| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "ShaderCore.hpp" |
| |
| #include "Device/Renderer.hpp" |
| #include "Reactor/Assert.hpp" |
| #include "System/Debug.hpp" |
| |
| #include <limits.h> |
| |
| // TODO(chromium:1299047) |
| #ifndef SWIFTSHADER_LEGACY_PRECISION |
| # define SWIFTSHADER_LEGACY_PRECISION false |
| #endif |
| |
| namespace sw { |
| |
| Vector4s::Vector4s() |
| { |
| } |
| |
| Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w) |
| { |
| this->x = Short4(x); |
| this->y = Short4(y); |
| this->z = Short4(z); |
| this->w = Short4(w); |
| } |
| |
| Vector4s::Vector4s(const Vector4s &rhs) |
| { |
| x = rhs.x; |
| y = rhs.y; |
| z = rhs.z; |
| w = rhs.w; |
| } |
| |
| Vector4s &Vector4s::operator=(const Vector4s &rhs) |
| { |
| x = rhs.x; |
| y = rhs.y; |
| z = rhs.z; |
| w = rhs.w; |
| |
| return *this; |
| } |
| |
| Short4 &Vector4s::operator[](int i) |
| { |
| switch(i) |
| { |
| case 0: return x; |
| case 1: return y; |
| case 2: return z; |
| case 3: return w; |
| } |
| |
| return x; |
| } |
| |
| Vector4f::Vector4f() |
| { |
| } |
| |
| Vector4f::Vector4f(float x, float y, float z, float w) |
| { |
| this->x = Float4(x); |
| this->y = Float4(y); |
| this->z = Float4(z); |
| this->w = Float4(w); |
| } |
| |
| Vector4f::Vector4f(const Vector4f &rhs) |
| { |
| x = rhs.x; |
| y = rhs.y; |
| z = rhs.z; |
| w = rhs.w; |
| } |
| |
| Vector4f &Vector4f::operator=(const Vector4f &rhs) |
| { |
| x = rhs.x; |
| y = rhs.y; |
| z = rhs.z; |
| w = rhs.w; |
| |
| return *this; |
| } |
| |
| Float4 &Vector4f::operator[](int i) |
| { |
| switch(i) |
| { |
| case 0: return x; |
| case 1: return y; |
| case 2: return z; |
| case 3: return w; |
| } |
| |
| return x; |
| } |
| |
| Vector4i::Vector4i() |
| { |
| } |
| |
| Vector4i::Vector4i(int x, int y, int z, int w) |
| { |
| this->x = Int4(x); |
| this->y = Int4(y); |
| this->z = Int4(z); |
| this->w = Int4(w); |
| } |
| |
| Vector4i::Vector4i(const Vector4i &rhs) |
| { |
| x = rhs.x; |
| y = rhs.y; |
| z = rhs.z; |
| w = rhs.w; |
| } |
| |
| Vector4i &Vector4i::operator=(const Vector4i &rhs) |
| { |
| x = rhs.x; |
| y = rhs.y; |
| z = rhs.z; |
| w = rhs.w; |
| |
| return *this; |
| } |
| |
| Int4 &Vector4i::operator[](int i) |
| { |
| switch(i) |
| { |
| case 0: return x; |
| case 1: return y; |
| case 2: return z; |
| case 3: return w; |
| } |
| |
| return x; |
| } |
| |
| // Approximation of atan in [0..1] |
| static RValue<SIMD::Float> Atan_01(SIMD::Float x) |
| { |
| // From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun |
| const SIMD::Float a2(-0.3333314528f); |
| const SIMD::Float a4(0.1999355085f); |
| const SIMD::Float a6(-0.1420889944f); |
| const SIMD::Float a8(0.1065626393f); |
| const SIMD::Float a10(-0.0752896400f); |
| const SIMD::Float a12(0.0429096138f); |
| const SIMD::Float a14(-0.0161657367f); |
| const SIMD::Float a16(0.0028662257f); |
| SIMD::Float x2 = x * x; |
| return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16))))))))); |
| } |
| |
| // Polynomial approximation of order 5 for sin(x * 2 * pi) in the range [-1/4, 1/4] |
| static RValue<SIMD::Float> Sin5(SIMD::Float x) |
| { |
| // A * x^5 + B * x^3 + C * x |
| // Exact at x = 0, 1/12, 1/6, 1/4, and their negatives, which correspond to x * 2 * pi = 0, pi/6, pi/3, pi/2 |
| const SIMD::Float A = (36288 - 20736 * sqrt(3)) / 5; |
| const SIMD::Float B = 288 * sqrt(3) - 540; |
| const SIMD::Float C = (47 - 9 * sqrt(3)) / 5; |
| |
| SIMD::Float x2 = x * x; |
| |
| return MulAdd(MulAdd(A, x2, B), x2, C) * x; |
| } |
| |
| RValue<SIMD::Float> Sin(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| const SIMD::Float q = 0.25f; |
| const SIMD::Float pi2 = 1 / (2 * 3.1415926535f); |
| |
| // Range reduction and mirroring |
| SIMD::Float x_2 = MulAdd(x, -pi2, q); |
| SIMD::Float z = q - Abs(x_2 - Round(x_2)); |
| |
| return Sin5(z); |
| } |
| |
| RValue<SIMD::Float> Cos(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| const SIMD::Float q = 0.25f; |
| const SIMD::Float pi2 = 1 / (2 * 3.1415926535f); |
| |
| // Phase shift, range reduction, and mirroring |
| SIMD::Float x_2 = x * pi2; |
| SIMD::Float z = q - Abs(x_2 - Round(x_2)); |
| |
| return Sin5(z); |
| } |
| |
| RValue<SIMD::Float> Tan(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| return Sin(x, relaxedPrecision) / Cos(x, relaxedPrecision); |
| } |
| |
| static RValue<SIMD::Float> Asin_4_terms(RValue<SIMD::Float> x) |
| { |
| // From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun |
| // |e(x)| <= 5e-8 |
| const SIMD::Float half_pi(1.57079632f); |
| const SIMD::Float a0(1.5707288f); |
| const SIMD::Float a1(-0.2121144f); |
| const SIMD::Float a2(0.0742610f); |
| const SIMD::Float a3(-0.0187293f); |
| SIMD::Float absx = Abs(x); |
| return As<SIMD::Float>(As<SIMD::Int>(half_pi - Sqrt<Highp>(1.0f - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^ |
| (As<SIMD::Int>(x) & SIMD::Int(0x80000000))); |
