|  | //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the TwoAddress instruction pass which is used | 
|  | // by most register allocators. Two-Address instructions are rewritten | 
|  | // from: | 
|  | // | 
|  | //     A = B op C | 
|  | // | 
|  | // to: | 
|  | // | 
|  | //     A = B | 
|  | //     A op= C | 
|  | // | 
|  | // Note that if a register allocator chooses to use this pass, that it | 
|  | // has to be capable of handling the non-SSA nature of these rewritten | 
|  | // virtual registers. | 
|  | // | 
|  | // It is also worth noting that the duplicate operand of the two | 
|  | // address instruction is removed. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "twoaddrinstr" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); | 
|  | STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce"); | 
|  | STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted"); | 
|  | STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); | 
|  | STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk"); | 
|  | STATISTIC(NumReMats,           "Number of instructions re-materialized"); | 
|  | STATISTIC(NumDeletes,          "Number of dead instructions deleted"); | 
|  |  | 
|  | namespace { | 
|  | class TwoAddressInstructionPass : public MachineFunctionPass { | 
|  | const TargetInstrInfo *TII; | 
|  | const TargetRegisterInfo *TRI; | 
|  | MachineRegisterInfo *MRI; | 
|  | LiveVariables *LV; | 
|  | AliasAnalysis *AA; | 
|  |  | 
|  | // DistanceMap - Keep track the distance of a MI from the start of the | 
|  | // current basic block. | 
|  | DenseMap<MachineInstr*, unsigned> DistanceMap; | 
|  |  | 
|  | // SrcRegMap - A map from virtual registers to physical registers which | 
|  | // are likely targets to be coalesced to due to copies from physical | 
|  | // registers to virtual registers. e.g. v1024 = move r0. | 
|  | DenseMap<unsigned, unsigned> SrcRegMap; | 
|  |  | 
|  | // DstRegMap - A map from virtual registers to physical registers which | 
|  | // are likely targets to be coalesced to due to copies to physical | 
|  | // registers from virtual registers. e.g. r1 = move v1024. | 
|  | DenseMap<unsigned, unsigned> DstRegMap; | 
|  |  | 
|  | /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen | 
|  | /// during the initial walk of the machine function. | 
|  | SmallVector<MachineInstr*, 16> RegSequences; | 
|  |  | 
|  | bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI, | 
|  | unsigned Reg, | 
|  | MachineBasicBlock::iterator OldPos); | 
|  |  | 
|  | bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC, | 
|  | MachineInstr *MI, MachineInstr *DefMI, | 
|  | MachineBasicBlock *MBB, unsigned Loc); | 
|  |  | 
|  | bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist, | 
|  | unsigned &LastDef); | 
|  |  | 
|  | MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB, | 
|  | unsigned Dist); | 
|  |  | 
|  | bool isProfitableToCommute(unsigned regB, unsigned regC, | 
|  | MachineInstr *MI, MachineBasicBlock *MBB, | 
|  | unsigned Dist); | 
|  |  | 
|  | bool CommuteInstruction(MachineBasicBlock::iterator &mi, | 
|  | MachineFunction::iterator &mbbi, | 
|  | unsigned RegB, unsigned RegC, unsigned Dist); | 
|  |  | 
|  | bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); | 
|  |  | 
|  | bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | MachineFunction::iterator &mbbi, | 
|  | unsigned RegA, unsigned RegB, unsigned Dist); | 
|  |  | 
|  | typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill; | 
|  | bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills, | 
|  | SmallVector<NewKill, 4> &NewKills, | 
|  | MachineBasicBlock *MBB, unsigned Dist); | 
|  | bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | MachineFunction::iterator &mbbi, unsigned Dist); | 
|  |  | 
|  | bool TryInstructionTransform(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | MachineFunction::iterator &mbbi, | 
|  | unsigned SrcIdx, unsigned DstIdx, | 
|  | unsigned Dist, | 
|  | SmallPtrSet<MachineInstr*, 8> &Processed); | 
|  |  | 
|  | void ScanUses(unsigned DstReg, MachineBasicBlock *MBB, | 
|  | SmallPtrSet<MachineInstr*, 8> &Processed); | 
|  |  | 
|  | void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB, | 
|  | SmallPtrSet<MachineInstr*, 8> &Processed); | 
|  |  | 
|  | void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg); | 
|  |  | 
|  | /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part | 
|  | /// of the de-ssa process. This replaces sources of REG_SEQUENCE as | 
|  | /// sub-register references of the register defined by REG_SEQUENCE. | 
|  | bool EliminateRegSequences(); | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | TwoAddressInstructionPass() : MachineFunctionPass(ID) { | 
|  | initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<AliasAnalysis>(); | 
|  | AU.addPreserved<LiveVariables>(); | 
|  | AU.addPreservedID(MachineLoopInfoID); | 
|  | AU.addPreservedID(MachineDominatorsID); | 
|  | AU.addPreservedID(PHIEliminationID); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | /// runOnMachineFunction - Pass entry point. | 
|  | bool runOnMachineFunction(MachineFunction&); | 
|  | }; | 
|  | } | 
|  |  | 
|  | char TwoAddressInstructionPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", | 
|  | "Two-Address instruction pass", false, false) | 
|  | INITIALIZE_AG_DEPENDENCY(AliasAnalysis) | 
|  | INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", | 
|  | "Two-Address instruction pass", false, false) | 
|  |  | 
|  | char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; | 
|  |  | 
|  | /// Sink3AddrInstruction - A two-address instruction has been converted to a | 
|  | /// three-address instruction to avoid clobbering a register. Try to sink it | 
|  | /// past the instruction that would kill the above mentioned register to reduce | 
|  | /// register pressure. | 
|  | bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB, | 
|  | MachineInstr *MI, unsigned SavedReg, | 
|  | MachineBasicBlock::iterator OldPos) { | 
|  | // FIXME: Shouldn't we be trying to do this before we three-addressify the | 
|  | // instruction?  After this transformation is done, we no longer need | 
|  | // the instruction to be in three-address form. | 
|  |  | 
|  | // Check if it's safe to move this instruction. | 
|  | bool SeenStore = true; // Be conservative. | 
|  | if (!MI->isSafeToMove(TII, AA, SeenStore)) | 
|  | return false; | 
|  |  | 
|  | unsigned DefReg = 0; | 
|  | SmallSet<unsigned, 4> UseRegs; | 
|  |  | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | if (!MOReg) | 
|  | continue; | 
|  | if (MO.isUse() && MOReg != SavedReg) | 
|  | UseRegs.insert(MO.getReg()); | 
|  | if (!MO.isDef()) | 
|  | continue; | 
|  | if (MO.isImplicit()) | 
|  | // Don't try to move it if it implicitly defines a register. | 
|  | return false; | 
|  | if (DefReg) | 
|  | // For now, don't move any instructions that define multiple registers. | 
|  | return false; | 
|  | DefReg = MO.getReg(); | 
|  | } | 
|  |  | 
|  | // Find the instruction that kills SavedReg. | 
|  | MachineInstr *KillMI = NULL; | 
|  | for (MachineRegisterInfo::use_nodbg_iterator | 
