|  | // Copyright 2016 The SwiftShader Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //    http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #ifndef sw_Half_hpp | 
|  | #define sw_Half_hpp | 
|  |  | 
|  | #include "Math.hpp" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  |  | 
|  | namespace sw { | 
|  |  | 
|  | class half | 
|  | { | 
|  | public: | 
|  | half() = default; | 
|  | explicit half(float f); | 
|  |  | 
|  | operator float() const; | 
|  |  | 
|  | half &operator=(float f); | 
|  |  | 
|  | private: | 
|  | unsigned short fp16i; | 
|  | }; | 
|  |  | 
|  | inline half shortAsHalf(short s) | 
|  | { | 
|  | union | 
|  | { | 
|  | half h; | 
|  | short s; | 
|  | } hs; | 
|  |  | 
|  | hs.s = s; | 
|  |  | 
|  | return hs.h; | 
|  | } | 
|  |  | 
|  | class RGB9E5 | 
|  | { | 
|  | unsigned int R : 9; | 
|  | unsigned int G : 9; | 
|  | unsigned int B : 9; | 
|  | unsigned int E : 5; | 
|  |  | 
|  | public: | 
|  | RGB9E5(const float rgb[3]) | 
|  | : RGB9E5(rgb[0], rgb[1], rgb[2]) | 
|  | { | 
|  | } | 
|  |  | 
|  | RGB9E5(float r, float g, float b) | 
|  | { | 
|  | // Vulkan 1.1.117 section 15.2.1 RGB to Shared Exponent Conversion | 
|  |  | 
|  | // B is the exponent bias (15) | 
|  | constexpr int g_sharedexp_bias = 15; | 
|  |  | 
|  | // N is the number of mantissa bits per component (9) | 
|  | constexpr int g_sharedexp_mantissabits = 9; | 
|  |  | 
|  | // Emax is the maximum allowed biased exponent value (31) | 
|  | constexpr int g_sharedexp_maxexponent = 31; | 
|  |  | 
|  | constexpr float g_sharedexp_max = | 
|  | ((static_cast<float>(1 << g_sharedexp_mantissabits) - 1) / | 
|  | static_cast<float>(1 << g_sharedexp_mantissabits)) * | 
|  | static_cast<float>(1 << (g_sharedexp_maxexponent - g_sharedexp_bias)); | 
|  |  | 
|  | // Clamp components to valid range. NaN becomes 0. | 
|  | const float red_c = std::min(!(r > 0) ? 0 : r, g_sharedexp_max); | 
|  | const float green_c = std::min(!(g > 0) ? 0 : g, g_sharedexp_max); | 
|  | const float blue_c = std::min(!(b > 0) ? 0 : b, g_sharedexp_max); | 
|  |  | 
|  | // We're reducing the mantissa to 9 bits, so we must round up if the next | 
|  | // bit is 1. In other words add 0.5 to the new mantissa's position and | 
|  | // allow overflow into the exponent so we can scale correctly. | 
|  | constexpr int half = 1 << (23 - g_sharedexp_mantissabits); | 
|  | const float red_r = bit_cast<float>(bit_cast<int>(red_c) + half); | 
|  | const float green_r = bit_cast<float>(bit_cast<int>(green_c) + half); | 
|  | const float blue_r = bit_cast<float>(bit_cast<int>(blue_c) + half); | 
|  |  | 
|  | // The largest component determines the shared exponent. It can't be lower | 
|  | // than 0 (after bias subtraction) so also limit to the mimimum representable. | 
|  | constexpr float min_s = 0.5f / (1 << g_sharedexp_bias); | 
|  | float max_s = std::max(std::max(red_r, green_r), std::max(blue_r, min_s)); | 
|  |  | 
|  | // Obtain the reciprocal of the shared exponent by inverting the bits, | 
|  | // and scale by the new mantissa's size. Note that the IEEE-754 single-precision | 
|  | // format has an implicit leading 1, but this shared component format does not. | 
|  | float scale = bit_cast<float>((bit_cast<int>(max_s) & 0x7F800000) ^ 0x7F800000) * (1 << (g_sharedexp_mantissabits - 2)); | 
|  |  | 
|  | R = static_cast<unsigned int>(round(red_c * scale)); | 
|  | G = static_cast<unsigned int>(round(green_c * scale)); | 
|  | B = static_cast<unsigned int>(round(blue_c * scale)); | 
|  | E = (bit_cast<unsigned int>(max_s) >> 23) - 127 + 15 + 1; | 
