| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| // |
| // This is forked from Dart revision df52deea9f25690eb8b66c5995da92b70f7ac1fe |
| // Please update the (git) revision if we merge changes from Dart. |
| // https://code.google.com/p/dart/wiki/GettingTheSource |
| |
| #include "vm/globals.h" // NOLINT |
| #if defined(TARGET_ARCH_ARM) |
| |
| #include "vm/assembler.h" |
| #include "vm/cpu.h" |
| #include "vm/longjump.h" |
| #include "vm/runtime_entry.h" |
| #include "vm/simulator.h" |
| #include "vm/stack_frame.h" |
| #include "vm/stub_code.h" |
| |
| // An extra check since we are assuming the existence of /proc/cpuinfo below. |
| #if !defined(USING_SIMULATOR) && !defined(__linux__) && !defined(ANDROID) |
| #error ARM cross-compile only supported on Linux |
| #endif |
| |
| namespace dart { |
| |
| DECLARE_FLAG(bool, allow_absolute_addresses); |
| DEFINE_FLAG(bool, print_stop_message, true, "Print stop message."); |
| DECLARE_FLAG(bool, inline_alloc); |
| |
| #if 0 |
| // Moved to encodeImmRegOffsetEnc3 in IceAssemblerARM32.cpp |
| uint32_t Address::encoding3() const { |
| if (kind_ == Immediate) { |
| uint32_t offset = encoding_ & kOffset12Mask; |
| ASSERT(offset < 256); |
| return (encoding_ & ~kOffset12Mask) | B22 | |
| ((offset & 0xf0) << 4) | (offset & 0xf); |
| } |
| ASSERT(kind_ == IndexRegister); |
| return encoding_; |
| } |
| #endif |
| |
| uint32_t Address::vencoding() const { |
| ASSERT(kind_ == Immediate); |
| uint32_t offset = encoding_ & kOffset12Mask; |
| ASSERT(offset < (1 << 10)); // In the range 0 to +1020. |
| ASSERT(Utils::IsAligned(offset, 4)); // Multiple of 4. |
| int mode = encoding_ & ((8|4|1) << 21); |
| ASSERT((mode == Offset) || (mode == NegOffset)); |
| uint32_t vencoding = (encoding_ & (0xf << kRnShift)) | (offset >> 2); |
| if (mode == Offset) { |
| vencoding |= 1 << 23; |
| } |
| return vencoding; |
| } |
| |
| |
| void Assembler::InitializeMemoryWithBreakpoints(uword data, intptr_t length) { |
| ASSERT(Utils::IsAligned(data, 4)); |
| ASSERT(Utils::IsAligned(length, 4)); |
| const uword end = data + length; |
| while (data < end) { |
| *reinterpret_cast<int32_t*>(data) = Instr::kBreakPointInstruction; |
| data += 4; |
| } |
| } |
| |
| |
| void Assembler::Emit(int32_t value) { |
| AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| buffer_.Emit<int32_t>(value); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::emitType01() |
| void Assembler::EmitType01(Condition cond, |
| int type, |
| Opcode opcode, |
| int set_cc, |
| Register rn, |
| Register rd, |
| Operand o) { |
| ASSERT(rd != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | |
| type << kTypeShift | |
| static_cast<int32_t>(opcode) << kOpcodeShift | |
| set_cc << kSShift | |
| static_cast<int32_t>(rn) << kRnShift | |
| static_cast<int32_t>(rd) << kRdShift | |
| o.encoding(); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::emitType05() |
| void Assembler::EmitType5(Condition cond, int32_t offset, bool link) { |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | |
| 5 << kTypeShift | |
| (link ? 1 : 0) << kLinkShift; |
| Emit(Assembler::EncodeBranchOffset(offset, encoding)); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::emitMemOp() |
| void Assembler::EmitMemOp(Condition cond, |
| bool load, |
| bool byte, |
| Register rd, |
| Address ad) { |
| ASSERT(rd != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B26 | (ad.kind() == Address::Immediate ? 0 : B25) | |
| (load ? L : 0) | |
| (byte ? B : 0) | |
| (static_cast<int32_t>(rd) << kRdShift) | |
| ad.encoding(); |
| Emit(encoding); |
| } |
| |
| // Moved to AssemblerARM32::emitMemOpEnc3(); |
| void Assembler::EmitMemOpAddressMode3(Condition cond, |
| int32_t mode, |
| Register rd, |
| Address ad) { |
| ASSERT(rd != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| mode | |
| (static_cast<int32_t>(rd) << kRdShift) | |
| ad.encoding3(); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::emitMuliMemOp() |
| void Assembler::EmitMultiMemOp(Condition cond, |
| BlockAddressMode am, |
| bool load, |
| Register base, |
| RegList regs) { |
| ASSERT(base != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | |
| am | |
| (load ? L : 0) | |
| (static_cast<int32_t>(base) << kRnShift) | |
| regs; |
| Emit(encoding); |
| } |
| #endif |
| |
| void Assembler::EmitShiftImmediate(Condition cond, |
| Shift opcode, |
| Register rd, |
| Register rm, |
| Operand o) { |
| ASSERT(cond != kNoCondition); |
| ASSERT(o.type() == 1); |
| int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | |
| static_cast<int32_t>(MOV) << kOpcodeShift | |
| static_cast<int32_t>(rd) << kRdShift | |
| o.encoding() << kShiftImmShift | |
| static_cast<int32_t>(opcode) << kShiftShift | |
| static_cast<int32_t>(rm); |
| Emit(encoding); |
| } |
| |
| |
| void Assembler::EmitShiftRegister(Condition cond, |
| Shift opcode, |
| Register rd, |
| Register rm, |
| Operand o) { |
| ASSERT(cond != kNoCondition); |
| ASSERT(o.type() == 0); |
| int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | |
| static_cast<int32_t>(MOV) << kOpcodeShift | |
| static_cast<int32_t>(rd) << kRdShift | |
| o.encoding() << kShiftRegisterShift | |
| static_cast<int32_t>(opcode) << kShiftShift | |
| B4 | |
| static_cast<int32_t>(rm); |
| Emit(encoding); |
| } |
| |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::and_() |
| void Assembler::and_(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), AND, 0, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemberARM32::eor() |
| void Assembler::eor(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), EOR, 0, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemberARM32::sub() |
| void Assembler::sub(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), SUB, 0, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemberARM32::rsb() |
| void Assembler::rsb(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), RSB, 0, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemberARM32::rsb() |
| void Assembler::rsbs(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), RSB, 1, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemberARM32::add() |
| void Assembler::add(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), ADD, 0, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemberARM32::add() |
| void Assembler::adds(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), ADD, 1, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemberARM32::sub() |
| void Assembler::subs(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), SUB, 1, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemberARM32::adc() |
| void Assembler::adc(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), ADC, 0, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemberARM32::adc() |
| void Assembler::adcs(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), ADC, 1, rn, rd, o); |
| } |
| #endif |
| |
| void Assembler::sbc(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), SBC, 0, rn, rd, o); |
| } |
| |
| |
| void Assembler::sbcs(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), SBC, 1, rn, rd, o); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::rsc()f |
| void Assembler::rsc(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), RSC, 0, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::tst() |
| void Assembler::tst(Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), TST, 1, rn, R0, o); |
| } |
| #endif |
| |
| void Assembler::teq(Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), TEQ, 1, rn, R0, o); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::cmp() |
| void Assembler::cmp(Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), CMP, 1, rn, R0, o); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::cmn() |
| void Assembler::cmn(Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), CMN, 1, rn, R0, o); |
| } |
| |
| // Moved to ARM32::AssemberARM32::orr() |
| void Assembler::orr(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), ORR, 0, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemberARM32::orr() |
| void Assembler::orrs(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), ORR, 1, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::mov() |
| // TODO(kschimpf) other forms of move. |
| void Assembler::mov(Register rd, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), MOV, 0, R0, rd, o); |
| } |
| #endif |
| |
| void Assembler::movs(Register rd, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), MOV, 1, R0, rd, o); |
| } |
| |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::bic() |
| void Assembler::bic(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), BIC, 0, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::bic() |
| void Assembler::bics(Register rd, Register rn, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), BIC, 1, rn, rd, o); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::mvn() |
| void Assembler::mvn(Register rd, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), MVN, 0, R0, rd, o); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::mvn() |
| void Assembler::mvns(Register rd, Operand o, Condition cond) { |
| EmitType01(cond, o.type(), MVN, 1, R0, rd, o); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::clz() |
| void Assembler::clz(Register rd, Register rm, Condition cond) { |
| ASSERT(rd != kNoRegister); |
| ASSERT(rm != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| ASSERT(rd != PC); |
| ASSERT(rm != PC); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B24 | B22 | B21 | (0xf << 16) | |
| (static_cast<int32_t>(rd) << kRdShift) | |
| (0xf << 8) | B4 | static_cast<int32_t>(rm); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::movw() |
| void Assembler::movw(Register rd, uint16_t imm16, Condition cond) { |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | |
| B25 | B24 | ((imm16 >> 12) << 16) | |
| static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff); |
| Emit(encoding); |
| } |
| |
| |
| // Moved to ARM32::AssemblerARM32::movt() |
| void Assembler::movt(Register rd, uint16_t imm16, Condition cond) { |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | |
| B25 | B24 | B22 | ((imm16 >> 12) << 16) | |
| static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::emitMulOp() |
| void Assembler::EmitMulOp(Condition cond, int32_t opcode, |
| Register rd, Register rn, |
| Register rm, Register rs) { |
| ASSERT(rd != kNoRegister); |
| ASSERT(rn != kNoRegister); |
| ASSERT(rm != kNoRegister); |
| ASSERT(rs != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = opcode | |
| (static_cast<int32_t>(cond) << kConditionShift) | |
| (static_cast<int32_t>(rn) << kRnShift) | |
| (static_cast<int32_t>(rd) << kRdShift) | |
| (static_cast<int32_t>(rs) << kRsShift) | |
| B7 | B4 | |
| (static_cast<int32_t>(rm) << kRmShift); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::mul() |
| void Assembler::mul(Register rd, Register rn, Register rm, Condition cond) { |
| // Assembler registers rd, rn, rm are encoded as rn, rm, rs. |
| EmitMulOp(cond, 0, R0, rd, rn, rm); |
| } |
| #endif |
| |
| // Like mul, but sets condition flags. |
| void Assembler::muls(Register rd, Register rn, Register rm, Condition cond) { |
| EmitMulOp(cond, B20, R0, rd, rn, rm); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::mla() |
| void Assembler::mla(Register rd, Register rn, |
| Register rm, Register ra, Condition cond) { |
| // rd <- ra + rn * rm. |
| // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. |
| EmitMulOp(cond, B21, ra, rd, rn, rm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::mla() |
| void Assembler::mls(Register rd, Register rn, |
| Register rm, Register ra, Condition cond) { |
| // rd <- ra - rn * rm. |
| if (TargetCPUFeatures::arm_version() == ARMv7) { |
| // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. |
| EmitMulOp(cond, B22 | B21, ra, rd, rn, rm); |
| } else { |
| mul(IP, rn, rm, cond); |
| sub(rd, ra, Operand(IP), cond); |
| } |
| } |
| #endif |
| |
| void Assembler::smull(Register rd_lo, Register rd_hi, |
| Register rn, Register rm, Condition cond) { |
| // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| EmitMulOp(cond, B23 | B22, rd_lo, rd_hi, rn, rm); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::umull() |
| void Assembler::umull(Register rd_lo, Register rd_hi, |
| Register rn, Register rm, Condition cond) { |
| // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| EmitMulOp(cond, B23, rd_lo, rd_hi, rn, rm); |
| } |
| #endif |
| |
| void Assembler::umlal(Register rd_lo, Register rd_hi, |
| Register rn, Register rm, Condition cond) { |
| // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| EmitMulOp(cond, B23 | B21, rd_lo, rd_hi, rn, rm); |
| } |
| |
| |
| void Assembler::umaal(Register rd_lo, Register rd_hi, |
| Register rn, Register rm) { |
| ASSERT(rd_lo != IP); |
| ASSERT(rd_hi != IP); |
| ASSERT(rn != IP); |
| ASSERT(rm != IP); |
| if (TargetCPUFeatures::arm_version() != ARMv5TE) { |
| // Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| EmitMulOp(AL, B22, rd_lo, rd_hi, rn, rm); |
| } else { |
| mov(IP, Operand(0)); |
| umlal(rd_lo, IP, rn, rm); |
| adds(rd_lo, rd_lo, Operand(rd_hi)); |
| adc(rd_hi, IP, Operand(0)); |
| } |
| } |
| |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::emitDivOp() |
| void Assembler::EmitDivOp(Condition cond, int32_t opcode, |
| Register rd, Register rn, Register rm) { |
| ASSERT(TargetCPUFeatures::integer_division_supported()); |
| ASSERT(rd != kNoRegister); |
| ASSERT(rn != kNoRegister); |
| ASSERT(rm != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = opcode | |
| (static_cast<int32_t>(cond) << kConditionShift) | |
| (static_cast<int32_t>(rn) << kDivRnShift) | |
| (static_cast<int32_t>(rd) << kDivRdShift) | |
| // TODO(kschimpf): Why not also: B15 | B14 | B13 | B12? |
| B26 | B25 | B24 | B20 | B4 | |
| (static_cast<int32_t>(rm) << kDivRmShift); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::sdiv() |
| void Assembler::sdiv(Register rd, Register rn, Register rm, Condition cond) { |
| EmitDivOp(cond, 0, rd, rn, rm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::udiv() |
| void Assembler::udiv(Register rd, Register rn, Register rm, Condition cond) { |
| EmitDivOp(cond, B21 , rd, rn, rm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::ldr() |
| void Assembler::ldr(Register rd, Address ad, Condition cond) { |
| EmitMemOp(cond, true, false, rd, ad); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::str() |
| void Assembler::str(Register rd, Address ad, Condition cond) { |
