blob: 4646065a45a80d8e175dd5883f2ad0023e1281c3 [file] [log] [blame]
//===- subzero/src/PNaClTranslator.cpp - ICE from bitcode -----------------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Implements the interface for translation from PNaCl bitcode files to
/// ICE to machine code.
///
//===----------------------------------------------------------------------===//
#include "PNaClTranslator.h"
#include "IceCfg.h"
#include "IceCfgNode.h"
#include "IceClFlags.h"
#include "IceDefs.h"
#include "IceGlobalInits.h"
#include "IceInst.h"
#include "IceOperand.h"
#include "IceRangeSpec.h"
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-parameter"
#endif // __clang__
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Bitcode/NaCl/NaClBitcodeDecoders.h"
#include "llvm/Bitcode/NaCl/NaClBitcodeDefs.h"
#include "llvm/Bitcode/NaCl/NaClBitcodeHeader.h"
#include "llvm/Bitcode/NaCl/NaClBitcodeParser.h"
#include "llvm/Bitcode/NaCl/NaClReaderWriter.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
#include <unordered_set>
// Define a hash function for SmallString's, so that it can be used in hash
// tables.
namespace std {
template <unsigned InternalLen> struct hash<llvm::SmallString<InternalLen>> {
size_t operator()(const llvm::SmallString<InternalLen> &Key) const {
return llvm::hash_combine_range(Key.begin(), Key.end());
}
};
} // end of namespace std
namespace {
using namespace llvm;
// Models elements in the list of types defined in the types block. These
// elements can be undefined, a (simple) type, or a function type signature.
// Note that an extended type is undefined on construction. Use methods
// setAsSimpleType and setAsFuncSigType to define the extended type.
class ExtendedType {
ExtendedType &operator=(const ExtendedType &Ty) = delete;
public:
/// Discriminator for LLVM-style RTTI.
enum TypeKind { Undefined, Simple, FuncSig };
ExtendedType() = default;
ExtendedType(const ExtendedType &Ty) = default;
virtual ~ExtendedType() = default;
ExtendedType::TypeKind getKind() const { return Kind; }
void dump(Ice::Ostream &Stream) const;
/// Changes the extended type to a simple type with the given / value.
void setAsSimpleType(Ice::Type Ty) {
assert(Kind == Undefined);
Kind = Simple;
Signature.setReturnType(Ty);
}
/// Changes the extended type to an (empty) function signature type.
void setAsFunctionType() {
assert(Kind == Undefined);
Kind = FuncSig;
}
protected:
// Note: For simple types, the return type of the signature will be used to
// hold the simple type.
Ice::FuncSigType Signature;
private:
ExtendedType::TypeKind Kind = Undefined;
};
Ice::Ostream &operator<<(Ice::Ostream &Stream, const ExtendedType &Ty) {
if (!Ice::BuildDefs::dump())
return Stream;
Ty.dump(Stream);
return Stream;
}
Ice::Ostream &operator<<(Ice::Ostream &Stream, ExtendedType::TypeKind Kind) {
if (!Ice::BuildDefs::dump())
return Stream;
Stream << "ExtendedType::";
switch (Kind) {
case ExtendedType::Undefined:
Stream << "Undefined";
break;
case ExtendedType::Simple:
Stream << "Simple";
break;
case ExtendedType::FuncSig:
Stream << "FuncSig";
break;
}
return Stream;
}
// Models an ICE type as an extended type.
class SimpleExtendedType : public ExtendedType {
SimpleExtendedType() = delete;
SimpleExtendedType(const SimpleExtendedType &) = delete;
SimpleExtendedType &operator=(const SimpleExtendedType &) = delete;
public:
Ice::Type getType() const { return Signature.getReturnType(); }
static bool classof(const ExtendedType *Ty) {
return Ty->getKind() == Simple;
}
};
// Models a function signature as an extended type.
class FuncSigExtendedType : public ExtendedType {
FuncSigExtendedType() = delete;
FuncSigExtendedType(const FuncSigExtendedType &) = delete;
FuncSigExtendedType &operator=(const FuncSigExtendedType &) = delete;
public:
const Ice::FuncSigType &getSignature() const { return Signature; }
void setReturnType(Ice::Type ReturnType) {
Signature.setReturnType(ReturnType);
}
void appendArgType(Ice::Type ArgType) { Signature.appendArgType(ArgType); }
static bool classof(const ExtendedType *Ty) {
return Ty->getKind() == FuncSig;
}
};
void ExtendedType::dump(Ice::Ostream &Stream) const {
if (!Ice::BuildDefs::dump())
return;
Stream << Kind;
switch (Kind) {
case Simple: {
Stream << " " << Signature.getReturnType();
break;
}
case FuncSig: {
Stream << " " << Signature;
}
default:
break;
}
}
// Models integer literals as a sequence of bits. Used to read integer values
// from bitcode files. Based on llvm::APInt.
class BitcodeInt {
BitcodeInt() = delete;
BitcodeInt(const BitcodeInt &) = delete;
BitcodeInt &operator=(const BitcodeInt &) = delete;
public:
BitcodeInt(Ice::SizeT Bits, uint64_t Val) : BitWidth(Bits), Val(Val) {
assert(Bits && "bitwidth too small");
assert(Bits <= BITS_PER_WORD && "bitwidth too big");
clearUnusedBits();
}
int64_t getSExtValue() const {
return static_cast<int64_t>(Val << (BITS_PER_WORD - BitWidth)) >>
(BITS_PER_WORD - BitWidth);
}
template <typename IntType, typename FpType>
inline FpType convertToFp() const {
static_assert(sizeof(IntType) == sizeof(FpType),
"IntType and FpType should be the same width");
assert(BitWidth == sizeof(IntType) * CHAR_BIT);
auto V = static_cast<IntType>(Val);
return Ice::Utils::bitCopy<FpType>(V);
}
private:
/// Bits in the (internal) value.
static const Ice::SizeT BITS_PER_WORD = sizeof(uint64_t) * CHAR_BIT;
uint32_t BitWidth; /// The number of bits in the floating point number.
uint64_t Val; /// The (64-bit) equivalent integer value.
/// Clear unused high order bits.
void clearUnusedBits() {
// If all bits are used, we want to leave the value alone.
if (BitWidth == BITS_PER_WORD)
return;
// Mask out the high bits.
Val &= ~static_cast<uint64_t>(0) >> (BITS_PER_WORD - BitWidth);
}
};
class BlockParserBaseClass;
// Top-level class to read PNaCl bitcode files, and translate to ICE.
class TopLevelParser final : public NaClBitcodeParser {
TopLevelParser() = delete;
TopLevelParser(const TopLevelParser &) = delete;
TopLevelParser &operator=(const TopLevelParser &) = delete;
public:
TopLevelParser(Ice::Translator &Translator, NaClBitstreamCursor &Cursor,
Ice::ErrorCode &ErrorStatus)
: NaClBitcodeParser(Cursor), Translator(Translator),
ErrorStatus(ErrorStatus),
VariableDeclarations(new Ice::VariableDeclarationList()) {}
~TopLevelParser() override = default;
Ice::Translator &getTranslator() const { return Translator; }
/// Generates error with given Message, occurring at BitPosition within the
/// bitcode file. Always returns true.
bool ErrorAt(naclbitc::ErrorLevel Level, uint64_t BitPosition,
const std::string &Message) override;
/// Generates error message with respect to the current block parser.
bool blockError(const std::string &Message);
/// Changes the size of the type list to the given size.
void resizeTypeIDValues(size_t NewSize) { TypeIDValues.resize(NewSize); }
size_t getNumTypeIDValues() const { return TypeIDValues.size(); }
/// Returns a pointer to the pool where globals are allocated.
Ice::VariableDeclarationList *getGlobalVariablesPool() {
return VariableDeclarations.get();
}
/// Returns the undefined type associated with type ID. Note: Returns extended
/// type ready to be defined.
ExtendedType *getTypeByIDForDefining(NaClBcIndexSize_t ID) {
// Get corresponding element, verifying the value is still undefined (and
// hence allowed to be defined).
ExtendedType *Ty = getTypeByIDAsKind(ID, ExtendedType::Undefined);
if (Ty)
return Ty;
if (ID >= TypeIDValues.size()) {
if (ID >= NaClBcIndexSize_t_Max) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Can't define more than " << NaClBcIndexSize_t_Max
<< " types\n";
blockError(StrBuf.str());
// Recover by using existing type slot.
return &TypeIDValues[0];
}
Ice::Utils::reserveAndResize(TypeIDValues, ID + 1);
}
return &TypeIDValues[ID];
}
/// Returns the type associated with the given index.
Ice::Type getSimpleTypeByID(NaClBcIndexSize_t ID) {
const ExtendedType *Ty = getTypeByIDAsKind(ID, ExtendedType::Simple);
if (Ty == nullptr)
// Return error recovery value.
return Ice::IceType_void;
return cast<SimpleExtendedType>(Ty)->getType();
}
/// Returns the type signature associated with the given index.
const Ice::FuncSigType &getFuncSigTypeByID(NaClBcIndexSize_t ID) {
const ExtendedType *Ty = getTypeByIDAsKind(ID, ExtendedType::FuncSig);
if (Ty == nullptr)
// Return error recovery value.
return UndefinedFuncSigType;
return cast<FuncSigExtendedType>(Ty)->getSignature();
}
/// Sets the next function ID to the given LLVM function.
void setNextFunctionID(Ice::FunctionDeclaration *Fcn) {
FunctionDeclarations.push_back(Fcn);
}
/// Returns the value id that should be associated with the the current
/// function block. Increments internal counters during call so that it will
/// be in correct position for next function block.