|  | UI = MRI->use_nodbg_begin(SavedReg), | 
|  | UE = MRI->use_nodbg_end(); UI != UE; ++UI) { | 
|  | MachineOperand &UseMO = UI.getOperand(); | 
|  | if (!UseMO.isKill()) | 
|  | continue; | 
|  | KillMI = UseMO.getParent(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we find the instruction that kills SavedReg, and it is in an | 
|  | // appropriate location, we can try to sink the current instruction | 
|  | // past it. | 
|  | if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || | 
|  | KillMI->getDesc().isTerminator()) | 
|  | return false; | 
|  |  | 
|  | // If any of the definitions are used by another instruction between the | 
|  | // position and the kill use, then it's not safe to sink it. | 
|  | // | 
|  | // FIXME: This can be sped up if there is an easy way to query whether an | 
|  | // instruction is before or after another instruction. Then we can use | 
|  | // MachineRegisterInfo def / use instead. | 
|  | MachineOperand *KillMO = NULL; | 
|  | MachineBasicBlock::iterator KillPos = KillMI; | 
|  | ++KillPos; | 
|  |  | 
|  | unsigned NumVisited = 0; | 
|  | for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) { | 
|  | MachineInstr *OtherMI = I; | 
|  | // DBG_VALUE cannot be counted against the limit. | 
|  | if (OtherMI->isDebugValue()) | 
|  | continue; | 
|  | if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost. | 
|  | return false; | 
|  | ++NumVisited; | 
|  | for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = OtherMI->getOperand(i); | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | if (!MOReg) | 
|  | continue; | 
|  | if (DefReg == MOReg) | 
|  | return false; | 
|  |  | 
|  | if (MO.isKill()) { | 
|  | if (OtherMI == KillMI && MOReg == SavedReg) | 
|  | // Save the operand that kills the register. We want to unset the kill | 
|  | // marker if we can sink MI past it. | 
|  | KillMO = &MO; | 
|  | else if (UseRegs.count(MOReg)) | 
|  | // One of the uses is killed before the destination. | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update kill and LV information. | 
|  | KillMO->setIsKill(false); | 
|  | KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); | 
|  | KillMO->setIsKill(true); | 
|  |  | 
|  | if (LV) | 
|  | LV->replaceKillInstruction(SavedReg, KillMI, MI); | 
|  |  | 
|  | // Move instruction to its destination. | 
|  | MBB->remove(MI); | 
|  | MBB->insert(KillPos, MI); | 
|  |  | 
|  | ++Num3AddrSunk; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isTwoAddrUse - Return true if the specified MI is using the specified | 
|  | /// register as a two-address operand. | 
|  | static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) { | 
|  | const MCInstrDesc &MCID = UseMI->getDesc(); | 
|  | for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = UseMI->getOperand(i); | 
|  | if (MO.isReg() && MO.getReg() == Reg && | 
|  | (MO.isDef() || UseMI->isRegTiedToDefOperand(i))) | 
|  | // Earlier use is a two-address one. | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isProfitableToReMat - Return true if the heuristics determines it is likely | 
|  | /// to be profitable to re-materialize the definition of Reg rather than copy | 
|  | /// the register. | 
|  | bool | 
|  | TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg, | 
|  | const TargetRegisterClass *RC, | 
|  | MachineInstr *MI, MachineInstr *DefMI, | 
|  | MachineBasicBlock *MBB, unsigned Loc) { | 
|  | bool OtherUse = false; | 
|  | for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg), | 
|  | UE = MRI->use_nodbg_end(); UI != UE; ++UI) { | 
|  | MachineOperand &UseMO = UI.getOperand(); | 
|  | MachineInstr *UseMI = UseMO.getParent(); | 
|  | MachineBasicBlock *UseMBB = UseMI->getParent(); | 
|  | if (UseMBB == MBB) { | 
|  | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); | 
|  | if (DI != DistanceMap.end() && DI->second == Loc) | 
|  | continue;  // Current use. | 
|  | OtherUse = true; | 
|  | // There is at least one other use in the MBB that will clobber the | 
|  | // register. | 
|  | if (isTwoAddrUse(UseMI, Reg)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If other uses in MBB are not two-address uses, then don't remat. | 
|  | if (OtherUse) | 
|  | return false; | 
|  |  | 
|  | // No other uses in the same block, remat if it's defined in the same | 
|  | // block so it does not unnecessarily extend the live range. | 
|  | return MBB == DefMI->getParent(); | 
|  | } | 
|  |  | 
|  | /// NoUseAfterLastDef - Return true if there are no intervening uses between the | 
|  | /// last instruction in the MBB that defines the specified register and the | 
|  | /// two-address instruction which is being processed. It also returns the last | 
|  | /// def location by reference | 
|  | bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg, | 
|  | MachineBasicBlock *MBB, unsigned Dist, | 
|  | unsigned &LastDef) { | 
|  | LastDef = 0; | 
|  | unsigned LastUse = Dist; | 
|  | for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg), | 
|  | E = MRI->reg_end(); I != E; ++I) { | 
|  | MachineOperand &MO = I.getOperand(); | 
|  | MachineInstr *MI = MO.getParent(); | 
|  | if (MI->getParent() != MBB || MI->isDebugValue()) | 
|  | continue; | 
|  | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); | 
|  | if (DI == DistanceMap.end()) | 
|  | continue; | 
|  | if (MO.isUse() && DI->second < LastUse) | 
|  | LastUse = DI->second; | 
|  | if (MO.isDef() && DI->second > LastDef) | 
|  | LastDef = DI->second; | 
|  | } | 
|  |  | 
|  | return !(LastUse > LastDef && LastUse < Dist); | 
|  | } | 
|  |  | 
|  | MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg, | 
|  | MachineBasicBlock *MBB, | 
|  | unsigned Dist) { | 
|  | unsigned LastUseDist = 0; | 
|  | MachineInstr *LastUse = 0; | 
|  | for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg), | 
|  | E = MRI->reg_end(); I != E; ++I) { | 
|  | MachineOperand &MO = I.getOperand(); | 
|  | MachineInstr *MI = MO.getParent(); | 
|  | if (MI->getParent() != MBB || MI->isDebugValue()) | 
|  | continue; | 
|  | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); | 
|  | if (DI == DistanceMap.end()) | 
|  | continue; | 
|  | if (DI->second >= Dist) | 
|  | continue; | 
|  |  | 
|  | if (MO.isUse() && DI->second > LastUseDist) { | 
|  | LastUse = DI->first; | 
|  | LastUseDist = DI->second; | 
|  | } | 
|  | } | 
|  | return LastUse; | 
|  | } | 
|  |  | 
|  | /// isCopyToReg - Return true if the specified MI is a copy instruction or | 
|  | /// a extract_subreg instruction. It also returns the source and destination | 
|  | /// registers and whether they are physical registers by reference. | 
|  | static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, | 
|  | unsigned &SrcReg, unsigned &DstReg, | 
|  | bool &IsSrcPhys, bool &IsDstPhys) { | 
|  | SrcReg = 0; | 
|  | DstReg = 0; | 
|  | if (MI.isCopy()) { | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(2).getReg(); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); | 
|  | IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isKilled - Test if the given register value, which is used by the given | 
|  | /// instruction, is killed by the given instruction. This looks through | 