| EmitMemOp(cond, false, false, rd, ad); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::ldr() |
| void Assembler::ldrb(Register rd, Address ad, Condition cond) { |
| EmitMemOp(cond, true, true, rd, ad); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::str() |
| void Assembler::strb(Register rd, Address ad, Condition cond) { |
| EmitMemOp(cond, false, true, rd, ad); |
| } |
| #endif |
| |
| void Assembler::ldrh(Register rd, Address ad, Condition cond) { |
| EmitMemOpAddressMode3(cond, L | B7 | H | B4, rd, ad); |
| } |
| |
| |
| void Assembler::strh(Register rd, Address ad, Condition cond) { |
| EmitMemOpAddressMode3(cond, B7 | H | B4, rd, ad); |
| } |
| |
| |
| void Assembler::ldrsb(Register rd, Address ad, Condition cond) { |
| EmitMemOpAddressMode3(cond, L | B7 | B6 | B4, rd, ad); |
| } |
| |
| |
| void Assembler::ldrsh(Register rd, Address ad, Condition cond) { |
| EmitMemOpAddressMode3(cond, L | B7 | B6 | H | B4, rd, ad); |
| } |
| |
| |
| void Assembler::ldrd(Register rd, Register rn, int32_t offset, Condition cond) { |
| ASSERT((rd % 2) == 0); |
| if (TargetCPUFeatures::arm_version() == ARMv5TE) { |
| const Register rd2 = static_cast<Register>(static_cast<int32_t>(rd) + 1); |
| ldr(rd, Address(rn, offset), cond); |
| ldr(rd2, Address(rn, offset + kWordSize), cond); |
| } else { |
| EmitMemOpAddressMode3(cond, B7 | B6 | B4, rd, Address(rn, offset)); |
| } |
| } |
| |
| |
| void Assembler::strd(Register rd, Register rn, int32_t offset, Condition cond) { |
| ASSERT((rd % 2) == 0); |
| if (TargetCPUFeatures::arm_version() == ARMv5TE) { |
| const Register rd2 = static_cast<Register>(static_cast<int32_t>(rd) + 1); |
| str(rd, Address(rn, offset), cond); |
| str(rd2, Address(rn, offset + kWordSize), cond); |
| } else { |
| EmitMemOpAddressMode3(cond, B7 | B6 | B5 | B4, rd, Address(rn, offset)); |
| } |
| } |
| |
| #if 0 |
| // Folded into ARM32::AssemblerARM32::popList(), since it is its only |
| // use (and doesn't implement ARM STM instruction). |
| void Assembler::ldm(BlockAddressMode am, Register base, RegList regs, |
| Condition cond) { |
| ASSERT(regs != 0); |
| EmitMultiMemOp(cond, am, true, base, regs); |
| } |
| |
| // Folded into ARM32::AssemblerARM32::pushList(), since it is its only |
| // use (and doesn't implement ARM STM instruction). |
| void Assembler::stm(BlockAddressMode am, Register base, RegList regs, |
| Condition cond) { |
| ASSERT(regs != 0); |
| EmitMultiMemOp(cond, am, false, base, regs); |
| } |
| |
| // Moved to ARM::AssemblerARM32::ldrex(); |
| void Assembler::ldrex(Register rt, Register rn, Condition cond) { |
| ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE); |
| ASSERT(rn != kNoRegister); |
| ASSERT(rt != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B24 | |
| B23 | |
| L | |
| (static_cast<int32_t>(rn) << kLdExRnShift) | |
| (static_cast<int32_t>(rt) << kLdExRtShift) | |
| B11 | B10 | B9 | B8 | B7 | B4 | B3 | B2 | B1 | B0; |
| Emit(encoding); |
| } |
| |
| // Moved to ARM::AssemblerARM32::strex(); |
| void Assembler::strex(Register rd, Register rt, Register rn, Condition cond) { |
| ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE); |
| ASSERT(rn != kNoRegister); |
| ASSERT(rd != kNoRegister); |
| ASSERT(rt != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B24 | |
| B23 | |
| (static_cast<int32_t>(rn) << kStrExRnShift) | |
| (static_cast<int32_t>(rd) << kStrExRdShift) | |
| B11 | B10 | B9 | B8 | B7 | B4 | |
| (static_cast<int32_t>(rt) << kStrExRtShift); |
| Emit(encoding); |
| } |
| #endif |
| |
| void Assembler::clrex() { |
| ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE); |
| int32_t encoding = (kSpecialCondition << kConditionShift) | |
| B26 | B24 | B22 | B21 | B20 | (0xff << 12) | B4 | 0xf; |
| Emit(encoding); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::nop(). |
| void Assembler::nop(Condition cond) { |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B25 | B24 | B21 | (0xf << 12); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vmovsr(). |
| void Assembler::vmovsr(SRegister sn, Register rt, Condition cond) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(sn != kNoSRegister); |
| ASSERT(rt != kNoRegister); |
| ASSERT(rt != SP); |
| ASSERT(rt != PC); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B25 | |
| ((static_cast<int32_t>(sn) >> 1)*B16) | |
| (static_cast<int32_t>(rt)*B12) | B11 | B9 | |
| ((static_cast<int32_t>(sn) & 1)*B7) | B4; |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vmovrs(). |
| void Assembler::vmovrs(Register rt, SRegister sn, Condition cond) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(sn != kNoSRegister); |
| ASSERT(rt != kNoRegister); |
| ASSERT(rt != SP); |
| ASSERT(rt != PC); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B25 | B20 | |
| ((static_cast<int32_t>(sn) >> 1)*B16) | |
| (static_cast<int32_t>(rt)*B12) | B11 | B9 | |
| ((static_cast<int32_t>(sn) & 1)*B7) | B4; |
| Emit(encoding); |
| } |
| #endif |
| |
| |
| void Assembler::vmovsrr(SRegister sm, Register rt, Register rt2, |
| Condition cond) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(sm != kNoSRegister); |
| ASSERT(sm != S31); |
| ASSERT(rt != kNoRegister); |
| ASSERT(rt != SP); |
| ASSERT(rt != PC); |
| ASSERT(rt2 != kNoRegister); |
| ASSERT(rt2 != SP); |
| ASSERT(rt2 != PC); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B22 | |
| (static_cast<int32_t>(rt2)*B16) | |
| (static_cast<int32_t>(rt)*B12) | B11 | B9 | |
| ((static_cast<int32_t>(sm) & 1)*B5) | B4 | |
| (static_cast<int32_t>(sm) >> 1); |
| Emit(encoding); |
| } |
| |
| |
| void Assembler::vmovrrs(Register rt, Register rt2, SRegister sm, |
| Condition cond) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(sm != kNoSRegister); |
| ASSERT(sm != S31); |
| ASSERT(rt != kNoRegister); |
| ASSERT(rt != SP); |
| ASSERT(rt != PC); |
| ASSERT(rt2 != kNoRegister); |
| ASSERT(rt2 != SP); |
| ASSERT(rt2 != PC); |
| ASSERT(rt != rt2); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B22 | B20 | |
| (static_cast<int32_t>(rt2)*B16) | |
| (static_cast<int32_t>(rt)*B12) | B11 | B9 | |
| ((static_cast<int32_t>(sm) & 1)*B5) | B4 | |
| (static_cast<int32_t>(sm) >> 1); |
| Emit(encoding); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::vmovdqir(). |
| void Assembler::vmovdr(DRegister dn, int i, Register rt, Condition cond) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT((i == 0) || (i == 1)); |
| ASSERT(rt != kNoRegister); |
| ASSERT(rt != SP); |
| ASSERT(rt != PC); |
| ASSERT(dn != kNoDRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B25 | |
| (i*B21) | |
| (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 | |
| ((static_cast<int32_t>(dn) >> 4)*B7) | |
| ((static_cast<int32_t>(dn) & 0xf)*B16) | B4; |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vmovdrr(). |
| void Assembler::vmovdrr(DRegister dm, Register rt, Register rt2, |
| Condition cond) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(dm != kNoDRegister); |
| ASSERT(rt != kNoRegister); |
| ASSERT(rt != SP); |
| ASSERT(rt != PC); |
| ASSERT(rt2 != kNoRegister); |
| ASSERT(rt2 != SP); |
| ASSERT(rt2 != PC); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B22 | |
| (static_cast<int32_t>(rt2)*B16) | |
| (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 | |
| ((static_cast<int32_t>(dm) >> 4)*B5) | B4 | |
| (static_cast<int32_t>(dm) & 0xf); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vmovrrd(). |
| void Assembler::vmovrrd(Register rt, Register rt2, DRegister dm, |
| Condition cond) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(dm != kNoDRegister); |
| ASSERT(rt != kNoRegister); |
| ASSERT(rt != SP); |
| ASSERT(rt != PC); |
| ASSERT(rt2 != kNoRegister); |
| ASSERT(rt2 != SP); |
| ASSERT(rt2 != PC); |
| ASSERT(rt != rt2); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B22 | B20 | |
| (static_cast<int32_t>(rt2)*B16) | |
| (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 | |
| ((static_cast<int32_t>(dm) >> 4)*B5) | B4 | |
| (static_cast<int32_t>(dm) & 0xf); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vldrs() |
| void Assembler::vldrs(SRegister sd, Address ad, Condition cond) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(sd != kNoSRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B24 | B20 | |
| ((static_cast<int32_t>(sd) & 1)*B22) | |
| ((static_cast<int32_t>(sd) >> 1)*B12) | |
| B11 | B9 | ad.vencoding(); |
| Emit(encoding); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vstrs() |
| void Assembler::vstrs(SRegister sd, Address ad, Condition cond) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC); |
| ASSERT(sd != kNoSRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B24 | |
| ((static_cast<int32_t>(sd) & 1)*B22) | |
| ((static_cast<int32_t>(sd) >> 1)*B12) | |
| B11 | B9 | ad.vencoding(); |
| Emit(encoding); |
| } |
| |
| void Assembler::vldrd(DRegister dd, Address ad, Condition cond) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(dd != kNoDRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B24 | B20 | |
| ((static_cast<int32_t>(dd) >> 4)*B22) | |
| ((static_cast<int32_t>(dd) & 0xf)*B12) | |
| B11 | B9 | B8 | ad.vencoding(); |
| Emit(encoding); |
| } |
| #endif |
| |
| void Assembler::vstrd(DRegister dd, Address ad, Condition cond) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC); |
| ASSERT(dd != kNoDRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B24 | |
| ((static_cast<int32_t>(dd) >> 4)*B22) | |
| ((static_cast<int32_t>(dd) & 0xf)*B12) | |
| B11 | B9 | B8 | ad.vencoding(); |
| Emit(encoding); |
| } |
| |
| void Assembler::EmitMultiVSMemOp(Condition cond, |
| BlockAddressMode am, |
| bool load, |
| Register base, |
| SRegister start, |
| uint32_t count) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(base != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| ASSERT(start != kNoSRegister); |
| ASSERT(static_cast<int32_t>(start) + count <= kNumberOfSRegisters); |
| |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B11 | B9 | |
| am | |
| (load ? L : 0) | |
| (static_cast<int32_t>(base) << kRnShift) | |
| ((static_cast<int32_t>(start) & 0x1) ? D : 0) | |
| ((static_cast<int32_t>(start) >> 1) << 12) | |
| count; |
| Emit(encoding); |
| } |
| |
| |
| void Assembler::EmitMultiVDMemOp(Condition cond, |
| BlockAddressMode am, |
| bool load, |
| Register base, |
| DRegister start, |
| int32_t count) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(base != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| ASSERT(start != kNoDRegister); |
| ASSERT(static_cast<int32_t>(start) + count <= kNumberOfDRegisters); |
| const int armv5te = TargetCPUFeatures::arm_version() == ARMv5TE ? 1 : 0; |
| |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B11 | B9 | B8 | |
| am | |
| (load ? L : 0) | |
| (static_cast<int32_t>(base) << kRnShift) | |
| ((static_cast<int32_t>(start) & 0x10) ? D : 0) | |
| ((static_cast<int32_t>(start) & 0xf) << 12) | |
| (count << 1) | armv5te; |
| Emit(encoding); |
| } |
| |
| |
| void Assembler::vldms(BlockAddressMode am, Register base, |
| SRegister first, SRegister last, Condition cond) { |
| ASSERT((am == IA) || (am == IA_W) || (am == DB_W)); |
| ASSERT(last > first); |
| EmitMultiVSMemOp(cond, am, true, base, first, last - first + 1); |
| } |
| |
| |
| void Assembler::vstms(BlockAddressMode am, Register base, |
| SRegister first, SRegister last, Condition cond) { |
| ASSERT((am == IA) || (am == IA_W) || (am == DB_W)); |
| ASSERT(last > first); |
| EmitMultiVSMemOp(cond, am, false, base, first, last - first + 1); |
| } |
| |
| |
| void Assembler::vldmd(BlockAddressMode am, Register base, |
| DRegister first, intptr_t count, Condition cond) { |
| ASSERT((am == IA) || (am == IA_W) || (am == DB_W)); |
| ASSERT(count <= 16); |
| ASSERT(first + count <= kNumberOfDRegisters); |
| EmitMultiVDMemOp(cond, am, true, base, first, count); |
| } |
| |
| |
| void Assembler::vstmd(BlockAddressMode am, Register base, |
| DRegister first, intptr_t count, Condition cond) { |
| ASSERT((am == IA) || (am == IA_W) || (am == DB_W)); |
| ASSERT(count <= 16); |
| ASSERT(first + count <= kNumberOfDRegisters); |
| EmitMultiVDMemOp(cond, am, false, base, first, count); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::emitVFPsss |
| void Assembler::EmitVFPsss(Condition cond, int32_t opcode, |
| SRegister sd, SRegister sn, SRegister sm) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(sd != kNoSRegister); |
| ASSERT(sn != kNoSRegister); |
| ASSERT(sm != kNoSRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B25 | B11 | B9 | opcode | |
| ((static_cast<int32_t>(sd) & 1)*B22) | |
| ((static_cast<int32_t>(sn) >> 1)*B16) | |
| ((static_cast<int32_t>(sd) >> 1)*B12) | |
| ((static_cast<int32_t>(sn) & 1)*B7) | |
| ((static_cast<int32_t>(sm) & 1)*B5) | |
| (static_cast<int32_t>(sm) >> 1); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::emitVFPddd |
| void Assembler::EmitVFPddd(Condition cond, int32_t opcode, |
| DRegister dd, DRegister dn, DRegister dm) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(dd != kNoDRegister); |
| ASSERT(dn != kNoDRegister); |
| ASSERT(dm != kNoDRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B25 | B11 | B9 | B8 | opcode | |
| ((static_cast<int32_t>(dd) >> 4)*B22) | |
| ((static_cast<int32_t>(dn) & 0xf)*B16) | |
| ((static_cast<int32_t>(dd) & 0xf)*B12) | |
| ((static_cast<int32_t>(dn) >> 4)*B7) | |
| ((static_cast<int32_t>(dm) >> 4)*B5) | |
| (static_cast<int32_t>(dm) & 0xf); |
| Emit(encoding); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vmovss() |
| void Assembler::vmovs(SRegister sd, SRegister sm, Condition cond) { |
| EmitVFPsss(cond, B23 | B21 | B20 | B6, sd, S0, sm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vmovdd() |
| void Assembler::vmovd(DRegister dd, DRegister dm, Condition cond) { |
| EmitVFPddd(cond, B23 | B21 | B20 | B6, dd, D0, dm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vmovs() |
| bool Assembler::vmovs(SRegister sd, float s_imm, Condition cond) { |
| if (TargetCPUFeatures::arm_version() != ARMv7) { |
| return false; |
| } |
| uint32_t imm32 = bit_cast<uint32_t, float>(s_imm); |
| if (((imm32 & ((1 << 19) - 1)) == 0) && |
| ((((imm32 >> 25) & ((1 << 6) - 1)) == (1 << 5)) || |
| (((imm32 >> 25) & ((1 << 6) - 1)) == ((1 << 5) -1)))) { |
| uint8_t imm8 = ((imm32 >> 31) << 7) | (((imm32 >> 29) & 1) << 6) | |
| ((imm32 >> 19) & ((1 << 6) -1)); |
| EmitVFPsss(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | (imm8 & 0xf), |
| sd, S0, S0); |
| return true; |
| } |
| return false; |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vmovd() |