| } |
| |
| static RValue<SIMD::Float> Asin_8_terms(RValue<SIMD::Float> x) |
| { |
| // From 4.4.46, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun |
| // |e(x)| <= 0e-8 |
| const SIMD::Float half_pi(1.5707963268f); |
| const SIMD::Float a0(1.5707963050f); |
| const SIMD::Float a1(-0.2145988016f); |
| const SIMD::Float a2(0.0889789874f); |
| const SIMD::Float a3(-0.0501743046f); |
| const SIMD::Float a4(0.0308918810f); |
| const SIMD::Float a5(-0.0170881256f); |
| const SIMD::Float a6(0.006700901f); |
| const SIMD::Float a7(-0.0012624911f); |
| SIMD::Float absx = Abs(x); |
| return As<SIMD::Float>(As<SIMD::Int>(half_pi - Sqrt<Highp>(1.0f - absx) * (a0 + absx * (a1 + absx * (a2 + absx * (a3 + absx * (a4 + absx * (a5 + absx * (a6 + absx * a7)))))))) ^ |
| (As<SIMD::Int>(x) & SIMD::Int(0x80000000))); |
| } |
| |
| RValue<SIMD::Float> Asin(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| // TODO(b/169755566): Surprisingly, deqp-vk's precision.acos.highp/mediump tests pass when using the 4-term polynomial |
| // approximation version of acos, unlike for Asin, which requires higher precision algorithms. |
| |
| if(!relaxedPrecision) |
| { |
| return Asin(x); |
| } |
| |
| return Asin_8_terms(x); |
| } |
| |
| RValue<SIMD::Float> Acos(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| // pi/2 - arcsin(x) |
| return 1.57079632e+0f - Asin_4_terms(x); |
| } |
| |
| RValue<SIMD::Float> Atan(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| SIMD::Float absx = Abs(x); |
| SIMD::Int O = CmpNLT(absx, 1.0f); |
| SIMD::Float y = As<SIMD::Float>((O & As<SIMD::Int>(1.0f / absx)) | (~O & As<SIMD::Int>(absx))); // FIXME: Vector select |
| |
| const SIMD::Float half_pi(1.57079632f); |
| SIMD::Float theta = Atan_01(y); |
| return As<SIMD::Float>(((O & As<SIMD::Int>(half_pi - theta)) | (~O & As<SIMD::Int>(theta))) ^ // FIXME: Vector select |
| (As<SIMD::Int>(x) & SIMD::Int(0x80000000))); |
| } |
| |
| RValue<SIMD::Float> Atan2(RValue<SIMD::Float> y, RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| const SIMD::Float pi(3.14159265f); // pi |
| const SIMD::Float minus_pi(-3.14159265f); // -pi |
| const SIMD::Float half_pi(1.57079632f); // pi/2 |
| const SIMD::Float quarter_pi(7.85398163e-1f); // pi/4 |
| |
| // Rotate to upper semicircle when in lower semicircle |
| SIMD::Int S = CmpLT(y, 0.0f); |
| SIMD::Float theta = As<SIMD::Float>(S & As<SIMD::Int>(minus_pi)); |
| SIMD::Float x0 = As<SIMD::Float>((As<SIMD::Int>(y) & SIMD::Int(0x80000000)) ^ As<SIMD::Int>(x)); |
| SIMD::Float y0 = Abs(y); |
| |
| // Rotate to right quadrant when in left quadrant |
| SIMD::Int Q = CmpLT(x0, 0.0f); |
| theta += As<SIMD::Float>(Q & As<SIMD::Int>(half_pi)); |
| SIMD::Float x1 = As<SIMD::Float>((Q & As<SIMD::Int>(y0)) | (~Q & As<SIMD::Int>(x0))); // FIXME: Vector select |
| SIMD::Float y1 = As<SIMD::Float>((Q & As<SIMD::Int>(-x0)) | (~Q & As<SIMD::Int>(y0))); // FIXME: Vector select |
| |
| // Mirror to first octant when in second octant |
| SIMD::Int O = CmpNLT(y1, x1); |
| SIMD::Float x2 = As<SIMD::Float>((O & As<SIMD::Int>(y1)) | (~O & As<SIMD::Int>(x1))); // FIXME: Vector select |
| SIMD::Float y2 = As<SIMD::Float>((O & As<SIMD::Int>(x1)) | (~O & As<SIMD::Int>(y1))); // FIXME: Vector select |
| |
| // Approximation of atan in [0..1] |
| SIMD::Int zero_x = CmpEQ(x2, 0.0f); |
| SIMD::Int inf_y = IsInf(y2); // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4 |
| SIMD::Float atan2_theta = Atan_01(y2 / x2); |
| theta += As<SIMD::Float>((~zero_x & ~inf_y & ((O & As<SIMD::Int>(half_pi - atan2_theta)) | (~O & (As<SIMD::Int>(atan2_theta))))) | // FIXME: Vector select |
| (inf_y & As<SIMD::Int>(quarter_pi))); |
| |
| // Recover loss of precision for tiny theta angles |
| // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta |
| SIMD::Int precision_loss = S & Q & O & ~inf_y; |
| |
| return As<SIMD::Float>((precision_loss & As<SIMD::Int>(-atan2_theta)) | (~precision_loss & As<SIMD::Int>(theta))); // FIXME: Vector select |
| } |
| |
| // TODO(chromium:1299047) |
| static RValue<SIMD::Float> Exp2_legacy(RValue<SIMD::Float> x0) |
| { |
| SIMD::Int i = RoundInt(x0 - 0.5f); |
| SIMD::Float ii = As<SIMD::Float>((i + SIMD::Int(127)) << 23); |
| |
| SIMD::Float f = x0 - SIMD::Float(i); |
| SIMD::Float ff = As<SIMD::Float>(SIMD::Int(0x3AF61905)); |
| ff = ff * f + As<SIMD::Float>(SIMD::Int(0x3C134806)); |
| ff = ff * f + As<SIMD::Float>(SIMD::Int(0x3D64AA23)); |
| ff = ff * f + As<SIMD::Float>(SIMD::Int(0x3E75EAD4)); |
| ff = ff * f + As<SIMD::Float>(SIMD::Int(0x3F31727B)); |
| ff = ff * f + 1.0f; |
| |
| return ii * ff; |
| } |
| |
| RValue<SIMD::Float> Exp2(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| // Clamp to prevent overflow past the representation of infinity. |
| SIMD::Float x0 = x; |
| x0 = Min(x0, 128.0f); |
| x0 = Max(x0, As<SIMD::Float>(SIMD::Int(0xC2FDFFFF))); // -126.999992 |
| |