NaClBcIndexSize_t getNextFunctionBlockValueID() {
size_t NumDeclaredFunctions = FunctionDeclarations.size();
while (NextDefiningFunctionID < NumDeclaredFunctions &&
FunctionDeclarations[NextDefiningFunctionID]->isProto())
++NextDefiningFunctionID;
if (NextDefiningFunctionID >= NumDeclaredFunctions)
Fatal("More function blocks than defined function addresses");
return NextDefiningFunctionID++;
}
/// Returns the function associated with ID.
Ice::FunctionDeclaration *getFunctionByID(NaClBcIndexSize_t ID) {
if (ID < FunctionDeclarations.size())
return FunctionDeclarations[ID];
return reportGetFunctionByIDError(ID);
}
/// Returns the constant associated with the given global value ID.
Ice::Constant *getGlobalConstantByID(NaClBcIndexSize_t ID) {
assert(ID < ValueIDConstants.size());
return ValueIDConstants[ID];
}
/// Install names for all global values without names. Called after the global
/// value symbol table is processed, but before any function blocks are
/// processed.
void installGlobalNames() {
assert(VariableDeclarations);
installGlobalVarNames();
installFunctionNames();
}
void verifyFunctionTypeSignatures();
void createValueIDs() {
assert(VariableDeclarations);
ValueIDConstants.reserve(VariableDeclarations->size() +
FunctionDeclarations.size());
createValueIDsForFunctions();
createValueIDsForGlobalVars();
}
/// Returns the number of function declarations in the bitcode file.
size_t getNumFunctionIDs() const { return FunctionDeclarations.size(); }
/// Returns the number of global declarations (i.e. IDs) defined in the
/// bitcode file.
size_t getNumGlobalIDs() const {
if (VariableDeclarations) {
return FunctionDeclarations.size() + VariableDeclarations->size();
} else {
return ValueIDConstants.size();
}
}
/// Adds the given global declaration to the end of the list of global
/// declarations.
void addGlobalDeclaration(Ice::VariableDeclaration *Decl) {
assert(VariableDeclarations);
VariableDeclarations->push_back(Decl);
}
/// Returns the global variable declaration with the given index.
Ice::VariableDeclaration *getGlobalVariableByID(NaClBcIndexSize_t Index) {
assert(VariableDeclarations);
if (Index < VariableDeclarations->size())
return VariableDeclarations->at(Index);
return reportGetGlobalVariableByIDError(Index);
}
/// Returns the global declaration (variable or function) with the given
/// Index.
Ice::GlobalDeclaration *getGlobalDeclarationByID(NaClBcIndexSize_t Index) {
size_t NumFunctionIds = FunctionDeclarations.size();
if (Index < NumFunctionIds)
return getFunctionByID(Index);
else
return getGlobalVariableByID(Index - NumFunctionIds);
}
/// Returns true if a module block has been parsed.
bool parsedModuleBlock() const { return ParsedModuleBlock; }
/// Returns the list of parsed global variable declarations. Releases
/// ownership of the current list of global variables. Note: only returns
/// non-null pointer on first call. All successive calls return a null
/// pointer.
std::unique_ptr<Ice::VariableDeclarationList> getGlobalVariables() {
// Before returning, check that ValidIDConstants has already been built.
assert(!VariableDeclarations ||
VariableDeclarations->size() <= ValueIDConstants.size());
return std::move(VariableDeclarations);
}
// Upper limit of alignment power allowed by LLVM
static constexpr uint32_t AlignPowerLimit = 29;
// Extracts the corresponding Alignment to use, given the AlignPower (i.e.
// 2**(AlignPower-1), or 0 if AlignPower == 0). Parser defines the block
// context the alignment check appears in, and Prefix defines the context the
// alignment appears in.
uint32_t extractAlignment(NaClBitcodeParser *Parser, const char *Prefix,
uint32_t AlignPower) {
if (AlignPower <= AlignPowerLimit + 1)
return (1 << AlignPower) >> 1;
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << Prefix << " alignment greater than 2**" << AlignPowerLimit
<< ". Found: 2**" << (AlignPower - 1);
Parser->Error(StrBuf.str());
// Error recover with value that is always acceptable.
return 1;
}
private:
// The translator associated with the parser.
Ice::Translator &Translator;
// ErrorStatus should only be updated while this lock is locked.
Ice::GlobalLockType ErrorReportingLock;
// The exit status that should be set to true if an error occurs.
Ice::ErrorCode &ErrorStatus;
// The types associated with each type ID.
std::vector<ExtendedType> TypeIDValues;
// The set of functions (prototype and defined).
Ice::FunctionDeclarationList FunctionDeclarations;
// The ID of the next possible defined function ID in FunctionDeclarations.
// FunctionDeclarations is filled first. It's the set of functions (either
// defined or isproto). Then function definitions are encountered/parsed and
// NextDefiningFunctionID is incremented to track the next actually-defined
// function.
size_t NextDefiningFunctionID = 0;
// The set of global variables.
std::unique_ptr<Ice::VariableDeclarationList> VariableDeclarations;
// Relocatable constants associated with global declarations.
Ice::ConstantList ValueIDConstants;
// Error recovery value to use when getFuncSigTypeByID fails.
Ice::FuncSigType UndefinedFuncSigType;
// Defines if a module block has already been parsed.
bool ParsedModuleBlock = false;
bool ParseBlock(unsigned BlockID) override;
// Gets extended type associated with the given index, assuming the extended
// type is of the WantedKind. Generates error message if corresponding
// extended type of WantedKind can't be found, and returns nullptr.
ExtendedType *getTypeByIDAsKind(NaClBcIndexSize_t ID,
ExtendedType::TypeKind WantedKind) {
ExtendedType *Ty = nullptr;
if (ID < TypeIDValues.size()) {
Ty = &TypeIDValues[ID];
if (Ty->getKind() == WantedKind)
return Ty;
}
// Generate an error message and set ErrorStatus.
this->reportBadTypeIDAs(ID, Ty, WantedKind);
return nullptr;
}
// Gives Decl a name if it doesn't already have one. Prefix and NameIndex are
// used to generate the name. NameIndex is automatically incremented if a new
// name is created. DeclType is literal text describing the type of name being
// created. Also generates a warning if created names may conflict with named
// declarations.
void installDeclarationName(Ice::GlobalDeclaration *Decl,
const std::string &Prefix, const char *DeclType,
NaClBcIndexSize_t &NameIndex) {
if (Decl->hasName()) {
Translator.checkIfUnnamedNameSafe(Decl->getName().toString(), DeclType,
Prefix);
} else {
Ice::GlobalContext *Ctx = Translator.getContext();
// Synthesize a dummy name if any of the following is true:
// - DUMP is enabled
// - The symbol is external
// - The -timing-funcs flag is enabled
// - Some RangeSpec is initialized with actual names
if (Ice::BuildDefs::dump() || !Decl->isInternal() ||
Ice::RangeSpec::hasNames() || Ice::getFlags().getTimeEachFunction()) {
Decl->setName(Ctx, Translator.createUnnamedName(Prefix, NameIndex));
} else {
Decl->setName(Ctx);
}
++NameIndex;
}
}
// Installs names for global variables without names.
void installGlobalVarNames() {
assert(VariableDeclarations);
const std::string &GlobalPrefix = Ice::getFlags().getDefaultGlobalPrefix();
if (!GlobalPrefix.empty()) {
NaClBcIndexSize_t NameIndex = 0;
for (Ice::VariableDeclaration *Var : *VariableDeclarations) {
installDeclarationName(Var, GlobalPrefix, "global", NameIndex);
}
}
}
// Installs names for functions without names.
void installFunctionNames() {
const std::string &FunctionPrefix =
Ice::getFlags().getDefaultFunctionPrefix();
if (!FunctionPrefix.empty()) {
NaClBcIndexSize_t NameIndex = 0;
for (Ice::FunctionDeclaration *Func : FunctionDeclarations) {
installDeclarationName(Func, FunctionPrefix, "function", NameIndex);
}
}
}
// Builds a constant symbol named Name. IsExternal is true iff the symbol is
// external.