| bool Assembler::vmovd(DRegister dd, double d_imm, Condition cond) { |
| if (TargetCPUFeatures::arm_version() != ARMv7) { |
| return false; |
| } |
| uint64_t imm64 = bit_cast<uint64_t, double>(d_imm); |
| if (((imm64 & ((1LL << 48) - 1)) == 0) && |
| ((((imm64 >> 54) & ((1 << 9) - 1)) == (1 << 8)) || |
| (((imm64 >> 54) & ((1 << 9) - 1)) == ((1 << 8) -1)))) { |
| uint8_t imm8 = ((imm64 >> 63) << 7) | (((imm64 >> 61) & 1) << 6) | |
| ((imm64 >> 48) & ((1 << 6) -1)); |
| EmitVFPddd(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | B8 | (imm8 & 0xf), |
| dd, D0, D0); |
| return true; |
| } |
| return false; |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vadds() |
| void Assembler::vadds(SRegister sd, SRegister sn, SRegister sm, |
| Condition cond) { |
| EmitVFPsss(cond, B21 | B20, sd, sn, sm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vaddd() |
| void Assembler::vaddd(DRegister dd, DRegister dn, DRegister dm, |
| Condition cond) { |
| EmitVFPddd(cond, B21 | B20, dd, dn, dm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vsubs() |
| void Assembler::vsubs(SRegister sd, SRegister sn, SRegister sm, |
| Condition cond) { |
| EmitVFPsss(cond, B21 | B20 | B6, sd, sn, sm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vsubd() |
| void Assembler::vsubd(DRegister dd, DRegister dn, DRegister dm, |
| Condition cond) { |
| EmitVFPddd(cond, B21 | B20 | B6, dd, dn, dm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vmuls() |
| void Assembler::vmuls(SRegister sd, SRegister sn, SRegister sm, |
| Condition cond) { |
| EmitVFPsss(cond, B21, sd, sn, sm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vmuld() |
| void Assembler::vmuld(DRegister dd, DRegister dn, DRegister dm, |
| Condition cond) { |
| EmitVFPddd(cond, B21, dd, dn, dm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vmlas() |
| void Assembler::vmlas(SRegister sd, SRegister sn, SRegister sm, |
| Condition cond) { |
| EmitVFPsss(cond, 0, sd, sn, sm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vmlad() |
| void Assembler::vmlad(DRegister dd, DRegister dn, DRegister dm, |
| Condition cond) { |
| EmitVFPddd(cond, 0, dd, dn, dm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vmlss() |
| void Assembler::vmlss(SRegister sd, SRegister sn, SRegister sm, |
| Condition cond) { |
| EmitVFPsss(cond, B6, sd, sn, sm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vmlsd() |
| void Assembler::vmlsd(DRegister dd, DRegister dn, DRegister dm, |
| Condition cond) { |
| EmitVFPddd(cond, B6, dd, dn, dm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vdivs() |
| void Assembler::vdivs(SRegister sd, SRegister sn, SRegister sm, |
| Condition cond) { |
| EmitVFPsss(cond, B23, sd, sn, sm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vdivd() |
| void Assembler::vdivd(DRegister dd, DRegister dn, DRegister dm, |
| Condition cond) { |
| EmitVFPddd(cond, B23, dd, dn, dm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vabss(). |
| void Assembler::vabss(SRegister sd, SRegister sm, Condition cond) { |
| EmitVFPsss(cond, B23 | B21 | B20 | B7 | B6, sd, S0, sm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vabsd(). |
| void Assembler::vabsd(DRegister dd, DRegister dm, Condition cond) { |
| EmitVFPddd(cond, B23 | B21 | B20 | B7 | B6, dd, D0, dm); |
| } |
| #endif |
| |
| void Assembler::vnegs(SRegister sd, SRegister sm, Condition cond) { |
| EmitVFPsss(cond, B23 | B21 | B20 | B16 | B6, sd, S0, sm); |
| } |
| |
| |
| void Assembler::vnegd(DRegister dd, DRegister dm, Condition cond) { |
| EmitVFPddd(cond, B23 | B21 | B20 | B16 | B6, dd, D0, dm); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::vsqrts(). |
| void Assembler::vsqrts(SRegister sd, SRegister sm, Condition cond) { |
| EmitVFPsss(cond, B23 | B21 | B20 | B16 | B7 | B6, sd, S0, sm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vsqrtd(). |
| void Assembler::vsqrtd(DRegister dd, DRegister dm, Condition cond) { |
| EmitVFPddd(cond, B23 | B21 | B20 | B16 | B7 | B6, dd, D0, dm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::emitVFPsd |
| void Assembler::EmitVFPsd(Condition cond, int32_t opcode, |
| SRegister sd, DRegister dm) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(sd != kNoSRegister); |
| ASSERT(dm != kNoDRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B25 | B11 | B9 | opcode | |
| ((static_cast<int32_t>(sd) & 1)*B22) | |
| ((static_cast<int32_t>(sd) >> 1)*B12) | |
| ((static_cast<int32_t>(dm) >> 4)*B5) | |
| (static_cast<int32_t>(dm) & 0xf); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::emitVFPds |
| void Assembler::EmitVFPds(Condition cond, int32_t opcode, |
| DRegister dd, SRegister sm) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(dd != kNoDRegister); |
| ASSERT(sm != kNoSRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B25 | B11 | B9 | opcode | |
| ((static_cast<int32_t>(dd) >> 4)*B22) | |
| ((static_cast<int32_t>(dd) & 0xf)*B12) | |
| ((static_cast<int32_t>(sm) & 1)*B5) | |
| (static_cast<int32_t>(sm) >> 1); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vcvtsd(). |
| void Assembler::vcvtsd(SRegister sd, DRegister dm, Condition cond) { |
| EmitVFPsd(cond, B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6, sd, dm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vcvtds(). |
| void Assembler::vcvtds(DRegister dd, SRegister sm, Condition cond) { |
| EmitVFPds(cond, B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6, dd, sm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vcvtis() |
| void Assembler::vcvtis(SRegister sd, SRegister sm, Condition cond) { |
| EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6, sd, S0, sm); |
| } |
| #endif |
| |
| void Assembler::vcvtid(SRegister sd, DRegister dm, Condition cond) { |
| EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6, sd, dm); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::vcvtsi() |
| void Assembler::vcvtsi(SRegister sd, SRegister sm, Condition cond) { |
| EmitVFPsss(cond, B23 | B21 | B20 | B19 | B7 | B6, sd, S0, sm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vcvtdi() |
| void Assembler::vcvtdi(DRegister dd, SRegister sm, Condition cond) { |
| EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B7 | B6, dd, sm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vcvtus(). |
| void Assembler::vcvtus(SRegister sd, SRegister sm, Condition cond) { |
| EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B7 | B6, sd, S0, sm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vcvtud(). |
| void Assembler::vcvtud(SRegister sd, DRegister dm, Condition cond) { |
| EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6, sd, dm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vcvtsu() |
| void Assembler::vcvtsu(SRegister sd, SRegister sm, Condition cond) { |
| EmitVFPsss(cond, B23 | B21 | B20 | B19 | B6, sd, S0, sm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vcvtdu() |
| void Assembler::vcvtdu(DRegister dd, SRegister sm, Condition cond) { |
| EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B6, dd, sm); |
| } |
| |
| // Moved to ARM23::AssemblerARM32::vcmps(). |
| void Assembler::vcmps(SRegister sd, SRegister sm, Condition cond) { |
| EmitVFPsss(cond, B23 | B21 | B20 | B18 | B6, sd, S0, sm); |
| } |
| |
| // Moved to ARM23::AssemblerARM32::vcmpd(). |
| void Assembler::vcmpd(DRegister dd, DRegister dm, Condition cond) { |
| EmitVFPddd(cond, B23 | B21 | B20 | B18 | B6, dd, D0, dm); |
| } |
| |
| // Moved to ARM23::AssemblerARM32::vcmpsz(). |
| void Assembler::vcmpsz(SRegister sd, Condition cond) { |
| EmitVFPsss(cond, B23 | B21 | B20 | B18 | B16 | B6, sd, S0, S0); |
| } |
| |
| // Moved to ARM23::AssemblerARM32::vcmpdz(). |
| void Assembler::vcmpdz(DRegister dd, Condition cond) { |
| EmitVFPddd(cond, B23 | B21 | B20 | B18 | B16 | B6, dd, D0, D0); |
| } |
| |
| // APSR_nzcv version moved to ARM32::AssemblerARM32::vmrsAPSR_nzcv() |
| void Assembler::vmrs(Register rd, Condition cond) { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B27 | B26 | B25 | B23 | B22 | B21 | B20 | B16 | |
| (static_cast<int32_t>(rd)*B12) | |
| B11 | B9 | B4; |
| Emit(encoding); |
| } |
| #endif |
| |
| void Assembler::vmstat(Condition cond) { |
| vmrs(APSR, cond); |
| } |
| |
| |
| static inline int ShiftOfOperandSize(OperandSize size) { |
| switch (size) { |
| case kByte: |
| case kUnsignedByte: |
| return 0; |
| case kHalfword: |
| case kUnsignedHalfword: |
| return 1; |
| case kWord: |
| case kUnsignedWord: |
| return 2; |
| case kWordPair: |
| return 3; |
| case kSWord: |
| case kDWord: |
| return 0; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| |
| UNREACHABLE(); |
| return -1; |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::emitSIMDqqq() |
| void Assembler::EmitSIMDqqq(int32_t opcode, OperandSize size, |
| QRegister qd, QRegister qn, QRegister qm) { |
| ASSERT(TargetCPUFeatures::neon_supported()); |
| int sz = ShiftOfOperandSize(size); |
| int32_t encoding = |
| (static_cast<int32_t>(kSpecialCondition) << kConditionShift) | |
| B25 | B6 | |
| opcode | ((sz & 0x3) * B20) | |
| ((static_cast<int32_t>(qd * 2) >> 4)*B22) | |
| ((static_cast<int32_t>(qn * 2) & 0xf)*B16) | |
| ((static_cast<int32_t>(qd * 2) & 0xf)*B12) | |
| ((static_cast<int32_t>(qn * 2) >> 4)*B7) | |
| ((static_cast<int32_t>(qm * 2) >> 4)*B5) | |
| (static_cast<int32_t>(qm * 2) & 0xf); |
| Emit(encoding); |
| } |
| #endif |
| |
| void Assembler::EmitSIMDddd(int32_t opcode, OperandSize size, |
| DRegister dd, DRegister dn, DRegister dm) { |
| ASSERT(TargetCPUFeatures::neon_supported()); |
| int sz = ShiftOfOperandSize(size); |
| int32_t encoding = |
| (static_cast<int32_t>(kSpecialCondition) << kConditionShift) | |
| B25 | |
| opcode | ((sz & 0x3) * B20) | |
| ((static_cast<int32_t>(dd) >> 4)*B22) | |
| ((static_cast<int32_t>(dn) & 0xf)*B16) | |
| ((static_cast<int32_t>(dd) & 0xf)*B12) | |
| ((static_cast<int32_t>(dn) >> 4)*B7) | |
| ((static_cast<int32_t>(dm) >> 4)*B5) | |
| (static_cast<int32_t>(dm) & 0xf); |
| Emit(encoding); |
| } |
| |
| |
| void Assembler::vmovq(QRegister qd, QRegister qm) { |
| EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qm, qm); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::vaddqi(). |
| void Assembler::vaddqi(OperandSize sz, |
| QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B11, sz, qd, qn, qm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vaddqf(). |
| void Assembler::vaddqs(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B11 | B10 | B8, kSWord, qd, qn, qm); |
| } |
| #endif |
| |
| void Assembler::vsubqi(OperandSize sz, |
| QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B24 | B11, sz, qd, qn, qm); |
| } |
| |
| |
| void Assembler::vsubqs(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B21 | B11 | B10 | B8, kSWord, qd, qn, qm); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::vmulqi(). |
| void Assembler::vmulqi(OperandSize sz, |
| QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B11 | B8 | B4, sz, qd, qn, qm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vmulqf(). |
| void Assembler::vmulqs(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B24 | B11 | B10 | B8 | B4, kSWord, qd, qn, qm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vshlqi(). |
| void Assembler::vshlqi(OperandSize sz, |
| QRegister qd, QRegister qm, QRegister qn) { |
| EmitSIMDqqq(B25 | B10, sz, qd, qn, qm); |
| } |
| |
| |
| // Moved to ARM32::AssemblerARM32::vshlqu(). |
| void Assembler::vshlqu(OperandSize sz, |
| QRegister qd, QRegister qm, QRegister qn) { |
| EmitSIMDqqq(B25 | B24 | B10, sz, qd, qn, qm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::veorq() |
| void Assembler::veorq(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B24 | B8 | B4, kByte, qd, qn, qm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::vorrq() |
| void Assembler::vorrq(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qn, qm); |
| } |
| #endif |
| |
| void Assembler::vornq(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B21 | B20 | B8 | B4, kByte, qd, qn, qm); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::vandq() |
| void Assembler::vandq(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B8 | B4, kByte, qd, qn, qm); |
| } |
| |
| void Assembler::vmvnq(QRegister qd, QRegister qm) { |
| EmitSIMDqqq(B25 | B24 | B23 | B10 | B8 | B7, kWordPair, qd, Q0, qm); |
| } |
| #endif |
| |
| |
| void Assembler::vminqs(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B21 | B11 | B10 | B9 | B8, kSWord, qd, qn, qm); |
| } |
| |
| |
| void Assembler::vmaxqs(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B11 | B10 | B9 | B8, kSWord, qd, qn, qm); |
| } |
| |
| #if 0 |
| // Moved to Arm32::AssemblerARM32::vabsq(). |
| void Assembler::vabsqs(QRegister qd, QRegister qm) { |
| EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8, kSWord, |
| qd, Q0, qm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vnegqs(). |
| void Assembler::vnegqs(QRegister qd, QRegister qm) { |
| EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8 | B7, kSWord, |
| qd, Q0, qm); |
| } |
| #endif |
| |
| |
| void Assembler::vrecpeqs(QRegister qd, QRegister qm) { |
| EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8, kSWord, |
| qd, Q0, qm); |
| } |
| |
| |
| void Assembler::vrecpsqs(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm); |
| } |
| |
| |
| void Assembler::vrsqrteqs(QRegister qd, QRegister qm) { |
| EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8 | B7, |
| kSWord, qd, Q0, qm); |
| } |
| |
| |
| void Assembler::vrsqrtsqs(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B21 | B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm); |
| } |
| |
| |
| void Assembler::vdup(OperandSize sz, QRegister qd, DRegister dm, int idx) { |
| ASSERT((sz != kDWord) && (sz != kSWord) && (sz != kWordPair)); |
| int code = 0; |
| |
| switch (sz) { |
| case kByte: |
| case kUnsignedByte: { |
| ASSERT((idx >= 0) && (idx < 8)); |
| code = 1 | (idx << 1); |
| break; |
| } |
| case kHalfword: |
| case kUnsignedHalfword: { |
| ASSERT((idx >= 0) && (idx < 4)); |
| code = 2 | (idx << 2); |
| break; |
| } |
| case kWord: |
| case kUnsignedWord: { |
| ASSERT((idx >= 0) && (idx < 2)); |
| code = 4 | (idx << 3); |
| break; |
| } |
| default: { |
| break; |
| } |
| } |
| |
| EmitSIMDddd(B24 | B23 | B11 | B10 | B6, kWordPair, |
| static_cast<DRegister>(qd * 2), |
| static_cast<DRegister>(code & 0xf), |
| dm); |
| } |
| |
| |
| void Assembler::vtbl(DRegister dd, DRegister dn, int len, DRegister dm) { |
| ASSERT((len >= 1) && (len <= 4)); |