| if(SWIFTSHADER_LEGACY_PRECISION) // TODO(chromium:1299047) |
| { |
| return Exp2_legacy(x0); |
| } |
| |
| SIMD::Float xi = Floor(x0); |
| SIMD::Float f = x0 - xi; |
| |
| if(!relaxedPrecision) // highp |
| { |
| // Polynomial which approximates (2^x-x-1)/x. Multiplying with x |
| // gives us a correction term to be added to 1+x to obtain 2^x. |
| const SIMD::Float a = 1.8852974e-3f; |
| const SIMD::Float b = 8.9733787e-3f; |
| const SIMD::Float c = 5.5835927e-2f; |
| const SIMD::Float d = 2.4015281e-1f; |
| const SIMD::Float e = -3.0684753e-1f; |
| |
| SIMD::Float r = MulAdd(MulAdd(MulAdd(MulAdd(a, f, b), f, c), f, d), f, e); |
| |
| // bit_cast<float>(int(x * 2^23)) is a piecewise linear approximation of 2^x. |
| // See "Fast Exponential Computation on SIMD Architectures" by Malossi et al. |
| SIMD::Float y = MulAdd(r, f, x0); |
| SIMD::Int i = SIMD::Int(y * (1 << 23)) + (127 << 23); |
| |
| return As<SIMD::Float>(i); |
| } |
| else // RelaxedPrecision / mediump |
| { |
| // Polynomial which approximates (2^x-x-1)/x. Multiplying with x |
| // gives us a correction term to be added to 1+x to obtain 2^x. |
| const SIMD::Float a = 7.8145574e-2f; |
| const SIMD::Float b = 2.2617357e-1f; |
| const SIMD::Float c = -3.0444314e-1f; |
| |
| SIMD::Float r = MulAdd(MulAdd(a, f, b), f, c); |
| |
| // bit_cast<float>(int(x * 2^23)) is a piecewise linear approximation of 2^x. |
| // See "Fast Exponential Computation on SIMD Architectures" by Malossi et al. |
| SIMD::Float y = MulAdd(r, f, x0); |
| SIMD::Int i = SIMD::Int(MulAdd((1 << 23), y, (127 << 23))); |
| |
| return As<SIMD::Float>(i); |
| } |
| } |
| |
| RValue<SIMD::Float> Log2_legacy(RValue<SIMD::Float> x) |
| { |
| SIMD::Float x1 = As<SIMD::Float>(As<SIMD::Int>(x) & SIMD::Int(0x7F800000)); |
| x1 = As<SIMD::Float>(As<SIMD::UInt>(x1) >> 8); |
| x1 = As<SIMD::Float>(As<SIMD::Int>(x1) | As<SIMD::Int>(SIMD::Float(1.0f))); |
| x1 = (x1 - 1.4960938f) * 256.0f; |
| SIMD::Float x0 = As<SIMD::Float>((As<SIMD::Int>(x) & SIMD::Int(0x007FFFFF)) | As<SIMD::Int>(SIMD::Float(1.0f))); |
| |
| SIMD::Float x2 = MulAdd(MulAdd(9.5428179e-2f, x0, 4.7779095e-1f), x0, 1.9782813e-1f); |
| SIMD::Float x3 = MulAdd(MulAdd(MulAdd(1.6618466e-2f, x0, 2.0350508e-1f), x0, 2.7382900e-1f), x0, 4.0496687e-2f); |
| |
| x1 += (x0 - 1.0f) * (x2 / x3); |
| |
| SIMD::Int pos_inf_x = CmpEQ(As<SIMD::Int>(x), SIMD::Int(0x7F800000)); |
| return As<SIMD::Float>((pos_inf_x & As<SIMD::Int>(x)) | (~pos_inf_x & As<SIMD::Int>(x1))); |
| } |
| |
| RValue<SIMD::Float> Log2(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| if(SWIFTSHADER_LEGACY_PRECISION) // TODO(chromium:1299047) |
| { |
| return Log2_legacy(x); |
| } |
| |
| if(!relaxedPrecision) // highp |
| { |
| // Reinterpretation as an integer provides a piecewise linear |
| // approximation of log2(). Scale to the radix and subtract exponent bias. |
| SIMD::Int im = As<SIMD::Int>(x); |
| SIMD::Float y = SIMD::Float(im - (127 << 23)) * (1.0f / (1 << 23)); |
| |
| // Handle log2(inf) = inf. |
| y = As<SIMD::Float>(As<SIMD::Int>(y) | (CmpEQ(im, 0x7F800000) & As<SIMD::Int>(SIMD::Float::infinity()))); |
| |
| SIMD::Float m = SIMD::Float(im & 0x007FFFFF) * (1.0f / (1 << 23)); // Normalized mantissa of x. |
| |
| // Add a polynomial approximation of log2(m+1)-m to the result's mantissa. |
| const SIMD::Float a = -9.3091638e-3f; |
| const SIMD::Float b = 5.2059003e-2f; |
| const SIMD::Float c = -1.3752135e-1f; |
| const SIMD::Float d = 2.4186478e-1f; |
| const SIMD::Float e = -3.4730109e-1f; |
| const SIMD::Float f = 4.786837e-1f; |
| const SIMD::Float g = -7.2116581e-1f; |
| const SIMD::Float h = 4.4268988e-1f; |
| |
| SIMD::Float z = MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(a, m, b), m, c), m, d), m, e), m, f), m, g), m, h); |
| |
| return MulAdd(z, m, y); |
| } |
| else // RelaxedPrecision / mediump |
| { |
| // Reinterpretation as an integer provides a piecewise linear |
| // approximation of log2(). Scale to the radix and subtract exponent bias. |
| SIMD::Int im = As<SIMD::Int>(x); |
| SIMD::Float y = MulAdd(SIMD::Float(im), (1.0f / (1 << 23)), -127.0f); |
| |
| // Handle log2(inf) = inf. |
| y = As<SIMD::Float>(As<SIMD::Int>(y) | (CmpEQ(im, 0x7F800000) & As<SIMD::Int>(SIMD::Float::infinity()))); |
| |
| SIMD::Float m = SIMD::Float(im & 0x007FFFFF); // Unnormalized mantissa of x. |
| |
| // Add a polynomial approximation of log2(m+1)-m to the result's mantissa. |
| const SIMD::Float a = 2.8017103e-22f; |
| const SIMD::Float b = -8.373131e-15f; |
| const SIMD::Float c = 5.0615534e-8f; |
| |
| SIMD::Float f = MulAdd(MulAdd(a, m, b), m, c); |
| |
| return MulAdd(f, m, y); |
| } |
| } |
| |
| RValue<SIMD::Float> Exp(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| return Exp2(1.44269504f * x, relaxedPrecision); // 1/ln(2) |
| } |
| |
| RValue<SIMD::Float> Log(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| return 6.93147181e-1f * Log2(x, relaxedPrecision); // ln(2) |