Ice::Constant *getConstantSym(Ice::GlobalString Name, bool IsExternal) const {
Ice::GlobalContext *Ctx = getTranslator().getContext();
if (IsExternal) {
return Ctx->getConstantExternSym(Name);
} else {
const Ice::RelocOffsetT Offset = 0;
return Ctx->getConstantSym(Offset, Name);
}
}
void reportLinkageError(const char *Kind,
const Ice::GlobalDeclaration &Decl) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << Kind << " " << Decl.getName()
<< " has incorrect linkage: " << Decl.getLinkageName();
if (Decl.isExternal())
StrBuf << "\n Use flag -allow-externally-defined-symbols to override";
Error(StrBuf.str());
}
// Converts function declarations into constant value IDs.
void createValueIDsForFunctions() {
Ice::GlobalContext *Ctx = getTranslator().getContext();
for (const Ice::FunctionDeclaration *Func : FunctionDeclarations) {
if (!Func->verifyLinkageCorrect(Ctx))
reportLinkageError("Function", *Func);
Ice::Constant *C = getConstantSym(Func->getName(), Func->isProto());
ValueIDConstants.push_back(C);
}
}
// Converts global variable declarations into constant value IDs.
void createValueIDsForGlobalVars() {
for (const Ice::VariableDeclaration *Decl : *VariableDeclarations) {
if (!Decl->verifyLinkageCorrect())
reportLinkageError("Global", *Decl);
Ice::Constant *C =
getConstantSym(Decl->getName(), !Decl->hasInitializer());
ValueIDConstants.push_back(C);
}
}
// Reports that type ID is undefined, or not of the WantedType.
void reportBadTypeIDAs(NaClBcIndexSize_t ID, const ExtendedType *Ty,
ExtendedType::TypeKind WantedType);
// Reports that there is no function declaration for ID. Returns an error
// recovery value to use.
Ice::FunctionDeclaration *reportGetFunctionByIDError(NaClBcIndexSize_t ID);
// Reports that there is not global variable declaration for ID. Returns an
// error recovery value to use.
Ice::VariableDeclaration *
reportGetGlobalVariableByIDError(NaClBcIndexSize_t Index);
// Reports that there is no corresponding ICE type for LLVMTy, and returns
// Ice::IceType_void.
Ice::Type convertToIceTypeError(Type *LLVMTy);
};
bool TopLevelParser::ErrorAt(naclbitc::ErrorLevel Level, uint64_t Bit,
const std::string &Message) {
Ice::GlobalContext *Context = Translator.getContext();
{
std::unique_lock<Ice::GlobalLockType> _(ErrorReportingLock);
ErrorStatus.assign(Ice::EC_Bitcode);
}
{ // Lock while printing out error message.
Ice::OstreamLocker L(Context);
raw_ostream &OldErrStream = setErrStream(Context->getStrError());
NaClBitcodeParser::ErrorAt(Level, Bit, Message);
setErrStream(OldErrStream);
}
if (Level >= naclbitc::Error && !Ice::getFlags().getAllowErrorRecovery())
Fatal();
return true;
}
void TopLevelParser::reportBadTypeIDAs(NaClBcIndexSize_t ID,
const ExtendedType *Ty,
ExtendedType::TypeKind WantedType) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
if (Ty == nullptr) {
StrBuf << "Can't find extended type for type id: " << ID;
} else {
StrBuf << "Type id " << ID << " not " << WantedType << ". Found: " << *Ty;
}
blockError(StrBuf.str());
}
Ice::FunctionDeclaration *
TopLevelParser::reportGetFunctionByIDError(NaClBcIndexSize_t ID) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Function index " << ID
<< " not allowed. Out of range. Must be less than "
<< FunctionDeclarations.size();
blockError(StrBuf.str());
if (!FunctionDeclarations.empty())
return FunctionDeclarations[0];
Fatal();
}
Ice::VariableDeclaration *
TopLevelParser::reportGetGlobalVariableByIDError(NaClBcIndexSize_t Index) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Global index " << Index
<< " not allowed. Out of range. Must be less than "
<< VariableDeclarations->size();
blockError(StrBuf.str());
if (!VariableDeclarations->empty())
return VariableDeclarations->at(0);
Fatal();
}
Ice::Type TopLevelParser::convertToIceTypeError(Type *LLVMTy) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Invalid LLVM type: " << *LLVMTy;
Error(StrBuf.str());
return Ice::IceType_void;
}
void TopLevelParser::verifyFunctionTypeSignatures() {
const Ice::GlobalContext *Ctx = getTranslator().getContext();
for (Ice::FunctionDeclaration *FuncDecl : FunctionDeclarations) {
if (!FuncDecl->validateTypeSignature(Ctx))
Error(FuncDecl->getTypeSignatureError(Ctx));
}
}
// Base class for parsing blocks within the bitcode file. Note: Because this is
// the base class of block parsers, we generate error messages if ParseBlock or
// ParseRecord is not overridden in derived classes.
class BlockParserBaseClass : public NaClBitcodeParser {
BlockParserBaseClass() = delete;
BlockParserBaseClass(const BlockParserBaseClass &) = delete;
BlockParserBaseClass &operator=(const BlockParserBaseClass &) = delete;
public:
// Constructor for the top-level module block parser.
BlockParserBaseClass(unsigned BlockID, TopLevelParser *Context)
: NaClBitcodeParser(BlockID, Context), Context(Context) {}
BlockParserBaseClass(unsigned BlockID, BlockParserBaseClass *EnclosingParser,
NaClBitstreamCursor &Cursor)
: NaClBitcodeParser(BlockID, EnclosingParser, Cursor),
Context(EnclosingParser->Context) {}
~BlockParserBaseClass() override {}
// Returns the printable name of the type of block being parsed.
virtual const char *getBlockName() const {
// If this class is used, it is parsing an unknown block.
return "unknown";
}
// Generates an error Message with the Bit address prefixed to it.
bool ErrorAt(naclbitc::ErrorLevel Level, uint64_t Bit,
const std::string &Message) override;
protected:
// The context parser that contains the decoded state.
TopLevelParser *Context;
// True if ErrorAt has been called in this block.
bool BlockHasError = false;
// Constructor for nested block parsers.
BlockParserBaseClass(unsigned BlockID, BlockParserBaseClass *EnclosingParser)
: NaClBitcodeParser(BlockID, EnclosingParser),
Context(EnclosingParser->Context) {}
// Gets the translator associated with the bitcode parser.
Ice::Translator &getTranslator() const { return Context->getTranslator(); }
// Default implementation. Reports that block is unknown and skips its
// contents.
bool ParseBlock(unsigned BlockID) override;
// Default implementation. Reports that the record is not understood.
void ProcessRecord() override;
// Checks if the size of the record is Size. Return true if valid. Otherwise
// generates an error and returns false.
bool isValidRecordSize(size_t Size, const char *RecordName) {
const NaClBitcodeRecord::RecordVector &Values = Record.GetValues();
if (Values.size() == Size)
return true;
reportRecordSizeError(Size, RecordName, nullptr);
return false;
}
// Checks if the size of the record is at least as large as the LowerLimit.
// Returns true if valid. Otherwise generates an error and returns false.
bool isValidRecordSizeAtLeast(size_t LowerLimit, const char *RecordName) {
const NaClBitcodeRecord::RecordVector &Values = Record.GetValues();
if (Values.size() >= LowerLimit)
return true;
reportRecordSizeError(LowerLimit, RecordName, "at least");
return false;
}
// Checks if the size of the record is no larger than the
// UpperLimit. Returns true if valid. Otherwise generates an error and
// returns false.
bool isValidRecordSizeAtMost(size_t UpperLimit, const char *RecordName) {
const NaClBitcodeRecord::RecordVector &Values = Record.GetValues();
if (Values.size() <= UpperLimit)
return true;
reportRecordSizeError(UpperLimit, RecordName, "no more than");
return false;
}
// Checks if the size of the record is at least as large as the LowerLimit,
// and no larger than the UpperLimit. Returns true if valid. Otherwise
// generates an error and returns false.
bool isValidRecordSizeInRange(size_t LowerLimit, size_t UpperLimit,
const char *RecordName) {
return isValidRecordSizeAtLeast(LowerLimit, RecordName) ||
isValidRecordSizeAtMost(UpperLimit, RecordName);
}
private:
/// Generates a record size error. ExpectedSize is the number of elements
/// expected. RecordName is the name of the kind of record that has incorrect
/// size. ContextMessage (if not nullptr) is appended to "record expects" to
/// describe how ExpectedSize should be interpreted.
void reportRecordSizeError(size_t ExpectedSize, const char *RecordName,
const char *ContextMessage);
};
bool TopLevelParser::blockError(const std::string &Message) {
// TODO(kschimpf): Remove this method. This method used to redirect
// block-level errors to the block we are in, rather than the top-level
// block. This gave better bit location for error messages. However, with
// parallel parsing, we can't keep a field to redirect (there could be many
// and we don't know which block parser applies). Hence, This redirect can't
// be applied anymore.
return Error(Message);
}
// Generates an error Message with the bit address prefixed to it.
bool BlockParserBaseClass::ErrorAt(naclbitc::ErrorLevel Level, uint64_t Bit,
const std::string &Message) {
BlockHasError = true;
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
// Note: If dump routines have been turned off, the error messages will not
// be readable. Hence, replace with simple error. We also use the simple form
// for unit tests.
if (Ice::getFlags().getGenerateUnitTestMessages()) {
StrBuf << "Invalid " << getBlockName() << " record: <" << Record.GetCode();
for (const uint64_t Val : Record.GetValues()) {
StrBuf << " " << Val;
}
StrBuf << ">";
} else {
StrBuf << Message;
}
return Context->ErrorAt(Level, Record.GetCursor().getErrorBitNo(Bit),
StrBuf.str());
}
void BlockParserBaseClass::reportRecordSizeError(size_t ExpectedSize,
const char *RecordName,
const char *ContextMessage) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
const char *BlockName = getBlockName();
const char FirstChar = toupper(*BlockName);
StrBuf << FirstChar << (BlockName + 1) << " " << RecordName
<< " record expects";
if (ContextMessage)
StrBuf << " " << ContextMessage;
StrBuf << " " << ExpectedSize << " argument";
if (ExpectedSize > 1)
StrBuf << "s";
StrBuf << ". Found: " << Record.GetValues().size();
Error(StrBuf.str());
}
bool BlockParserBaseClass::ParseBlock(unsigned BlockID) {
// If called, derived class doesn't know how to handle block. Report error
// and skip.
