| //===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the Hexagon implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H |
| #define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H |
| |
| #include "MCTargetDesc/HexagonBaseInfo.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include <cstdint> |
| #include <vector> |
| |
| #define GET_INSTRINFO_HEADER |
| #include "HexagonGenInstrInfo.inc" |
| |
| namespace llvm { |
| |
| class HexagonSubtarget; |
| class MachineBranchProbabilityInfo; |
| class MachineFunction; |
| class MachineInstr; |
| class MachineOperand; |
| class TargetRegisterInfo; |
| |
| class HexagonInstrInfo : public HexagonGenInstrInfo { |
| const HexagonSubtarget &Subtarget; |
| |
| enum BundleAttribute { |
| memShufDisabledMask = 0x4 |
| }; |
| |
| virtual void anchor(); |
| |
| public: |
| explicit HexagonInstrInfo(HexagonSubtarget &ST); |
| |
| /// TargetInstrInfo overrides. |
| |
| /// If the specified machine instruction is a direct |
| /// load from a stack slot, return the virtual or physical register number of |
| /// the destination along with the FrameIndex of the loaded stack slot. If |
| /// not, return 0. This predicate must return 0 if the instruction has |
| /// any side effects other than loading from the stack slot. |
| unsigned isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const override; |
| |
| /// If the specified machine instruction is a direct |
| /// store to a stack slot, return the virtual or physical register number of |
| /// the source reg along with the FrameIndex of the loaded stack slot. If |
| /// not, return 0. This predicate must return 0 if the instruction has |
| /// any side effects other than storing to the stack slot. |
| unsigned isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const override; |
| |
| /// Check if the instruction or the bundle of instructions has |
| /// load from stack slots. Return the frameindex and machine memory operand |
| /// if true. |
| bool hasLoadFromStackSlot( |
| const MachineInstr &MI, |
| SmallVectorImpl<const MachineMemOperand *> &Accesses) const override; |
| |
| /// Check if the instruction or the bundle of instructions has |
| /// store to stack slots. Return the frameindex and machine memory operand |
| /// if true. |
| bool hasStoreToStackSlot( |
| const MachineInstr &MI, |
| SmallVectorImpl<const MachineMemOperand *> &Accesses) const override; |
| |
| /// Analyze the branching code at the end of MBB, returning |
| /// true if it cannot be understood (e.g. it's a switch dispatch or isn't |
| /// implemented for a target). Upon success, this returns false and returns |
| /// with the following information in various cases: |
| /// |
| /// 1. If this block ends with no branches (it just falls through to its succ) |
| /// just return false, leaving TBB/FBB null. |
| /// 2. If this block ends with only an unconditional branch, it sets TBB to be |
| /// the destination block. |
| /// 3. If this block ends with a conditional branch and it falls through to a |
| /// successor block, it sets TBB to be the branch destination block and a |
| /// list of operands that evaluate the condition. These operands can be |
| /// passed to other TargetInstrInfo methods to create new branches. |
| /// 4. If this block ends with a conditional branch followed by an |
| /// unconditional branch, it returns the 'true' destination in TBB, the |
| /// 'false' destination in FBB, and a list of operands that evaluate the |
| /// condition. These operands can be passed to other TargetInstrInfo |
| /// methods to create new branches. |
| /// |
| /// Note that removeBranch and insertBranch must be implemented to support |
| /// cases where this method returns success. |
| /// |
| /// If AllowModify is true, then this routine is allowed to modify the basic |
| /// block (e.g. delete instructions after the unconditional branch). |
| bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const override; |
| |
| /// Remove the branching code at the end of the specific MBB. |
| /// This is only invoked in cases where AnalyzeBranch returns success. It |
| /// returns the number of instructions that were removed. |
| unsigned removeBranch(MachineBasicBlock &MBB, |
| int *BytesRemoved = nullptr) const override; |
| |
| /// Insert branch code into the end of the specified MachineBasicBlock. |
| /// The operands to this method are the same as those |
| /// returned by AnalyzeBranch. This is only invoked in cases where |
| /// AnalyzeBranch returns success. It returns the number of instructions |
| /// inserted. |
| /// |
| /// It is also invoked by tail merging to add unconditional branches in |