| } |
| |
| RValue<SIMD::Float> Pow(RValue<SIMD::Float> x, RValue<SIMD::Float> y, bool relaxedPrecision) |
| { |
| SIMD::Float log = Log2(x, relaxedPrecision); |
| log *= y; |
| return Exp2(log, relaxedPrecision); |
| } |
| |
| RValue<SIMD::Float> Sinh(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| return (Exp(x, relaxedPrecision) - Exp(-x, relaxedPrecision)) * 0.5f; |
| } |
| |
| RValue<SIMD::Float> Cosh(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| return (Exp(x, relaxedPrecision) + Exp(-x, relaxedPrecision)) * 0.5f; |
| } |
| |
| RValue<SIMD::Float> Tanh(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| SIMD::Float e_x = Exp(x, relaxedPrecision); |
| SIMD::Float e_minus_x = Exp(-x, relaxedPrecision); |
| return (e_x - e_minus_x) / (e_x + e_minus_x); |
| } |
| |
| RValue<SIMD::Float> Asinh(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| return Log(x + Sqrt(x * x + 1.0f, relaxedPrecision), relaxedPrecision); |
| } |
| |
| RValue<SIMD::Float> Acosh(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| return Log(x + Sqrt(x + 1.0f, relaxedPrecision) * Sqrt(x - 1.0f, relaxedPrecision), relaxedPrecision); |
| } |
| |
| RValue<SIMD::Float> Atanh(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| return Log((1.0f + x) / (1.0f - x), relaxedPrecision) * 0.5f; |
| } |
| |
| RValue<SIMD::Float> Sqrt(RValue<SIMD::Float> x, bool relaxedPrecision) |
| { |
| return Sqrt(x); // TODO(b/222218659): Optimize for relaxed precision. |
| } |
| |
| std::pair<SIMD::Float, SIMD::Int> Frexp(RValue<SIMD::Float> val) |
| { |
| // Assumes IEEE 754 |
| auto isNotZero = CmpNEQ(val, 0.0f); |
| auto v = As<SIMD::Int>(val); |
| auto significand = As<SIMD::Float>((v & 0x807FFFFF) | (0x3F000000 & isNotZero)); |
| |
| auto exponent = (((v >> 23) & 0xFF) - 126) & isNotZero; |
| |
| return std::make_pair(significand, exponent); |
| } |
| |
| RValue<SIMD::Float> Ldexp(RValue<SIMD::Float> significand, RValue<SIMD::Int> exponent) |
| { |
| // "load exponent" |
| // Ldexp(significand,exponent) computes |
| // significand * 2**exponent |
| // with edge case handling as permitted by the spec. |
| // |
| // The interesting cases are: |
| // - significand is subnormal and the exponent is positive. The mantissa |
| // bits of the significand shift left. The result *may* be normal, and |
| // in that case the leading 1 bit in the mantissa is no longer explicitly |
| // represented. Computing the result with bit operations would be quite |
| // complex. |
| // - significand has very small magnitude, and exponent is large. |
| // Example: significand = 0x1p-125, exponent = 250, result 0x1p125 |
| // If we compute the result directly with the reference formula, then |
| // the intermediate value 2.0**exponent overflows, and then the result |
| // would overflow. Instead, it is sufficient to split the exponent |
| // and use two multiplies: |
| // (significand * 2**(exponent/2)) * (2**(exponent - exponent/2)) |
| // In this formulation, the intermediates will not overflow when the |
| // correct result does not overflow. Also, this method naturally handles |
| // underflows, infinities, and NaNs. |
| // |
| // This implementation uses the two-multiplies approach described above, |
| // and also used by Mesa. |
| // |
| // The SPIR-V GLSL.std.450 extended instruction spec says: |
| // |
| // if exponent < -126 the result may be flushed to zero |
| // if exponent > 128 the result may be undefined |
| // |
| // Clamping exponent to [-254,254] allows us implement well beyond |
| // what is required by the spec, but still use simple algorithms. |
| // |
| // We decompose as follows: |
| // 2 ** exponent = powA * powB |
| // where |
| // powA = 2 ** (exponent / 2) |
| // powB = 2 ** (exponent - exponent / 2) |
| // |
| // We use a helper expression to compute these powers of two as float |
| // numbers using bit shifts, where X is an unbiased integer exponent |
| // in range [-127,127]: |
| // |
| // pow2i(X) = As<SIMD::Float>((X + 127)<<23) |
| // |
| // This places the biased exponent into position, and places all |
| // zeroes in the mantissa bit positions. The implicit 1 bit in the |
| // mantissa is hidden. When X = -127, the result is float 0.0, as |
| // if the value was flushed to zero. Otherwise X is in [-126,127] |
| // and the biased exponent is in [1,254] and the result is a normal |
| // float number with value 2**X. |
| // |
| // So we have: |
| // |
| // powA = pow2i(exponent/2) |
| // powB = pow2i(exponent - exponent/2) |
| // |
| // With exponent in [-254,254], we split into cases: |
| // |
| // exponent = -254: |
| // exponent/2 = -127 |
| // exponent - exponent/2 = -127 |
| // powA = pow2i(exponent/2) = pow2i(-127) = 0.0 |
| // powA * powB is 0.0, which is a permitted flush-to-zero case. |
| // |
| // exponent = -253: |
| // exponent/2 = -126 |
| // (exponent - exponent/2) = -127 |