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Don't know how to parse block id: " << BlockID;
Error(StrBuf.str());
SkipBlock();
return false;
}
void BlockParserBaseClass::ProcessRecord() {
// If called, derived class doesn't know how to handle.
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Don't know how to process " << getBlockName()
<< " record:" << Record;
Error(StrBuf.str());
}
// Class to parse a types block.
class TypesParser final : public BlockParserBaseClass {
TypesParser() = delete;
TypesParser(const TypesParser &) = delete;
TypesParser &operator=(const TypesParser &) = delete;
public:
TypesParser(unsigned BlockID, BlockParserBaseClass *EnclosingParser)
: BlockParserBaseClass(BlockID, EnclosingParser),
Timer(Ice::TimerStack::TT_parseTypes, getTranslator().getContext()) {}
~TypesParser() override {
if (ExpectedNumTypes != Context->getNumTypeIDValues()) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Types block expected " << ExpectedNumTypes
<< " types but found: " << NextTypeId;
Error(StrBuf.str());
}
}
private:
Ice::TimerMarker Timer;
// The type ID that will be associated with the next type defining record in
// the types block.
NaClBcIndexSize_t NextTypeId = 0;
// The expected number of types, based on record TYPE_CODE_NUMENTRY.
NaClBcIndexSize_t ExpectedNumTypes = 0;
void ProcessRecord() override;
const char *getBlockName() const override { return "type"; }
void setNextTypeIDAsSimpleType(Ice::Type Ty) {
Context->getTypeByIDForDefining(NextTypeId++)->setAsSimpleType(Ty);
}
};
void TypesParser::ProcessRecord() {
const NaClBitcodeRecord::RecordVector &Values = Record.GetValues();
switch (Record.GetCode()) {
case naclbitc::TYPE_CODE_NUMENTRY: {
// NUMENTRY: [numentries]
if (!isValidRecordSize(1, "count"))
return;
uint64_t Size = Values[0];
if (Size > NaClBcIndexSize_t_Max) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Size to big for count record: " << Size;
Error(StrBuf.str());
ExpectedNumTypes = NaClBcIndexSize_t_Max;
}
// The code double checks that Expected size and the actual size at the end
// of the block. To reduce allocations we preallocate the space.
//
// However, if the number is large, we suspect that the number is
// (possibly) incorrect. In that case, we preallocate a smaller space.
constexpr uint64_t DefaultLargeResizeValue = 1000000;
Context->resizeTypeIDValues(std::min(Size, DefaultLargeResizeValue));
ExpectedNumTypes = Size;
return;
}
case naclbitc::TYPE_CODE_VOID:
// VOID
if (!isValidRecordSize(0, "void"))
return;
setNextTypeIDAsSimpleType(Ice::IceType_void);
return;
case naclbitc::TYPE_CODE_FLOAT:
// FLOAT
if (!isValidRecordSize(0, "float"))
return;
setNextTypeIDAsSimpleType(Ice::IceType_f32);
return;
case naclbitc::TYPE_CODE_DOUBLE:
// DOUBLE
if (!isValidRecordSize(0, "double"))
return;
setNextTypeIDAsSimpleType(Ice::IceType_f64);
return;
case naclbitc::TYPE_CODE_INTEGER:
// INTEGER: [width]
if (!isValidRecordSize(1, "integer"))
return;
switch (Values[0]) {
case 1:
setNextTypeIDAsSimpleType(Ice::IceType_i1);
return;
case 8:
setNextTypeIDAsSimpleType(Ice::IceType_i8);
return;
case 16:
setNextTypeIDAsSimpleType(Ice::IceType_i16);
return;
case 32:
setNextTypeIDAsSimpleType(Ice::IceType_i32);
return;
case 64:
setNextTypeIDAsSimpleType(Ice::IceType_i64);
return;
default:
break;
}
{
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Type integer record with invalid bitsize: " << Values[0];
Error(StrBuf.str());
}
return;
case naclbitc::TYPE_CODE_VECTOR: {
// VECTOR: [numelts, eltty]
if (!isValidRecordSize(2, "vector"))
return;
Ice::Type BaseTy = Context->getSimpleTypeByID(Values[1]);
Ice::SizeT Size = Values[0];
switch (BaseTy) {
case Ice::IceType_i1:
switch (Size) {
case 4:
setNextTypeIDAsSimpleType(Ice::IceType_v4i1);
return;
case 8:
setNextTypeIDAsSimpleType(Ice::IceType_v8i1);
return;
case 16:
setNextTypeIDAsSimpleType(Ice::IceType_v16i1);
return;
default:
break;
}
break;
case Ice::IceType_i8:
if (Size == 16) {
setNextTypeIDAsSimpleType(Ice::IceType_v16i8);
return;
}
break;
case Ice::IceType_i16:
if (Size == 8) {
setNextTypeIDAsSimpleType(Ice::IceType_v8i16);
return;
}
break;
case Ice::IceType_i32:
if (Size == 4) {
setNextTypeIDAsSimpleType(Ice::IceType_v4i32);
return;
}
break;
case Ice::IceType_f32:
if (Size == 4) {
setNextTypeIDAsSimpleType(Ice::IceType_v4f32);
return;
}
break;
default:
break;
}
{
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Invalid type vector record: <" << Values[0] << " x " << BaseTy
<< ">";
Error(StrBuf.str());
}
return;
}
case naclbitc::TYPE_CODE_FUNCTION: {
// FUNCTION: [vararg, retty, paramty x N]
if (!isValidRecordSizeAtLeast(2, "signature"))
return;
if (Values[0])
Error("Function type can't define varargs");
ExtendedType *Ty = Context->getTypeByIDForDefining(NextTypeId++);
Ty->setAsFunctionType();
auto *FuncTy = cast<FuncSigExtendedType>(Ty);
FuncTy->setReturnType(Context->getSimpleTypeByID(Values[1]));
for (size_t i = 2, e = Values.size(); i != e; ++i) {
// Check that type void not used as argument type. Note: PNaCl
// restrictions can't be checked until we know the name, because we have
// to check for intrinsic signatures.
Ice::Type ArgTy = Context->getSimpleTypeByID(Values[i]);
if (ArgTy == Ice::IceType_void) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Type for parameter " << (i - 1)
<< " not valid. Found: " << ArgTy;
ArgTy = Ice::IceType_i32;
}
FuncTy->appendArgType(ArgTy);
}
return;
}
default:
BlockParserBaseClass::ProcessRecord();
return;
}
llvm_unreachable("Unknown type block record not processed!");
}
/// Parses the globals block (i.e. global variable declarations and
/// corresponding initializers).
class GlobalsParser final : public BlockParserBaseClass {
GlobalsParser() = delete;
GlobalsParser(const GlobalsParser &) = delete;
GlobalsParser &operator=(const GlobalsParser &) = delete;
public:
GlobalsParser(unsigned BlockID, BlockParserBaseClass *EnclosingParser)
: BlockParserBaseClass(BlockID, EnclosingParser),
Timer(Ice::TimerStack::TT_parseGlobals, getTranslator().getContext()),
NumFunctionIDs(Context->getNumFunctionIDs()),
DummyGlobalVar(Ice::VariableDeclaration::create(
Context->getGlobalVariablesPool())),
CurGlobalVar(DummyGlobalVar) {
Context->getGlobalVariablesPool()->willNotBeEmitted(DummyGlobalVar);
}
~GlobalsParser() override = default;
const char *getBlockName() const override { return "globals"; }
private:
using GlobalVarsMapType =
std::unordered_map<NaClBcIndexSize_t, Ice::VariableDeclaration *>;
Ice::TimerMarker Timer;
// Holds global variables generated/referenced in the global variables block.
GlobalVarsMapType GlobalVarsMap;
// Holds the number of defined function IDs.
NaClBcIndexSize_t NumFunctionIDs;
// Holds the specified number of global variables by the count record in the
// global variables block.
NaClBcIndexSize_t SpecifiedNumberVars = 0;
// Keeps track of how many initializers are expected for the global variable
// declaration being built.
NaClBcIndexSize_t InitializersNeeded = 0;
// The index of the next global variable declaration.
NaClBcIndexSize_t NextGlobalID = 0;
// Dummy global variable declaration to guarantee CurGlobalVar is always
// defined (allowing code to not need to check if CurGlobalVar is nullptr).
Ice::VariableDeclaration *DummyGlobalVar;
// Holds the current global variable declaration being built.
Ice::VariableDeclaration *CurGlobalVar;
// Returns the global variable associated with the given Index.
Ice::VariableDeclaration *getGlobalVarByID(NaClBcIndexSize_t Index) {
Ice::VariableDeclaration *&Decl = GlobalVarsMap[Index];
if (Decl == nullptr)
Decl =
Ice::VariableDeclaration::create(Context->getGlobalVariablesPool());
return Decl;
}
// Returns the global declaration associated with the given index.