|  | /// coalescable copies to see if the original value is potentially not killed. | 
|  | /// | 
|  | /// For example, in this code: | 
|  | /// | 
|  | ///   %reg1034 = copy %reg1024 | 
|  | ///   %reg1035 = copy %reg1025<kill> | 
|  | ///   %reg1036 = add %reg1034<kill>, %reg1035<kill> | 
|  | /// | 
|  | /// %reg1034 is not considered to be killed, since it is copied from a | 
|  | /// register which is not killed. Treating it as not killed lets the | 
|  | /// normal heuristics commute the (two-address) add, which lets | 
|  | /// coalescing eliminate the extra copy. | 
|  | /// | 
|  | static bool isKilled(MachineInstr &MI, unsigned Reg, | 
|  | const MachineRegisterInfo *MRI, | 
|  | const TargetInstrInfo *TII) { | 
|  | MachineInstr *DefMI = &MI; | 
|  | for (;;) { | 
|  | if (!DefMI->killsRegister(Reg)) | 
|  | return false; | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
|  | return true; | 
|  | MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); | 
|  | // If there are multiple defs, we can't do a simple analysis, so just | 
|  | // go with what the kill flag says. | 
|  | if (llvm::next(Begin) != MRI->def_end()) | 
|  | return true; | 
|  | DefMI = &*Begin; | 
|  | bool IsSrcPhys, IsDstPhys; | 
|  | unsigned SrcReg,  DstReg; | 
|  | // If the def is something other than a copy, then it isn't going to | 
|  | // be coalesced, so follow the kill flag. | 
|  | if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) | 
|  | return true; | 
|  | Reg = SrcReg; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isTwoAddrUse - Return true if the specified MI uses the specified register | 
|  | /// as a two-address use. If so, return the destination register by reference. | 
|  | static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { | 
|  | const MCInstrDesc &MCID = MI.getDesc(); | 
|  | unsigned NumOps = MI.isInlineAsm() | 
|  | ? MI.getNumOperands() : MCID.getNumOperands(); | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) | 
|  | continue; | 
|  | unsigned ti; | 
|  | if (MI.isRegTiedToDefOperand(i, &ti)) { | 
|  | DstReg = MI.getOperand(ti).getReg(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// findOnlyInterestingUse - Given a register, if has a single in-basic block | 
|  | /// use, return the use instruction if it's a copy or a two-address use. | 
|  | static | 
|  | MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, | 
|  | MachineRegisterInfo *MRI, | 
|  | const TargetInstrInfo *TII, | 
|  | bool &IsCopy, | 
|  | unsigned &DstReg, bool &IsDstPhys) { | 
|  | if (!MRI->hasOneNonDBGUse(Reg)) | 
|  | // None or more than one use. | 
|  | return 0; | 
|  | MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg); | 
|  | if (UseMI.getParent() != MBB) | 
|  | return 0; | 
|  | unsigned SrcReg; | 
|  | bool IsSrcPhys; | 
|  | if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { | 
|  | IsCopy = true; | 
|  | return &UseMI; | 
|  | } | 
|  | IsDstPhys = false; | 
|  | if (isTwoAddrUse(UseMI, Reg, DstReg)) { | 
|  | IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); | 
|  | return &UseMI; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// getMappedReg - Return the physical register the specified virtual register | 
|  | /// might be mapped to. | 
|  | static unsigned | 
|  | getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { | 
|  | while (TargetRegisterInfo::isVirtualRegister(Reg))  { | 
|  | DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); | 
|  | if (SI == RegMap.end()) | 
|  | return 0; | 
|  | Reg = SI->second; | 
|  | } | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
|  | return Reg; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// regsAreCompatible - Return true if the two registers are equal or aliased. | 
|  | /// | 
|  | static bool | 
|  | regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { | 
|  | if (RegA == RegB) | 
|  | return true; | 
|  | if (!RegA || !RegB) | 
|  | return false; | 
|  | return TRI->regsOverlap(RegA, RegB); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isProfitableToReMat - Return true if it's potentially profitable to commute | 
|  | /// the two-address instruction that's being processed. | 
|  | bool | 
|  | TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC, | 
|  | MachineInstr *MI, MachineBasicBlock *MBB, | 
|  | unsigned Dist) { | 
|  | // Determine if it's profitable to commute this two address instruction. In | 
|  | // general, we want no uses between this instruction and the definition of | 
|  | // the two-address register. | 
|  | // e.g. | 
|  | // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 | 
|  | // %reg1029<def> = MOV8rr %reg1028 | 
|  | // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> | 
|  | // insert => %reg1030<def> = MOV8rr %reg1028 | 
|  | // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> | 
|  | // In this case, it might not be possible to coalesce the second MOV8rr | 
|  | // instruction if the first one is coalesced. So it would be profitable to | 
|  | // commute it: | 
|  | // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 | 
|  | // %reg1029<def> = MOV8rr %reg1028 | 
|  | // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> | 
|  | // insert => %reg1030<def> = MOV8rr %reg1029 | 
|  | // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> | 
|  |  | 
|  | if (!MI->killsRegister(regC)) | 
|  | return false; | 
|  |  | 
|  | // Ok, we have something like: | 
|  | // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> | 
|  | // let's see if it's worth commuting it. | 
|  |  | 
|  | // Look for situations like this: | 
|  | // %reg1024<def> = MOV r1 | 
|  | // %reg1025<def> = MOV r0 | 
|  | // %reg1026<def> = ADD %reg1024, %reg1025 | 
|  | // r0            = MOV %reg1026 | 
|  | // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. | 
|  | unsigned FromRegB = getMappedReg(regB, SrcRegMap); | 
|  | unsigned FromRegC = getMappedReg(regC, SrcRegMap); | 
|  | unsigned ToRegB = getMappedReg(regB, DstRegMap); | 
|  | unsigned ToRegC = getMappedReg(regC, DstRegMap); | 
|  | if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) && | 
|  | ((!FromRegC && !ToRegC) || | 
|  | regsAreCompatible(FromRegB, ToRegC, TRI) || | 
|  | regsAreCompatible(FromRegC, ToRegB, TRI))) | 
|  | return true; | 
|  |  | 
|  | // If there is a use of regC between its last def (could be livein) and this | 
|  | // instruction, then bail. | 
|  | unsigned LastDefC = 0; | 
|  | if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC)) | 
|  | return false; | 
|  |  | 
|  | // If there is a use of regB between its last def (could be livein) and this | 
|  | // instruction, then go ahead and make this transformation. | 
|  | unsigned LastDefB = 0; | 
|  | if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB)) | 
|  | return true; | 
|  |  | 
|  | // Since there are no intervening uses for both registers, then commute | 
|  | // if the def of regC is closer. Its live interval is shorter. | 
|  | return LastDefB && LastDefC && LastDefC > LastDefB; | 
|  | } | 
|  |  | 
|  | /// CommuteInstruction - Commute a two-address instruction and update the basic | 