| // powB = pow2i(exponent - exponent/2) = pow2i(-127) = 0.0 |
| // powA * powB is 0.0, which is a permitted flush-to-zero case. |
| // |
| // exponent in [-252,254]: |
| // exponent/2 is in [-126, 127] |
| // (exponent - exponent/2) is in [-126, 127] |
| // |
| // powA = pow2i(exponent/2), a normal number |
| // powB = pow2i(exponent - exponent/2), a normal number |
| // |
| // For the Mesa implementation, see |
| // https://gitlab.freedesktop.org/mesa/mesa/-/blob/1eb7a85b55f0c7c2de6f5dac7b5f6209a6eb401c/src/compiler/nir/nir_opt_algebraic.py#L2241 |
| |
| // Clamp exponent to limits |
| auto exp = Min(Max(exponent, -254), 254); |
| |
| // Split exponent into two terms |
| auto expA = exp >> 1; |
| auto expB = exp - expA; |
| // Construct two powers of 2 with the exponents above |
| auto powA = As<SIMD::Float>((expA + 127) << 23); |
| auto powB = As<SIMD::Float>((expB + 127) << 23); |
| |
| // Multiply the input value by the two powers to get the final value. |
| // Note that multiplying powA and powB together may result in an overflow, |
| // so ensure that significand is multiplied by powA, *then* the result of that with powB. |
| return (significand * powA) * powB; |
| } |
| |
| UInt4 halfToFloatBits(RValue<UInt4> halfBits) |
| { |
| auto magic = UInt4(126 << 23); |
| |
| auto sign16 = halfBits & UInt4(0x8000); |
| auto man16 = halfBits & UInt4(0x03FF); |
| auto exp16 = halfBits & UInt4(0x7C00); |
| |
| auto isDnormOrZero = CmpEQ(exp16, UInt4(0)); |
| auto isInfOrNaN = CmpEQ(exp16, UInt4(0x7C00)); |
| |
| auto sign32 = sign16 << 16; |
| auto man32 = man16 << 13; |
| auto exp32 = (exp16 + UInt4(0x1C000)) << 13; |
| auto norm32 = (man32 | exp32) | (isInfOrNaN & UInt4(0x7F800000)); |
| |
| auto denorm32 = As<UInt4>(As<Float4>(magic + man16) - As<Float4>(magic)); |
| |
| return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero); |
| } |
| |
| UInt4 floatToHalfBits(RValue<UInt4> floatBits, bool storeInUpperBits) |
| { |
| UInt4 sign = floatBits & UInt4(0x80000000); |
| UInt4 abs = floatBits & UInt4(0x7FFFFFFF); |
| |
| UInt4 normal = CmpNLE(abs, UInt4(0x38800000)); |
| |
| UInt4 mantissa = (abs & UInt4(0x007FFFFF)) | UInt4(0x00800000); |
| UInt4 e = UInt4(113) - (abs >> 23); |
| UInt4 denormal = CmpLT(e, UInt4(24)) & (mantissa >> e); |
| |
| UInt4 base = (normal & abs) | (~normal & denormal); // TODO: IfThenElse() |
| |
| // float exponent bias is 127, half bias is 15, so adjust by -112 |
| UInt4 bias = normal & UInt4(0xC8000000); |
| |
| UInt4 rounded = base + bias + UInt4(0x00000FFF) + ((base >> 13) & UInt4(1)); |
| UInt4 fp16u = rounded >> 13; |
| |
| // Infinity |
| fp16u |= CmpNLE(abs, UInt4(0x47FFEFFF)) & UInt4(0x7FFF); |
| |
| return storeInUpperBits ? (sign | (fp16u << 16)) : ((sign >> 16) | fp16u); |
| } |
| |
| SIMD::Float linearToSRGB(const SIMD::Float &c) |
| { |
| SIMD::Float lc = c * 12.92f; |
| SIMD::Float ec = MulAdd(1.055f, Pow<Mediump>(c, (1.0f / 2.4f)), -0.055f); // TODO(b/149574741): Use a custom approximation. |
| |
| SIMD::Int linear = CmpLT(c, 0.0031308f); |
| return As<SIMD::Float>((linear & As<SIMD::Int>(lc)) | (~linear & As<SIMD::Int>(ec))); // TODO: IfThenElse() |
| } |
| |
| SIMD::Float sRGBtoLinear(const SIMD::Float &c) |
| { |
| SIMD::Float lc = c * (1.0f / 12.92f); |
| SIMD::Float ec = Pow<Mediump>(MulAdd(c, 1.0f / 1.055f, 0.055f / 1.055f), 2.4f); // TODO(b/149574741): Use a custom approximation. |
| |
| SIMD::Int linear = CmpLT(c, 0.04045f); |
| return As<SIMD::Float>((linear & As<SIMD::Int>(lc)) | (~linear & As<SIMD::Int>(ec))); // TODO: IfThenElse() |
| } |
| |
| RValue<Float4> reciprocal(RValue<Float4> x, bool pp, bool exactAtPow2) |
| { |
| return Rcp(x, pp, exactAtPow2); |
| } |
| |
| RValue<SIMD::Float> reciprocal(RValue<SIMD::Float> x, bool pp, bool exactAtPow2) |
| { |
| return Rcp(x, pp, exactAtPow2); |
| } |
| |
| RValue<Float4> reciprocalSquareRoot(RValue<Float4> x, bool absolute, bool pp) |
| { |
| Float4 abs = x; |
| |
| if(absolute) |
| { |
| abs = Abs(abs); |
| } |
| |
| return Rcp(abs, pp); |
| } |
| |
| // TODO(chromium:1299047): Eliminate when Chromium tests accept both fused and unfused multiply-add. |
| RValue<SIMD::Float> mulAdd(RValue<SIMD::Float> x, RValue<SIMD::Float> y, RValue<SIMD::Float> z) |
| { |
| if(SWIFTSHADER_LEGACY_PRECISION) |
| { |
| return x * y + z; |
| } |
| |
| return MulAdd(x, y, z); |
| } |
| |
| RValue<Float4> Pow(RValue<Float4> x, RValue<Float4> y, bool relaxedPrecision) |
| { |
| // TODO(b/214588983): Eliminate by using only the wide SIMD variant (or specialize or templatize the implementation). |
| SIMD::Float xx; |
| SIMD::Float yy; |
| xx = Insert128(xx, x, 0); |
| yy = Insert128(yy, y, 0); |
| return Extract128(Pow(xx, yy, relaxedPrecision), 0); |
| } |
| |
| RValue<Float4> Sqrt(RValue<Float4> x, bool relaxedPrecision) |
| { |
| // TODO(b/214588983): Eliminate by using only the wide SIMD variant (or specialize or templatize the implementation). |
| SIMD::Float xx; |