| /// cases where AnalyzeBranch doesn't apply because there was no original |
| /// branch to analyze. At least this much must be implemented, else tail |
| /// merging needs to be disabled. |
| unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, |
| const DebugLoc &DL, |
| int *BytesAdded = nullptr) const override; |
| |
| /// Analyze loop L, which must be a single-basic-block loop, and if the |
| /// conditions can be understood enough produce a PipelinerLoopInfo object. |
| std::unique_ptr<PipelinerLoopInfo> |
| analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override; |
| |
| /// Return true if it's profitable to predicate |
| /// instructions with accumulated instruction latency of "NumCycles" |
| /// of the specified basic block, where the probability of the instructions |
| /// being executed is given by Probability, and Confidence is a measure |
| /// of our confidence that it will be properly predicted. |
| bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, |
| unsigned ExtraPredCycles, |
| BranchProbability Probability) const override; |
| |
| /// Second variant of isProfitableToIfCvt. This one |
| /// checks for the case where two basic blocks from true and false path |
| /// of a if-then-else (diamond) are predicated on mutally exclusive |
| /// predicates, where the probability of the true path being taken is given |
| /// by Probability, and Confidence is a measure of our confidence that it |
| /// will be properly predicted. |
| bool isProfitableToIfCvt(MachineBasicBlock &TMBB, |
| unsigned NumTCycles, unsigned ExtraTCycles, |
| MachineBasicBlock &FMBB, |
| unsigned NumFCycles, unsigned ExtraFCycles, |
| BranchProbability Probability) const override; |
| |
| /// Return true if it's profitable for if-converter to duplicate instructions |
| /// of specified accumulated instruction latencies in the specified MBB to |
| /// enable if-conversion. |
| /// The probability of the instructions being executed is given by |
| /// Probability, and Confidence is a measure of our confidence that it |
| /// will be properly predicted. |
| bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, |
| BranchProbability Probability) const override; |
| |
| /// Emit instructions to copy a pair of physical registers. |
| /// |
| /// This function should support copies within any legal register class as |
| /// well as any cross-class copies created during instruction selection. |
| /// |
| /// The source and destination registers may overlap, which may require a |
| /// careful implementation when multiple copy instructions are required for |
| /// large registers. See for example the ARM target. |
| void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, |
| bool KillSrc) const override; |
| |
| /// Store the specified register of the given register class to the specified |
| /// stack frame index. The store instruction is to be added to the given |
| /// machine basic block before the specified machine instruction. If isKill |
| /// is true, the register operand is the last use and must be marked kill. |
| void storeRegToStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| unsigned SrcReg, bool isKill, int FrameIndex, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const override; |
| |
| /// Load the specified register of the given register class from the specified |
| /// stack frame index. The load instruction is to be added to the given |
| /// machine basic block before the specified machine instruction. |
| void loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| unsigned DestReg, int FrameIndex, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const override; |
| |
| /// This function is called for all pseudo instructions |
| /// that remain after register allocation. Many pseudo instructions are |
| /// created to help register allocation. This is the place to convert them |
| /// into real instructions. The target can edit MI in place, or it can insert |
| /// new instructions and erase MI. The function should return true if |
| /// anything was changed. |
| bool expandPostRAPseudo(MachineInstr &MI) const override; |
| |
| /// Get the base register and byte offset of a load/store instr. |
| bool getMemOperandWithOffset(const MachineInstr &LdSt, |
| const MachineOperand *&BaseOp, |
| int64_t &Offset, |
| const TargetRegisterInfo *TRI) const override; |
| |
| /// Reverses the branch condition of the specified condition list, |
| /// returning false on success and true if it cannot be reversed. |
| bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) |
| const override; |
| |
| /// Insert a noop into the instruction stream at the specified point. |