|  | /// block, distance map, and live variables if needed. Return true if it is | 
|  | /// successful. | 
|  | bool | 
|  | TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi, | 
|  | MachineFunction::iterator &mbbi, | 
|  | unsigned RegB, unsigned RegC, unsigned Dist) { | 
|  | MachineInstr *MI = mi; | 
|  | DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI); | 
|  | MachineInstr *NewMI = TII->commuteInstruction(MI); | 
|  |  | 
|  | if (NewMI == 0) { | 
|  | DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); | 
|  | // If the instruction changed to commute it, update livevar. | 
|  | if (NewMI != MI) { | 
|  | if (LV) | 
|  | // Update live variables | 
|  | LV->replaceKillInstruction(RegC, MI, NewMI); | 
|  |  | 
|  | mbbi->insert(mi, NewMI);           // Insert the new inst | 
|  | mbbi->erase(mi);                   // Nuke the old inst. | 
|  | mi = NewMI; | 
|  | DistanceMap.insert(std::make_pair(NewMI, Dist)); | 
|  | } | 
|  |  | 
|  | // Update source register map. | 
|  | unsigned FromRegC = getMappedReg(RegC, SrcRegMap); | 
|  | if (FromRegC) { | 
|  | unsigned RegA = MI->getOperand(0).getReg(); | 
|  | SrcRegMap[RegA] = FromRegC; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isProfitableToConv3Addr - Return true if it is profitable to convert the | 
|  | /// given 2-address instruction to a 3-address one. | 
|  | bool | 
|  | TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ | 
|  | // Look for situations like this: | 
|  | // %reg1024<def> = MOV r1 | 
|  | // %reg1025<def> = MOV r0 | 
|  | // %reg1026<def> = ADD %reg1024, %reg1025 | 
|  | // r2            = MOV %reg1026 | 
|  | // Turn ADD into a 3-address instruction to avoid a copy. | 
|  | unsigned FromRegB = getMappedReg(RegB, SrcRegMap); | 
|  | if (!FromRegB) | 
|  | return false; | 
|  | unsigned ToRegA = getMappedReg(RegA, DstRegMap); | 
|  | return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); | 
|  | } | 
|  |  | 
|  | /// ConvertInstTo3Addr - Convert the specified two-address instruction into a | 
|  | /// three address one. Return true if this transformation was successful. | 
|  | bool | 
|  | TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | MachineFunction::iterator &mbbi, | 
|  | unsigned RegA, unsigned RegB, | 
|  | unsigned Dist) { | 
|  | MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV); | 
|  | if (NewMI) { | 
|  | DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); | 
|  | DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI); | 
|  | bool Sunk = false; | 
|  |  | 
|  | if (NewMI->findRegisterUseOperand(RegB, false, TRI)) | 
|  | // FIXME: Temporary workaround. If the new instruction doesn't | 
|  | // uses RegB, convertToThreeAddress must have created more | 
|  | // then one instruction. | 
|  | Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi); | 
|  |  | 
|  | mbbi->erase(mi); // Nuke the old inst. | 
|  |  | 
|  | if (!Sunk) { | 
|  | DistanceMap.insert(std::make_pair(NewMI, Dist)); | 
|  | mi = NewMI; | 
|  | nmi = llvm::next(mi); | 
|  | } | 
|  |  | 
|  | // Update source and destination register maps. | 
|  | SrcRegMap.erase(RegA); | 
|  | DstRegMap.erase(RegB); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ScanUses - Scan forward recursively for only uses, update maps if the use | 
|  | /// is a copy or a two-address instruction. | 
|  | void | 
|  | TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB, | 
|  | SmallPtrSet<MachineInstr*, 8> &Processed) { | 
|  | SmallVector<unsigned, 4> VirtRegPairs; | 
|  | bool IsDstPhys; | 
|  | bool IsCopy = false; | 
|  | unsigned NewReg = 0; | 
|  | unsigned Reg = DstReg; | 
|  | while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, | 
|  | NewReg, IsDstPhys)) { | 
|  | if (IsCopy && !Processed.insert(UseMI)) | 
|  | break; | 
|  |  | 
|  | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); | 
|  | if (DI != DistanceMap.end()) | 
|  | // Earlier in the same MBB.Reached via a back edge. | 
|  | break; | 
|  |  | 
|  | if (IsDstPhys) { | 
|  | VirtRegPairs.push_back(NewReg); | 
|  | break; | 
|  | } | 
|  | bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; | 
|  | if (!isNew) | 
|  | assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); | 
|  | VirtRegPairs.push_back(NewReg); | 
|  | Reg = NewReg; | 
|  | } | 
|  |  | 
|  | if (!VirtRegPairs.empty()) { | 
|  | unsigned ToReg = VirtRegPairs.back(); | 
|  | VirtRegPairs.pop_back(); | 
|  | while (!VirtRegPairs.empty()) { | 
|  | unsigned FromReg = VirtRegPairs.back(); | 
|  | VirtRegPairs.pop_back(); | 
|  | bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; | 
|  | if (!isNew) | 
|  | assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); | 
|  | ToReg = FromReg; | 
|  | } | 
|  | bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; | 
|  | if (!isNew) | 
|  | assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ProcessCopy - If the specified instruction is not yet processed, process it | 
|  | /// if it's a copy. For a copy instruction, we find the physical registers the | 
|  | /// source and destination registers might be mapped to. These are kept in | 
|  | /// point-to maps used to determine future optimizations. e.g. | 
|  | /// v1024 = mov r0 | 
|  | /// v1025 = mov r1 | 
|  | /// v1026 = add v1024, v1025 | 
|  | /// r1    = mov r1026 | 
|  | /// If 'add' is a two-address instruction, v1024, v1026 are both potentially | 
|  | /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is | 
|  | /// potentially joined with r1 on the output side. It's worthwhile to commute | 
|  | /// 'add' to eliminate a copy. | 
|  | void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB, | 
|  | SmallPtrSet<MachineInstr*, 8> &Processed) { | 
|  | if (Processed.count(MI)) | 
|  | return; | 
|  |  | 
|  | bool IsSrcPhys, IsDstPhys; | 
|  | unsigned SrcReg, DstReg; | 
|  | if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) | 
|  | return; | 
|  |  | 
|  | if (IsDstPhys && !IsSrcPhys) | 
|  | DstRegMap.insert(std::make_pair(SrcReg, DstReg)); | 
|  | else if (!IsDstPhys && IsSrcPhys) { | 
|  | bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; | 
|  | if (!isNew) | 
|  | assert(SrcRegMap[DstReg] == SrcReg && | 
|  | "Can't map to two src physical registers!"); | 
|  |  | 
|  | ScanUses(DstReg, MBB, Processed); | 
|  | } | 
|  |  | 
|  | Processed.insert(MI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /// isSafeToDelete - If the specified instruction does not produce any side | 
|  | /// effects and all of its defs are dead, then it's safe to delete. | 
|  | static bool isSafeToDelete(MachineInstr *MI, | 
|  | const TargetInstrInfo *TII, | 
|  | SmallVector<unsigned, 4> &Kills) { | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | if (MCID.mayStore() || MCID.isCall()) | 
|  | return false; | 
|  | if (MCID.isTerminator() || MI->hasUnmodeledSideEffects()) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | if (MO.isDef() && !MO.isDead()) | 
|  | return false; | 
|  | if (MO.isUse() && MO.isKill()) | 
|  | Kills.push_back(MO.getReg()); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// canUpdateDeletedKills - Check if all the registers listed in Kills are | 