| EmitSIMDddd(B24 | B23 | B11 | ((len - 1) * B8), kWordPair, dd, dn, dm); |
| } |
| |
| |
| void Assembler::vzipqw(QRegister qd, QRegister qm) { |
| EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B8 | B7, kByte, qd, Q0, qm); |
| } |
| |
| |
| #if 0 |
| // Moved to Arm32::AssemblerARM32::vceqqi(). |
| void Assembler::vceqqi(OperandSize sz, |
| QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B24 | B11 | B4, sz, qd, qn, qm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vceqqi(). |
| void Assembler::vceqqs(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B11 | B10 | B9, kSWord, qd, qn, qm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vcgeqi(). |
| void Assembler::vcgeqi(OperandSize sz, |
| QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B9 | B8 | B4, sz, qd, qn, qm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vcugeqi(). |
| void Assembler::vcugeqi(OperandSize sz, |
| QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B24 | B9 | B8 | B4, sz, qd, qn, qm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vcgeqs(). |
| void Assembler::vcgeqs(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B24 | B11 | B10 | B9, kSWord, qd, qn, qm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vcgtqi(). |
| void Assembler::vcgtqi(OperandSize sz, |
| QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B9 | B8, sz, qd, qn, qm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vcugtqi(). |
| void Assembler::vcugtqi(OperandSize sz, |
| QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B24 | B9 | B8, sz, qd, qn, qm); |
| } |
| |
| // Moved to Arm32::AssemblerARM32::vcgtqs(). |
| void Assembler::vcgtqs(QRegister qd, QRegister qn, QRegister qm) { |
| EmitSIMDqqq(B24 | B21 | B11 | B10 | B9, kSWord, qd, qn, qm); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::bkpt() |
| void Assembler::bkpt(uint16_t imm16) { |
| Emit(BkptEncoding(imm16)); |
| } |
| #endif |
| |
| |
| void Assembler::b(Label* label, Condition cond) { |
| EmitBranch(cond, label, false); |
| } |
| |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::bl() |
| void Assembler::bl(Label* label, Condition cond) { |
| EmitBranch(cond, label, true); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::bx() |
| void Assembler::bx(Register rm, Condition cond) { |
| ASSERT(rm != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B24 | B21 | (0xfff << 8) | B4 | |
| (static_cast<int32_t>(rm) << kRmShift); |
| Emit(encoding); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::blx() |
| void Assembler::blx(Register rm, Condition cond) { |
| ASSERT(rm != kNoRegister); |
| ASSERT(cond != kNoCondition); |
| int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | |
| B24 | B21 | (0xfff << 8) | B5 | B4 | |
| (static_cast<int32_t>(rm) << kRmShift); |
| Emit(encoding); |
| } |
| #endif |
| |
| |
| void Assembler::MarkExceptionHandler(Label* label) { |
| EmitType01(AL, 1, TST, 1, PC, R0, Operand(0)); |
| Label l; |
| b(&l); |
| EmitBranch(AL, label, false); |
| Bind(&l); |
| } |
| |
| |
| void Assembler::Drop(intptr_t stack_elements) { |
| ASSERT(stack_elements >= 0); |
| if (stack_elements > 0) { |
| AddImmediate(SP, SP, stack_elements * kWordSize); |
| } |
| } |
| |
| |
| intptr_t Assembler::FindImmediate(int32_t imm) { |
| return object_pool_wrapper_.FindImmediate(imm); |
| } |
| |
| |
| // Uses a code sequence that can easily be decoded. |
| void Assembler::LoadWordFromPoolOffset(Register rd, |
| int32_t offset, |
| Register pp, |
| Condition cond) { |
| ASSERT((pp != PP) || constant_pool_allowed()); |
| ASSERT(rd != pp); |
| int32_t offset_mask = 0; |
| if (Address::CanHoldLoadOffset(kWord, offset, &offset_mask)) { |
| ldr(rd, Address(pp, offset), cond); |
| } else { |
| int32_t offset_hi = offset & ~offset_mask; // signed |
| uint32_t offset_lo = offset & offset_mask; // unsigned |
| // Inline a simplified version of AddImmediate(rd, pp, offset_hi). |
| Operand o; |
| if (Operand::CanHold(offset_hi, &o)) { |
| add(rd, pp, o, cond); |
| } else { |
| LoadImmediate(rd, offset_hi, cond); |
| add(rd, pp, Operand(rd), cond); |
| } |
| ldr(rd, Address(rd, offset_lo), cond); |
| } |
| } |
| |
| void Assembler::CheckCodePointer() { |
| #ifdef DEBUG |
| Label cid_ok, instructions_ok; |
| Push(R0); |
| Push(IP); |
| CompareClassId(CODE_REG, kCodeCid, R0); |
| b(&cid_ok, EQ); |
| bkpt(0); |
| Bind(&cid_ok); |
| |
| const intptr_t offset = CodeSize() + Instr::kPCReadOffset + |
| Instructions::HeaderSize() - kHeapObjectTag; |
| mov(R0, Operand(PC)); |
| AddImmediate(R0, R0, -offset); |
| ldr(IP, FieldAddress(CODE_REG, Code::saved_instructions_offset())); |
| cmp(R0, Operand(IP)); |
| b(&instructions_ok, EQ); |
| bkpt(1); |
| Bind(&instructions_ok); |
| Pop(IP); |
| Pop(R0); |
| #endif |
| } |
| |
| |
| void Assembler::RestoreCodePointer() { |
| ldr(CODE_REG, Address(FP, kPcMarkerSlotFromFp * kWordSize)); |
| CheckCodePointer(); |
| } |
| |
| |
| void Assembler::LoadPoolPointer(Register reg) { |
| // Load new pool pointer. |
| CheckCodePointer(); |
| ldr(reg, FieldAddress(CODE_REG, Code::object_pool_offset())); |
| set_constant_pool_allowed(reg == PP); |
| } |
| |
| |
| void Assembler::LoadIsolate(Register rd) { |
| ldr(rd, Address(THR, Thread::isolate_offset())); |
| } |
| |
| |
| bool Assembler::CanLoadFromObjectPool(const Object& object) const { |
| ASSERT(!Thread::CanLoadFromThread(object)); |
| if (!constant_pool_allowed()) { |
| return false; |
| } |
| |
| ASSERT(object.IsNotTemporaryScopedHandle()); |
| ASSERT(object.IsOld()); |
| return true; |
| } |
| |
| |
| void Assembler::LoadObjectHelper(Register rd, |
| const Object& object, |
| Condition cond, |
| bool is_unique, |
| Register pp) { |
| // Load common VM constants from the thread. This works also in places where |
| // no constant pool is set up (e.g. intrinsic code). |
| if (Thread::CanLoadFromThread(object)) { |
| // Load common VM constants from the thread. This works also in places where |
| // no constant pool is set up (e.g. intrinsic code). |
| ldr(rd, Address(THR, Thread::OffsetFromThread(object)), cond); |
| } else if (object.IsSmi()) { |
| // Relocation doesn't apply to Smis. |
| LoadImmediate(rd, reinterpret_cast<int32_t>(object.raw()), cond); |
| } else if (CanLoadFromObjectPool(object)) { |
| // Make sure that class CallPattern is able to decode this load from the |
| // object pool. |
| const int32_t offset = ObjectPool::element_offset( |
| is_unique ? object_pool_wrapper_.AddObject(object) |
| : object_pool_wrapper_.FindObject(object)); |
| LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, pp, cond); |
| } else { |
| ASSERT(FLAG_allow_absolute_addresses); |
| ASSERT(object.IsOld()); |
| // Make sure that class CallPattern is able to decode this load immediate. |
| const int32_t object_raw = reinterpret_cast<int32_t>(object.raw()); |
| LoadImmediate(rd, object_raw, cond); |
| } |
| } |
| |
| |
| void Assembler::LoadObject(Register rd, const Object& object, Condition cond) { |
| LoadObjectHelper(rd, object, cond, /* is_unique = */ false, PP); |
| } |
| |
| |
| void Assembler::LoadUniqueObject(Register rd, |
| const Object& object, |
| Condition cond) { |
| LoadObjectHelper(rd, object, cond, /* is_unique = */ true, PP); |
| } |
| |
| |
| void Assembler::LoadFunctionFromCalleePool(Register dst, |
| const Function& function, |
| Register new_pp) { |
| const int32_t offset = |
| ObjectPool::element_offset(object_pool_wrapper_.FindObject(function)); |
| LoadWordFromPoolOffset(dst, offset - kHeapObjectTag, new_pp, AL); |
| } |
| |
| |
| void Assembler::LoadNativeEntry(Register rd, |
| const ExternalLabel* label, |
| Patchability patchable, |
| Condition cond) { |
| const int32_t offset = ObjectPool::element_offset( |
| object_pool_wrapper_.FindNativeEntry(label, patchable)); |
| LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, PP, cond); |
| } |
| |
| |
| void Assembler::PushObject(const Object& object) { |
| LoadObject(IP, object); |
| Push(IP); |
| } |
| |
| |
| void Assembler::CompareObject(Register rn, const Object& object) { |
| ASSERT(rn != IP); |
| if (object.IsSmi()) { |
| CompareImmediate(rn, reinterpret_cast<int32_t>(object.raw())); |
| } else { |
| LoadObject(IP, object); |
| cmp(rn, Operand(IP)); |
| } |
| } |
| |
| |
| // Preserves object and value registers. |
| void Assembler::StoreIntoObjectFilterNoSmi(Register object, |
| Register value, |
| Label* no_update) { |
| COMPILE_ASSERT((kNewObjectAlignmentOffset == kWordSize) && |
| (kOldObjectAlignmentOffset == 0)); |
| |
| // Write-barrier triggers if the value is in the new space (has bit set) and |
| // the object is in the old space (has bit cleared). |
| // To check that, we compute value & ~object and skip the write barrier |
| // if the bit is not set. We can't destroy the object. |
| bic(IP, value, Operand(object)); |
| tst(IP, Operand(kNewObjectAlignmentOffset)); |
| b(no_update, EQ); |
| } |
| |
| |
| // Preserves object and value registers. |
| void Assembler::StoreIntoObjectFilter(Register object, |
| Register value, |
| Label* no_update) { |
| // For the value we are only interested in the new/old bit and the tag bit. |
| // And the new bit with the tag bit. The resulting bit will be 0 for a Smi. |
| and_(IP, value, Operand(value, LSL, kObjectAlignmentLog2 - 1)); |
| // And the result with the negated space bit of the object. |
| bic(IP, IP, Operand(object)); |
| tst(IP, Operand(kNewObjectAlignmentOffset)); |
| b(no_update, EQ); |
| } |
| |
| |
| Operand Assembler::GetVerifiedMemoryShadow() { |
| Operand offset; |
| if (!Operand::CanHold(VerifiedMemory::offset(), &offset)) { |
| FATAL1("Offset 0x%" Px " not representable", VerifiedMemory::offset()); |
| } |
| return offset; |
| } |
| |
| |
| void Assembler::WriteShadowedField(Register base, |
| intptr_t offset, |
| Register value, |
| Condition cond) { |
| if (VerifiedMemory::enabled()) { |
| ASSERT(base != value); |
| Operand shadow(GetVerifiedMemoryShadow()); |
| add(base, base, shadow, cond); |
| str(value, Address(base, offset), cond); |
| sub(base, base, shadow, cond); |
| } |
| str(value, Address(base, offset), cond); |
| } |
| |
| |
| void Assembler::WriteShadowedFieldPair(Register base, |
| intptr_t offset, |
| Register value_even, |
| Register value_odd, |
| Condition cond) { |
| ASSERT(value_odd == value_even + 1); |
| if (VerifiedMemory::enabled()) { |
| ASSERT(base != value_even); |
| ASSERT(base != value_odd); |
| Operand shadow(GetVerifiedMemoryShadow()); |
| add(base, base, shadow, cond); |
| strd(value_even, base, offset, cond); |
| sub(base, base, shadow, cond); |
| } |
| strd(value_even, base, offset, cond); |
| } |
| |
| |
| Register UseRegister(Register reg, RegList* used) { |
| ASSERT(reg != SP); |
| ASSERT(reg != PC); |
| ASSERT((*used & (1 << reg)) == 0); |
| *used |= (1 << reg); |
| return reg; |
| } |
| |
| |
| Register AllocateRegister(RegList* used) { |
| const RegList free = ~*used; |
| return (free == 0) ? |
| kNoRegister : |
| UseRegister(static_cast<Register>(Utils::CountTrailingZeros(free)), used); |
| } |
| |
| |
| void Assembler::VerifiedWrite(const Address& address, |
| Register new_value, |
| FieldContent old_content) { |
| #if defined(DEBUG) |
| ASSERT(address.mode() == Address::Offset || |
| address.mode() == Address::NegOffset); |
| // Allocate temporary registers (and check for register collisions). |
| RegList used = 0; |
| UseRegister(new_value, &used); |
| Register base = UseRegister(address.rn(), &used); |
| if (address.rm() != kNoRegister) { |
| UseRegister(address.rm(), &used); |
| } |
| Register old_value = AllocateRegister(&used); |
| Register temp = AllocateRegister(&used); |
| PushList(used); |
| ldr(old_value, address); |
| // First check that 'old_value' contains 'old_content'. |
| // Smi test. |
| tst(old_value, Operand(kHeapObjectTag)); |
| Label ok; |
| switch (old_content) { |
| case kOnlySmi: |
| b(&ok, EQ); // Smi is OK. |
| Stop("Expected smi."); |
| break; |
| case kHeapObjectOrSmi: |
| b(&ok, EQ); // Smi is OK. |
| // Non-smi case: Verify object pointer is word-aligned when untagged. |
| COMPILE_ASSERT(kHeapObjectTag == 1); |
| tst(old_value, Operand((kWordSize - 1) - kHeapObjectTag)); |
| b(&ok, EQ); |
| Stop("Expected heap object or Smi"); |
| break; |
| case kEmptyOrSmiOrNull: |
| b(&ok, EQ); // Smi is OK. |
| // Non-smi case: Check for the special zap word or null. |
| // Note: Cannot use CompareImmediate, since IP may be in use. |
| LoadImmediate(temp, Heap::kZap32Bits); |
| cmp(old_value, Operand(temp)); |
| b(&ok, EQ); |
| LoadObject(temp, Object::null_object()); |
| cmp(old_value, Operand(temp)); |
| b(&ok, EQ); |
| Stop("Expected zapped, Smi or null"); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| Bind(&ok); |
| if (VerifiedMemory::enabled()) { |
| Operand shadow_offset(GetVerifiedMemoryShadow()); |
| // Adjust the address to shadow. |
| add(base, base, shadow_offset); |
| ldr(temp, address); |
| cmp(old_value, Operand(temp)); |
| Label match; |
| b(&match, EQ); |
| Stop("Write barrier verification failed"); |
| Bind(&match); |
| // Write new value in shadow. |
| str(new_value, address); |
| // Restore original address. |
| sub(base, base, shadow_offset); |
| } |
| str(new_value, address); |
| PopList(used); |
| #else |
| str(new_value, address); |
| #endif // DEBUG |
| } |
| |
| |
| void Assembler::StoreIntoObject(Register object, |
| const Address& dest, |
| Register value, |
| bool can_value_be_smi) { |
| ASSERT(object != value); |
| VerifiedWrite(dest, value, kHeapObjectOrSmi); |
| Label done; |
| if (can_value_be_smi) { |
| StoreIntoObjectFilter(object, value, &done); |
| } else { |
| StoreIntoObjectFilterNoSmi(object, value, &done); |
| } |
| // A store buffer update is required. |
| RegList regs = (1 << CODE_REG) | (1 << LR); |
| if (value != R0) { |
| regs |= (1 << R0); // Preserve R0. |
| } |
| PushList(regs); |
| if (object != R0) { |
| mov(R0, Operand(object)); |
| } |
| ldr(CODE_REG, Address(THR, Thread::update_store_buffer_code_offset())); |
| ldr(LR, Address(THR, Thread::update_store_buffer_entry_point_offset())); |
| blx(LR); |
| PopList(regs); |
| Bind(&done); |
| } |
| |
| |
| void Assembler::StoreIntoObjectOffset(Register object, |
| int32_t offset, |
| Register value, |
| bool can_value_be_smi) { |
| int32_t ignored = 0; |
| if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) { |
| StoreIntoObject( |
| object, FieldAddress(object, offset), value, can_value_be_smi); |
| } else { |
| AddImmediate(IP, object, offset - kHeapObjectTag); |
| StoreIntoObject(object, Address(IP), value, can_value_be_smi); |
| } |
| } |
| |
