
unpackParameters.alignment = unpackAlignment;
image->loadImageData(xoffset, yoffset, 0, width, height, 1, format, type, unpackParameters, pixels);
}
}
void Texture::subImageCompressed(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels, egl::Image *image)
{
if(!image)
{
return error(GL_INVALID_OPERATION);
}
if(pixels && (imageSize > 0)) // imageSize's correlation to width and height is already validated with gl::ComputeCompressedSize() at the API level
{
image->loadCompressedData(xoffset, yoffset, 0, width, height, 1, imageSize, pixels);
}
}
bool Texture::copy(egl::Image *source, const sw::Rect &sourceRect, GLenum destFormat, GLint xoffset, GLint yoffset, egl::Image *dest)
{
Device *device = getDevice();
sw::SliceRect destRect(xoffset, yoffset, xoffset + (sourceRect.x1 - sourceRect.x0), yoffset + (sourceRect.y1 - sourceRect.y0), 0);
sw::SliceRect sourceSliceRect(sourceRect);
bool success = device->stretchRect(source, &sourceSliceRect, dest, &destRect, false);
if(!success)
{
return error(GL_OUT_OF_MEMORY, false);
}
return true;
}
bool Texture::isMipmapFiltered() const
{
switch(mMinFilter)
{
case GL_NEAREST:
case GL_LINEAR:
return false;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
return true;
default: UNREACHABLE(mMinFilter);
}
return false;
}
Texture2D::Texture2D(GLuint name) : Texture(name)
{
for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
image[i] = nullptr;
}
mSurface = nullptr;
mColorbufferProxy = nullptr;
mProxyRefs = 0;
}
Texture2D::~Texture2D()
{
for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
if(image[i])
{
image[i]->unbind(this);
image[i] = nullptr;
}
}
if(mSurface)
{
mSurface->setBoundTexture(nullptr);
mSurface = nullptr;
}
mColorbufferProxy = nullptr;
}
// We need to maintain a count of references to renderbuffers acting as
// proxies for this texture, so that we do not attempt to use a pointer
// to a renderbuffer proxy which has been deleted.
void Texture2D::addProxyRef(const Renderbuffer *proxy)
{
mProxyRefs++;
}
void Texture2D::releaseProxy(const Renderbuffer *proxy)
{
if(mProxyRefs > 0)
{
mProxyRefs--;
}
if(mProxyRefs == 0)
{
mColorbufferProxy = nullptr;
}
}
void Texture2D::sweep()
{
int imageCount = 0;
for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
if(image[i] && image[i]->isChildOf(this))
{
if(!image[i]->hasSingleReference())
{
return;
}
imageCount++;
}
}
if(imageCount == referenceCount)
{
destroy();
}
}
GLenum Texture2D::getTarget() const
{
return GL_TEXTURE_2D;
}
GLsizei Texture2D::getWidth(GLenum target, GLint level) const
{
ASSERT(target == GL_TEXTURE_2D);
return image[level] ? image[level]->getWidth() : 0;
}
GLsizei Texture2D::getHeight(GLenum target, GLint level) const
{
ASSERT(target == GL_TEXTURE_2D);
return image[level] ? image[level]->getHeight() : 0;
}
GLint Texture2D::getFormat(GLenum target, GLint level) const
{
ASSERT(target == GL_TEXTURE_2D);
return image[level] ? image[level]->getFormat() : GL_NONE;
}
int Texture2D::getTopLevel() const
{
ASSERT(isSamplerComplete());
int level = 0;
while(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS && image[level])
{
level++;
}
return level - 1;
}
void Texture2D::setImage(GLint level, GLsizei width, GLsizei height, GLint internalformat, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
if(image[level])
{
image[level]->release();
}
image[level] = egl::Image::create(this, width, height, internalformat);
if(!image[level])
{
return error(GL_OUT_OF_MEMORY);
}
Texture::setImage(format, type, unpackAlignment, pixels, image[level]);
}
void Texture2D::bindTexImage(gl::Surface *surface)
{
for(int level = 0; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
if(image[level])
{
image[level]->release();
image[level] = nullptr;
}
}