Ice::GlobalDeclaration *getGlobalDeclByID(NaClBcIndexSize_t Index) {
if (Index < NumFunctionIDs)
return Context->getFunctionByID(Index);
return getGlobalVarByID(Index - NumFunctionIDs);
}
// If global variables parsed correctly, install them into the top-level
// context.
void installGlobalVariables() {
// Verify specified number of globals matches number found.
size_t NumGlobals = GlobalVarsMap.size();
if (SpecifiedNumberVars != NumGlobals ||
SpecifiedNumberVars != NextGlobalID) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << getBlockName() << " block expects " << SpecifiedNumberVars
<< " global variables. Found: " << GlobalVarsMap.size();
Error(StrBuf.str());
return;
}
// Install global variables into top-level context.
for (size_t I = 0; I < NumGlobals; ++I)
Context->addGlobalDeclaration(GlobalVarsMap[I]);
}
void ExitBlock() override {
verifyNoMissingInitializers();
installGlobalVariables();
BlockParserBaseClass::ExitBlock();
}
void ProcessRecord() override;
// Checks if the number of initializers for the CurGlobalVar is the same as
// the number found in the bitcode file. If different, and error message is
// generated, and the internal state of the parser is fixed so this condition
// is no longer violated.
void verifyNoMissingInitializers() {
size_t NumInits = CurGlobalVar->getInitializers().size();
if (InitializersNeeded != NumInits) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Global variable @g" << NextGlobalID << " expected "
<< InitializersNeeded << " initializer";
if (InitializersNeeded > 1)
StrBuf << "s";
StrBuf << ". Found: " << NumInits;
Error(StrBuf.str());
InitializersNeeded = NumInits;
}
}
};
void GlobalsParser::ProcessRecord() {
const NaClBitcodeRecord::RecordVector &Values = Record.GetValues();
switch (Record.GetCode()) {
case naclbitc::GLOBALVAR_COUNT:
// COUNT: [n]
if (!isValidRecordSize(1, "count"))
return;
if (SpecifiedNumberVars || NextGlobalID) {
Error("Globals count record not first in block.");
return;
}
SpecifiedNumberVars = Values[0];
return;
case naclbitc::GLOBALVAR_VAR: {
// VAR: [align, isconst]
if (!isValidRecordSize(2, "variable"))
return;
verifyNoMissingInitializers();
// Always build the global variable, even if IR generation is turned off.
// This is needed because we need a placeholder in the top-level context
// when no IR is generated.
uint32_t Alignment =
Context->extractAlignment(this, "Global variable", Values[0]);
CurGlobalVar = getGlobalVarByID(NextGlobalID);
InitializersNeeded = 1;
CurGlobalVar->setAlignment(Alignment);
CurGlobalVar->setIsConstant(Values[1] != 0);
++NextGlobalID;
return;
}
case naclbitc::GLOBALVAR_COMPOUND:
// COMPOUND: [size]
if (!isValidRecordSize(1, "compound"))
return;
if (!CurGlobalVar->getInitializers().empty()) {
Error("Globals compound record not first initializer");
return;
}
if (Values[0] < 2) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << getBlockName()
<< " compound record size invalid. Found: " << Values[0];
Error(StrBuf.str());
return;
}
InitializersNeeded = Values[0];
return;
case naclbitc::GLOBALVAR_ZEROFILL: {
// ZEROFILL: [size]
if (!isValidRecordSize(1, "zerofill"))
return;
auto *Pool = Context->getGlobalVariablesPool();
CurGlobalVar->addInitializer(
Ice::VariableDeclaration::ZeroInitializer::create(Pool, Values[0]));
return;
}
case naclbitc::GLOBALVAR_DATA: {
// DATA: [b0, b1, ...]
if (!isValidRecordSizeAtLeast(1, "data"))
return;
auto *Pool = Context->getGlobalVariablesPool();
CurGlobalVar->addInitializer(
Ice::VariableDeclaration::DataInitializer::create(Pool, Values));
return;
}
case naclbitc::GLOBALVAR_RELOC: {
// RELOC: [val, [addend]]
if (!isValidRecordSizeInRange(1, 2, "reloc"))
return;
NaClBcIndexSize_t Index = Values[0];
NaClBcIndexSize_t IndexLimit = SpecifiedNumberVars + NumFunctionIDs;
if (Index >= IndexLimit) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Relocation index " << Index << " to big. Expect index < "
<< IndexLimit;
Error(StrBuf.str());
}
uint64_t Offset = 0;
if (Values.size() == 2) {
Offset = Values[1];
if (Offset > std::numeric_limits<uint32_t>::max()) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Addend of global reloc record too big: " << Offset;
Error(StrBuf.str());
}
}
auto *Pool = Context->getGlobalVariablesPool();
Ice::GlobalContext *Ctx = getTranslator().getContext();
CurGlobalVar->addInitializer(
Ice::VariableDeclaration::RelocInitializer::create(
Pool, getGlobalDeclByID(Index),
{Ice::RelocOffset::create(Ctx, Offset)}));
return;
}
default:
BlockParserBaseClass::ProcessRecord();
return;
}
}
/// Base class for parsing a valuesymtab block in the bitcode file.
class ValuesymtabParser : public BlockParserBaseClass {
ValuesymtabParser() = delete;
ValuesymtabParser(const ValuesymtabParser &) = delete;
void operator=(const ValuesymtabParser &) = delete;
public:
ValuesymtabParser(unsigned BlockID, BlockParserBaseClass *EnclosingParser)
: BlockParserBaseClass(BlockID, EnclosingParser) {}
~ValuesymtabParser() override = default;
const char *getBlockName() const override { return "valuesymtab"; }
protected:
using StringType = SmallString<128>;
// Returns the name to identify the kind of symbol table this is
// in error messages.
virtual const char *getTableKind() const = 0;
// Associates Name with the value defined by the given Index.
virtual void setValueName(NaClBcIndexSize_t Index, StringType &Name) = 0;
// Associates Name with the value defined by the given Index;
virtual void setBbName(NaClBcIndexSize_t Index, StringType &Name) = 0;
// Reports that the assignment of Name to the value associated with
// index is not possible, for the given Context.
void reportUnableToAssign(const char *Context, NaClBcIndexSize_t Index,
StringType &Name);
private:
using NamesSetType = std::unordered_set<StringType>;
NamesSetType ValueNames;
NamesSetType BlockNames;
void ProcessRecord() override;
// Extracts out ConvertedName. Returns true if unique wrt to Names.
bool convertToString(NamesSetType &Names, StringType &ConvertedName) {
const NaClBitcodeRecord::RecordVector &Values = Record.GetValues();
for (size_t i = 1, e = Values.size(); i != e; ++i) {
ConvertedName += static_cast<char>(Values[i]);
}
auto Pair = Names.insert(ConvertedName);
return Pair.second;
}
void ReportDuplicateName(const char *NameCat, StringType &Name);
};
void ValuesymtabParser::reportUnableToAssign(const char *Context,
NaClBcIndexSize_t Index,
StringType &Name) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << getTableKind() << " " << getBlockName() << ": " << Context
<< " name '" << Name << "' can't be associated with index " << Index;
Error(StrBuf.str());
}
void ValuesymtabParser::ReportDuplicateName(const char *NameCat,
StringType &Name) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << getTableKind() << " " << getBlockName() << " defines duplicate "
<< NameCat << " name: '" << Name << "'";
Error(StrBuf.str());
}
void ValuesymtabParser::ProcessRecord() {
const NaClBitcodeRecord::RecordVector &Values = Record.GetValues();
StringType ConvertedName;
switch (Record.GetCode()) {
case naclbitc::VST_CODE_ENTRY: {
// VST_ENTRY: [ValueId, namechar x N]
if (!isValidRecordSizeAtLeast(2, "value entry"))
return;
if (convertToString(ValueNames, ConvertedName))
setValueName(Values[0], ConvertedName);
else
ReportDuplicateName("value", ConvertedName);
return;
}
case naclbitc::VST_CODE_BBENTRY: {
// VST_BBENTRY: [BbId, namechar x N]
if (!isValidRecordSizeAtLeast(2, "basic block entry"))
return;
if (convertToString(BlockNames, ConvertedName))
setBbName(Values[0], ConvertedName);
else
ReportDuplicateName("block", ConvertedName);
return;
}
default:
break;
}
// If reached, don't know how to handle record.
BlockParserBaseClass::ProcessRecord();
return;
}
/// Parses function blocks in the bitcode file.
class FunctionParser final : public BlockParserBaseClass {
FunctionParser() = delete;
FunctionParser(const FunctionParser &) = delete;
FunctionParser &operator=(const FunctionParser &) = delete;
public:
FunctionParser(unsigned BlockID, BlockParserBaseClass *EnclosingParser,
NaClBcIndexSize_t FcnId)
: BlockParserBaseClass(BlockID, EnclosingParser),
Timer(Ice::TimerStack::TT_parseFunctions, getTranslator().getContext()),
Func(nullptr), FuncDecl(Context->getFunctionByID(FcnId)),
CachedNumGlobalValueIDs(Context->getNumGlobalIDs()),
NextLocalInstIndex(Context->getNumGlobalIDs()) {}
FunctionParser(unsigned BlockID, BlockParserBaseClass *EnclosingParser,
NaClBcIndexSize_t FcnId, NaClBitstreamCursor &Cursor)
: BlockParserBaseClass(BlockID, EnclosingParser, Cursor),
Timer(Ice::TimerStack::TT_parseFunctions, getTranslator().getContext()),
Func(nullptr), FuncDecl(Context->getFunctionByID(FcnId)),
CachedNumGlobalValueIDs(Context->getNumGlobalIDs()),
NextLocalInstIndex(Context->getNumGlobalIDs()) {}
std::unique_ptr<Ice::Cfg> parseFunction(uint32_t SeqNumber) {
bool ParserResult;
Ice::GlobalContext *Ctx = getTranslator().getContext();
{
Ice::TimerMarker T(Ctx, FuncDecl->getName().toStringOrEmpty());
// Note: The Cfg is created, even when IR generation is disabled. This is
// done to install a CfgLocalAllocator for various internal containers.
