| // Copyright (c) 2018 Google LLC | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     http://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #ifndef SOURCE_UTIL_SMALL_VECTOR_H_ | 
 | #define SOURCE_UTIL_SMALL_VECTOR_H_ | 
 |  | 
 | #include <array> | 
 | #include <cassert> | 
 | #include <cstddef> | 
 | #include <iostream> | 
 | #include <memory> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include "source/util/make_unique.h" | 
 |  | 
 | namespace spvtools { | 
 | namespace utils { | 
 |  | 
 | // The |SmallVector| class is intended to be a drop-in replacement for | 
 | // |std::vector|.  The difference is in the implementation. A |SmallVector| is | 
 | // optimized for when the number of elements in the vector are small.  Small is | 
 | // defined by the template parameter |small_size|. | 
 | // | 
 | // Note that |SmallVector| is not always faster than an |std::vector|, so you | 
 | // should experiment with different values for |small_size| and compare to | 
 | // using and |std::vector|. | 
 | // | 
 | // TODO: I have implemented the public member functions from |std::vector| that | 
 | // I needed.  If others are needed they should be implemented. Do not implement | 
 | // public member functions that are not defined by std::vector. | 
 | template <class T, size_t small_size> | 
 | class SmallVector { | 
 |  public: | 
 |   using iterator = T*; | 
 |   using const_iterator = const T*; | 
 |  | 
 |   SmallVector() | 
 |       : size_(0), | 
 |         small_data_(reinterpret_cast<T*>(buffer)), | 
 |         large_data_(nullptr) {} | 
 |  | 
 |   SmallVector(const SmallVector& that) : SmallVector() { *this = that; } | 
 |  | 
 |   SmallVector(SmallVector&& that) : SmallVector() { *this = std::move(that); } | 
 |  | 
 |   SmallVector(const std::vector<T>& vec) : SmallVector() { | 
 |     if (vec.size() > small_size) { | 
 |       large_data_ = MakeUnique<std::vector<T>>(vec); | 
 |     } else { | 
 |       size_ = vec.size(); | 
 |       for (uint32_t i = 0; i < size_; i++) { | 
 |         new (small_data_ + i) T(vec[i]); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   template <class InputIt> | 
 |   SmallVector(InputIt first, InputIt last) : SmallVector() { | 
 |     insert(end(), first, last); | 
 |   } | 
 |  | 
 |   SmallVector(std::vector<T>&& vec) : SmallVector() { | 
 |     if (vec.size() > small_size) { | 
 |       large_data_ = MakeUnique<std::vector<T>>(std::move(vec)); | 
 |     } else { | 
 |       size_ = vec.size(); | 
 |       for (uint32_t i = 0; i < size_; i++) { | 
 |         new (small_data_ + i) T(std::move(vec[i])); | 
 |       } | 
 |     } | 
 |     vec.clear(); | 
 |   } | 
 |  | 
 |   SmallVector(std::initializer_list<T> init_list) : SmallVector() { | 
 |     if (init_list.size() < small_size) { | 
 |       for (auto it = init_list.begin(); it != init_list.end(); ++it) { | 
 |         new (small_data_ + (size_++)) T(std::move(*it)); | 
 |       } | 
 |     } else { | 
 |       large_data_ = MakeUnique<std::vector<T>>(std::move(init_list)); | 
 |     } | 
 |   } | 
 |  | 
 |   SmallVector(size_t s, const T& v) : SmallVector() { resize(s, v); } | 
 |  | 
 |   virtual ~SmallVector() { | 
 |     for (T* p = small_data_; p < small_data_ + size_; ++p) { | 
 |       p->~T(); | 
 |     } | 
 |   } | 
 |  | 
 |   SmallVector& operator=(const SmallVector& that) { | 
 |     assert(small_data_); | 
 |     if (that.large_data_) { | 
 |       if (large_data_) { | 
 |         *large_data_ = *that.large_data_; | 
 |       } else { | 
 |         large_data_ = MakeUnique<std::vector<T>>(*that.large_data_); | 
 |       } | 
 |     } else { | 
 |       large_data_.reset(nullptr); | 
 |       size_t i = 0; | 
 |       // Do a copy for any element in |this| that is already constructed. | 
 |       for (; i < size_ && i < that.size_; ++i) { | 
 |         small_data_[i] = that.small_data_[i]; | 