| void insertNoop(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI) const override; |
| |
| /// Returns true if the instruction is already predicated. |
| bool isPredicated(const MachineInstr &MI) const override; |
| |
| /// Return true for post-incremented instructions. |
| bool isPostIncrement(const MachineInstr &MI) const override; |
| |
| /// Convert the instruction into a predicated instruction. |
| /// It returns true if the operation was successful. |
| bool PredicateInstruction(MachineInstr &MI, |
| ArrayRef<MachineOperand> Cond) const override; |
| |
| /// Returns true if the first specified predicate |
| /// subsumes the second, e.g. GE subsumes GT. |
| bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, |
| ArrayRef<MachineOperand> Pred2) const override; |
| |
| /// If the specified instruction defines any predicate |
| /// or condition code register(s) used for predication, returns true as well |
| /// as the definition predicate(s) by reference. |
| bool DefinesPredicate(MachineInstr &MI, |
| std::vector<MachineOperand> &Pred) const override; |
| |
| /// Return true if the specified instruction can be predicated. |
| /// By default, this returns true for every instruction with a |
| /// PredicateOperand. |
| bool isPredicable(const MachineInstr &MI) const override; |
| |
| /// Test if the given instruction should be considered a scheduling boundary. |
| /// This primarily includes labels and terminators. |
| bool isSchedulingBoundary(const MachineInstr &MI, |
| const MachineBasicBlock *MBB, |
| const MachineFunction &MF) const override; |
| |
| /// Measure the specified inline asm to determine an approximation of its |
| /// length. |
| unsigned getInlineAsmLength( |
| const char *Str, |
| const MCAsmInfo &MAI, |
| const TargetSubtargetInfo *STI = nullptr) const override; |
| |
| /// Allocate and return a hazard recognizer to use for this target when |
| /// scheduling the machine instructions after register allocation. |
| ScheduleHazardRecognizer* |
| CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, |
| const ScheduleDAG *DAG) const override; |
| |
| /// For a comparison instruction, return the source registers |
| /// in SrcReg and SrcReg2 if having two register operands, and the value it |
| /// compares against in CmpValue. Return true if the comparison instruction |
| /// can be analyzed. |
| bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, |
| unsigned &SrcReg2, int &Mask, int &Value) const override; |
| |
| /// Compute the instruction latency of a given instruction. |
| /// If the instruction has higher cost when predicated, it's returned via |
| /// PredCost. |
| unsigned getInstrLatency(const InstrItineraryData *ItinData, |
| const MachineInstr &MI, |
| unsigned *PredCost = nullptr) const override; |
| |
| /// Create machine specific model for scheduling. |
| DFAPacketizer * |
| CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override; |
| |
| // Sometimes, it is possible for the target |
| // to tell, even without aliasing information, that two MIs access different |
| // memory addresses. This function returns true if two MIs access different |
| // memory addresses and false otherwise. |
| bool |
| areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, |
| const MachineInstr &MIb) const override; |
| |
| /// For instructions with a base and offset, return the position of the |
| /// base register and offset operands. |
| bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, |
| unsigned &OffsetPos) const override; |
| |
| /// If the instruction is an increment of a constant value, return the amount. |
| bool getIncrementValue(const MachineInstr &MI, int &Value) const override; |
| |
| /// getOperandLatency - Compute and return the use operand latency of a given |
| /// pair of def and use. |
| /// In most cases, the static scheduling itinerary was enough to determine the |
| /// operand latency. But it may not be possible for instructions with variable |
| /// number of defs / uses. |
| /// |
| /// This is a raw interface to the itinerary that may be directly overriden by |
| /// a target. Use computeOperandLatency to get the best estimate of latency. |
| int getOperandLatency(const InstrItineraryData *ItinData, |
| const MachineInstr &DefMI, unsigned DefIdx, |
| const MachineInstr &UseMI, |
| unsigned UseIdx) const override; |
| |
| /// Decompose the machine operand's target flags into two values - the direct |
| /// target flag value and any of bit flags that are applied. |
| std::pair<unsigned, unsigned> |
| decomposeMachineOperandsTargetFlags(unsigned TF) const override; |
| |