Ice::GlobalContext *Ctx = getTranslator().getContext();
Func = Ice::Cfg::create(Ctx, SeqNumber);
Ice::CfgLocalAllocatorScope _(Func.get());
// TODO(kschimpf) Clean up API to add a function signature to a CFG.
const Ice::FuncSigType &Signature = FuncDecl->getSignature();
Func->setFunctionName(FuncDecl->getName());
Func->setReturnType(Signature.getReturnType());
Func->setInternal(FuncDecl->getLinkage() == GlobalValue::InternalLinkage);
CurrentNode = installNextBasicBlock();
Func->setEntryNode(CurrentNode);
for (Ice::Type ArgType : Signature.getArgList()) {
Func->addArg(getNextInstVar(ArgType));
}
ParserResult = ParseThisBlock();
}
if (ParserResult || BlockHasError)
Func->setError("Unable to parse function");
return std::move(Func);
}
~FunctionParser() override = default;
const char *getBlockName() const override { return "function"; }
Ice::Cfg *getFunc() const { return Func.get(); }
size_t getNumGlobalIDs() const { return CachedNumGlobalValueIDs; }
void setNextLocalInstIndex(Ice::Operand *Op) {
setOperand(NextLocalInstIndex++, Op);
}
// Set the next constant ID to the given constant C.
void setNextConstantID(Ice::Constant *C) { setNextLocalInstIndex(C); }
// Returns the value referenced by the given value Index.
Ice::Operand *getOperand(NaClBcIndexSize_t Index) {
if (Index < CachedNumGlobalValueIDs) {
return Context->getGlobalConstantByID(Index);
}
NaClBcIndexSize_t LocalIndex = Index - CachedNumGlobalValueIDs;
if (LocalIndex >= LocalOperands.size())
reportGetOperandUndefined(Index);
Ice::Operand *Op = LocalOperands[LocalIndex];
if (Op == nullptr)
reportGetOperandUndefined(Index);
return Op;
}
private:
Ice::TimerMarker Timer;
// The number of words in the bitstream defining the function block.
uint64_t NumBytesDefiningFunction = 0;
// Maximum number of records that can appear in the function block, based on
// the number of bytes defining the function block.
uint64_t MaxRecordsInBlock = 0;
// The corresponding ICE function defined by the function block.
std::unique_ptr<Ice::Cfg> Func;
// The index to the current basic block being built.
NaClBcIndexSize_t CurrentBbIndex = 0;
// The number of basic blocks declared for the function block.
NaClBcIndexSize_t DeclaredNumberBbs = 0;
// The basic block being built.
Ice::CfgNode *CurrentNode = nullptr;
// The corresponding function declaration.
Ice::FunctionDeclaration *FuncDecl;
// Holds the dividing point between local and global absolute value indices.
size_t CachedNumGlobalValueIDs;
// Holds operands local to the function block, based on indices defined in
// the bitcode file.
Ice::OperandList LocalOperands;
// Holds the index within LocalOperands corresponding to the next instruction
// that generates a value.
NaClBcIndexSize_t NextLocalInstIndex;
// True if the last processed instruction was a terminating instruction.
bool InstIsTerminating = false;
bool ParseBlock(unsigned BlockID) override;
void ProcessRecord() override;
void EnterBlock(unsigned NumWords) override {
// Note: Bitstream defines words as 32-bit values.
NumBytesDefiningFunction = NumWords * sizeof(uint32_t);
// We know that all records are minimally defined by a two-bit abreviation.
MaxRecordsInBlock = NumBytesDefiningFunction * (CHAR_BIT >> 1);
}
void ExitBlock() override;
// Creates and appends a new basic block to the list of basic blocks.
Ice::CfgNode *installNextBasicBlock() {
Ice::CfgNode *Node = Func->makeNode();
return Node;
}
// Returns the Index-th basic block in the list of basic blocks.
Ice::CfgNode *getBasicBlock(NaClBcIndexSize_t Index) {
if (Index >= Func->getNumNodes()) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Reference to basic block " << Index
<< " not found. Must be less than " << Func->getNumNodes();
Error(StrBuf.str());
Index = 0;
}
return Func->getNodes()[Index];
}
// Returns the Index-th basic block in the list of basic blocks. Assumes
// Index corresponds to a branch instruction. Hence, if the branch references
// the entry block, it also generates a corresponding error.
Ice::CfgNode *getBranchBasicBlock(NaClBcIndexSize_t Index) {
if (Index == 0) {
Error("Branch to entry block not allowed");
}
return getBasicBlock(Index);
}
// Generate an instruction variable with type Ty.
Ice::Variable *createInstVar(Ice::Type Ty) {
if (Ty == Ice::IceType_void) {
Error("Can't define instruction value using type void");
// Recover since we can't throw an exception.
Ty = Ice::IceType_i32;
}
return Func->makeVariable(Ty);
}
// Generates the next available local variable using the given type.
Ice::Variable *getNextInstVar(Ice::Type Ty) {
assert(NextLocalInstIndex >= CachedNumGlobalValueIDs);
// Before creating one, see if a forwardtyperef has already defined it.
NaClBcIndexSize_t LocalIndex = NextLocalInstIndex - CachedNumGlobalValueIDs;
if (LocalIndex < LocalOperands.size()) {
Ice::Operand *Op = LocalOperands[LocalIndex];
if (Op != nullptr) {
if (auto *Var = dyn_cast<Ice::Variable>(Op)) {
if (Var->getType() == Ty) {
++NextLocalInstIndex;
return Var;
}
}
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Illegal forward referenced instruction ("
<< NextLocalInstIndex << "): " << *Op;
Error(StrBuf.str());
++NextLocalInstIndex;
return createInstVar(Ty);
}
}
Ice::Variable *Var = createInstVar(Ty);
setOperand(NextLocalInstIndex++, Var);
return Var;
}
// Converts a relative index (wrt to BaseIndex) to an absolute value index.
NaClBcIndexSize_t convertRelativeToAbsIndex(NaClRelBcIndexSize_t Id,
NaClRelBcIndexSize_t BaseIndex) {
if (BaseIndex < Id) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Invalid relative value id: " << Id
<< " (must be <= " << BaseIndex << ")";
Error(StrBuf.str());
return 0;
}
return BaseIndex - Id;
}
// Sets element Index (in the local operands list) to Op.
void setOperand(NaClBcIndexSize_t Index, Ice::Operand *Op) {
assert(Op);
// Check if simple push works.
NaClBcIndexSize_t LocalIndex = Index - CachedNumGlobalValueIDs;
if (LocalIndex == LocalOperands.size()) {
LocalOperands.push_back(Op);
return;
}
// Must be forward reference, expand vector to accommodate.
if (LocalIndex >= LocalOperands.size()) {
if (LocalIndex > MaxRecordsInBlock) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Forward reference @" << Index << " too big. Have "
<< CachedNumGlobalValueIDs << " globals and function contains "
<< NumBytesDefiningFunction << " bytes";
Fatal(StrBuf.str());
// Recover by using index one beyond the maximal allowed.
LocalIndex = MaxRecordsInBlock;
}
Ice::Utils::reserveAndResize(LocalOperands, LocalIndex + 1);
}
// If element not defined, set it.
Ice::Operand *OldOp = LocalOperands[LocalIndex];
if (OldOp == nullptr) {
LocalOperands[LocalIndex] = Op;
return;
}
// See if forward reference matches.
if (OldOp == Op)
return;
// Error has occurred.
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Multiple definitions for index " << Index << ": " << *Op
<< " and " << *OldOp;
Error(StrBuf.str());
LocalOperands[LocalIndex] = Op;
}
// Returns the relative operand (wrt to BaseIndex) referenced by the given
// value Index.
Ice::Operand *getRelativeOperand(NaClBcIndexSize_t Index,
NaClBcIndexSize_t BaseIndex) {
return getOperand(convertRelativeToAbsIndex(Index, BaseIndex));
}
// Returns the absolute index of the next value generating instruction.