|  | } | 
|  |  | 
|  | operator unsigned int() const | 
|  | { | 
|  | return *reinterpret_cast<const unsigned int *>(this); | 
|  | } | 
|  |  | 
|  | void toRGB16F(half rgb[3]) const | 
|  | { | 
|  | constexpr int offset = 24;  // Exponent bias (15) + number of mantissa bits per component (9) = 24 | 
|  |  | 
|  | const float factor = (1u << E) * (1.0f / (1 << offset)); | 
|  | rgb[0] = half(R * factor); | 
|  | rgb[1] = half(G * factor); | 
|  | rgb[2] = half(B * factor); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class R11G11B10F | 
|  | { | 
|  | public: | 
|  | R11G11B10F(const float rgb[3]) | 
|  | { | 
|  | R = float32ToFloat11(rgb[0]); | 
|  | G = float32ToFloat11(rgb[1]); | 
|  | B = float32ToFloat10(rgb[2]); | 
|  | } | 
|  |  | 
|  | operator unsigned int() const | 
|  | { | 
|  | return *reinterpret_cast<const unsigned int *>(this); | 
|  | } | 
|  |  | 
|  | void toRGB16F(half rgb[3]) const | 
|  | { | 
|  | rgb[0] = float11ToFloat16(R); | 
|  | rgb[1] = float11ToFloat16(G); | 
|  | rgb[2] = float10ToFloat16(B); | 
|  | } | 
|  |  | 
|  | static inline half float11ToFloat16(unsigned short fp11) | 
|  | { | 
|  | return shortAsHalf(fp11 << 4);  // Sign bit 0 | 
|  | } | 
|  |  | 
|  | static inline half float10ToFloat16(unsigned short fp10) | 
|  | { | 
|  | return shortAsHalf(fp10 << 5);  // Sign bit 0 | 
|  | } | 
|  |  | 
|  | static inline unsigned short float32ToFloat11(float fp32) | 
|  | { | 
|  | const unsigned int float32MantissaMask = 0x7FFFFF; | 
|  | const unsigned int float32ExponentMask = 0x7F800000; | 
|  | const unsigned int float32SignMask = 0x80000000; | 
|  | const unsigned int float32ValueMask = ~float32SignMask; | 
|  | const unsigned int float32ExponentFirstBit = 23; | 
|  | const unsigned int float32ExponentBias = 127; | 
|  |  | 
|  | const unsigned short float11Max = 0x7BF; | 
|  | const unsigned short float11MantissaMask = 0x3F; | 
|  | const unsigned short float11ExponentMask = 0x7C0; | 
|  | const unsigned short float11BitMask = 0x7FF; | 
|  | const unsigned int float11ExponentBias = 14; | 
|  |  | 
|  | const unsigned int float32Maxfloat11 = 0x477E0000; | 
|  | const unsigned int float32MinNormfloat11 = 0x38800000; | 
|  | const unsigned int float32MinDenormfloat11 = 0x35000080; | 
|  |  | 
|  | const unsigned int float32Bits = *reinterpret_cast<unsigned int *>(&fp32); | 
|  | const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; | 
|  |  | 
|  | unsigned int float32Val = float32Bits & float32ValueMask; | 
|  |  | 
|  | if((float32Val & float32ExponentMask) == float32ExponentMask) | 
|  | { | 
|  | // INF or NAN | 
|  | if((float32Val & float32MantissaMask) != 0) | 
|  | { | 
|  | return float11ExponentMask | | 
|  | (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) & | 
|  | float11MantissaMask); | 
|  | } | 
|  | else if(float32Sign) | 
|  | { | 
|  | // -INF is clamped to 0 since float11 is positive only | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | return float11ExponentMask; | 
|  | } | 
|  | } | 
|  | else if(float32Sign) | 
|  | { | 
|  | // float11 is positive only, so clamp to zero | 
|  | return 0; | 
|  | } | 
|  | else if(float32Val > float32Maxfloat11) | 
|  | { | 
|  | // The number is too large to be represented as a float11, set to max | 
|  | return float11Max; | 
|  | } | 
|  | else if(float32Val < float32MinDenormfloat11) | 
|  | { | 
|  | // The number is too small to be represented as a denormalized float11, set to 0 | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | if(float32Val < float32MinNormfloat11) | 