|  | /// killed by instructions in MBB preceding the current instruction at | 
|  | /// position Dist.  If so, return true and record information about the | 
|  | /// preceding kills in NewKills. | 
|  | bool TwoAddressInstructionPass:: | 
|  | canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills, | 
|  | SmallVector<NewKill, 4> &NewKills, | 
|  | MachineBasicBlock *MBB, unsigned Dist) { | 
|  | while (!Kills.empty()) { | 
|  | unsigned Kill = Kills.back(); | 
|  | Kills.pop_back(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Kill)) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist); | 
|  | if (!LastKill) | 
|  | return false; | 
|  |  | 
|  | bool isModRef = LastKill->definesRegister(Kill); | 
|  | NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef), | 
|  | LastKill)); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// DeleteUnusedInstr - If an instruction with a tied register operand can | 
|  | /// be safely deleted, just delete it. | 
|  | bool | 
|  | TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | MachineFunction::iterator &mbbi, | 
|  | unsigned Dist) { | 
|  | // Check if the instruction has no side effects and if all its defs are dead. | 
|  | SmallVector<unsigned, 4> Kills; | 
|  | if (!isSafeToDelete(mi, TII, Kills)) | 
|  | return false; | 
|  |  | 
|  | // If this instruction kills some virtual registers, we need to | 
|  | // update the kill information. If it's not possible to do so, | 
|  | // then bail out. | 
|  | SmallVector<NewKill, 4> NewKills; | 
|  | if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist)) | 
|  | return false; | 
|  |  | 
|  | if (LV) { | 
|  | while (!NewKills.empty()) { | 
|  | MachineInstr *NewKill = NewKills.back().second; | 
|  | unsigned Kill = NewKills.back().first.first; | 
|  | bool isDead = NewKills.back().first.second; | 
|  | NewKills.pop_back(); | 
|  | if (LV->removeVirtualRegisterKilled(Kill, mi)) { | 
|  | if (isDead) | 
|  | LV->addVirtualRegisterDead(Kill, NewKill); | 
|  | else | 
|  | LV->addVirtualRegisterKilled(Kill, NewKill); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mbbi->erase(mi); // Nuke the old inst. | 
|  | mi = nmi; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// TryInstructionTransform - For the case where an instruction has a single | 
|  | /// pair of tied register operands, attempt some transformations that may | 
|  | /// either eliminate the tied operands or improve the opportunities for | 
|  | /// coalescing away the register copy.  Returns true if the tied operands | 
|  | /// are eliminated altogether. | 
|  | bool TwoAddressInstructionPass:: | 
|  | TryInstructionTransform(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | MachineFunction::iterator &mbbi, | 
|  | unsigned SrcIdx, unsigned DstIdx, unsigned Dist, | 
|  | SmallPtrSet<MachineInstr*, 8> &Processed) { | 
|  | const MCInstrDesc &MCID = mi->getDesc(); | 
|  | unsigned regA = mi->getOperand(DstIdx).getReg(); | 
|  | unsigned regB = mi->getOperand(SrcIdx).getReg(); | 
|  |  | 
|  | assert(TargetRegisterInfo::isVirtualRegister(regB) && | 
|  | "cannot make instruction into two-address form"); | 
|  |  | 
|  | // If regA is dead and the instruction can be deleted, just delete | 
|  | // it so it doesn't clobber regB. | 
|  | bool regBKilled = isKilled(*mi, regB, MRI, TII); | 
|  | if (!regBKilled && mi->getOperand(DstIdx).isDead() && | 
|  | DeleteUnusedInstr(mi, nmi, mbbi, Dist)) { | 
|  | ++NumDeletes; | 
|  | return true; // Done with this instruction. | 
|  | } | 
|  |  | 
|  | // Check if it is profitable to commute the operands. | 
|  | unsigned SrcOp1, SrcOp2; | 
|  | unsigned regC = 0; | 
|  | unsigned regCIdx = ~0U; | 
|  | bool TryCommute = false; | 
|  | bool AggressiveCommute = false; | 
|  | if (MCID.isCommutable() && mi->getNumOperands() >= 3 && | 
|  | TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) { | 
|  | if (SrcIdx == SrcOp1) | 
|  | regCIdx = SrcOp2; | 
|  | else if (SrcIdx == SrcOp2) | 
|  | regCIdx = SrcOp1; | 
|  |  | 
|  | if (regCIdx != ~0U) { | 
|  | regC = mi->getOperand(regCIdx).getReg(); | 
|  | if (!regBKilled && isKilled(*mi, regC, MRI, TII)) | 
|  | // If C dies but B does not, swap the B and C operands. | 
|  | // This makes the live ranges of A and C joinable. | 
|  | TryCommute = true; | 
|  | else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) { | 
|  | TryCommute = true; | 
|  | AggressiveCommute = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If it's profitable to commute, try to do so. | 
|  | if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) { | 
|  | ++NumCommuted; | 
|  | if (AggressiveCommute) | 
|  | ++NumAggrCommuted; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (TargetRegisterInfo::isVirtualRegister(regA)) | 
|  | ScanUses(regA, &*mbbi, Processed); | 
|  |  | 
|  | if (MCID.isConvertibleTo3Addr()) { | 
|  | // This instruction is potentially convertible to a true | 
|  | // three-address instruction.  Check if it is profitable. | 
|  | if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { | 
|  | // Try to convert it. | 
|  | if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) { | 
|  | ++NumConvertedTo3Addr; | 
|  | return true; // Done with this instruction. | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is an instruction with a load folded into it, try unfolding | 
|  | // the load, e.g. avoid this: | 
|  | //   movq %rdx, %rcx | 
|  | //   addq (%rax), %rcx | 
|  | // in favor of this: | 
|  | //   movq (%rax), %rcx | 
|  | //   addq %rdx, %rcx | 
|  | // because it's preferable to schedule a load than a register copy. | 
|  | if (MCID.mayLoad() && !regBKilled) { | 
|  | // Determine if a load can be unfolded. | 
|  | unsigned LoadRegIndex; | 
|  | unsigned NewOpc = | 
|  | TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(), | 
|  | /*UnfoldLoad=*/true, | 
|  | /*UnfoldStore=*/false, | 
|  | &LoadRegIndex); | 
|  | if (NewOpc != 0) { | 
|  | const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); | 
|  | if (UnfoldMCID.getNumDefs() == 1) { | 
|  | MachineFunction &MF = *mbbi->getParent(); | 
|  |  | 
|  | // Unfold the load. | 
|  | DEBUG(dbgs() << "2addr:   UNFOLDING: " << *mi); | 
|  | const TargetRegisterClass *RC = | 
|  | TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI); | 
|  | unsigned Reg = MRI->createVirtualRegister(RC); | 
|  | SmallVector<MachineInstr *, 2> NewMIs; | 
|  | if (!TII->unfoldMemoryOperand(MF, mi, Reg, | 
|  | /*UnfoldLoad=*/true,/*UnfoldStore=*/false, | 
|  | NewMIs)) { | 
|  | DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); | 
|  | return false; | 
|  | } | 
|  | assert(NewMIs.size() == 2 && | 
|  | "Unfolded a load into multiple instructions!"); | 
|  | // The load was previously folded, so this is the only use. | 
|  | NewMIs[1]->addRegisterKilled(Reg, TRI); | 
|  |  | 
|  | // Tentatively insert the instructions into the block so that they | 
|  | // look "normal" to the transformation logic. | 
|  | mbbi->insert(mi, NewMIs[0]); | 
|  | mbbi->insert(mi, NewMIs[1]); | 
|  |  | 
|  | DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0] | 
|  | << "2addr:    NEW INST: " << *NewMIs[1]); | 
|  |  | 