NaClBcIndexSize_t getNextInstIndex() const { return NextLocalInstIndex; }
// Generates type error message for binary operator Op operating on Type
// OpTy.
void reportInvalidBinaryOp(Ice::InstArithmetic::OpKind Op, Ice::Type OpTy);
// Validates if integer logical Op, for type OpTy, is valid. Returns true if
// valid. Otherwise generates error message and returns false.
bool isValidIntegerLogicalOp(Ice::InstArithmetic::OpKind Op, Ice::Type OpTy) {
if (Ice::isIntegerType(OpTy))
return true;
reportInvalidBinaryOp(Op, OpTy);
return false;
}
// Validates if integer (or vector of integers) arithmetic Op, for type OpTy,
// is valid. Returns true if valid. Otherwise generates error message and
// returns false.
bool isValidIntegerArithOp(Ice::InstArithmetic::OpKind Op, Ice::Type OpTy) {
if (Ice::isIntegerArithmeticType(OpTy))
return true;
reportInvalidBinaryOp(Op, OpTy);
return false;
}
// Checks if floating arithmetic Op, for type OpTy, is valid. Returns true if
// valid. Otherwise generates an error message and returns false;
bool isValidFloatingArithOp(Ice::InstArithmetic::OpKind Op, Ice::Type OpTy) {
if (Ice::isFloatingType(OpTy))
return true;
reportInvalidBinaryOp(Op, OpTy);
return false;
}
// Checks if the type of operand Op is the valid pointer type, for the given
// InstructionName. Returns true if valid. Otherwise generates an error
// message and returns false.
bool isValidPointerType(Ice::Operand *Op, const char *InstructionName) {
Ice::Type PtrType = Ice::getPointerType();
if (Op->getType() == PtrType)
return true;
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << InstructionName << " address not " << PtrType
<< ". Found: " << Op->getType();
Error(StrBuf.str());
return false;
}
// Checks if loading/storing a value of type Ty is allowed. Returns true if
// Valid. Otherwise generates an error message and returns false.
bool isValidLoadStoreType(Ice::Type Ty, const char *InstructionName) {
if (isLoadStoreType(Ty))
return true;
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << InstructionName << " type not allowed: " << Ty << "*";
Error(StrBuf.str());
return false;
}
// Checks if loading/storing a value of type Ty is allowed for the given
// Alignment. Otherwise generates an error message and returns false.
bool isValidLoadStoreAlignment(size_t Alignment, Ice::Type Ty,
const char *InstructionName) {
if (!isValidLoadStoreType(Ty, InstructionName))
return false;
if (isAllowedAlignment(Alignment, Ty))
return true;
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << InstructionName << " " << Ty << "*: not allowed for alignment "
<< Alignment;
Error(StrBuf.str());
return false;
}
// Defines if the given alignment is valid for the given type. Simplified
// version of PNaClABIProps::isAllowedAlignment, based on API's offered for
// Ice::Type.
bool isAllowedAlignment(size_t Alignment, Ice::Type Ty) const {
return Alignment == typeAlignInBytes(Ty) ||
(Alignment == 1 && !isVectorType(Ty));
}
// Types of errors that can occur for insertelement and extractelement
// instructions.
enum VectorIndexCheckValue {
VectorIndexNotVector,
VectorIndexNotConstant,
VectorIndexNotInRange,
VectorIndexNotI32,
VectorIndexValid
};
void dumpVectorIndexCheckValue(raw_ostream &Stream,
VectorIndexCheckValue Value) const {
if (!Ice::BuildDefs::dump())
return;
switch (Value) {
case VectorIndexNotVector:
Stream << "Vector index on non vector";
break;
case VectorIndexNotConstant:
Stream << "Vector index not integer constant";
break;
case VectorIndexNotInRange:
Stream << "Vector index not in range of vector";
break;
case VectorIndexNotI32:
Stream << "Vector index not of type " << Ice::IceType_i32;
break;
case VectorIndexValid:
Stream << "Valid vector index";
break;
}
}
// Returns whether the given vector index (for insertelement and
// extractelement instructions) is valid.
VectorIndexCheckValue validateVectorIndex(const Ice::Operand *Vec,
const Ice::Operand *Index) const {
Ice::Type VecType = Vec->getType();
if (!Ice::isVectorType(VecType))
return VectorIndexNotVector;
const auto *C = dyn_cast<Ice::ConstantInteger32>(Index);
if (C == nullptr)
return VectorIndexNotConstant;
if (static_cast<size_t>(C->getValue()) >= typeNumElements(VecType))
return VectorIndexNotInRange;
if (Index->getType() != Ice::IceType_i32)
return VectorIndexNotI32;
return VectorIndexValid;
}
// Takes the PNaCl bitcode binary operator Opcode, and the opcode type Ty,
// and sets Op to the corresponding ICE binary opcode. Returns true if able
// to convert, false otherwise.
bool convertBinopOpcode(unsigned Opcode, Ice::Type Ty,
Ice::InstArithmetic::OpKind &Op) {
switch (Opcode) {
default: {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Binary opcode " << Opcode << "not understood for type " << Ty;
Error(StrBuf.str());
Op = Ice::InstArithmetic::Add;
return false;
}
case naclbitc::BINOP_ADD:
if (Ice::isIntegerType(Ty)) {
Op = Ice::InstArithmetic::Add;
return isValidIntegerArithOp(Op, Ty);
} else {
Op = Ice::InstArithmetic::Fadd;
return isValidFloatingArithOp(Op, Ty);
}
case naclbitc::BINOP_SUB:
if (Ice::isIntegerType(Ty)) {
Op = Ice::InstArithmetic::Sub;
return isValidIntegerArithOp(Op, Ty);
} else {
Op = Ice::InstArithmetic::Fsub;
return isValidFloatingArithOp(Op, Ty);
}
case naclbitc::BINOP_MUL:
if (Ice::isIntegerType(Ty)) {
Op = Ice::InstArithmetic::Mul;
return isValidIntegerArithOp(Op, Ty);
} else {
Op = Ice::InstArithmetic::Fmul;
return isValidFloatingArithOp(Op, Ty);
}
case naclbitc::BINOP_UDIV:
Op = Ice::InstArithmetic::Udiv;
return isValidIntegerArithOp(Op, Ty);
case naclbitc::BINOP_SDIV:
if (Ice::isIntegerType(Ty)) {
Op = Ice::InstArithmetic::Sdiv;
return isValidIntegerArithOp(Op, Ty);
} else {
Op = Ice::InstArithmetic::Fdiv;
return isValidFloatingArithOp(Op, Ty);
}
case naclbitc::BINOP_UREM:
Op = Ice::InstArithmetic::Urem;
return isValidIntegerArithOp(Op, Ty);
case naclbitc::BINOP_SREM:
if (Ice::isIntegerType(Ty)) {
Op = Ice::InstArithmetic::Srem;
return isValidIntegerArithOp(Op, Ty);
} else {
Op = Ice::InstArithmetic::Frem;
return isValidFloatingArithOp(Op, Ty);
}
case naclbitc::BINOP_SHL:
Op = Ice::InstArithmetic::Shl;
return isValidIntegerArithOp(Op, Ty);
case naclbitc::BINOP_LSHR:
Op = Ice::InstArithmetic::Lshr;
return isValidIntegerArithOp(Op, Ty);
case naclbitc::BINOP_ASHR:
Op = Ice::InstArithmetic::Ashr;
return isValidIntegerArithOp(Op, Ty);
case naclbitc::BINOP_AND:
Op = Ice::InstArithmetic::And;
return isValidIntegerLogicalOp(Op, Ty);
case naclbitc::BINOP_OR:
Op = Ice::InstArithmetic::Or;
return isValidIntegerLogicalOp(Op, Ty);
case naclbitc::BINOP_XOR:
Op = Ice::InstArithmetic::Xor;
return isValidIntegerLogicalOp(Op, Ty);
}
}
/// Simplifies out vector types from Type1 and Type2, if both are vectors of
/// the same size. Returns true iff both are vectors of the same size, or are
/// both scalar types.
static bool simplifyOutCommonVectorType(Ice::Type &Type1, Ice::Type &Type2) {
bool IsType1Vector = isVectorType(Type1);
bool IsType2Vector = isVectorType(Type2);
if (IsType1Vector != IsType2Vector)
return false;
if (!IsType1Vector)
return true;
if (typeNumElements(Type1) != typeNumElements(Type2))
return false;
Type1 = typeElementType(Type1);
Type2 = typeElementType(Type2);
return true;
}
/// Returns true iff an integer truncation from SourceType to TargetType is
/// valid.
static bool isIntTruncCastValid(Ice::Type SourceType, Ice::Type TargetType) {
return Ice::isIntegerType(SourceType) && Ice::isIntegerType(TargetType) &&
simplifyOutCommonVectorType(SourceType, TargetType) &&
getScalarIntBitWidth(SourceType) > getScalarIntBitWidth(TargetType);
}
/// Returns true iff a floating type truncation from SourceType to TargetType
/// is valid.
static bool isFloatTruncCastValid(Ice::Type SourceType,
Ice::Type TargetType) {
return simplifyOutCommonVectorType(SourceType, TargetType) &&
SourceType == Ice::IceType_f64 && TargetType == Ice::IceType_f32;
}
/// Returns true iff an integer extension from SourceType to TargetType is
/// valid.
static bool isIntExtCastValid(Ice::Type SourceType, Ice::Type TargetType) {
return isIntTruncCastValid(TargetType, SourceType);
}
/// Returns true iff a floating type extension from SourceType to TargetType
/// is valid.
static bool isFloatExtCastValid(Ice::Type SourceType, Ice::Type TargetType) {
return isFloatTruncCastValid(TargetType, SourceType);
}
/// Returns true iff a cast from floating type SourceType to integer type
/// TargetType is valid.