| |
| void Assembler::StoreIntoObjectNoBarrier(Register object, |
| const Address& dest, |
| Register value, |
| FieldContent old_content) { |
| VerifiedWrite(dest, value, old_content); |
| #if defined(DEBUG) |
| Label done; |
| StoreIntoObjectFilter(object, value, &done); |
| Stop("Store buffer update is required"); |
| Bind(&done); |
| #endif // defined(DEBUG) |
| // No store buffer update. |
| } |
| |
| |
| void Assembler::StoreIntoObjectNoBarrierOffset(Register object, |
| int32_t offset, |
| Register value, |
| FieldContent old_content) { |
| int32_t ignored = 0; |
| if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) { |
| StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value, |
| old_content); |
| } else { |
| AddImmediate(IP, object, offset - kHeapObjectTag); |
| StoreIntoObjectNoBarrier(object, Address(IP), value, old_content); |
| } |
| } |
| |
| |
| void Assembler::StoreIntoObjectNoBarrier(Register object, |
| const Address& dest, |
| const Object& value, |
| FieldContent old_content) { |
| ASSERT(value.IsSmi() || value.InVMHeap() || |
| (value.IsOld() && value.IsNotTemporaryScopedHandle())); |
| // No store buffer update. |
| LoadObject(IP, value); |
| VerifiedWrite(dest, IP, old_content); |
| } |
| |
| |
| void Assembler::StoreIntoObjectNoBarrierOffset(Register object, |
| int32_t offset, |
| const Object& value, |
| FieldContent old_content) { |
| int32_t ignored = 0; |
| if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) { |
| StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value, |
| old_content); |
| } else { |
| AddImmediate(IP, object, offset - kHeapObjectTag); |
| StoreIntoObjectNoBarrier(object, Address(IP), value, old_content); |
| } |
| } |
| |
| |
| void Assembler::InitializeFieldsNoBarrier(Register object, |
| Register begin, |
| Register end, |
| Register value_even, |
| Register value_odd) { |
| ASSERT(value_odd == value_even + 1); |
| Label init_loop; |
| Bind(&init_loop); |
| AddImmediate(begin, 2 * kWordSize); |
| cmp(begin, Operand(end)); |
| WriteShadowedFieldPair(begin, -2 * kWordSize, value_even, value_odd, LS); |
| b(&init_loop, CC); |
| WriteShadowedField(begin, -2 * kWordSize, value_even, HI); |
| #if defined(DEBUG) |
| Label done; |
| StoreIntoObjectFilter(object, value_even, &done); |
| StoreIntoObjectFilter(object, value_odd, &done); |
| Stop("Store buffer update is required"); |
| Bind(&done); |
| #endif // defined(DEBUG) |
| // No store buffer update. |
| } |
| |
| |
| void Assembler::InitializeFieldsNoBarrierUnrolled(Register object, |
| Register base, |
| intptr_t begin_offset, |
| intptr_t end_offset, |
| Register value_even, |
| Register value_odd) { |
| ASSERT(value_odd == value_even + 1); |
| intptr_t current_offset = begin_offset; |
| while (current_offset + kWordSize < end_offset) { |
| WriteShadowedFieldPair(base, current_offset, value_even, value_odd); |
| current_offset += 2*kWordSize; |
| } |
| while (current_offset < end_offset) { |
| WriteShadowedField(base, current_offset, value_even); |
| current_offset += kWordSize; |
| } |
| #if defined(DEBUG) |
| Label done; |
| StoreIntoObjectFilter(object, value_even, &done); |
| StoreIntoObjectFilter(object, value_odd, &done); |
| Stop("Store buffer update is required"); |
| Bind(&done); |
| #endif // defined(DEBUG) |
| // No store buffer update. |
| } |
| |
| |
| void Assembler::StoreIntoSmiField(const Address& dest, Register value) { |
| #if defined(DEBUG) |
| Label done; |
| tst(value, Operand(kHeapObjectTag)); |
| b(&done, EQ); |
| Stop("New value must be Smi."); |
| Bind(&done); |
| #endif // defined(DEBUG) |
| VerifiedWrite(dest, value, kOnlySmi); |
| } |
| |
| |
| void Assembler::LoadClassId(Register result, Register object, Condition cond) { |
| ASSERT(RawObject::kClassIdTagPos == 16); |
| ASSERT(RawObject::kClassIdTagSize == 16); |
| const intptr_t class_id_offset = Object::tags_offset() + |
| RawObject::kClassIdTagPos / kBitsPerByte; |
| ldrh(result, FieldAddress(object, class_id_offset), cond); |
| } |
| |
| |
| void Assembler::LoadClassById(Register result, Register class_id) { |
| ASSERT(result != class_id); |
| LoadIsolate(result); |
| const intptr_t offset = |
| Isolate::class_table_offset() + ClassTable::table_offset(); |
| LoadFromOffset(kWord, result, result, offset); |
| ldr(result, Address(result, class_id, LSL, 2)); |
| } |
| |
| |
| void Assembler::LoadClass(Register result, Register object, Register scratch) { |
| ASSERT(scratch != result); |
| LoadClassId(scratch, object); |
| LoadClassById(result, scratch); |
| } |
| |
| |
| void Assembler::CompareClassId(Register object, |
| intptr_t class_id, |
| Register scratch) { |
| LoadClassId(scratch, object); |
| CompareImmediate(scratch, class_id); |
| } |
| |
| |
| void Assembler::LoadClassIdMayBeSmi(Register result, Register object) { |
| tst(object, Operand(kSmiTagMask)); |
| LoadClassId(result, object, NE); |
| LoadImmediate(result, kSmiCid, EQ); |
| } |
| |
| |
| void Assembler::LoadTaggedClassIdMayBeSmi(Register result, Register object) { |
| LoadClassIdMayBeSmi(result, object); |
| SmiTag(result); |
| } |
| |
| |
| void Assembler::ComputeRange(Register result, |
| Register value, |
| Register scratch, |
| Label* not_mint) { |
| const Register hi = TMP; |
| const Register lo = scratch; |
| |
| Label done; |
| mov(result, Operand(value, LSR, kBitsPerWord - 1)); |
| tst(value, Operand(kSmiTagMask)); |
| b(&done, EQ); |
| CompareClassId(value, kMintCid, result); |
| b(not_mint, NE); |
| ldr(hi, FieldAddress(value, Mint::value_offset() + kWordSize)); |
| ldr(lo, FieldAddress(value, Mint::value_offset())); |
| rsb(result, hi, Operand(ICData::kInt32RangeBit)); |
| cmp(hi, Operand(lo, ASR, kBitsPerWord - 1)); |
| b(&done, EQ); |
| LoadImmediate(result, ICData::kUint32RangeBit); // Uint32 |
| tst(hi, Operand(hi)); |
| LoadImmediate(result, ICData::kInt64RangeBit, NE); // Int64 |
| Bind(&done); |
| } |
| |
| |
| void Assembler::UpdateRangeFeedback(Register value, |
| intptr_t index, |
| Register ic_data, |
| Register scratch1, |
| Register scratch2, |
| Label* miss) { |
| ASSERT(ICData::IsValidRangeFeedbackIndex(index)); |
| ComputeRange(scratch1, value, scratch2, miss); |
| ldr(scratch2, FieldAddress(ic_data, ICData::state_bits_offset())); |
| orr(scratch2, |
| scratch2, |
| Operand(scratch1, LSL, ICData::RangeFeedbackShift(index))); |
| str(scratch2, FieldAddress(ic_data, ICData::state_bits_offset())); |
| } |
| |
| #if 0 |
| // Moved to ::canEncodeBranchoffset() in IceAssemblerARM32.cpp. |
| static bool CanEncodeBranchOffset(int32_t offset) { |
| ASSERT(Utils::IsAligned(offset, 4)); |
| // Note: This check doesn't take advantage of the fact that offset>>2 |
| // is stored (allowing two more bits in address space). |
| return Utils::IsInt(Utils::CountOneBits(kBranchOffsetMask), offset); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::encodeBranchOffset() |
| int32_t Assembler::EncodeBranchOffset(int32_t offset, int32_t inst) { |
| // The offset is off by 8 due to the way the ARM CPUs read PC. |
| offset -= Instr::kPCReadOffset; |
| |
| if (!CanEncodeBranchOffset(offset)) { |
| ASSERT(!use_far_branches()); |
| Thread::Current()->long_jump_base()->Jump( |
| 1, Object::branch_offset_error()); |
| } |
| |
| // Properly preserve only the bits supported in the instruction. |
| offset >>= 2; |
| offset &= kBranchOffsetMask; |
| return (inst & ~kBranchOffsetMask) | offset; |
| } |
| |
| // Moved to AssemberARM32::decodeBranchOffset() |
| int Assembler::DecodeBranchOffset(int32_t inst) { |
| // Sign-extend, left-shift by 2, then add 8. |
| return ((((inst & kBranchOffsetMask) << 8) >> 6) + Instr::kPCReadOffset); |
| } |
| #endif |
| |
| static int32_t DecodeARMv7LoadImmediate(int32_t movt, int32_t movw) { |
| int32_t offset = 0; |
| offset |= (movt & 0xf0000) << 12; |
| offset |= (movt & 0xfff) << 16; |
| offset |= (movw & 0xf0000) >> 4; |
| offset |= movw & 0xfff; |
| return offset; |
| } |
| |
| |
| static int32_t DecodeARMv6LoadImmediate(int32_t mov, int32_t or1, |
| int32_t or2, int32_t or3) { |
| int32_t offset = 0; |
| offset |= (mov & 0xff) << 24; |
| offset |= (or1 & 0xff) << 16; |
| offset |= (or2 & 0xff) << 8; |
| offset |= (or3 & 0xff); |
| return offset; |
| } |
| |
| |
| class PatchFarBranch : public AssemblerFixup { |
| public: |
| PatchFarBranch() {} |
| |
| void Process(const MemoryRegion& region, intptr_t position) { |
| const ARMVersion version = TargetCPUFeatures::arm_version(); |
| if ((version == ARMv5TE) || (version == ARMv6)) { |
| ProcessARMv6(region, position); |
| } else { |
| ASSERT(version == ARMv7); |
| ProcessARMv7(region, position); |
| } |
| } |
| |
| private: |
| void ProcessARMv6(const MemoryRegion& region, intptr_t position) { |
| const int32_t mov = region.Load<int32_t>(position); |
| const int32_t or1 = region.Load<int32_t>(position + 1*Instr::kInstrSize); |
| const int32_t or2 = region.Load<int32_t>(position + 2*Instr::kInstrSize); |
| const int32_t or3 = region.Load<int32_t>(position + 3*Instr::kInstrSize); |
| const int32_t bx = region.Load<int32_t>(position + 4*Instr::kInstrSize); |
| |
| if (((mov & 0xffffff00) == 0xe3a0c400) && // mov IP, (byte3 rot 4) |
| ((or1 & 0xffffff00) == 0xe38cc800) && // orr IP, IP, (byte2 rot 8) |
| ((or2 & 0xffffff00) == 0xe38ccc00) && // orr IP, IP, (byte1 rot 12) |
| ((or3 & 0xffffff00) == 0xe38cc000)) { // orr IP, IP, byte0 |
| const int32_t offset = DecodeARMv6LoadImmediate(mov, or1, or2, or3); |
| const int32_t dest = region.start() + offset; |
| const int32_t dest0 = (dest & 0x000000ff); |
| const int32_t dest1 = (dest & 0x0000ff00) >> 8; |
| const int32_t dest2 = (dest & 0x00ff0000) >> 16; |
| const int32_t dest3 = (dest & 0xff000000) >> 24; |
| const int32_t patched_mov = 0xe3a0c400 | dest3; |
| const int32_t patched_or1 = 0xe38cc800 | dest2; |
| const int32_t patched_or2 = 0xe38ccc00 | dest1; |
| const int32_t patched_or3 = 0xe38cc000 | dest0; |
| |
| region.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_mov); |
| region.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_or1); |
| region.Store<int32_t>(position + 2 * Instr::kInstrSize, patched_or2); |
| region.Store<int32_t>(position + 3 * Instr::kInstrSize, patched_or3); |
| return; |
| } |
| |
| // If the offset loading instructions aren't there, we must have replaced |
| // the far branch with a near one, and so these instructions |
| // should be NOPs. |
| ASSERT((or1 == Instr::kNopInstruction) && |
| (or2 == Instr::kNopInstruction) && |
| (or3 == Instr::kNopInstruction) && |
| (bx == Instr::kNopInstruction)); |
| } |
| |
| |
| void ProcessARMv7(const MemoryRegion& region, intptr_t position) { |
| const int32_t movw = region.Load<int32_t>(position); |
| const int32_t movt = region.Load<int32_t>(position + Instr::kInstrSize); |
| const int32_t bx = region.Load<int32_t>(position + 2 * Instr::kInstrSize); |
| |
| if (((movt & 0xfff0f000) == 0xe340c000) && // movt IP, high |
| ((movw & 0xfff0f000) == 0xe300c000)) { // movw IP, low |
| const int32_t offset = DecodeARMv7LoadImmediate(movt, movw); |
| const int32_t dest = region.start() + offset; |
| const uint16_t dest_high = Utils::High16Bits(dest); |
| const uint16_t dest_low = Utils::Low16Bits(dest); |
| const int32_t patched_movt = |
| 0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff); |
| const int32_t patched_movw = |
| 0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff); |
| |
| region.Store<int32_t>(position, patched_movw); |
| region.Store<int32_t>(position + Instr::kInstrSize, patched_movt); |
| return; |
| } |
| |
| // If the offset loading instructions aren't there, we must have replaced |
| // the far branch with a near one, and so these instructions |
| // should be NOPs. |
| ASSERT((movt == Instr::kNopInstruction) && |
| (bx == Instr::kNopInstruction)); |
| } |
| |
| virtual bool IsPointerOffset() const { return false; } |
| }; |
| |
| |
| void Assembler::EmitFarBranch(Condition cond, int32_t offset, bool link) { |
| buffer_.EmitFixup(new PatchFarBranch()); |
| LoadPatchableImmediate(IP, offset); |
| if (link) { |
| blx(IP, cond); |
| } else { |
| bx(IP, cond); |
| } |
| } |
| |
| |
| void Assembler::EmitBranch(Condition cond, Label* label, bool link) { |
| if (label->IsBound()) { |
| const int32_t dest = label->Position() - buffer_.Size(); |
| if (use_far_branches() && !CanEncodeBranchOffset(dest)) { |
| EmitFarBranch(cond, label->Position(), link); |
| } else { |
| EmitType5(cond, dest, link); |
| } |
| } else { |
| const intptr_t position = buffer_.Size(); |
| if (use_far_branches()) { |
| const int32_t dest = label->position_; |
| EmitFarBranch(cond, dest, link); |
| } else { |
| // Use the offset field of the branch instruction for linking the sites. |
| EmitType5(cond, label->position_, link); |
| } |
| label->LinkTo(position); |
| } |
| } |
| |
| |
| void Assembler::BindARMv6(Label* label) { |
| ASSERT(!label->IsBound()); |
| intptr_t bound_pc = buffer_.Size(); |
| while (label->IsLinked()) { |
| const int32_t position = label->Position(); |
| int32_t dest = bound_pc - position; |
| if (use_far_branches() && !CanEncodeBranchOffset(dest)) { |
| // Far branches are enabled and we can't encode the branch offset. |
| |
| // Grab instructions that load the offset. |
| const int32_t mov = |
| buffer_.Load<int32_t>(position); |
| const int32_t or1 = |
| buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize); |
| const int32_t or2 = |
| buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize); |
| const int32_t or3 = |
| buffer_.Load<int32_t>(position + 3 * Instr::kInstrSize); |
| |
| // Change from relative to the branch to relative to the assembler |
| // buffer. |
| dest = buffer_.Size(); |
| const int32_t dest0 = (dest & 0x000000ff); |
| const int32_t dest1 = (dest & 0x0000ff00) >> 8; |
| const int32_t dest2 = (dest & 0x00ff0000) >> 16; |
| const int32_t dest3 = (dest & 0xff000000) >> 24; |
| const int32_t patched_mov = 0xe3a0c400 | dest3; |
| const int32_t patched_or1 = 0xe38cc800 | dest2; |
| const int32_t patched_or2 = 0xe38ccc00 | dest1; |
| const int32_t patched_or3 = 0xe38cc000 | dest0; |
| |
| // Rewrite the instructions. |
| buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_mov); |
| buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_or1); |
| buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize, patched_or2); |
| buffer_.Store<int32_t>(position + 3 * Instr::kInstrSize, patched_or3); |
| label->position_ = DecodeARMv6LoadImmediate(mov, or1, or2, or3); |
| } else if (use_far_branches() && CanEncodeBranchOffset(dest)) { |