|  | // Transform the instruction, now that it no longer has a load. | 
|  | unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); | 
|  | unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); | 
|  | MachineBasicBlock::iterator NewMI = NewMIs[1]; | 
|  | bool TransformSuccess = | 
|  | TryInstructionTransform(NewMI, mi, mbbi, | 
|  | NewSrcIdx, NewDstIdx, Dist, Processed); | 
|  | if (TransformSuccess || | 
|  | NewMIs[1]->getOperand(NewSrcIdx).isKill()) { | 
|  | // Success, or at least we made an improvement. Keep the unfolded | 
|  | // instructions and discard the original. | 
|  | if (LV) { | 
|  | for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = mi->getOperand(i); | 
|  | if (MO.isReg() && | 
|  | TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
|  | if (MO.isUse()) { | 
|  | if (MO.isKill()) { | 
|  | if (NewMIs[0]->killsRegister(MO.getReg())) | 
|  | LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]); | 
|  | else { | 
|  | assert(NewMIs[1]->killsRegister(MO.getReg()) && | 
|  | "Kill missing after load unfold!"); | 
|  | LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]); | 
|  | } | 
|  | } | 
|  | } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) { | 
|  | if (NewMIs[1]->registerDefIsDead(MO.getReg())) | 
|  | LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); | 
|  | else { | 
|  | assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && | 
|  | "Dead flag missing after load unfold!"); | 
|  | LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | LV->addVirtualRegisterKilled(Reg, NewMIs[1]); | 
|  | } | 
|  | mi->eraseFromParent(); | 
|  | mi = NewMIs[1]; | 
|  | if (TransformSuccess) | 
|  | return true; | 
|  | } else { | 
|  | // Transforming didn't eliminate the tie and didn't lead to an | 
|  | // improvement. Clean up the unfolded instructions and keep the | 
|  | // original. | 
|  | DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); | 
|  | NewMIs[0]->eraseFromParent(); | 
|  | NewMIs[1]->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// runOnMachineFunction - Reduce two-address instructions to two operands. | 
|  | /// | 
|  | bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) { | 
|  | DEBUG(dbgs() << "Machine Function\n"); | 
|  | const TargetMachine &TM = MF.getTarget(); | 
|  | MRI = &MF.getRegInfo(); | 
|  | TII = TM.getInstrInfo(); | 
|  | TRI = TM.getRegisterInfo(); | 
|  | LV = getAnalysisIfAvailable<LiveVariables>(); | 
|  | AA = &getAnalysis<AliasAnalysis>(); | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); | 
|  | DEBUG(dbgs() << "********** Function: " | 
|  | << MF.getFunction()->getName() << '\n'); | 
|  |  | 
|  | // This pass takes the function out of SSA form. | 
|  | MRI->leaveSSA(); | 
|  |  | 
|  | // ReMatRegs - Keep track of the registers whose def's are remat'ed. | 
|  | BitVector ReMatRegs(MRI->getNumVirtRegs()); | 
|  |  | 
|  | typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> > | 
|  | TiedOperandMap; | 
|  | TiedOperandMap TiedOperands(4); | 
|  |  | 
|  | SmallPtrSet<MachineInstr*, 8> Processed; | 
|  | for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end(); | 
|  | mbbi != mbbe; ++mbbi) { | 
|  | unsigned Dist = 0; | 
|  | DistanceMap.clear(); | 
|  | SrcRegMap.clear(); | 
|  | DstRegMap.clear(); | 
|  | Processed.clear(); | 
|  | for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end(); | 
|  | mi != me; ) { | 
|  | MachineBasicBlock::iterator nmi = llvm::next(mi); | 
|  | if (mi->isDebugValue()) { | 
|  | mi = nmi; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Remember REG_SEQUENCE instructions, we'll deal with them later. | 
|  | if (mi->isRegSequence()) | 
|  | RegSequences.push_back(&*mi); | 
|  |  | 
|  | const MCInstrDesc &MCID = mi->getDesc(); | 
|  | bool FirstTied = true; | 
|  |  | 
|  | DistanceMap.insert(std::make_pair(mi, ++Dist)); | 
|  |  | 
|  | ProcessCopy(&*mi, &*mbbi, Processed); | 
|  |  | 
|  | // First scan through all the tied register uses in this instruction | 
|  | // and record a list of pairs of tied operands for each register. | 
|  | unsigned NumOps = mi->isInlineAsm() | 
|  | ? mi->getNumOperands() : MCID.getNumOperands(); | 
|  | for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { | 
|  | unsigned DstIdx = 0; | 
|  | if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx)) | 
|  | continue; | 
|  |  | 
|  | if (FirstTied) { | 
|  | FirstTied = false; | 
|  | ++NumTwoAddressInstrs; | 
|  | DEBUG(dbgs() << '\t' << *mi); | 
|  | } | 
|  |  | 
|  | assert(mi->getOperand(SrcIdx).isReg() && | 
|  | mi->getOperand(SrcIdx).getReg() && | 
|  | mi->getOperand(SrcIdx).isUse() && | 
|  | "two address instruction invalid"); | 
|  |  | 
|  | unsigned regB = mi->getOperand(SrcIdx).getReg(); | 
|  | TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx)); | 
|  | } | 
|  |  | 
|  | // Now iterate over the information collected above. | 
|  | for (TiedOperandMap::iterator OI = TiedOperands.begin(), | 
|  | OE = TiedOperands.end(); OI != OE; ++OI) { | 
|  | SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second; | 
|  |  | 
|  | // If the instruction has a single pair of tied operands, try some | 
|  | // transformations that may either eliminate the tied operands or | 
|  | // improve the opportunities for coalescing away the register copy. | 
|  | if (TiedOperands.size() == 1 && TiedPairs.size() == 1) { | 
|  | unsigned SrcIdx = TiedPairs[0].first; | 
|  | unsigned DstIdx = TiedPairs[0].second; | 
|  |  | 
|  | // If the registers are already equal, nothing needs to be done. | 
|  | if (mi->getOperand(SrcIdx).getReg() == | 
|  | mi->getOperand(DstIdx).getReg()) | 
|  | break; // Done with this instruction. | 
|  |  | 
|  | if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist, | 
|  | Processed)) | 
|  | break; // The tied operands have been eliminated. | 
|  | } | 
|  |  | 
|  | bool IsEarlyClobber = false; | 
|  | bool RemovedKillFlag = false; | 
|  | bool AllUsesCopied = true; | 
|  | unsigned LastCopiedReg = 0; | 
|  | unsigned regB = OI->first; | 
|  | for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { | 
|  | unsigned SrcIdx = TiedPairs[tpi].first; | 
|  | unsigned DstIdx = TiedPairs[tpi].second; | 
|  |  | 
|  | const MachineOperand &DstMO = mi->getOperand(DstIdx); | 
|  | unsigned regA = DstMO.getReg(); | 
|  | IsEarlyClobber |= DstMO.isEarlyClobber(); | 
|  |  | 
|  | // Grab regB from the instruction because it may have changed if the | 
|  | // instruction was commuted. | 
|  | regB = mi->getOperand(SrcIdx).getReg(); | 
|  |  | 
|  | if (regA == regB) { | 
|  | // The register is tied to multiple destinations (or else we would | 
|  | // not have continued this far), but this use of the register | 
|  | // already matches the tied destination.  Leave it. | 
|  | AllUsesCopied = false; | 
|  | continue; | 
|  | } | 
|  | LastCopiedReg = regA; | 
|  |  | 
|  | assert(TargetRegisterInfo::isVirtualRegister(regB) && | 
|  | "cannot make instruction into two-address form"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // First, verify that we don't have a use of "a" in the instruction | 
|  | // (a = b + a for example) because our transformation will not | 