|  | { | 
|  | // The number is too small to be represented as a normalized float11 | 
|  | // Convert it to a denormalized value. | 
|  | const unsigned int shift = (float32ExponentBias - float11ExponentBias) - | 
|  | (float32Val >> float32ExponentFirstBit); | 
|  | float32Val = | 
|  | ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; | 
|  | } | 
|  | else | 
|  | { | 
|  | // Rebias the exponent to represent the value as a normalized float11 | 
|  | float32Val += 0xC8000000; | 
|  | } | 
|  |  | 
|  | return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline unsigned short float32ToFloat10(float fp32) | 
|  | { | 
|  | const unsigned int float32MantissaMask = 0x7FFFFF; | 
|  | const unsigned int float32ExponentMask = 0x7F800000; | 
|  | const unsigned int float32SignMask = 0x80000000; | 
|  | const unsigned int float32ValueMask = ~float32SignMask; | 
|  | const unsigned int float32ExponentFirstBit = 23; | 
|  | const unsigned int float32ExponentBias = 127; | 
|  |  | 
|  | const unsigned short float10Max = 0x3DF; | 
|  | const unsigned short float10MantissaMask = 0x1F; | 
|  | const unsigned short float10ExponentMask = 0x3E0; | 
|  | const unsigned short float10BitMask = 0x3FF; | 
|  | const unsigned int float10ExponentBias = 14; | 
|  |  | 
|  | const unsigned int float32Maxfloat10 = 0x477C0000; | 
|  | const unsigned int float32MinNormfloat10 = 0x38800000; | 
|  | const unsigned int float32MinDenormfloat10 = 0x35800040; | 
|  |  | 
|  | const unsigned int float32Bits = *reinterpret_cast<unsigned int *>(&fp32); | 
|  | const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; | 
|  |  | 
|  | unsigned int float32Val = float32Bits & float32ValueMask; | 
|  |  | 
|  | if((float32Val & float32ExponentMask) == float32ExponentMask) | 
|  | { | 
|  | // INF or NAN | 
|  | if((float32Val & float32MantissaMask) != 0) | 
|  | { | 
|  | return float10ExponentMask | | 
|  | (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) & | 
|  | float10MantissaMask); | 
|  | } | 
|  | else if(float32Sign) | 
|  | { | 
|  | // -INF is clamped to 0 since float10 is positive only | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | return float10ExponentMask; | 
|  | } | 
|  | } | 
|  | else if(float32Sign) | 
|  | { | 
|  | // float10 is positive only, so clamp to zero | 
|  | return 0; | 
|  | } | 
|  | else if(float32Val > float32Maxfloat10) | 
|  | { | 
|  | // The number is too large to be represented as a float10, set to max | 
|  | return float10Max; | 
|  | } | 
|  | else if(float32Val < float32MinDenormfloat10) | 
|  | { | 
|  | // The number is too small to be represented as a denormalized float10, set to 0 | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | if(float32Val < float32MinNormfloat10) | 
|  | { | 
|  | // The number is too small to be represented as a normalized float10 | 
|  | // Convert it to a denormalized value. | 
|  | const unsigned int shift = (float32ExponentBias - float10ExponentBias) - | 
|  | (float32Val >> float32ExponentFirstBit); | 
|  | float32Val = | 
|  | ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; | 
|  | } | 
|  | else | 
|  | { | 
|  | // Rebias the exponent to represent the value as a normalized float10 | 
|  | float32Val += 0xC8000000; | 
|  | } | 
|  |  | 
|  | return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask; | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | unsigned int R : 11; | 
|  | unsigned int G : 11; | 
|  | unsigned int B : 10; | 
|  | }; | 
|  |  | 
|  | }  // namespace sw | 
|  |  | 
|  | #endif  // sw_Half_hpp |