| xx = Insert128(xx, x, 0); |
| return Extract128(Sqrt(xx, relaxedPrecision), 0); |
| } |
| |
| void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) |
| { |
| Int2 tmp0 = UnpackHigh(row0, row1); |
| Int2 tmp1 = UnpackHigh(row2, row3); |
| Int2 tmp2 = UnpackLow(row0, row1); |
| Int2 tmp3 = UnpackLow(row2, row3); |
| |
| row0 = UnpackLow(tmp2, tmp3); |
| row1 = UnpackHigh(tmp2, tmp3); |
| row2 = UnpackLow(tmp0, tmp1); |
| row3 = UnpackHigh(tmp0, tmp1); |
| } |
| |
| void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) |
| { |
| Int2 tmp0 = UnpackHigh(row0, row1); |
| Int2 tmp1 = UnpackHigh(row2, row3); |
| Int2 tmp2 = UnpackLow(row0, row1); |
| Int2 tmp3 = UnpackLow(row2, row3); |
| |
| row0 = UnpackLow(tmp2, tmp3); |
| row1 = UnpackHigh(tmp2, tmp3); |
| row2 = UnpackLow(tmp0, tmp1); |
| } |
| |
| void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| { |
| Float4 tmp0 = UnpackLow(row0, row1); |
| Float4 tmp1 = UnpackLow(row2, row3); |
| Float4 tmp2 = UnpackHigh(row0, row1); |
| Float4 tmp3 = UnpackHigh(row2, row3); |
| |
| row0 = Float4(tmp0.xy, tmp1.xy); |
| row1 = Float4(tmp0.zw, tmp1.zw); |
| row2 = Float4(tmp2.xy, tmp3.xy); |
| row3 = Float4(tmp2.zw, tmp3.zw); |
| } |
| |
| void transpose4x4zyxw(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| { |
| Float4 tmp0 = UnpackLow(row0, row1); |
| Float4 tmp1 = UnpackLow(row2, row3); |
| Float4 tmp2 = UnpackHigh(row0, row1); |
| Float4 tmp3 = UnpackHigh(row2, row3); |
| |
| row2 = Float4(tmp0.xy, tmp1.xy); |
| row1 = Float4(tmp0.zw, tmp1.zw); |
| row0 = Float4(tmp2.xy, tmp3.xy); |
| row3 = Float4(tmp2.zw, tmp3.zw); |
| } |
| |
| void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| { |
| Float4 tmp0 = UnpackLow(row0, row1); |
| Float4 tmp1 = UnpackLow(row2, row3); |
| Float4 tmp2 = UnpackHigh(row0, row1); |
| Float4 tmp3 = UnpackHigh(row2, row3); |
| |
| row0 = Float4(tmp0.xy, tmp1.xy); |
| row1 = Float4(tmp0.zw, tmp1.zw); |
| row2 = Float4(tmp2.xy, tmp3.xy); |
| } |
| |
| void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| { |
| Float4 tmp0 = UnpackLow(row0, row1); |
| Float4 tmp1 = UnpackLow(row2, row3); |
| |
| row0 = Float4(tmp0.xy, tmp1.xy); |
| row1 = Float4(tmp0.zw, tmp1.zw); |
| } |
| |
| void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| { |
| Float4 tmp0 = UnpackLow(row0, row1); |
| Float4 tmp1 = UnpackLow(row2, row3); |
| |
| row0 = Float4(tmp0.xy, tmp1.xy); |
| } |
| |
| void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| { |
| Float4 tmp01 = UnpackLow(row0, row1); |
| Float4 tmp23 = UnpackHigh(row0, row1); |
| |
| row0 = tmp01; |
| row1 = Float4(tmp01.zw, row1.zw); |
| row2 = tmp23; |
| row3 = Float4(tmp23.zw, row3.zw); |
| } |
| |
| void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N) |
| { |
| switch(N) |
| { |
| case 1: transpose4x1(row0, row1, row2, row3); break; |
| case 2: transpose4x2(row0, row1, row2, row3); break; |
| case 3: transpose4x3(row0, row1, row2, row3); break; |
| case 4: transpose4x4(row0, row1, row2, row3); break; |
| } |
| } |
| |
| SIMD::UInt halfToFloatBits(SIMD::UInt halfBits) |
| { |
| auto magic = SIMD::UInt(126 << 23); |
| |
| auto sign16 = halfBits & SIMD::UInt(0x8000); |
| auto man16 = halfBits & SIMD::UInt(0x03FF); |
| auto exp16 = halfBits & SIMD::UInt(0x7C00); |
| |
| auto isDnormOrZero = CmpEQ(exp16, SIMD::UInt(0)); |
| auto isInfOrNaN = CmpEQ(exp16, SIMD::UInt(0x7C00)); |
| |
| auto sign32 = sign16 << 16; |
| auto man32 = man16 << 13; |
| auto exp32 = (exp16 + SIMD::UInt(0x1C000)) << 13; |
| auto norm32 = (man32 | exp32) | (isInfOrNaN & SIMD::UInt(0x7F800000)); |
| |
| auto denorm32 = As<SIMD::UInt>(As<SIMD::Float>(magic + man16) - As<SIMD::Float>(magic)); |
| |
| return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero); |
| } |
| |
| SIMD::UInt floatToHalfBits(SIMD::UInt floatBits, bool storeInUpperBits) |
| { |
| SIMD::UInt sign = floatBits & SIMD::UInt(0x80000000); |
| SIMD::UInt abs = floatBits & SIMD::UInt(0x7FFFFFFF); |
| |
| SIMD::UInt normal = CmpNLE(abs, SIMD::UInt(0x38800000)); |
| |
| SIMD::UInt mantissa = (abs & SIMD::UInt(0x007FFFFF)) | SIMD::UInt(0x00800000); |
| SIMD::UInt e = SIMD::UInt(113) - (abs >> 23); |
| SIMD::UInt denormal = CmpLT(e, SIMD::UInt(24)) & (mantissa >> e); |
| |
| SIMD::UInt base = (normal & abs) | (~normal & denormal); // TODO: IfThenElse() |
| |
| // float exponent bias is 127, half bias is 15, so adjust by -112 |
| SIMD::UInt bias = normal & SIMD::UInt(0xC8000000); |
| |
| SIMD::UInt rounded = base + bias + SIMD::UInt(0x00000FFF) + ((base >> 13) & SIMD::UInt(1)); |
| SIMD::UInt fp16u = rounded >> 13; |
| |
| // Infinity |
| fp16u |= CmpNLE(abs, SIMD::UInt(0x47FFEFFF)) & SIMD::UInt(0x7FFF); |
| |
| return storeInUpperBits ? (sign | (fp16u << 16)) : ((sign >> 16) | fp16u); |
| } |
| |
| Float4 r11g11b10Unpack(UInt r11g11b10bits) |
| { |
| // 10 (or 11) bit float formats are unsigned formats with a 5 bit exponent and a 5 (or 6) bit mantissa. |