| // Grab instructions that load the offset, and the branch. |
| const int32_t mov = |
| buffer_.Load<int32_t>(position); |
| const int32_t or1 = |
| buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize); |
| const int32_t or2 = |
| buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize); |
| const int32_t or3 = |
| buffer_.Load<int32_t>(position + 3 * Instr::kInstrSize); |
| const int32_t branch = |
| buffer_.Load<int32_t>(position + 4 * Instr::kInstrSize); |
| |
| // Grab the branch condition, and encode the link bit. |
| const int32_t cond = branch & 0xf0000000; |
| const int32_t link = (branch & 0x20) << 19; |
| |
| // Encode the branch and the offset. |
| const int32_t new_branch = cond | link | 0x0a000000; |
| const int32_t encoded = EncodeBranchOffset(dest, new_branch); |
| |
| // Write the encoded branch instruction followed by two nops. |
| buffer_.Store<int32_t>(position, encoded); |
| buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, |
| Instr::kNopInstruction); |
| buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize, |
| Instr::kNopInstruction); |
| buffer_.Store<int32_t>(position + 3 * Instr::kInstrSize, |
| Instr::kNopInstruction); |
| buffer_.Store<int32_t>(position + 4 * Instr::kInstrSize, |
| Instr::kNopInstruction); |
| |
| label->position_ = DecodeARMv6LoadImmediate(mov, or1, or2, or3); |
| } else { |
| int32_t next = buffer_.Load<int32_t>(position); |
| int32_t encoded = Assembler::EncodeBranchOffset(dest, next); |
| buffer_.Store<int32_t>(position, encoded); |
| label->position_ = Assembler::DecodeBranchOffset(next); |
| } |
| } |
| label->BindTo(bound_pc); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::bind(Label* Label) |
| // Note: Most of this code isn't needed because instruction selection has |
| // already been handler |
| void Assembler::BindARMv7(Label* label) { |
| ASSERT(!label->IsBound()); |
| intptr_t bound_pc = buffer_.Size(); |
| while (label->IsLinked()) { |
| const int32_t position = label->Position(); |
| int32_t dest = bound_pc - position; |
| if (use_far_branches() && !CanEncodeBranchOffset(dest)) { |
| // Far branches are enabled and we can't encode the branch offset. |
| |
| // Grab instructions that load the offset. |
| const int32_t movw = |
| buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize); |
| const int32_t movt = |
| buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize); |
| |
| // Change from relative to the branch to relative to the assembler |
| // buffer. |
| dest = buffer_.Size(); |
| const uint16_t dest_high = Utils::High16Bits(dest); |
| const uint16_t dest_low = Utils::Low16Bits(dest); |
| const int32_t patched_movt = |
| 0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff); |
| const int32_t patched_movw = |
| 0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff); |
| |
| // Rewrite the instructions. |
| buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_movw); |
| buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_movt); |
| label->position_ = DecodeARMv7LoadImmediate(movt, movw); |
| } else if (use_far_branches() && CanEncodeBranchOffset(dest)) { |
| // Far branches are enabled, but we can encode the branch offset. |
| |
| // Grab instructions that load the offset, and the branch. |
| const int32_t movw = |
| buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize); |
| const int32_t movt = |
| buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize); |
| const int32_t branch = |
| buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize); |
| |
| // Grab the branch condition, and encode the link bit. |
| const int32_t cond = branch & 0xf0000000; |
| const int32_t link = (branch & 0x20) << 19; |
| |
| // Encode the branch and the offset. |
| const int32_t new_branch = cond | link | 0x0a000000; |
| const int32_t encoded = EncodeBranchOffset(dest, new_branch); |
| |
| // Write the encoded branch instruction followed by two nops. |
| buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, |
| encoded); |
| buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, |
| Instr::kNopInstruction); |
| buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize, |
| Instr::kNopInstruction); |
| |
| label->position_ = DecodeARMv7LoadImmediate(movt, movw); |
| } else { |
| int32_t next = buffer_.Load<int32_t>(position); |
| int32_t encoded = Assembler::EncodeBranchOffset(dest, next); |
| buffer_.Store<int32_t>(position, encoded); |
| label->position_ = Assembler::DecodeBranchOffset(next); |
| } |
| } |
| label->BindTo(bound_pc); |
| } |
| #endif |
| |
| |
| void Assembler::Bind(Label* label) { |
| const ARMVersion version = TargetCPUFeatures::arm_version(); |
| if ((version == ARMv5TE) || (version == ARMv6)) { |
| BindARMv6(label); |
| } else { |
| ASSERT(version == ARMv7); |
| BindARMv7(label); |
| } |
| } |
| |
| |
| OperandSize Address::OperandSizeFor(intptr_t cid) { |
| switch (cid) { |
| case kArrayCid: |
| case kImmutableArrayCid: |
| return kWord; |
| case kOneByteStringCid: |
| case kExternalOneByteStringCid: |
| return kByte; |
| case kTwoByteStringCid: |
| case kExternalTwoByteStringCid: |
| return kHalfword; |
| case kTypedDataInt8ArrayCid: |
| return kByte; |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| return kUnsignedByte; |
| case kTypedDataInt16ArrayCid: |
| return kHalfword; |
| case kTypedDataUint16ArrayCid: |
| return kUnsignedHalfword; |
| case kTypedDataInt32ArrayCid: |
| return kWord; |
| case kTypedDataUint32ArrayCid: |
| return kUnsignedWord; |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: |
| UNREACHABLE(); |
| return kByte; |
| case kTypedDataFloat32ArrayCid: |
| return kSWord; |
| case kTypedDataFloat64ArrayCid: |
| return kDWord; |
| case kTypedDataFloat32x4ArrayCid: |
| case kTypedDataInt32x4ArrayCid: |
| case kTypedDataFloat64x2ArrayCid: |
| return kRegList; |
| case kTypedDataInt8ArrayViewCid: |
| UNREACHABLE(); |
| return kByte; |
| default: |
| UNREACHABLE(); |
| return kByte; |
| } |
| } |
| |
| |
| bool Address::CanHoldLoadOffset(OperandSize size, |
| int32_t offset, |
| int32_t* offset_mask) { |
| switch (size) { |
| case kByte: |
| case kHalfword: |
| case kUnsignedHalfword: |
| case kWordPair: { |
| *offset_mask = 0xff; |
| return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3. |
| } |
| case kUnsignedByte: |
| case kWord: |
| case kUnsignedWord: { |
| *offset_mask = 0xfff; |
| return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2. |
| } |
| case kSWord: |
| case kDWord: { |
| *offset_mask = 0x3fc; // Multiple of 4. |
| // VFP addressing mode. |
| return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4)); |
| } |
| case kRegList: { |
| *offset_mask = 0x0; |
| return offset == 0; |
| } |
| default: { |
| UNREACHABLE(); |
| return false; |
| } |
| } |
| } |
| |
| |
| bool Address::CanHoldStoreOffset(OperandSize size, |
| int32_t offset, |
| int32_t* offset_mask) { |
| switch (size) { |
| case kHalfword: |
| case kUnsignedHalfword: |
| case kWordPair: { |
| *offset_mask = 0xff; |
| return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3. |
| } |
| case kByte: |
| case kUnsignedByte: |
| case kWord: |
| case kUnsignedWord: { |
| *offset_mask = 0xfff; |
| return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2. |
| } |
| case kSWord: |
| case kDWord: { |
| *offset_mask = 0x3fc; // Multiple of 4. |
| // VFP addressing mode. |
| return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4)); |
| } |
| case kRegList: { |
| *offset_mask = 0x0; |
| return offset == 0; |
| } |
| default: { |
| UNREACHABLE(); |
| return false; |
| } |
| } |
| } |
| |
| |
| bool Address::CanHoldImmediateOffset( |
| bool is_load, intptr_t cid, int64_t offset) { |
| int32_t offset_mask = 0; |
| if (is_load) { |
| return CanHoldLoadOffset(OperandSizeFor(cid), offset, &offset_mask); |
| } else { |
| return CanHoldStoreOffset(OperandSizeFor(cid), offset, &offset_mask); |
| } |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::push(). |
| void Assembler::Push(Register rd, Condition cond) { |
| str(rd, Address(SP, -kWordSize, Address::PreIndex), cond); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::pop(). |
| void Assembler::Pop(Register rd, Condition cond) { |
| ldr(rd, Address(SP, kWordSize, Address::PostIndex), cond); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::pushList(). |
| void Assembler::PushList(RegList regs, Condition cond) { |
| stm(DB_W, SP, regs, cond); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::popList(). |
| void Assembler::PopList(RegList regs, Condition cond) { |
| ldm(IA_W, SP, regs, cond); |
| } |
| #endif |
| |
| void Assembler::MoveRegister(Register rd, Register rm, Condition cond) { |
| if (rd != rm) { |
| mov(rd, Operand(rm), cond); |
| } |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::lsl() |
| void Assembler::Lsl(Register rd, Register rm, const Operand& shift_imm, |
| Condition cond) { |
| ASSERT(shift_imm.type() == 1); |
| ASSERT(shift_imm.encoding() != 0); // Do not use Lsl if no shift is wanted. |
| mov(rd, Operand(rm, LSL, shift_imm.encoding()), cond); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::lsl() |
| void Assembler::Lsl(Register rd, Register rm, Register rs, Condition cond) { |
| mov(rd, Operand(rm, LSL, rs), cond); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::lsr() |
| void Assembler::Lsr(Register rd, Register rm, const Operand& shift_imm, |
| Condition cond) { |
| ASSERT(shift_imm.type() == 1); |
| uint32_t shift = shift_imm.encoding(); |
| ASSERT(shift != 0); // Do not use Lsr if no shift is wanted. |
| if (shift == 32) { |
| shift = 0; // Comply to UAL syntax. |
| } |
| mov(rd, Operand(rm, LSR, shift), cond); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::lsr() |
| void Assembler::Lsr(Register rd, Register rm, Register rs, Condition cond) { |
| mov(rd, Operand(rm, LSR, rs), cond); |
| } |
| |
| // Moved to ARM32::AssemblerARM32::asr() |
| void Assembler::Asr(Register rd, Register rm, const Operand& shift_imm, |
| Condition cond) { |
| ASSERT(shift_imm.type() == 1); |
| uint32_t shift = shift_imm.encoding(); |
| ASSERT(shift != 0); // Do not use Asr if no shift is wanted. |
| if (shift == 32) { |
| shift = 0; // Comply to UAL syntax. |
| } |
| mov(rd, Operand(rm, ASR, shift), cond); |
| } |
| #endif |
| |
| void Assembler::Asrs(Register rd, Register rm, const Operand& shift_imm, |
| Condition cond) { |
| ASSERT(shift_imm.type() == 1); |
| uint32_t shift = shift_imm.encoding(); |
| ASSERT(shift != 0); // Do not use Asr if no shift is wanted. |
| if (shift == 32) { |
| shift = 0; // Comply to UAL syntax. |
| } |
| movs(rd, Operand(rm, ASR, shift), cond); |
| } |
| |
| #if 0 |
| // Moved to ARM32::AssemblerARM32::asr() |
| void Assembler::Asr(Register rd, Register rm, Register rs, Condition cond) { |
| mov(rd, Operand(rm, ASR, rs), cond); |
| } |
| #endif |
| |
| void Assembler::Ror(Register rd, Register rm, const Operand& shift_imm, |
| Condition cond) { |
| ASSERT(shift_imm.type() == 1); |
| ASSERT(shift_imm.encoding() != 0); // Use Rrx instruction. |
| mov(rd, Operand(rm, ROR, shift_imm.encoding()), cond); |
| } |
| |
| |
| void Assembler::Ror(Register rd, Register rm, Register rs, Condition cond) { |
| mov(rd, Operand(rm, ROR, rs), cond); |
| } |
| |
| |
| void Assembler::Rrx(Register rd, Register rm, Condition cond) { |
| mov(rd, Operand(rm, ROR, 0), cond); |
| } |
| |
| |
| void Assembler::SignFill(Register rd, Register rm, Condition cond) { |
| Asr(rd, rm, Operand(31), cond); |
| } |
| |
| |
| void Assembler::Vreciprocalqs(QRegister qd, QRegister qm) { |
| ASSERT(qm != QTMP); |
| ASSERT(qd != QTMP); |
| |
| // Reciprocal estimate. |
| vrecpeqs(qd, qm); |
| // 2 Newton-Raphson steps. |
| vrecpsqs(QTMP, qm, qd); |
| vmulqs(qd, qd, QTMP); |
| vrecpsqs(QTMP, qm, qd); |
| vmulqs(qd, qd, QTMP); |
| } |
| |
| |
| void Assembler::VreciprocalSqrtqs(QRegister qd, QRegister qm) { |
| ASSERT(qm != QTMP); |
| ASSERT(qd != QTMP); |
| |
| // Reciprocal square root estimate. |
| vrsqrteqs(qd, qm); |
| // 2 Newton-Raphson steps. xn+1 = xn * (3 - Q1*xn^2) / 2. |
| // First step. |
| vmulqs(QTMP, qd, qd); // QTMP <- xn^2 |
| vrsqrtsqs(QTMP, qm, QTMP); // QTMP <- (3 - Q1*QTMP) / 2. |
| vmulqs(qd, qd, QTMP); // xn+1 <- xn * QTMP |
| // Second step. |
| vmulqs(QTMP, qd, qd); |
| vrsqrtsqs(QTMP, qm, QTMP); |
| vmulqs(qd, qd, QTMP); |
| } |
| |
| |
| void Assembler::Vsqrtqs(QRegister qd, QRegister qm, QRegister temp) { |
| ASSERT(temp != QTMP); |
| ASSERT(qm != QTMP); |
| ASSERT(qd != QTMP); |
| |
| if (temp != kNoQRegister) { |
| vmovq(temp, qm); |
| qm = temp; |
| } |
| |
| VreciprocalSqrtqs(qd, qm); |
| vmovq(qm, qd); |
| Vreciprocalqs(qd, qm); |
| } |
| |
| |
| void Assembler::Vdivqs(QRegister qd, QRegister qn, QRegister qm) { |
| ASSERT(qd != QTMP); |
| ASSERT(qn != QTMP); |
| ASSERT(qm != QTMP); |
| |
| Vreciprocalqs(qd, qm); |
| vmulqs(qd, qn, qd); |
| } |
| |
| |
| void Assembler::Branch(const StubEntry& stub_entry, |
| Patchability patchable, |
| Register pp, |
| Condition cond) { |
| const Code& target_code = Code::Handle(stub_entry.code()); |
| const int32_t offset = ObjectPool::element_offset( |
| object_pool_wrapper_.FindObject(target_code, patchable)); |
| LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag, pp, cond); |
| ldr(IP, FieldAddress(CODE_REG, Code::entry_point_offset()), cond); |
| bx(IP, cond); |
| } |
| |
| |
| void Assembler::BranchLink(const Code& target, Patchability patchable) { |
| // Make sure that class CallPattern is able to patch the label referred |
| // to by this code sequence. |
| // For added code robustness, use 'blx lr' in a patchable sequence and |
| // use 'blx ip' in a non-patchable sequence (see other BranchLink flavors). |
| const int32_t offset = ObjectPool::element_offset( |
| object_pool_wrapper_.FindObject(target, patchable)); |
| LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag, PP, AL); |
| ldr(LR, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| blx(LR); // Use blx instruction so that the return branch prediction works. |
| } |
| |
| |
| void Assembler::BranchLink(const StubEntry& stub_entry, |
| Patchability patchable) { |
| const Code& code = Code::Handle(stub_entry.code()); |
| BranchLink(code, patchable); |
| } |
| |
| |
| void Assembler::BranchLinkPatchable(const Code& target) { |
| BranchLink(target, kPatchable); |
| } |
| |
| |
| void Assembler::BranchLink(const ExternalLabel* label) { |
| LoadImmediate(LR, label->address()); // Target address is never patched. |
| blx(LR); // Use blx instruction so that the return branch prediction works. |
| } |