|  | // work. This should never occur because we are in SSA form. | 
|  | for (unsigned i = 0; i != mi->getNumOperands(); ++i) | 
|  | assert(i == DstIdx || | 
|  | !mi->getOperand(i).isReg() || | 
|  | mi->getOperand(i).getReg() != regA); | 
|  | #endif | 
|  |  | 
|  | // Emit a copy or rematerialize the definition. | 
|  | const TargetRegisterClass *rc = MRI->getRegClass(regB); | 
|  | MachineInstr *DefMI = MRI->getVRegDef(regB); | 
|  | // If it's safe and profitable, remat the definition instead of | 
|  | // copying it. | 
|  | if (DefMI && | 
|  | DefMI->getDesc().isAsCheapAsAMove() && | 
|  | DefMI->isSafeToReMat(TII, AA, regB) && | 
|  | isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){ | 
|  | DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n"); | 
|  | unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg(); | 
|  | TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI); | 
|  | ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB)); | 
|  | ++NumReMats; | 
|  | } else { | 
|  | BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY), | 
|  | regA).addReg(regB); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator prevMI = prior(mi); | 
|  | // Update DistanceMap. | 
|  | DistanceMap.insert(std::make_pair(prevMI, Dist)); | 
|  | DistanceMap[mi] = ++Dist; | 
|  |  | 
|  | DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI); | 
|  |  | 
|  | MachineOperand &MO = mi->getOperand(SrcIdx); | 
|  | assert(MO.isReg() && MO.getReg() == regB && MO.isUse() && | 
|  | "inconsistent operand info for 2-reg pass"); | 
|  | if (MO.isKill()) { | 
|  | MO.setIsKill(false); | 
|  | RemovedKillFlag = true; | 
|  | } | 
|  | MO.setReg(regA); | 
|  | } | 
|  |  | 
|  | if (AllUsesCopied) { | 
|  | if (!IsEarlyClobber) { | 
|  | // Replace other (un-tied) uses of regB with LastCopiedReg. | 
|  | for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = mi->getOperand(i); | 
|  | if (MO.isReg() && MO.getReg() == regB && MO.isUse()) { | 
|  | if (MO.isKill()) { | 
|  | MO.setIsKill(false); | 
|  | RemovedKillFlag = true; | 
|  | } | 
|  | MO.setReg(LastCopiedReg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update live variables for regB. | 
|  | if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi)) | 
|  | LV->addVirtualRegisterKilled(regB, prior(mi)); | 
|  |  | 
|  | } else if (RemovedKillFlag) { | 
|  | // Some tied uses of regB matched their destination registers, so | 
|  | // regB is still used in this instruction, but a kill flag was | 
|  | // removed from a different tied use of regB, so now we need to add | 
|  | // a kill flag to one of the remaining uses of regB. | 
|  | for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = mi->getOperand(i); | 
|  | if (MO.isReg() && MO.getReg() == regB && MO.isUse()) { | 
|  | MO.setIsKill(true); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Schedule the source copy / remat inserted to form two-address | 
|  | // instruction. FIXME: Does it matter the distance map may not be | 
|  | // accurate after it's scheduled? | 
|  | TII->scheduleTwoAddrSource(prior(mi), mi, *TRI); | 
|  |  | 
|  | MadeChange = true; | 
|  |  | 
|  | DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); | 
|  | } | 
|  |  | 
|  | // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. | 
|  | if (mi->isInsertSubreg()) { | 
|  | // From %reg = INSERT_SUBREG %reg, %subreg, subidx | 
|  | // To   %reg:subidx = COPY %subreg | 
|  | unsigned SubIdx = mi->getOperand(3).getImm(); | 
|  | mi->RemoveOperand(3); | 
|  | assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); | 
|  | mi->getOperand(0).setSubReg(SubIdx); | 
|  | mi->RemoveOperand(1); | 
|  | mi->setDesc(TII->get(TargetOpcode::COPY)); | 
|  | DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); | 
|  | } | 
|  |  | 
|  | // Clear TiedOperands here instead of at the top of the loop | 
|  | // since most instructions do not have tied operands. | 
|  | TiedOperands.clear(); | 
|  | mi = nmi; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Some remat'ed instructions are dead. | 
|  | for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) { | 
|  | unsigned VReg = TargetRegisterInfo::index2VirtReg(i); | 
|  | if (MRI->use_nodbg_empty(VReg)) { | 
|  | MachineInstr *DefMI = MRI->getVRegDef(VReg); | 
|  | DefMI->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve | 
|  | // SSA form. It's now safe to de-SSA. | 
|  | MadeChange |= EliminateRegSequences(); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | static void UpdateRegSequenceSrcs(unsigned SrcReg, | 
|  | unsigned DstReg, unsigned SubIdx, | 
|  | MachineRegisterInfo *MRI, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg), | 
|  | RE = MRI->reg_end(); RI != RE; ) { | 
|  | MachineOperand &MO = RI.getOperand(); | 
|  | ++RI; | 
|  | MO.substVirtReg(DstReg, SubIdx, TRI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are | 
|  | /// EXTRACT_SUBREG from the same register and to the same virtual register | 
|  | /// with different sub-register indices, attempt to combine the | 
|  | /// EXTRACT_SUBREGs and pre-coalesce them. e.g. | 
|  | /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0 | 
|  | /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6 | 
|  | /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5 | 
|  | /// Since D subregs 5, 6 can combine to a Q register, we can coalesce | 
|  | /// reg1026 to reg1029. | 
|  | void | 
|  | TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, | 
|  | unsigned DstReg) { | 
|  | SmallSet<unsigned, 4> Seen; | 
|  | for (unsigned i = 0, e = Srcs.size(); i != e; ++i) { | 
|  | unsigned SrcReg = Srcs[i]; | 
|  | if (!Seen.insert(SrcReg)) | 
|  | continue; | 
|  |  | 
|  | // Check that the instructions are all in the same basic block. | 
|  | MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg); | 
|  | MachineInstr *DstDefMI = MRI->getVRegDef(DstReg); | 
|  | if (SrcDefMI->getParent() != DstDefMI->getParent()) | 
|  | continue; | 
|  |  | 
|  | // If there are no other uses than copies which feed into | 
|  | // the reg_sequence, then we might be able to coalesce them. | 
|  | bool CanCoalesce = true; | 
|  | SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices; | 
|  | for (MachineRegisterInfo::use_nodbg_iterator | 
|  | UI = MRI->use_nodbg_begin(SrcReg), | 
|  | UE = MRI->use_nodbg_end(); UI != UE; ++UI) { | 
|  | MachineInstr *UseMI = &*UI; | 
|  | if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) { | 
|  | CanCoalesce = false; | 
|  | break; | 
|  | } | 
|  | SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg()); | 
|  | DstSubIndices.push_back(UseMI->getOperand(0).getSubReg()); | 
|  | } | 
|  |  | 
|  | if (!CanCoalesce || SrcSubIndices.size() < 2) | 
|  | continue; | 
|  |  | 
|  | // Check that the source subregisters can be combined. | 
|  | std::sort(SrcSubIndices.begin(), SrcSubIndices.end()); | 
|  | unsigned NewSrcSubIdx = 0; | 
|  | if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices, | 
|  | NewSrcSubIdx)) | 
|  | continue; | 
|  |  | 
|  | // Check that the destination subregisters can also be combined. | 
|  | std::sort(DstSubIndices.begin(), DstSubIndices.end()); | 
|  | unsigned NewDstSubIdx = 0; | 