image[0] = surface->getRenderTarget();
mSurface = surface;
mSurface->setBoundTexture(this);
}
void Texture2D::releaseTexImage()
{
for(int level = 0; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
if(image[level])
{
image[level]->release();
image[level] = nullptr;
}
}
}
void Texture2D::setCompressedImage(GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei imageSize, const void *pixels)
{
if(image[level])
{
image[level]->release();
}
image[level] = egl::Image::create(this, width, height, format);
if(!image[level])
{
return error(GL_OUT_OF_MEMORY);
}
Texture::setCompressedImage(imageSize, pixels, image[level]);
}
void Texture2D::subImage(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
Texture::subImage(xoffset, yoffset, width, height, format, type, unpackAlignment, pixels, image[level]);
}
void Texture2D::subImageCompressed(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels)
{
Texture::subImageCompressed(xoffset, yoffset, width, height, format, imageSize, pixels, image[level]);
}
void Texture2D::copyImage(GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
if(image[level])
{
image[level]->release();
}
image[level] = egl::Image::create(this, width, height, format);
if(!image[level])
{
return error(GL_OUT_OF_MEMORY);
}
if(width != 0 && height != 0)
{
egl::Image *renderTarget = source->getRenderTarget();
if(!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
sw::Rect sourceRect = {x, y, x + width, y + height};
sourceRect.clip(0, 0, source->getColorbuffer()->getWidth(), source->getColorbuffer()->getHeight());
copy(renderTarget, sourceRect, format, 0, 0, image[level]);
renderTarget->release();
}
}
void Texture2D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
if(!image[level])
{
return error(GL_INVALID_OPERATION);
}
if(xoffset + width > image[level]->getWidth() || yoffset + height > image[level]->getHeight())
{
return error(GL_INVALID_VALUE);
}
egl::Image *renderTarget = source->getRenderTarget();
if(!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
sw::Rect sourceRect = {x, y, x + width, y + height};
sourceRect.clip(0, 0, source->getColorbuffer()->getWidth(), source->getColorbuffer()->getHeight());
copy(renderTarget, sourceRect, image[level]->getFormat(), xoffset, yoffset, image[level]);
renderTarget->release();
}
void Texture2D::setSharedImage(egl::Image *sharedImage)
{
sharedImage->addRef();
if(image[0])
{
image[0]->release();
}
image[0] = sharedImage;
}
// Tests for 2D texture sampling completeness. [OpenGL ES 2.0.24] section 3.8.2 page 85.
bool Texture2D::isSamplerComplete() const
{
if(!image[0])
{
return false;
}
GLsizei width = image[0]->getWidth();
GLsizei height = image[0]->getHeight();
if(width <= 0 || height <= 0)
{
return false;
}
if(isMipmapFiltered())
{
if(!generateMipmap && !isMipmapComplete())
{
return false;
}
}
return true;
}
// Tests for 2D texture (mipmap) completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81.
bool Texture2D::isMipmapComplete() const
{
GLsizei width = image[0]->getWidth();
GLsizei height = image[0]->getHeight();
int q = log2(std::max(width, height));
for(int level = 1; level <= q; level++)
{
if(!image[level])
{
return false;
}
if(image[level]->getFormat() != image[0]->getFormat())
{
return false;
}
if(image[level]->getWidth() != std::max(1, width >> level))
{
return false;
}
if(image[level]->getHeight() != std::max(1, height >> level))
{
return false;
}
}
return true;
}
bool Texture2D::isCompressed(GLenum target, GLint level) const
{
return IsCompressed(getFormat(target, level));
}
bool Texture2D::isDepth(GLenum target, GLint level) const
{
return IsDepthTexture(getFormat(target, level));
}
void Texture2D::generateMipmaps()
{
if(!image[0])
{
return; // FIXME: error?