| /// Return an array that contains the direct target flag values and their |
| /// names. |
| /// |
| /// MIR Serialization is able to serialize only the target flags that are |
| /// defined by this method. |
| ArrayRef<std::pair<unsigned, const char *>> |
| getSerializableDirectMachineOperandTargetFlags() const override; |
| |
| /// Return an array that contains the bitmask target flag values and their |
| /// names. |
| /// |
| /// MIR Serialization is able to serialize only the target flags that are |
| /// defined by this method. |
| ArrayRef<std::pair<unsigned, const char *>> |
| getSerializableBitmaskMachineOperandTargetFlags() const override; |
| |
| bool isTailCall(const MachineInstr &MI) const override; |
| |
| /// HexagonInstrInfo specifics. |
| |
| unsigned createVR(MachineFunction *MF, MVT VT) const; |
| MachineInstr *findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp, |
| MachineBasicBlock *TargetBB, |
| SmallPtrSet<MachineBasicBlock *, 8> &Visited) const; |
| |
| bool isBaseImmOffset(const MachineInstr &MI) const; |
| bool isAbsoluteSet(const MachineInstr &MI) const; |
| bool isAccumulator(const MachineInstr &MI) const; |
| bool isAddrModeWithOffset(const MachineInstr &MI) const; |
| bool isComplex(const MachineInstr &MI) const; |
| bool isCompoundBranchInstr(const MachineInstr &MI) const; |
| bool isConstExtended(const MachineInstr &MI) const; |
| bool isDeallocRet(const MachineInstr &MI) const; |
| bool isDependent(const MachineInstr &ProdMI, |
| const MachineInstr &ConsMI) const; |
| bool isDotCurInst(const MachineInstr &MI) const; |
| bool isDotNewInst(const MachineInstr &MI) const; |
| bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const; |
| bool isEarlySourceInstr(const MachineInstr &MI) const; |
| bool isEndLoopN(unsigned Opcode) const; |
| bool isExpr(unsigned OpType) const; |
| bool isExtendable(const MachineInstr &MI) const; |
| bool isExtended(const MachineInstr &MI) const; |
| bool isFloat(const MachineInstr &MI) const; |
| bool isHVXMemWithAIndirect(const MachineInstr &I, |
| const MachineInstr &J) const; |
| bool isIndirectCall(const MachineInstr &MI) const; |
| bool isIndirectL4Return(const MachineInstr &MI) const; |
| bool isJumpR(const MachineInstr &MI) const; |
| bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const; |
| bool isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI, |
| const MachineInstr &ESMI) const; |
| bool isLateResultInstr(const MachineInstr &MI) const; |
| bool isLateSourceInstr(const MachineInstr &MI) const; |
| bool isLoopN(const MachineInstr &MI) const; |
| bool isMemOp(const MachineInstr &MI) const; |
| bool isNewValue(const MachineInstr &MI) const; |
| bool isNewValue(unsigned Opcode) const; |
| bool isNewValueInst(const MachineInstr &MI) const; |
| bool isNewValueJump(const MachineInstr &MI) const; |
| bool isNewValueJump(unsigned Opcode) const; |
| bool isNewValueStore(const MachineInstr &MI) const; |
| bool isNewValueStore(unsigned Opcode) const; |
| bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const; |
| bool isPredicatedNew(const MachineInstr &MI) const; |
| bool isPredicatedNew(unsigned Opcode) const; |
| bool isPredicatedTrue(const MachineInstr &MI) const; |
| bool isPredicatedTrue(unsigned Opcode) const; |
| bool isPredicated(unsigned Opcode) const; |
| bool isPredicateLate(unsigned Opcode) const; |
| bool isPredictedTaken(unsigned Opcode) const; |
| bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const; |
| bool isSignExtendingLoad(const MachineInstr &MI) const; |
| bool isSolo(const MachineInstr &MI) const; |
| bool isSpillPredRegOp(const MachineInstr &MI) const; |
| bool isTC1(const MachineInstr &MI) const; |
| bool isTC2(const MachineInstr &MI) const; |
| bool isTC2Early(const MachineInstr &MI) const; |
| bool isTC4x(const MachineInstr &MI) const; |
| bool isToBeScheduledASAP(const MachineInstr &MI1, |
| const MachineInstr &MI2) const; |
| bool isHVXVec(const MachineInstr &MI) const; |
| bool isValidAutoIncImm(const EVT VT, const int Offset) const; |
| bool isValidOffset(unsigned Opcode, int Offset, |
| const TargetRegisterInfo *TRI, bool Extend = true) const; |
| bool isVecAcc(const MachineInstr &MI) const; |
| bool isVecALU(const MachineInstr &MI) const; |
| bool isVecUsableNextPacket(const MachineInstr &ProdMI, |
| const MachineInstr &ConsMI) const; |
| bool isZeroExtendingLoad(const MachineInstr &MI) const; |
| |
| bool addLatencyToSchedule(const MachineInstr &MI1, |
| const MachineInstr &MI2) const; |
| bool canExecuteInBundle(const MachineInstr &First, |
| const MachineInstr &Second) const; |
| bool doesNotReturn(const MachineInstr &CallMI) const; |
| bool hasEHLabel(const MachineBasicBlock *B) const; |