| |
| |
| void Assembler::BranchLinkPatchable(const StubEntry& stub_entry) { |
| BranchLinkPatchable(Code::Handle(stub_entry.code())); |
| } |
| |
| |
| void Assembler::BranchLinkOffset(Register base, int32_t offset) { |
| ASSERT(base != PC); |
| ASSERT(base != IP); |
| LoadFromOffset(kWord, IP, base, offset); |
| blx(IP); // Use blx instruction so that the return branch prediction works. |
| } |
| |
| |
| void Assembler::LoadPatchableImmediate( |
| Register rd, int32_t value, Condition cond) { |
| const ARMVersion version = TargetCPUFeatures::arm_version(); |
| if ((version == ARMv5TE) || (version == ARMv6)) { |
| // This sequence is patched in a few places, and should remain fixed. |
| const uint32_t byte0 = (value & 0x000000ff); |
| const uint32_t byte1 = (value & 0x0000ff00) >> 8; |
| const uint32_t byte2 = (value & 0x00ff0000) >> 16; |
| const uint32_t byte3 = (value & 0xff000000) >> 24; |
| mov(rd, Operand(4, byte3), cond); |
| orr(rd, rd, Operand(8, byte2), cond); |
| orr(rd, rd, Operand(12, byte1), cond); |
| orr(rd, rd, Operand(byte0), cond); |
| } else { |
| ASSERT(version == ARMv7); |
| const uint16_t value_low = Utils::Low16Bits(value); |
| const uint16_t value_high = Utils::High16Bits(value); |
| movw(rd, value_low, cond); |
| movt(rd, value_high, cond); |
| } |
| } |
| |
| |
| void Assembler::LoadDecodableImmediate( |
| Register rd, int32_t value, Condition cond) { |
| const ARMVersion version = TargetCPUFeatures::arm_version(); |
| if ((version == ARMv5TE) || (version == ARMv6)) { |
| if (constant_pool_allowed()) { |
| const int32_t offset = Array::element_offset(FindImmediate(value)); |
| LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, PP, cond); |
| } else { |
| LoadPatchableImmediate(rd, value, cond); |
| } |
| } else { |
| ASSERT(version == ARMv7); |
| movw(rd, Utils::Low16Bits(value), cond); |
| const uint16_t value_high = Utils::High16Bits(value); |
| if (value_high != 0) { |
| movt(rd, value_high, cond); |
| } |
| } |
| } |
| |
| |
| void Assembler::LoadImmediate(Register rd, int32_t value, Condition cond) { |
| Operand o; |
| if (Operand::CanHold(value, &o)) { |
| mov(rd, o, cond); |
| } else if (Operand::CanHold(~value, &o)) { |
| mvn(rd, o, cond); |
| } else { |
| LoadDecodableImmediate(rd, value, cond); |
| } |
| } |
| |
| |
| void Assembler::LoadSImmediate(SRegister sd, float value, Condition cond) { |
| if (!vmovs(sd, value, cond)) { |
| const DRegister dd = static_cast<DRegister>(sd >> 1); |
| const int index = sd & 1; |
| LoadImmediate(IP, bit_cast<int32_t, float>(value), cond); |
| vmovdr(dd, index, IP, cond); |
| } |
| } |
| |
| |
| void Assembler::LoadDImmediate(DRegister dd, |
| double value, |
| Register scratch, |
| Condition cond) { |
| ASSERT(scratch != PC); |
| ASSERT(scratch != IP); |
| if (!vmovd(dd, value, cond)) { |
| // A scratch register and IP are needed to load an arbitrary double. |
| ASSERT(scratch != kNoRegister); |
| int64_t imm64 = bit_cast<int64_t, double>(value); |
| LoadImmediate(IP, Utils::Low32Bits(imm64), cond); |
| LoadImmediate(scratch, Utils::High32Bits(imm64), cond); |
| vmovdrr(dd, IP, scratch, cond); |
| } |
| } |
| |
| |
| void Assembler::LoadFromOffset(OperandSize size, |
| Register reg, |
| Register base, |
| int32_t offset, |
| Condition cond) { |
| int32_t offset_mask = 0; |
| if (!Address::CanHoldLoadOffset(size, offset, &offset_mask)) { |
| ASSERT(base != IP); |
| AddImmediate(IP, base, offset & ~offset_mask, cond); |
| base = IP; |
| offset = offset & offset_mask; |
| } |
| switch (size) { |
| case kByte: |
| ldrsb(reg, Address(base, offset), cond); |
| break; |
| case kUnsignedByte: |
| ldrb(reg, Address(base, offset), cond); |
| break; |
| case kHalfword: |
| ldrsh(reg, Address(base, offset), cond); |
| break; |
| case kUnsignedHalfword: |
| ldrh(reg, Address(base, offset), cond); |
| break; |
| case kWord: |
| ldr(reg, Address(base, offset), cond); |
| break; |
| case kWordPair: |
| ldrd(reg, base, offset, cond); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void Assembler::StoreToOffset(OperandSize size, |
| Register reg, |
| Register base, |
| int32_t offset, |
| Condition cond) { |
| int32_t offset_mask = 0; |
| if (!Address::CanHoldStoreOffset(size, offset, &offset_mask)) { |
| ASSERT(reg != IP); |
| ASSERT(base != IP); |
| AddImmediate(IP, base, offset & ~offset_mask, cond); |
| base = IP; |
| offset = offset & offset_mask; |
| } |
| switch (size) { |
| case kByte: |
| strb(reg, Address(base, offset), cond); |
| break; |
| case kHalfword: |
| strh(reg, Address(base, offset), cond); |
| break; |
| case kWord: |
| str(reg, Address(base, offset), cond); |
| break; |
| case kWordPair: |
| strd(reg, base, offset, cond); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void Assembler::LoadSFromOffset(SRegister reg, |
| Register base, |
| int32_t offset, |
| Condition cond) { |
| int32_t offset_mask = 0; |
| if (!Address::CanHoldLoadOffset(kSWord, offset, &offset_mask)) { |
| ASSERT(base != IP); |
| AddImmediate(IP, base, offset & ~offset_mask, cond); |
| base = IP; |
| offset = offset & offset_mask; |
| } |
| vldrs(reg, Address(base, offset), cond); |
| } |
| |
| |
| void Assembler::StoreSToOffset(SRegister reg, |
| Register base, |
| int32_t offset, |
| Condition cond) { |
| int32_t offset_mask = 0; |
| if (!Address::CanHoldStoreOffset(kSWord, offset, &offset_mask)) { |
| ASSERT(base != IP); |
| AddImmediate(IP, base, offset & ~offset_mask, cond); |
| base = IP; |
| offset = offset & offset_mask; |
| } |
| vstrs(reg, Address(base, offset), cond); |
| } |
| |
| |
| void Assembler::LoadDFromOffset(DRegister reg, |
| Register base, |
| int32_t offset, |
| Condition cond) { |
| int32_t offset_mask = 0; |
| if (!Address::CanHoldLoadOffset(kDWord, offset, &offset_mask)) { |
| ASSERT(base != IP); |
| AddImmediate(IP, base, offset & ~offset_mask, cond); |
| base = IP; |
| offset = offset & offset_mask; |
| } |
| vldrd(reg, Address(base, offset), cond); |
| } |
| |
| |
| void Assembler::StoreDToOffset(DRegister reg, |
| Register base, |
| int32_t offset, |
| Condition cond) { |
| int32_t offset_mask = 0; |
| if (!Address::CanHoldStoreOffset(kDWord, offset, &offset_mask)) { |
| ASSERT(base != IP); |
| AddImmediate(IP, base, offset & ~offset_mask, cond); |
| base = IP; |
| offset = offset & offset_mask; |
| } |
| vstrd(reg, Address(base, offset), cond); |
| } |
| |
| |
| void Assembler::LoadMultipleDFromOffset(DRegister first, |
| intptr_t count, |
| Register base, |
| int32_t offset) { |
| ASSERT(base != IP); |
| AddImmediate(IP, base, offset); |
| vldmd(IA, IP, first, count); |
| } |
| |
| void Assembler::StoreMultipleDToOffset(DRegister first, |
| intptr_t count, |
| Register base, |
| int32_t offset) { |
| ASSERT(base != IP); |
| AddImmediate(IP, base, offset); |
| vstmd(IA, IP, first, count); |
| } |
| |
| |
| void Assembler::CopyDoubleField( |
| Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) { |
| if (TargetCPUFeatures::vfp_supported()) { |
| LoadDFromOffset(dtmp, src, Double::value_offset() - kHeapObjectTag); |
| StoreDToOffset(dtmp, dst, Double::value_offset() - kHeapObjectTag); |
| } else { |
| LoadFromOffset(kWord, tmp1, src, |
| Double::value_offset() - kHeapObjectTag); |
| LoadFromOffset(kWord, tmp2, src, |
| Double::value_offset() + kWordSize - kHeapObjectTag); |
| StoreToOffset(kWord, tmp1, dst, |
| Double::value_offset() - kHeapObjectTag); |
| StoreToOffset(kWord, tmp2, dst, |
| Double::value_offset() + kWordSize - kHeapObjectTag); |
| } |
| } |
| |
| |
| void Assembler::CopyFloat32x4Field( |
| Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) { |
| if (TargetCPUFeatures::neon_supported()) { |
| LoadMultipleDFromOffset(dtmp, 2, src, |
| Float32x4::value_offset() - kHeapObjectTag); |
| StoreMultipleDToOffset(dtmp, 2, dst, |
| Float32x4::value_offset() - kHeapObjectTag); |
| } else { |
| LoadFromOffset(kWord, tmp1, src, |
| (Float32x4::value_offset() + 0 * kWordSize) - kHeapObjectTag); |
| LoadFromOffset(kWord, tmp2, src, |
| (Float32x4::value_offset() + 1 * kWordSize) - kHeapObjectTag); |
| StoreToOffset(kWord, tmp1, dst, |
| (Float32x4::value_offset() + 0 * kWordSize) - kHeapObjectTag); |
| StoreToOffset(kWord, tmp2, dst, |
| (Float32x4::value_offset() + 1 * kWordSize) - kHeapObjectTag); |
| |
| LoadFromOffset(kWord, tmp1, src, |
| (Float32x4::value_offset() + 2 * kWordSize) - kHeapObjectTag); |
| LoadFromOffset(kWord, tmp2, src, |
| (Float32x4::value_offset() + 3 * kWordSize) - kHeapObjectTag); |
| StoreToOffset(kWord, tmp1, dst, |
| (Float32x4::value_offset() + 2 * kWordSize) - kHeapObjectTag); |
| StoreToOffset(kWord, tmp2, dst, |
| (Float32x4::value_offset() + 3 * kWordSize) - kHeapObjectTag); |
| } |
| } |
| |
| |
| void Assembler::CopyFloat64x2Field( |
| Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) { |
| if (TargetCPUFeatures::neon_supported()) { |
| LoadMultipleDFromOffset(dtmp, 2, src, |
| Float64x2::value_offset() - kHeapObjectTag); |
| StoreMultipleDToOffset(dtmp, 2, dst, |
| Float64x2::value_offset() - kHeapObjectTag); |
| } else { |
| LoadFromOffset(kWord, tmp1, src, |
| (Float64x2::value_offset() + 0 * kWordSize) - kHeapObjectTag); |
| LoadFromOffset(kWord, tmp2, src, |
| (Float64x2::value_offset() + 1 * kWordSize) - kHeapObjectTag); |
| StoreToOffset(kWord, tmp1, dst, |
| (Float64x2::value_offset() + 0 * kWordSize) - kHeapObjectTag); |
| StoreToOffset(kWord, tmp2, dst, |
| (Float64x2::value_offset() + 1 * kWordSize) - kHeapObjectTag); |
| |
| LoadFromOffset(kWord, tmp1, src, |
| (Float64x2::value_offset() + 2 * kWordSize) - kHeapObjectTag); |
| LoadFromOffset(kWord, tmp2, src, |
| (Float64x2::value_offset() + 3 * kWordSize) - kHeapObjectTag); |
| StoreToOffset(kWord, tmp1, dst, |
| (Float64x2::value_offset() + 2 * kWordSize) - kHeapObjectTag); |
| StoreToOffset(kWord, tmp2, dst, |
| (Float64x2::value_offset() + 3 * kWordSize) - kHeapObjectTag); |
| } |
| } |
| |
| |
| void Assembler::AddImmediate(Register rd, int32_t value, Condition cond) { |
| AddImmediate(rd, rd, value, cond); |
| } |
| |
| |
| void Assembler::AddImmediate(Register rd, Register rn, int32_t value, |
| Condition cond) { |
| if (value == 0) { |
| if (rd != rn) { |
| mov(rd, Operand(rn), cond); |
| } |
| return; |
| } |
| // We prefer to select the shorter code sequence rather than selecting add for |
| // positive values and sub for negatives ones, which would slightly improve |
| // the readability of generated code for some constants. |
| Operand o; |
| if (Operand::CanHold(value, &o)) { |
| add(rd, rn, o, cond); |
| } else if (Operand::CanHold(-value, &o)) { |
| sub(rd, rn, o, cond); |
| } else { |
| ASSERT(rn != IP); |
| if (Operand::CanHold(~value, &o)) { |
| mvn(IP, o, cond); |
| add(rd, rn, Operand(IP), cond); |
| } else if (Operand::CanHold(~(-value), &o)) { |
| mvn(IP, o, cond); |
| sub(rd, rn, Operand(IP), cond); |
| } else { |
| LoadDecodableImmediate(IP, value, cond); |
| add(rd, rn, Operand(IP), cond); |
| } |
| } |
| } |
| |
| |
| void Assembler::AddImmediateSetFlags(Register rd, Register rn, int32_t value, |
| Condition cond) { |
| Operand o; |
| if (Operand::CanHold(value, &o)) { |
| // Handles value == kMinInt32. |
| adds(rd, rn, o, cond); |
| } else if (Operand::CanHold(-value, &o)) { |
| ASSERT(value != kMinInt32); // Would cause erroneous overflow detection. |
| subs(rd, rn, o, cond); |
| } else { |
| ASSERT(rn != IP); |
| if (Operand::CanHold(~value, &o)) { |
| mvn(IP, o, cond); |
| adds(rd, rn, Operand(IP), cond); |
| } else if (Operand::CanHold(~(-value), &o)) { |
| ASSERT(value != kMinInt32); // Would cause erroneous overflow detection. |
| mvn(IP, o, cond); |
| subs(rd, rn, Operand(IP), cond); |
| } else { |
| LoadDecodableImmediate(IP, value, cond); |
| adds(rd, rn, Operand(IP), cond); |
| } |
| } |
| } |
| |
| |
| void Assembler::SubImmediateSetFlags(Register rd, Register rn, int32_t value, |
| Condition cond) { |
| Operand o; |
| if (Operand::CanHold(value, &o)) { |
| // Handles value == kMinInt32. |
| subs(rd, rn, o, cond); |
| } else if (Operand::CanHold(-value, &o)) { |
| ASSERT(value != kMinInt32); // Would cause erroneous overflow detection. |
| adds(rd, rn, o, cond); |
| } else { |
| ASSERT(rn != IP); |
| if (Operand::CanHold(~value, &o)) { |
| mvn(IP, o, cond); |
| subs(rd, rn, Operand(IP), cond); |
| } else if (Operand::CanHold(~(-value), &o)) { |
| ASSERT(value != kMinInt32); // Would cause erroneous overflow detection. |
| mvn(IP, o, cond); |
| adds(rd, rn, Operand(IP), cond); |
| } else { |
| LoadDecodableImmediate(IP, value, cond); |
| subs(rd, rn, Operand(IP), cond); |
| } |
| } |
| } |
| |
| |
| void Assembler::AndImmediate(Register rd, Register rs, int32_t imm, |
| Condition cond) { |
| Operand o; |
| if (Operand::CanHold(imm, &o)) { |
| and_(rd, rs, Operand(o), cond); |
| } else { |
| LoadImmediate(TMP, imm, cond); |
| and_(rd, rs, Operand(TMP), cond); |
| } |
| } |
| |
| |
| void Assembler::CompareImmediate(Register rn, int32_t value, Condition cond) { |
| Operand o; |
| if (Operand::CanHold(value, &o)) { |
| cmp(rn, o, cond); |
| } else { |
| ASSERT(rn != IP); |
| LoadImmediate(IP, value, cond); |
| cmp(rn, Operand(IP), cond); |
| } |
| } |
| |
| |
| void Assembler::TestImmediate(Register rn, int32_t imm, Condition cond) { |
| Operand o; |
| if (Operand::CanHold(imm, &o)) { |
| tst(rn, o, cond); |
| } else { |
| LoadImmediate(IP, imm); |
| tst(rn, Operand(IP), cond); |
| } |
| } |
| |
| void Assembler::IntegerDivide(Register result, Register left, Register right, |
| DRegister tmpl, DRegister tmpr) { |
| ASSERT(tmpl != tmpr); |
| if (TargetCPUFeatures::integer_division_supported()) { |
| sdiv(result, left, right); |
| } else { |
| ASSERT(TargetCPUFeatures::vfp_supported()); |
| SRegister stmpl = static_cast<SRegister>(2 * tmpl); |
| SRegister stmpr = static_cast<SRegister>(2 * tmpr); |
| vmovsr(stmpl, left); |
| vcvtdi(tmpl, stmpl); // left is in tmpl. |
| vmovsr(stmpr, right); |
| vcvtdi(tmpr, stmpr); // right is in tmpr. |
| vdivd(tmpr, tmpl, tmpr); |
| vcvtid(stmpr, tmpr); |
| vmovrs(result, stmpr); |
| } |
| } |
| |
| |
| static int NumRegsBelowFP(RegList regs) { |
| int count = 0; |
| for (int i = 0; i < FP; i++) { |
| if ((regs & (1 << i)) != 0) { |
| count++; |
| } |
| } |
| return count; |
| } |
| |
| |
| void Assembler::EnterFrame(RegList regs, intptr_t frame_size) { |
| if (prologue_offset_ == -1) { |
| prologue_offset_ = CodeSize(); |
| } |
| PushList(regs); |
| if ((regs & (1 << FP)) != 0) { |
| // Set FP to the saved previous FP. |
| add(FP, SP, Operand(4 * NumRegsBelowFP(regs))); |
| } |
| AddImmediate(SP, -frame_size); |