 |       } | 
 |  | 
 |       if (i >= that.size_) { | 
 |         // If the size of |this| becomes smaller after the assignment, then | 
 |         // destroy any extra elements. | 
 |         for (; i < size_; ++i) { | 
 |           small_data_[i].~T(); | 
 |         } | 
 |       } else { | 
 |         // If the size of |this| becomes larger after the assignement, copy | 
 |         // construct the new elements that are needed. | 
 |         for (; i < that.size_; ++i) { | 
 |           new (small_data_ + i) T(that.small_data_[i]); | 
 |         } | 
 |       } | 
 |       size_ = that.size_; | 
 |     } | 
 |     return *this; | 
 |   } | 
 |  | 
 |   SmallVector& operator=(SmallVector&& that) { | 
 |     if (that.large_data_) { | 
 |       large_data_.reset(that.large_data_.release()); | 
 |     } else { | 
 |       large_data_.reset(nullptr); | 
 |       size_t i = 0; | 
 |       // Do a move for any element in |this| that is already constructed. | 
 |       for (; i < size_ && i < that.size_; ++i) { | 
 |         small_data_[i] = std::move(that.small_data_[i]); | 
 |       } | 
 |  | 
 |       if (i >= that.size_) { | 
 |         // If the size of |this| becomes smaller after the assignment, then | 
 |         // destroy any extra elements. | 
 |         for (; i < size_; ++i) { | 
 |           small_data_[i].~T(); | 
 |         } | 
 |       } else { | 
 |         // If the size of |this| becomes larger after the assignement, move | 
 |         // construct the new elements that are needed. | 
 |         for (; i < that.size_; ++i) { | 
 |           new (small_data_ + i) T(std::move(that.small_data_[i])); | 
 |         } | 
 |       } | 
 |       size_ = that.size_; | 
 |     } | 
 |  | 
 |     // Reset |that| because all of the data has been moved to |this|. | 
 |     that.DestructSmallData(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   template <class OtherVector> | 
 |   friend bool operator==(const SmallVector& lhs, const OtherVector& rhs) { | 
 |     if (lhs.size() != rhs.size()) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     auto rit = rhs.begin(); | 
 |     for (auto lit = lhs.begin(); lit != lhs.end(); ++lit, ++rit) { | 
 |       if (*lit != *rit) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 | // Avoid infinite recursion from rewritten operators in C++20 | 
 | #if __cplusplus <= 201703L | 
 |   friend bool operator==(const std::vector<T>& lhs, const SmallVector& rhs) { | 
 |     return rhs == lhs; | 
 |   } | 
 | #endif | 
 |  | 
 |   friend bool operator!=(const SmallVector& lhs, const std::vector<T>& rhs) { | 
 |     return !(lhs == rhs); | 
 |   } | 
 |  | 
 |   friend bool operator!=(const std::vector<T>& lhs, const SmallVector& rhs) { | 
 |     return rhs != lhs; | 
 |   } | 
 |  | 
 |   T& operator[](size_t i) { | 
 |     if (!large_data_) { | 
 |       return small_data_[i]; | 
 |     } else { | 
 |       return (*large_data_)[i]; | 
 |     } | 
 |   } | 
 |  | 
 |   const T& operator[](size_t i) const { | 
 |     if (!large_data_) { | 
 |       return small_data_[i]; | 
 |     } else { | 
 |       return (*large_data_)[i]; | 
 |     } | 
 |   } | 
 |  | 
 |   size_t size() const { | 
 |     if (!large_data_) { | 
 |       return size_; | 
 |     } else { | 
 |       return large_data_->size(); | 
 |     } | 
 |   } | 
 |  | 
 |   iterator begin() { | 
 |     if (large_data_) { | 
 |       return large_data_->data(); | 
 |     } else { | 
 |       return small_data_; | 
 |     } | 
 |   } | 
 |  | 
 |   const_iterator begin() const { | 
 |     if (large_data_) { | 
 |       return large_data_->data(); | 
 |     } else { | 
 |       return small_data_; | 
 |     } | 
 |   } | 
 |  | 
 |   const_iterator cbegin() const { return begin(); } | 
 |  | 
 |   iterator end() { | 
 |     if (large_data_) { | 
 |       return large_data_->data() + large_data_->size(); | 