}
unsigned int q = log2(std::max(image[0]->getWidth(), image[0]->getHeight()));
for(unsigned int i = 1; i <= q; i++)
{
if(image[i])
{
image[i]->release();
}
image[i] = egl::Image::create(this, std::max(image[0]->getWidth() >> i, 1), std::max(image[0]->getHeight() >> i, 1), image[0]->getFormat());
if(!image[i])
{
return error(GL_OUT_OF_MEMORY);
}
getDevice()->stretchRect(image[i - 1], 0, image[i], 0, true);
}
}
void Texture2D::autoGenerateMipmaps()
{
if(generateMipmap && image[0]->hasDirtyContents())
{
generateMipmaps();
image[0]->markContentsClean();
}
}
egl::Image *Texture2D::getImage(unsigned int level)
{
return image[level];
}
Renderbuffer *Texture2D::getRenderbuffer(GLenum target, GLint level)
{
if(target != GL_TEXTURE_2D)
{
return error(GL_INVALID_OPERATION, (Renderbuffer*)nullptr);
}
if(!mColorbufferProxy)
{
mColorbufferProxy = new Renderbuffer(name, new RenderbufferTexture2D(this, level));
}
else
{
mColorbufferProxy->setLevel(level);
}
return mColorbufferProxy;
}
egl::Image *Texture2D::getRenderTarget(GLenum target, unsigned int level)
{
ASSERT(target == GL_TEXTURE_2D);
ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS);
if(image[level])
{
image[level]->addRef();
}
return image[level];
}
bool Texture2D::isShared(GLenum target, unsigned int level) const
{
ASSERT(target == GL_TEXTURE_2D);
ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS);
if(mSurface) // Bound to an EGLSurface
{
return true;
}
if(!image[level])
{
return false;
}
return image[level]->isShared();
}
TextureExternal::TextureExternal(GLuint name) : Texture2D(name)
{
mMinFilter = GL_LINEAR;
mMagFilter = GL_LINEAR;
mWrapS = GL_CLAMP_TO_EDGE;
mWrapT = GL_CLAMP_TO_EDGE;
}
TextureExternal::~TextureExternal()
{
}
GLenum TextureExternal::getTarget() const
{
return GL_TEXTURE_EXTERNAL_OES;
}
}
egl::Image *createBackBuffer(int width, int height, sw::Format format, int multiSampleDepth)
{
if(width > es1::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE || height > es1::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE)
{
ERR("Invalid parameters: %dx%d", width, height);
return nullptr;
}
GLenum internalformat = sw2es::ConvertBackBufferFormat(format);
return egl::Image::create(width, height, internalformat, multiSampleDepth, false);
}
egl::Image *createDepthStencil(int width, int height, sw::Format format, int multiSampleDepth)
{
if(width > es1::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE || height > es1::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE)
{
ERR("Invalid parameters: %dx%d", width, height);
return nullptr;
}
bool lockable = true;
switch(format)
{
// case sw::FORMAT_D15S1:
case sw::FORMAT_D24S8:
case sw::FORMAT_D24X8:
// case sw::FORMAT_D24X4S4:
case sw::FORMAT_D24FS8:
case sw::FORMAT_D32:
case sw::FORMAT_D16:
lockable = false;
break;
// case sw::FORMAT_S8_LOCKABLE:
// case sw::FORMAT_D16_LOCKABLE:
case sw::FORMAT_D32F_LOCKABLE:
// case sw::FORMAT_D32_LOCKABLE:
case sw::FORMAT_DF24S8:
case sw::FORMAT_DF16S8:
lockable = true;
break;
default:
UNREACHABLE(format);
}
GLenum internalformat = sw2es::ConvertDepthStencilFormat(format);
egl::Image *surface = egl::Image::create(width, height, internalformat, multiSampleDepth, lockable);
if(!surface)
{
ERR("Out of memory");
return nullptr;
}
return surface;
}