| } |
| |
| |
| void Assembler::LeaveFrame(RegList regs) { |
| ASSERT((regs & (1 << PC)) == 0); // Must not pop PC. |
| if ((regs & (1 << FP)) != 0) { |
| // Use FP to set SP. |
| sub(SP, FP, Operand(4 * NumRegsBelowFP(regs))); |
| } |
| PopList(regs); |
| } |
| |
| |
| void Assembler::Ret() { |
| bx(LR); |
| } |
| |
| |
| void Assembler::ReserveAlignedFrameSpace(intptr_t frame_space) { |
| // Reserve space for arguments and align frame before entering |
| // the C++ world. |
| AddImmediate(SP, -frame_space); |
| if (OS::ActivationFrameAlignment() > 1) { |
| bic(SP, SP, Operand(OS::ActivationFrameAlignment() - 1)); |
| } |
| } |
| |
| |
| void Assembler::EnterCallRuntimeFrame(intptr_t frame_space) { |
| // Preserve volatile CPU registers and PP. |
| EnterFrame(kDartVolatileCpuRegs | (1 << PP) | (1 << FP), 0); |
| COMPILE_ASSERT((kDartVolatileCpuRegs & (1 << PP)) == 0); |
| |
| // Preserve all volatile FPU registers. |
| if (TargetCPUFeatures::vfp_supported()) { |
| DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg); |
| DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg); |
| if ((lastv - firstv + 1) >= 16) { |
| DRegister mid = static_cast<DRegister>(firstv + 16); |
| vstmd(DB_W, SP, mid, lastv - mid + 1); |
| vstmd(DB_W, SP, firstv, 16); |
| } else { |
| vstmd(DB_W, SP, firstv, lastv - firstv + 1); |
| } |
| } |
| |
| LoadPoolPointer(); |
| |
| ReserveAlignedFrameSpace(frame_space); |
| } |
| |
| |
| void Assembler::LeaveCallRuntimeFrame() { |
| // SP might have been modified to reserve space for arguments |
| // and ensure proper alignment of the stack frame. |
| // We need to restore it before restoring registers. |
| const intptr_t kPushedFpuRegisterSize = |
| TargetCPUFeatures::vfp_supported() ? |
| kDartVolatileFpuRegCount * kFpuRegisterSize : 0; |
| |
| COMPILE_ASSERT(PP < FP); |
| COMPILE_ASSERT((kDartVolatileCpuRegs & (1 << PP)) == 0); |
| // kVolatileCpuRegCount +1 for PP, -1 because even though LR is volatile, |
| // it is pushed ahead of FP. |
| const intptr_t kPushedRegistersSize = |
| kDartVolatileCpuRegCount * kWordSize + kPushedFpuRegisterSize; |
| AddImmediate(SP, FP, -kPushedRegistersSize); |
| |
| // Restore all volatile FPU registers. |
| if (TargetCPUFeatures::vfp_supported()) { |
| DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg); |
| DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg); |
| if ((lastv - firstv + 1) >= 16) { |
| DRegister mid = static_cast<DRegister>(firstv + 16); |
| vldmd(IA_W, SP, firstv, 16); |
| vldmd(IA_W, SP, mid, lastv - mid + 1); |
| } else { |
| vldmd(IA_W, SP, firstv, lastv - firstv + 1); |
| } |
| } |
| |
| // Restore volatile CPU registers. |
| LeaveFrame(kDartVolatileCpuRegs | (1 << PP) | (1 << FP)); |
| } |
| |
| |
| void Assembler::CallRuntime(const RuntimeEntry& entry, |
| intptr_t argument_count) { |
| entry.Call(this, argument_count); |
| } |
| |
| |
| void Assembler::EnterDartFrame(intptr_t frame_size) { |
| ASSERT(!constant_pool_allowed()); |
| |
| // Registers are pushed in descending order: R9 | R10 | R11 | R14. |
| EnterFrame((1 << PP) | (1 << CODE_REG) | (1 << FP) | (1 << LR), 0); |
| |
| // Setup pool pointer for this dart function. |
| LoadPoolPointer(); |
| |
| // Reserve space for locals. |
| AddImmediate(SP, -frame_size); |
| } |
| |
| |
| // On entry to a function compiled for OSR, the caller's frame pointer, the |
| // stack locals, and any copied parameters are already in place. The frame |
| // pointer is already set up. The PC marker is not correct for the |
| // optimized function and there may be extra space for spill slots to |
| // allocate. We must also set up the pool pointer for the function. |
| void Assembler::EnterOsrFrame(intptr_t extra_size) { |
| ASSERT(!constant_pool_allowed()); |
| Comment("EnterOsrFrame"); |
| RestoreCodePointer(); |
| LoadPoolPointer(); |
| |
| AddImmediate(SP, -extra_size); |
| } |
| |
| |
| void Assembler::LeaveDartFrame(RestorePP restore_pp) { |
| if (restore_pp == kRestoreCallerPP) { |
| ldr(PP, Address(FP, kSavedCallerPpSlotFromFp * kWordSize)); |
| set_constant_pool_allowed(false); |
| } |
| Drop(2); // Drop saved PP, PC marker. |
| LeaveFrame((1 << FP) | (1 << LR)); |
| } |
| |
| |
| void Assembler::EnterStubFrame() { |
| EnterDartFrame(0); |
| } |
| |
| |
| void Assembler::LeaveStubFrame() { |
| LeaveDartFrame(); |
| } |
| |
| |
| void Assembler::LoadAllocationStatsAddress(Register dest, |
| intptr_t cid, |
| bool inline_isolate) { |
| ASSERT(dest != kNoRegister); |
| ASSERT(dest != TMP); |
| ASSERT(cid > 0); |
| const intptr_t class_offset = ClassTable::ClassOffsetFor(cid); |
| if (inline_isolate) { |
| ASSERT(FLAG_allow_absolute_addresses); |
| ClassTable* class_table = Isolate::Current()->class_table(); |
| ClassHeapStats** table_ptr = class_table->TableAddressFor(cid); |
| if (cid < kNumPredefinedCids) { |
| LoadImmediate(dest, reinterpret_cast<uword>(*table_ptr) + class_offset); |
| } else { |
| LoadImmediate(dest, reinterpret_cast<uword>(table_ptr)); |
| ldr(dest, Address(dest, 0)); |
| AddImmediate(dest, class_offset); |
| } |
| } else { |
| LoadIsolate(dest); |
| intptr_t table_offset = |
| Isolate::class_table_offset() + ClassTable::TableOffsetFor(cid); |
| ldr(dest, Address(dest, table_offset)); |
| AddImmediate(dest, class_offset); |
| } |
| } |
| |
| |
| void Assembler::MaybeTraceAllocation(intptr_t cid, |
| Register temp_reg, |
| Label* trace, |
| bool inline_isolate) { |
| LoadAllocationStatsAddress(temp_reg, cid, inline_isolate); |
| const uword state_offset = ClassHeapStats::state_offset(); |
| ldr(temp_reg, Address(temp_reg, state_offset)); |
| tst(temp_reg, Operand(ClassHeapStats::TraceAllocationMask())); |
| b(trace, NE); |
| } |
| |
| |
| void Assembler::IncrementAllocationStats(Register stats_addr_reg, |
| intptr_t cid, |
| Heap::Space space) { |
| ASSERT(stats_addr_reg != kNoRegister); |
| ASSERT(stats_addr_reg != TMP); |
| ASSERT(cid > 0); |
| const uword count_field_offset = (space == Heap::kNew) ? |
| ClassHeapStats::allocated_since_gc_new_space_offset() : |
| ClassHeapStats::allocated_since_gc_old_space_offset(); |
| const Address& count_address = Address(stats_addr_reg, count_field_offset); |
| ldr(TMP, count_address); |
| AddImmediate(TMP, 1); |
| str(TMP, count_address); |
| } |
| |
| |
| void Assembler::IncrementAllocationStatsWithSize(Register stats_addr_reg, |
| Register size_reg, |
| Heap::Space space) { |
| ASSERT(stats_addr_reg != kNoRegister); |
| ASSERT(stats_addr_reg != TMP); |
| const uword count_field_offset = (space == Heap::kNew) ? |
| ClassHeapStats::allocated_since_gc_new_space_offset() : |
| ClassHeapStats::allocated_since_gc_old_space_offset(); |
| const uword size_field_offset = (space == Heap::kNew) ? |
| ClassHeapStats::allocated_size_since_gc_new_space_offset() : |
| ClassHeapStats::allocated_size_since_gc_old_space_offset(); |
| const Address& count_address = Address(stats_addr_reg, count_field_offset); |
| const Address& size_address = Address(stats_addr_reg, size_field_offset); |
| ldr(TMP, count_address); |
| AddImmediate(TMP, 1); |
| str(TMP, count_address); |
| ldr(TMP, size_address); |
| add(TMP, TMP, Operand(size_reg)); |
| str(TMP, size_address); |
| } |
| |
| |
| void Assembler::TryAllocate(const Class& cls, |
| Label* failure, |
| Register instance_reg, |
| Register temp_reg) { |
| ASSERT(failure != NULL); |
| if (FLAG_inline_alloc) { |
| ASSERT(instance_reg != temp_reg); |
| ASSERT(temp_reg != IP); |
| const intptr_t instance_size = cls.instance_size(); |
| ASSERT(instance_size != 0); |
| // If this allocation is traced, program will jump to failure path |
| // (i.e. the allocation stub) which will allocate the object and trace the |
| // allocation call site. |
| MaybeTraceAllocation(cls.id(), temp_reg, failure, |
| /* inline_isolate = */ false); |
| Heap::Space space = Heap::SpaceForAllocation(cls.id()); |
| ldr(temp_reg, Address(THR, Thread::heap_offset())); |
| ldr(instance_reg, Address(temp_reg, Heap::TopOffset(space))); |
| // TODO(koda): Protect against unsigned overflow here. |
| AddImmediateSetFlags(instance_reg, instance_reg, instance_size); |
| |
| // instance_reg: potential next object start. |
| ldr(IP, Address(temp_reg, Heap::EndOffset(space))); |
| cmp(IP, Operand(instance_reg)); |
| // fail if heap end unsigned less than or equal to instance_reg. |
| b(failure, LS); |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and store the class in the class field of object. |
| str(instance_reg, Address(temp_reg, Heap::TopOffset(space))); |
| |
| LoadAllocationStatsAddress(temp_reg, cls.id(), |
| /* inline_isolate = */ false); |
| |
| ASSERT(instance_size >= kHeapObjectTag); |
| AddImmediate(instance_reg, -instance_size + kHeapObjectTag); |
| |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(instance_size, tags); |
| ASSERT(cls.id() != kIllegalCid); |
| tags = RawObject::ClassIdTag::update(cls.id(), tags); |
| LoadImmediate(IP, tags); |
| str(IP, FieldAddress(instance_reg, Object::tags_offset())); |
| |
| IncrementAllocationStats(temp_reg, cls.id(), space); |
| } else { |
| b(failure); |
| } |
| } |
| |
| |
| void Assembler::TryAllocateArray(intptr_t cid, |
| intptr_t instance_size, |
| Label* failure, |
| Register instance, |
| Register end_address, |
| Register temp1, |
| Register temp2) { |
| if (FLAG_inline_alloc) { |
| // If this allocation is traced, program will jump to failure path |
| // (i.e. the allocation stub) which will allocate the object and trace the |
| // allocation call site. |
| MaybeTraceAllocation(cid, temp1, failure, /* inline_isolate = */ false); |
| Heap::Space space = Heap::SpaceForAllocation(cid); |
| ldr(temp1, Address(THR, Thread::heap_offset())); |
| // Potential new object start. |
| ldr(instance, Address(temp1, Heap::TopOffset(space))); |
| AddImmediateSetFlags(end_address, instance, instance_size); |
| b(failure, CS); // Branch if unsigned overflow. |
| |
| // Check if the allocation fits into the remaining space. |
| // instance: potential new object start. |
| // end_address: potential next object start. |
| ldr(temp2, Address(temp1, Heap::EndOffset(space))); |
| cmp(end_address, Operand(temp2)); |
| b(failure, CS); |
| |
| LoadAllocationStatsAddress(temp2, cid, /* inline_isolate = */ false); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| str(end_address, Address(temp1, Heap::TopOffset(space))); |
| add(instance, instance, Operand(kHeapObjectTag)); |
| |
| // Initialize the tags. |
| // instance: new object start as a tagged pointer. |
| uword tags = 0; |
| tags = RawObject::ClassIdTag::update(cid, tags); |
| tags = RawObject::SizeTag::update(instance_size, tags); |
| LoadImmediate(temp1, tags); |
| str(temp1, FieldAddress(instance, Array::tags_offset())); // Store tags. |
| |
| LoadImmediate(temp1, instance_size); |
| IncrementAllocationStatsWithSize(temp2, temp1, space); |
| } else { |
| b(failure); |
| } |
| } |
| |
| |
| void Assembler::Stop(const char* message) { |
| if (FLAG_print_stop_message) { |
| PushList((1 << R0) | (1 << IP) | (1 << LR)); // Preserve R0, IP, LR. |
| LoadImmediate(R0, reinterpret_cast<int32_t>(message)); |
| // PrintStopMessage() preserves all registers. |
| BranchLink(&StubCode::PrintStopMessage_entry()->label()); |
| PopList((1 << R0) | (1 << IP) | (1 << LR)); // Restore R0, IP, LR. |
| } |
| // Emit the message address before the svc instruction, so that we can |
| // 'unstop' and continue execution in the simulator or jump to the next |
| // instruction in gdb. |
| Label stop; |
| b(&stop); |
| Emit(reinterpret_cast<int32_t>(message)); |
| Bind(&stop); |
| bkpt(Instr::kStopMessageCode); |
| } |
| |
| |
| Address Assembler::ElementAddressForIntIndex(bool is_load, |
| bool is_external, |
| intptr_t cid, |
| intptr_t index_scale, |
| Register array, |
| intptr_t index, |
| Register temp) { |
| const int64_t offset_base = |
| (is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag)); |
| const int64_t offset = offset_base + |
| static_cast<int64_t>(index) * index_scale; |
| ASSERT(Utils::IsInt(32, offset)); |
| |
| if (Address::CanHoldImmediateOffset(is_load, cid, offset)) { |
| return Address(array, static_cast<int32_t>(offset)); |
| } else { |
| ASSERT(Address::CanHoldImmediateOffset(is_load, cid, offset - offset_base)); |
| AddImmediate(temp, array, static_cast<int32_t>(offset_base)); |
| return Address(temp, static_cast<int32_t>(offset - offset_base)); |
| } |
| } |
| |
| |
| Address Assembler::ElementAddressForRegIndex(bool is_load, |
| bool is_external, |
| intptr_t cid, |
| intptr_t index_scale, |
| Register array, |
| Register index) { |
| // Note that index is expected smi-tagged, (i.e, LSL 1) for all arrays. |
| const intptr_t shift = Utils::ShiftForPowerOfTwo(index_scale) - kSmiTagShift; |
| int32_t offset = |
| is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag); |
| const OperandSize size = Address::OperandSizeFor(cid); |
| ASSERT(array != IP); |
| ASSERT(index != IP); |
| const Register base = is_load ? IP : index; |
| if ((offset != 0) || |
| (size == kSWord) || (size == kDWord) || (size == kRegList)) { |
| if (shift < 0) { |
| ASSERT(shift == -1); |
| add(base, array, Operand(index, ASR, 1)); |
| } else { |
| add(base, array, Operand(index, LSL, shift)); |
| } |
| } else { |
| if (shift < 0) { |
| ASSERT(shift == -1); |
| return Address(array, index, ASR, 1); |
| } else { |
| return Address(array, index, LSL, shift); |
| } |
| } |
| int32_t offset_mask = 0; |
| if ((is_load && !Address::CanHoldLoadOffset(size, |
| offset, |
| &offset_mask)) || |
| (!is_load && !Address::CanHoldStoreOffset(size, |
| offset, |
| &offset_mask))) { |
| AddImmediate(base, offset & ~offset_mask); |
| offset = offset & offset_mask; |
| } |
| return Address(base, offset); |
| } |
| |
| |
| static const char* cpu_reg_names[kNumberOfCpuRegisters] = { |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "ctx", "pp", "fp", "ip", "sp", "lr", "pc", |
| }; |
| |
| |
| const char* Assembler::RegisterName(Register reg) { |
| ASSERT((0 <= reg) && (reg < kNumberOfCpuRegisters)); |
| return cpu_reg_names[reg]; |
| } |
| |
| |
| static const char* fpu_reg_names[kNumberOfFpuRegisters] = { |
| "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", |
| #if defined(VFPv3_D32) |
| "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", |
| #endif |
| }; |
| |
| |
| const char* Assembler::FpuRegisterName(FpuRegister reg) { |
| ASSERT((0 <= reg) && (reg < kNumberOfFpuRegisters)); |
| return fpu_reg_names[reg]; |
| } |
| |
| } // namespace dart |
| |
| #endif // defined TARGET_ARCH_ARM |