|  | if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices, | 
|  | NewDstSubIdx)) | 
|  | continue; | 
|  |  | 
|  | // If neither source nor destination can be combined to the full register, | 
|  | // just give up.  This could be improved if it ever matters. | 
|  | if (NewSrcSubIdx != 0 && NewDstSubIdx != 0) | 
|  | continue; | 
|  |  | 
|  | // Now that we know that all the uses are extract_subregs and that those | 
|  | // subregs can somehow be combined, scan all the extract_subregs again to | 
|  | // make sure the subregs are in the right order and can be composed. | 
|  | MachineInstr *SomeMI = 0; | 
|  | CanCoalesce = true; | 
|  | for (MachineRegisterInfo::use_nodbg_iterator | 
|  | UI = MRI->use_nodbg_begin(SrcReg), | 
|  | UE = MRI->use_nodbg_end(); UI != UE; ++UI) { | 
|  | MachineInstr *UseMI = &*UI; | 
|  | assert(UseMI->isCopy()); | 
|  | unsigned DstSubIdx = UseMI->getOperand(0).getSubReg(); | 
|  | unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg(); | 
|  | assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination"); | 
|  | if ((NewDstSubIdx == 0 && | 
|  | TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) || | 
|  | (NewSrcSubIdx == 0 && | 
|  | TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) { | 
|  | CanCoalesce = false; | 
|  | break; | 
|  | } | 
|  | // Keep track of one of the uses. | 
|  | SomeMI = UseMI; | 
|  | } | 
|  | if (!CanCoalesce) | 
|  | continue; | 
|  |  | 
|  | // Insert a copy to replace the original. | 
|  | MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI, | 
|  | SomeMI->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY)) | 
|  | .addReg(DstReg, RegState::Define, NewDstSubIdx) | 
|  | .addReg(SrcReg, 0, NewSrcSubIdx); | 
|  |  | 
|  | // Remove all the old extract instructions. | 
|  | for (MachineRegisterInfo::use_nodbg_iterator | 
|  | UI = MRI->use_nodbg_begin(SrcReg), | 
|  | UE = MRI->use_nodbg_end(); UI != UE; ) { | 
|  | MachineInstr *UseMI = &*UI; | 
|  | ++UI; | 
|  | if (UseMI == CopyMI) | 
|  | continue; | 
|  | assert(UseMI->isCopy()); | 
|  | // Move any kills to the new copy or extract instruction. | 
|  | if (UseMI->getOperand(1).isKill()) { | 
|  | CopyMI->getOperand(1).setIsKill(); | 
|  | if (LV) | 
|  | // Update live variables | 
|  | LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI); | 
|  | } | 
|  | UseMI->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq, | 
|  | MachineRegisterInfo *MRI) { | 
|  | for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg), | 
|  | UE = MRI->use_end(); UI != UE; ++UI) { | 
|  | MachineInstr *UseMI = &*UI; | 
|  | if (UseMI != RegSeq && UseMI->isRegSequence()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part | 
|  | /// of the de-ssa process. This replaces sources of REG_SEQUENCE as | 
|  | /// sub-register references of the register defined by REG_SEQUENCE. e.g. | 
|  | /// | 
|  | /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ... | 
|  | /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6 | 
|  | /// => | 
|  | /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ... | 
|  | bool TwoAddressInstructionPass::EliminateRegSequences() { | 
|  | if (RegSequences.empty()) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) { | 
|  | MachineInstr *MI = RegSequences[i]; | 
|  | unsigned DstReg = MI->getOperand(0).getReg(); | 
|  | if (MI->getOperand(0).getSubReg() || | 
|  | TargetRegisterInfo::isPhysicalRegister(DstReg) || | 
|  | !(MI->getNumOperands() & 1)) { | 
|  | DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); | 
|  | llvm_unreachable(0); | 
|  | } | 
|  |  | 
|  | bool IsImpDef = true; | 
|  | SmallVector<unsigned, 4> RealSrcs; | 
|  | SmallSet<unsigned, 4> Seen; | 
|  | for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { | 
|  | unsigned SrcReg = MI->getOperand(i).getReg(); | 
|  | unsigned SubIdx = MI->getOperand(i+1).getImm(); | 
|  | if (MI->getOperand(i).getSubReg() || | 
|  | TargetRegisterInfo::isPhysicalRegister(SrcReg)) { | 
|  | DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); | 
|  | llvm_unreachable(0); | 
|  | } | 
|  |  | 
|  | MachineInstr *DefMI = MRI->getVRegDef(SrcReg); | 
|  | if (DefMI->isImplicitDef()) { | 
|  | DefMI->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  | IsImpDef = false; | 
|  |  | 
|  | // Remember COPY sources. These might be candidate for coalescing. | 
|  | if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg()) | 
|  | RealSrcs.push_back(DefMI->getOperand(1).getReg()); | 
|  |  | 
|  | bool isKill = MI->getOperand(i).isKill(); | 
|  | if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() || | 
|  | !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) || | 
|  | !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg), | 
|  | MRI->getRegClass(SrcReg), SubIdx)) { | 
|  | // REG_SEQUENCE cannot have duplicated operands, add a copy. | 
|  | // Also add an copy if the source is live-in the block. We don't want | 
|  | // to end up with a partial-redef of a livein, e.g. | 
|  | // BB0: | 
|  | // reg1051:10<def> = | 
|  | // ... | 
|  | // BB1: | 
|  | // ... = reg1051:10 | 
|  | // BB2: | 
|  | // reg1051:9<def> = | 
|  | // LiveIntervalAnalysis won't like it. | 
|  | // | 
|  | // If the REG_SEQUENCE doesn't kill its source, keeping live variables | 
|  | // correctly up to date becomes very difficult. Insert a copy. | 
|  |  | 
|  | // Defer any kill flag to the last operand using SrcReg. Otherwise, we | 
|  | // might insert a COPY that uses SrcReg after is was killed. | 
|  | if (isKill) | 
|  | for (unsigned j = i + 2; j < e; j += 2) | 
|  | if (MI->getOperand(j).getReg() == SrcReg) { | 
|  | MI->getOperand(j).setIsKill(); | 
|  | isKill = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator InsertLoc = MI; | 
|  | MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc, | 
|  | MI->getDebugLoc(), TII->get(TargetOpcode::COPY)) | 
|  | .addReg(DstReg, RegState::Define, SubIdx) | 
|  | .addReg(SrcReg, getKillRegState(isKill)); | 
|  | MI->getOperand(i).setReg(0); | 
|  | if (LV && isKill) | 
|  | LV->replaceKillInstruction(SrcReg, MI, CopyMI); | 
|  | DEBUG(dbgs() << "Inserted: " << *CopyMI); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { | 
|  | unsigned SrcReg = MI->getOperand(i).getReg(); | 
|  | if (!SrcReg) continue; | 
|  | unsigned SubIdx = MI->getOperand(i+1).getImm(); | 
|  | UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI); | 
|  | } | 
|  |  | 
|  | if (IsImpDef) { | 
|  | DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); | 
|  | MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); | 
|  | for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) | 
|  | MI->RemoveOperand(j); | 
|  | } else { | 
|  | DEBUG(dbgs() << "Eliminated: " << *MI); | 
|  | MI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Try coalescing some EXTRACT_SUBREG instructions. This can create | 
|  | // INSERT_SUBREG instructions that must have <undef> flags added by | 
|  | // LiveIntervalAnalysis, so only run it when LiveVariables is available. | 
|  | if (LV) | 
|  | CoalesceExtSubRegs(RealSrcs, DstReg); | 
|  | } | 
|  |  | 
|  | RegSequences.clear(); | 
|  | return true; | 
|  | } |