 |     } else { | 
 |       return small_data_ + size_; | 
 |     } | 
 |   } | 
 |  | 
 |   const_iterator end() const { | 
 |     if (large_data_) { | 
 |       return large_data_->data() + large_data_->size(); | 
 |     } else { | 
 |       return small_data_ + size_; | 
 |     } | 
 |   } | 
 |  | 
 |   const_iterator cend() const { return end(); } | 
 |  | 
 |   T* data() { return begin(); } | 
 |  | 
 |   const T* data() const { return cbegin(); } | 
 |  | 
 |   T& front() { return (*this)[0]; } | 
 |  | 
 |   const T& front() const { return (*this)[0]; } | 
 |  | 
 |   iterator erase(const_iterator pos) { return erase(pos, pos + 1); } | 
 |  | 
 |   iterator erase(const_iterator first, const_iterator last) { | 
 |     if (large_data_) { | 
 |       size_t start_index = first - large_data_->data(); | 
 |       size_t end_index = last - large_data_->data(); | 
 |       auto r = large_data_->erase(large_data_->begin() + start_index, | 
 |                                   large_data_->begin() + end_index); | 
 |       return large_data_->data() + (r - large_data_->begin()); | 
 |     } | 
 |  | 
 |     // Since C++11, std::vector has |const_iterator| for the parameters, so I | 
 |     // follow that.  However, I need iterators to modify the current container, | 
 |     // which is not const.  This is why I cast away the const. | 
 |     iterator f = const_cast<iterator>(first); | 
 |     iterator l = const_cast<iterator>(last); | 
 |     iterator e = end(); | 
 |  | 
 |     size_t num_of_del_elements = last - first; | 
 |     iterator ret = f; | 
 |     if (first == last) { | 
 |       return ret; | 
 |     } | 
 |  | 
 |     // Move |last| and any elements after it their earlier position. | 
 |     while (l != e) { | 
 |       *f = std::move(*l); | 
 |       ++f; | 
 |       ++l; | 
 |     } | 
 |  | 
 |     // Destroy the elements that were supposed to be deleted. | 
 |     while (f != l) { | 
 |       f->~T(); | 
 |       ++f; | 
 |     } | 
 |  | 
 |     // Update the size. | 
 |     size_ -= num_of_del_elements; | 
 |     return ret; | 
 |   } | 
 |  | 
 |   void push_back(const T& value) { | 
 |     if (!large_data_ && size_ == small_size) { | 
 |       MoveToLargeData(); | 
 |     } | 
 |  | 
 |     if (large_data_) { | 
 |       large_data_->push_back(value); | 
 |       return; | 
 |     } | 
 |  | 
 |     new (small_data_ + size_) T(value); | 
 |     ++size_; | 
 |   } | 
 |  | 
 |   void push_back(T&& value) { | 
 |     if (!large_data_ && size_ == small_size) { | 
 |       MoveToLargeData(); | 
 |     } | 
 |  | 
 |     if (large_data_) { | 
 |       large_data_->push_back(std::move(value)); | 
 |       return; | 
 |     } | 
 |  | 
 |     new (small_data_ + size_) T(std::move(value)); | 
 |     ++size_; | 
 |   } | 
 |  | 
 |   void pop_back() { | 
 |     if (large_data_) { | 
 |       large_data_->pop_back(); | 
 |     } else { | 
 |       --size_; | 
 |       small_data_[size_].~T(); | 
 |     } | 
 |   } | 
 |  | 
 |   template <class InputIt> | 
 |   iterator insert(iterator pos, InputIt first, InputIt last) { | 
 |     size_t element_idx = (pos - begin()); | 
 |     size_t num_of_new_elements = std::distance(first, last); | 
 |     size_t new_size = size_ + num_of_new_elements; | 
 |     if (!large_data_ && new_size > small_size) { | 
 |       MoveToLargeData(); | 
 |     } | 
 |  | 
 |     if (large_data_) { | 
 |       typename std::vector<T>::iterator new_pos = | 
 |           large_data_->begin() + element_idx; | 
 |       large_data_->insert(new_pos, first, last); | 
 |       return begin() + element_idx; | 
 |     } | 
 |  | 
 |     // Move |pos| and all of the elements after it over |num_of_new_elements| | 
 |     // places.  We start at the end and work backwards, to make sure we do not | 
 |     // overwrite data that we have not moved yet. | 