| // Since the Half float format also has a 5 bit exponent, we can convert these formats to half by |
| // copy/pasting the bits so the the exponent bits and top mantissa bits are aligned to the half format. |
| // In this case, we have: |
| // MSB | B B B B B B B B B B G G G G G G G G G G G R R R R R R R R R R R | LSB |
| UInt4 halfBits; |
| halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x000007FFu)) << 4, 0); |
| halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x003FF800u)) >> 7, 1); |
| halfBits = Insert(halfBits, (r11g11b10bits & UInt(0xFFC00000u)) >> 17, 2); |
| halfBits = Insert(halfBits, UInt(0x00003C00u), 3); |
| return As<Float4>(halfToFloatBits(halfBits)); |
| } |
| |
| UInt r11g11b10Pack(const Float4 &value) |
| { |
| // 10 and 11 bit floats are unsigned, so their minimal value is 0 |
| auto halfBits = floatToHalfBits(As<UInt4>(Max(value, Float4(0.0f))), true); |
| // Truncates instead of rounding. See b/147900455 |
| UInt4 truncBits = halfBits & UInt4(0x7FF00000, 0x7FF00000, 0x7FE00000, 0); |
| return (UInt(truncBits.x) >> 20) | (UInt(truncBits.y) >> 9) | (UInt(truncBits.z) << 1); |
| } |
| |
| Float4 linearToSRGB(const Float4 &c) |
| { |
| Float4 lc = c * 12.92f; |
| Float4 ec = MulAdd(1.055f, Pow<Mediump>(c, (1.0f / 2.4f)), -0.055f); // TODO(b/149574741): Use a custom approximation. |
| |
| Int4 linear = CmpLT(c, 0.0031308f); |
| return As<Float4>((linear & As<Int4>(lc)) | (~linear & As<Int4>(ec))); // TODO: IfThenElse() |
| } |
| |
| Float4 sRGBtoLinear(const Float4 &c) |
| { |
| Float4 lc = c * (1.0f / 12.92f); |
| Float4 ec = Pow<Mediump>(MulAdd(c, 1.0f / 1.055f, 0.055f / 1.055f), 2.4f); // TODO(b/149574741): Use a custom approximation. |
| |
| Int4 linear = CmpLT(c, 0.04045f); |
| return As<Float4>((linear & As<Int4>(lc)) | (~linear & As<Int4>(ec))); // TODO: IfThenElse() |
| } |
| |
| rr::RValue<SIMD::Float> Sign(const rr::RValue<SIMD::Float> &val) |
| { |
| return rr::As<SIMD::Float>((rr::As<SIMD::UInt>(val) & SIMD::UInt(0x80000000)) | SIMD::UInt(0x3f800000)); |
| } |
| |
| // Returns the <whole, frac> of val. |
| // Both whole and frac will have the same sign as val. |
| std::pair<rr::RValue<SIMD::Float>, rr::RValue<SIMD::Float>> |
| Modf(const rr::RValue<SIMD::Float> &val) |
| { |
| auto abs = Abs(val); |
| auto sign = Sign(val); |
| auto whole = Floor(abs) * sign; |
| auto frac = Frac(abs) * sign; |
| return std::make_pair(whole, frac); |
| } |
| |
| // Returns the number of 1s in bits, per lane. |
| SIMD::UInt CountBits(const rr::RValue<SIMD::UInt> &bits) |
| { |
| // TODO: Add an intrinsic to reactor. Even if there isn't a |
| // single vector instruction, there may be target-dependent |
| // ways to make this faster. |
| // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
| SIMD::UInt c = bits - ((bits >> 1) & SIMD::UInt(0x55555555)); |
| c = ((c >> 2) & SIMD::UInt(0x33333333)) + (c & SIMD::UInt(0x33333333)); |
| c = ((c >> 4) + c) & SIMD::UInt(0x0F0F0F0F); |
| c = ((c >> 8) + c) & SIMD::UInt(0x00FF00FF); |
| c = ((c >> 16) + c) & SIMD::UInt(0x0000FFFF); |
| return c; |
| } |
| |
| // Returns 1 << bits. |
| // If the resulting bit overflows a 32 bit integer, 0 is returned. |
| rr::RValue<SIMD::UInt> NthBit32(const rr::RValue<SIMD::UInt> &bits) |
| { |
| return ((SIMD::UInt(1) << bits) & CmpLT(bits, SIMD::UInt(32))); |
| } |
| |
| // Returns bitCount number of of 1's starting from the LSB. |
| rr::RValue<SIMD::UInt> Bitmask32(const rr::RValue<SIMD::UInt> &bitCount) |
| { |
| return NthBit32(bitCount) - SIMD::UInt(1); |
| } |
| |
| // Returns y if y < x; otherwise result is x. |
| // If one operand is a NaN, the other operand is the result. |
| // If both operands are NaN, the result is a NaN. |
| rr::RValue<SIMD::Float> NMin(const rr::RValue<SIMD::Float> &x, const rr::RValue<SIMD::Float> &y) |
| { |
| auto xIsNan = IsNan(x); |
| auto yIsNan = IsNan(y); |
| return As<SIMD::Float>( |
| // If neither are NaN, return min |
| ((~xIsNan & ~yIsNan) & As<SIMD::Int>(Min(x, y))) | |
| // If one operand is a NaN, the other operand is the result |
| // If both operands are NaN, the result is a NaN. |
| ((~xIsNan & yIsNan) & As<SIMD::Int>(x)) | |
| (xIsNan & As<SIMD::Int>(y))); |
| } |
| |
| // Returns y if y > x; otherwise result is x. |
| // If one operand is a NaN, the other operand is the result. |
| // If both operands are NaN, the result is a NaN. |
| rr::RValue<SIMD::Float> NMax(const rr::RValue<SIMD::Float> &x, const rr::RValue<SIMD::Float> &y) |
| { |
| auto xIsNan = IsNan(x); |
| auto yIsNan = IsNan(y); |
| return As<SIMD::Float>( |
| // If neither are NaN, return max |
| ((~xIsNan & ~yIsNan) & As<SIMD::Int>(Max(x, y))) | |
| // If one operand is a NaN, the other operand is the result |
| // If both operands are NaN, the result is a NaN. |
| ((~xIsNan & yIsNan) & As<SIMD::Int>(x)) | |
| (xIsNan & As<SIMD::Int>(y))); |
| } |
| |