| bool hasNonExtEquivalent(const MachineInstr &MI) const; |
| bool hasPseudoInstrPair(const MachineInstr &MI) const; |
| bool hasUncondBranch(const MachineBasicBlock *B) const; |
| bool mayBeCurLoad(const MachineInstr &MI) const; |
| bool mayBeNewStore(const MachineInstr &MI) const; |
| bool producesStall(const MachineInstr &ProdMI, |
| const MachineInstr &ConsMI) const; |
| bool producesStall(const MachineInstr &MI, |
| MachineBasicBlock::const_instr_iterator MII) const; |
| bool predCanBeUsedAsDotNew(const MachineInstr &MI, unsigned PredReg) const; |
| bool PredOpcodeHasJMP_c(unsigned Opcode) const; |
| bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const; |
| |
| unsigned getAddrMode(const MachineInstr &MI) const; |
| MachineOperand *getBaseAndOffset(const MachineInstr &MI, int64_t &Offset, |
| unsigned &AccessSize) const; |
| SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const; |
| unsigned getCExtOpNum(const MachineInstr &MI) const; |
| HexagonII::CompoundGroup |
| getCompoundCandidateGroup(const MachineInstr &MI) const; |
| unsigned getCompoundOpcode(const MachineInstr &GA, |
| const MachineInstr &GB) const; |
| int getCondOpcode(int Opc, bool sense) const; |
| int getDotCurOp(const MachineInstr &MI) const; |
| int getNonDotCurOp(const MachineInstr &MI) const; |
| int getDotNewOp(const MachineInstr &MI) const; |
| int getDotNewPredJumpOp(const MachineInstr &MI, |
| const MachineBranchProbabilityInfo *MBPI) const; |
| int getDotNewPredOp(const MachineInstr &MI, |
| const MachineBranchProbabilityInfo *MBPI) const; |
| int getDotOldOp(const MachineInstr &MI) const; |
| HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI) |
| const; |
| short getEquivalentHWInstr(const MachineInstr &MI) const; |
| unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData, |
| const MachineInstr &MI) const; |
| bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const; |
| unsigned getInvertedPredicatedOpcode(const int Opc) const; |
| int getMaxValue(const MachineInstr &MI) const; |
| unsigned getMemAccessSize(const MachineInstr &MI) const; |
| int getMinValue(const MachineInstr &MI) const; |
| short getNonExtOpcode(const MachineInstr &MI) const; |
| bool getPredReg(ArrayRef<MachineOperand> Cond, unsigned &PredReg, |
| unsigned &PredRegPos, unsigned &PredRegFlags) const; |
| short getPseudoInstrPair(const MachineInstr &MI) const; |
| short getRegForm(const MachineInstr &MI) const; |
| unsigned getSize(const MachineInstr &MI) const; |
| uint64_t getType(const MachineInstr &MI) const; |
| unsigned getUnits(const MachineInstr &MI) const; |
| |
| MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const; |
| |
| /// getInstrTimingClassLatency - Compute the instruction latency of a given |
| /// instruction using Timing Class information, if available. |
| unsigned nonDbgBBSize(const MachineBasicBlock *BB) const; |
| unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const; |
| |
| void immediateExtend(MachineInstr &MI) const; |
| bool invertAndChangeJumpTarget(MachineInstr &MI, |
| MachineBasicBlock *NewTarget) const; |
| void genAllInsnTimingClasses(MachineFunction &MF) const; |
| bool reversePredSense(MachineInstr &MI) const; |
| unsigned reversePrediction(unsigned Opcode) const; |
| bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const; |
| |
| void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const; |
| bool getBundleNoShuf(const MachineInstr &MIB) const; |
| // Addressing mode relations. |
| short changeAddrMode_abs_io(short Opc) const; |
| short changeAddrMode_io_abs(short Opc) const; |
| short changeAddrMode_io_pi(short Opc) const; |
| short changeAddrMode_io_rr(short Opc) const; |
| short changeAddrMode_pi_io(short Opc) const; |
| short changeAddrMode_rr_io(short Opc) const; |
| short changeAddrMode_rr_ur(short Opc) const; |
| short changeAddrMode_ur_rr(short Opc) const; |
| |
| short changeAddrMode_abs_io(const MachineInstr &MI) const { |
| return changeAddrMode_abs_io(MI.getOpcode()); |
| } |
| short changeAddrMode_io_abs(const MachineInstr &MI) const { |
| return changeAddrMode_io_abs(MI.getOpcode()); |
| } |
| short changeAddrMode_io_rr(const MachineInstr &MI) const { |
| return changeAddrMode_io_rr(MI.getOpcode()); |
| } |
| short changeAddrMode_rr_io(const MachineInstr &MI) const { |
| return changeAddrMode_rr_io(MI.getOpcode()); |
| } |
| short changeAddrMode_rr_ur(const MachineInstr &MI) const { |
| return changeAddrMode_rr_ur(MI.getOpcode()); |
| } |
| short changeAddrMode_ur_rr(const MachineInstr &MI) const { |
| return changeAddrMode_ur_rr(MI.getOpcode()); |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H |