 |     for (iterator i = begin() + new_size - 1, j = end() - 1; j >= pos; | 
 |          --i, --j) { | 
 |       if (i >= begin() + size_) { | 
 |         new (i) T(std::move(*j)); | 
 |       } else { | 
 |         *i = std::move(*j); | 
 |       } | 
 |     } | 
 |  | 
 |     // Copy the new elements into position. | 
 |     iterator p = pos; | 
 |     for (; first != last; ++p, ++first) { | 
 |       if (p >= small_data_ + size_) { | 
 |         new (p) T(*first); | 
 |       } else { | 
 |         *p = *first; | 
 |       } | 
 |     } | 
 |  | 
 |     // Update the size. | 
 |     size_ += num_of_new_elements; | 
 |     return pos; | 
 |   } | 
 |  | 
 |   bool empty() const { | 
 |     if (large_data_) { | 
 |       return large_data_->empty(); | 
 |     } | 
 |     return size_ == 0; | 
 |   } | 
 |  | 
 |   void clear() { | 
 |     if (large_data_) { | 
 |       large_data_->clear(); | 
 |     } else { | 
 |       DestructSmallData(); | 
 |     } | 
 |   } | 
 |  | 
 |   template <class... Args> | 
 |   void emplace_back(Args&&... args) { | 
 |     if (!large_data_ && size_ == small_size) { | 
 |       MoveToLargeData(); | 
 |     } | 
 |  | 
 |     if (large_data_) { | 
 |       large_data_->emplace_back(std::forward<Args>(args)...); | 
 |     } else { | 
 |       new (small_data_ + size_) T(std::forward<Args>(args)...); | 
 |       ++size_; | 
 |     } | 
 |   } | 
 |  | 
 |   void resize(size_t new_size, const T& v) { | 
 |     if (!large_data_ && new_size > small_size) { | 
 |       MoveToLargeData(); | 
 |     } | 
 |  | 
 |     if (large_data_) { | 
 |       large_data_->resize(new_size, v); | 
 |       return; | 
 |     } | 
 |  | 
 |     // If |new_size| < |size_|, then destroy the extra elements. | 
 |     for (size_t i = new_size; i < size_; ++i) { | 
 |       small_data_[i].~T(); | 
 |     } | 
 |  | 
 |     // If |new_size| > |size_|, the copy construct the new elements. | 
 |     for (size_t i = size_; i < new_size; ++i) { | 
 |       new (small_data_ + i) T(v); | 
 |     } | 
 |  | 
 |     // Update the size. | 
 |     size_ = new_size; | 
 |   } | 
 |  | 
 |  private: | 
 |   // Moves all of the element from |small_data_| into a new std::vector that can | 
 |   // be access through |large_data|. | 
 |   void MoveToLargeData() { | 
 |     assert(!large_data_); | 
 |     large_data_ = MakeUnique<std::vector<T>>(); | 
 |     for (size_t i = 0; i < size_; ++i) { | 
 |       large_data_->emplace_back(std::move(small_data_[i])); | 
 |     } | 
 |     DestructSmallData(); | 
 |   } | 
 |  | 
 |   // Destroys all of the elements in |small_data_| that have been constructed. | 
 |   void DestructSmallData() { | 
 |     for (size_t i = 0; i < size_; ++i) { | 
 |       small_data_[i].~T(); | 
 |     } | 
 |     size_ = 0; | 
 |   } | 
 |  | 
 |   // The number of elements in |small_data_| that have been constructed. | 
 |   size_t size_; | 
 |  | 
 |   // A type with the same alignment and size as T, but will is POD. | 
 |   struct alignas(T) PodType { | 
 |     std::array<int8_t, sizeof(T)> data; | 
 |   }; | 
 |  | 
 |   // The actual data used to store the array elements.  It must never be used | 
 |   // directly, but must only be accessed through |small_data_|. | 
 |   PodType buffer[small_size]; | 
 |  | 
 |   // The pointed used to access the array of elements when the number of | 
 |   // elements is small. | 
 |   T* small_data_; | 
 |  | 
 |   // A pointer to a vector that is used to store the elements of the vector when | 
 |   // this size exceeds |small_size|.  If |large_data_| is nullptr, then the data | 
 |   // is stored in |small_data_|.  Otherwise, the data is stored in | 
 |   // |large_data_|. | 
 |   std::unique_ptr<std::vector<T>> large_data_; | 
 | };  // namespace utils | 
 |  | 
 | }  // namespace utils | 
 | }  // namespace spvtools | 
 |  | 
 | #endif  // SOURCE_UTIL_SMALL_VECTOR_H_ |