| // Returns the determinant of a 2x2 matrix. |
| rr::RValue<SIMD::Float> Determinant( |
| const rr::RValue<SIMD::Float> &a, const rr::RValue<SIMD::Float> &b, |
| const rr::RValue<SIMD::Float> &c, const rr::RValue<SIMD::Float> &d) |
| { |
| return a * d - b * c; |
| } |
| |
| // Returns the determinant of a 3x3 matrix. |
| rr::RValue<SIMD::Float> Determinant( |
| const rr::RValue<SIMD::Float> &a, const rr::RValue<SIMD::Float> &b, const rr::RValue<SIMD::Float> &c, |
| const rr::RValue<SIMD::Float> &d, const rr::RValue<SIMD::Float> &e, const rr::RValue<SIMD::Float> &f, |
| const rr::RValue<SIMD::Float> &g, const rr::RValue<SIMD::Float> &h, const rr::RValue<SIMD::Float> &i) |
| { |
| return a * e * i + b * f * g + c * d * h - c * e * g - b * d * i - a * f * h; |
| } |
| |
| // Returns the determinant of a 4x4 matrix. |
| rr::RValue<SIMD::Float> Determinant( |
| const rr::RValue<SIMD::Float> &a, const rr::RValue<SIMD::Float> &b, const rr::RValue<SIMD::Float> &c, const rr::RValue<SIMD::Float> &d, |
| const rr::RValue<SIMD::Float> &e, const rr::RValue<SIMD::Float> &f, const rr::RValue<SIMD::Float> &g, const rr::RValue<SIMD::Float> &h, |
| const rr::RValue<SIMD::Float> &i, const rr::RValue<SIMD::Float> &j, const rr::RValue<SIMD::Float> &k, const rr::RValue<SIMD::Float> &l, |
| const rr::RValue<SIMD::Float> &m, const rr::RValue<SIMD::Float> &n, const rr::RValue<SIMD::Float> &o, const rr::RValue<SIMD::Float> &p) |
| { |
| return a * Determinant(f, g, h, |
| j, k, l, |
| n, o, p) - |
| b * Determinant(e, g, h, |
| i, k, l, |
| m, o, p) + |
| c * Determinant(e, f, h, |
| i, j, l, |
| m, n, p) - |
| d * Determinant(e, f, g, |
| i, j, k, |
| m, n, o); |
| } |
| |
| // Returns the inverse of a 2x2 matrix. |
| std::array<rr::RValue<SIMD::Float>, 4> MatrixInverse( |
| const rr::RValue<SIMD::Float> &a, const rr::RValue<SIMD::Float> &b, |
| const rr::RValue<SIMD::Float> &c, const rr::RValue<SIMD::Float> &d) |
| { |
| auto s = SIMD::Float(1.0f) / Determinant(a, b, c, d); |
| return { { s * d, -s * b, -s * c, s * a } }; |
| } |
| |
| // Returns the inverse of a 3x3 matrix. |
| std::array<rr::RValue<SIMD::Float>, 9> MatrixInverse( |
| const rr::RValue<SIMD::Float> &a, const rr::RValue<SIMD::Float> &b, const rr::RValue<SIMD::Float> &c, |
| const rr::RValue<SIMD::Float> &d, const rr::RValue<SIMD::Float> &e, const rr::RValue<SIMD::Float> &f, |
| const rr::RValue<SIMD::Float> &g, const rr::RValue<SIMD::Float> &h, const rr::RValue<SIMD::Float> &i) |
| { |
| auto s = SIMD::Float(1.0f) / Determinant( |
| a, b, c, |
| d, e, f, |
| g, h, i); // TODO: duplicate arithmetic calculating the det and below. |
| |
| return { { |
| s * (e * i - f * h), |
| s * (c * h - b * i), |
| s * (b * f - c * e), |
| s * (f * g - d * i), |
| s * (a * i - c * g), |
| s * (c * d - a * f), |
| s * (d * h - e * g), |
| s * (b * g - a * h), |
| s * (a * e - b * d), |
| } }; |
| } |
| |
| // Returns the inverse of a 4x4 matrix. |
| std::array<rr::RValue<SIMD::Float>, 16> MatrixInverse( |
| const rr::RValue<SIMD::Float> &a, const rr::RValue<SIMD::Float> &b, const rr::RValue<SIMD::Float> &c, const rr::RValue<SIMD::Float> &d, |
| const rr::RValue<SIMD::Float> &e, const rr::RValue<SIMD::Float> &f, const rr::RValue<SIMD::Float> &g, const rr::RValue<SIMD::Float> &h, |
| const rr::RValue<SIMD::Float> &i, const rr::RValue<SIMD::Float> &j, const rr::RValue<SIMD::Float> &k, const rr::RValue<SIMD::Float> &l, |
| const rr::RValue<SIMD::Float> &m, const rr::RValue<SIMD::Float> &n, const rr::RValue<SIMD::Float> &o, const rr::RValue<SIMD::Float> &p) |
| { |
| auto s = SIMD::Float(1.0f) / Determinant( |
| a, b, c, d, |
| e, f, g, h, |
| i, j, k, l, |
| m, n, o, p); // TODO: duplicate arithmetic calculating the det and below. |
| |
| auto kplo = k * p - l * o, jpln = j * p - l * n, jokn = j * o - k * n; |
| auto gpho = g * p - h * o, fphn = f * p - h * n, fogn = f * o - g * n; |
| auto glhk = g * l - h * k, flhj = f * l - h * j, fkgj = f * k - g * j; |
| auto iplm = i * p - l * m, iokm = i * o - k * m, ephm = e * p - h * m; |
| auto eogm = e * o - g * m, elhi = e * l - h * i, ekgi = e * k - g * i; |
| auto injm = i * n - j * m, enfm = e * n - f * m, ejfi = e * j - f * i; |
| |
| return { { |
| s * (f * kplo - g * jpln + h * jokn), |
| s * (-b * kplo + c * jpln - d * jokn), |
| s * (b * gpho - c * fphn + d * fogn), |
| s * (-b * glhk + c * flhj - d * fkgj), |
| |
| s * (-e * kplo + g * iplm - h * iokm), |
| s * (a * kplo - c * iplm + d * iokm), |
| s * (-a * gpho + c * ephm - d * eogm), |
| s * (a * glhk - c * elhi + d * ekgi), |
| |
| s * (e * jpln - f * iplm + h * injm), |
| s * (-a * jpln + b * iplm - d * injm), |
| s * (a * fphn - b * ephm + d * enfm), |
| s * (-a * flhj + b * elhi - d * ejfi), |
| |
| s * (-e * jokn + f * iokm - g * injm), |
| s * (a * jokn - b * iokm + c * injm), |
| s * (-a * fogn + b * eogm - c * enfm), |
| s * (a * fkgj - b * ekgi + c * ejfi), |
| } }; |
| } |
| |
| } // namespace sw |