static bool isFloatToIntCastValid(Ice::Type SourceType,
Ice::Type TargetType) {
if (!(Ice::isFloatingType(SourceType) && Ice::isIntegerType(TargetType)))
return false;
bool IsSourceVector = isVectorType(SourceType);
bool IsTargetVector = isVectorType(TargetType);
if (IsSourceVector != IsTargetVector)
return false;
if (IsSourceVector) {
return typeNumElements(SourceType) == typeNumElements(TargetType);
}
return true;
}
/// Returns true iff a cast from integer type SourceType to floating type
/// TargetType is valid.
static bool isIntToFloatCastValid(Ice::Type SourceType,
Ice::Type TargetType) {
return isFloatToIntCastValid(TargetType, SourceType);
}
/// Returns the number of bits used to model type Ty when defining the bitcast
/// instruction.
static Ice::SizeT bitcastSizeInBits(Ice::Type Ty) {
if (Ice::isVectorType(Ty))
return Ice::typeNumElements(Ty) *
bitcastSizeInBits(Ice::typeElementType(Ty));
if (Ty == Ice::IceType_i1)
return 1;
return Ice::typeWidthInBytes(Ty) * CHAR_BIT;
}
/// Returns true iff a bitcast from SourceType to TargetType is allowed.
static bool isBitcastValid(Ice::Type SourceType, Ice::Type TargetType) {
return bitcastSizeInBits(SourceType) == bitcastSizeInBits(TargetType);
}
/// Returns true iff the NaCl bitcode Opcode is a valid cast opcode for
/// converting SourceType to TargetType. Updates CastKind to the corresponding
/// instruction cast opcode. Also generates an error message when this
/// function returns false.
bool convertCastOpToIceOp(uint64_t Opcode, Ice::Type SourceType,
Ice::Type TargetType,
Ice::InstCast::OpKind &CastKind) {
bool Result;
switch (Opcode) {
default: {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Cast opcode " << Opcode << " not understood.\n";
Error(StrBuf.str());
CastKind = Ice::InstCast::Bitcast;
return false;
}
case naclbitc::CAST_TRUNC:
CastKind = Ice::InstCast::Trunc;
Result = isIntTruncCastValid(SourceType, TargetType);
break;
case naclbitc::CAST_ZEXT:
CastKind = Ice::InstCast::Zext;
Result = isIntExtCastValid(SourceType, TargetType);
break;
case naclbitc::CAST_SEXT:
CastKind = Ice::InstCast::Sext;
Result = isIntExtCastValid(SourceType, TargetType);
break;
case naclbitc::CAST_FPTOUI:
CastKind = Ice::InstCast::Fptoui;
Result = isFloatToIntCastValid(SourceType, TargetType);
break;
case naclbitc::CAST_FPTOSI:
CastKind = Ice::InstCast::Fptosi;
Result = isFloatToIntCastValid(SourceType, TargetType);
break;
case naclbitc::CAST_UITOFP:
CastKind = Ice::InstCast::Uitofp;
Result = isIntToFloatCastValid(SourceType, TargetType);
break;
case naclbitc::CAST_SITOFP:
CastKind = Ice::InstCast::Sitofp;
Result = isIntToFloatCastValid(SourceType, TargetType);
break;
case naclbitc::CAST_FPTRUNC:
CastKind = Ice::InstCast::Fptrunc;
Result = isFloatTruncCastValid(SourceType, TargetType);
break;
case naclbitc::CAST_FPEXT:
CastKind = Ice::InstCast::Fpext;
Result = isFloatExtCastValid(SourceType, TargetType);
break;
case naclbitc::CAST_BITCAST:
CastKind = Ice::InstCast::Bitcast;
Result = isBitcastValid(SourceType, TargetType);
break;
}
if (!Result) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Illegal cast: " << Ice::InstCast::getCastName(CastKind) << " "
<< SourceType << " to " << TargetType;
Error(StrBuf.str());
}
return Result;
}
// Converts PNaCl bitcode Icmp operator to corresponding ICE op. Returns true
// if able to convert, false otherwise.
bool convertNaClBitcICmpOpToIce(uint64_t Op,
Ice::InstIcmp::ICond &Cond) const {
switch (Op) {
case naclbitc::ICMP_EQ:
Cond = Ice::InstIcmp::Eq;
return true;
case naclbitc::ICMP_NE:
Cond = Ice::InstIcmp::Ne;
return true;
case naclbitc::ICMP_UGT:
Cond = Ice::InstIcmp::Ugt;
return true;
case naclbitc::ICMP_UGE:
Cond = Ice::InstIcmp::Uge;
return true;
case naclbitc::ICMP_ULT:
Cond = Ice::InstIcmp::Ult;
return true;
case naclbitc::ICMP_ULE:
Cond = Ice::InstIcmp::Ule;
return true;
case naclbitc::ICMP_SGT:
Cond = Ice::InstIcmp::Sgt;
return true;
case naclbitc::ICMP_SGE:
Cond = Ice::InstIcmp::Sge;
return true;
case naclbitc::ICMP_SLT:
Cond = Ice::InstIcmp::Slt;
return true;
case naclbitc::ICMP_SLE:
Cond = Ice::InstIcmp::Sle;
return true;
default:
// Make sure Cond is always initialized.
Cond = static_cast<Ice::InstIcmp::ICond>(0);
return false;
}
}
// Converts PNaCl bitcode Fcmp operator to corresponding ICE op. Returns true
// if able to convert, false otherwise.
bool convertNaClBitcFCompOpToIce(uint64_t Op,
Ice::InstFcmp::FCond &Cond) const {
switch (Op) {
case naclbitc::FCMP_FALSE:
Cond = Ice::InstFcmp::False;
return true;
case naclbitc::FCMP_OEQ:
Cond = Ice::InstFcmp::Oeq;
return true;
case naclbitc::FCMP_OGT:
Cond = Ice::InstFcmp::Ogt;
return true;
case naclbitc::FCMP_OGE:
Cond = Ice::InstFcmp::Oge;
return true;
case naclbitc::FCMP_OLT:
Cond = Ice::InstFcmp::Olt;
return true;
case naclbitc::FCMP_OLE:
Cond = Ice::InstFcmp::Ole;
return true;
case naclbitc::FCMP_ONE:
Cond = Ice::InstFcmp::One;
return true;
case naclbitc::FCMP_ORD:
Cond = Ice::InstFcmp::Ord;
return true;
case naclbitc::FCMP_UNO:
Cond = Ice::InstFcmp::Uno;
return true;
case naclbitc::FCMP_UEQ:
Cond = Ice::InstFcmp::Ueq;
return true;
case naclbitc::FCMP_UGT:
Cond = Ice::InstFcmp::Ugt;
return true;
case naclbitc::FCMP_UGE:
Cond = Ice::InstFcmp::Uge;
return true;
case naclbitc::FCMP_ULT:
Cond = Ice::InstFcmp::Ult;
return true;
case naclbitc::FCMP_ULE:
Cond = Ice::InstFcmp::Ule;
return true;
case naclbitc::FCMP_UNE:
Cond = Ice::InstFcmp::Une;
return true;
case naclbitc::FCMP_TRUE:
Cond = Ice::InstFcmp::True;
return true;
default:
// Make sure Cond is always initialized.
Cond = static_cast<Ice::InstFcmp::FCond>(0);
return false;
}
}
// Creates an error instruction, generating a value of type Ty, and adds a
// placeholder so that instruction indices line up. Some instructions, such
// as a call, will not generate a value if the return type is void. In such
// cases, a placeholder value for the badly formed instruction is not needed.
// Hence, if Ty is void, an error instruction is not appended.
void appendErrorInstruction(Ice::Type Ty) {
// Note: we don't worry about downstream translation errors because the
// function will not be translated if any errors occur.
if (Ty == Ice::IceType_void)
return;
Ice::Variable *Var = getNextInstVar(Ty);
CurrentNode->appendInst(Ice::InstAssign::create(Func.get(), Var, Var));
}
Ice::Operand *reportGetOperandUndefined(NaClBcIndexSize_t Index) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Value index " << Index << " not defined!";
Error(StrBuf.str());
// Recover and return some value.
if (!LocalOperands.empty())
return LocalOperands.front();
return Context->getGlobalConstantByID(0);
}
void verifyCallArgTypeMatches(Ice::FunctionDeclaration *Fcn, Ice::SizeT Index,
Ice::Type ArgType, Ice::Type ParamType) {
if (ArgType != ParamType) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Argument " << (Index + 1) << " of " << printName(Fcn)
<< " expects " << ParamType << ". Found: " << ArgType;
Error(StrBuf.str());
}
}
const std::string printName(Ice::FunctionDeclaration *Fcn) {
if (Fcn)
return Fcn->getName().toString();
return "function";
}
};
void FunctionParser::ExitBlock() {
// Check if the last instruction in the function was terminating.
if (!InstIsTerminating) {
Error("Last instruction in function not terminator");
// Recover by inserting an unreachable instruction.
CurrentNode->appendInst(Ice::InstUnreachable::create(Func.get()));
}
++CurrentBbIndex;
if (CurrentBbIndex != DeclaredNumberBbs) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Function declared " << DeclaredNumberBbs
<< " basic blocks, but defined " << CurrentBbIndex << ".";
Error(StrBuf.str());
}
// Before translating, check for blocks without instructions, and insert
// unreachable. This shouldn't happen, but be safe.
size_t Index = 0;
for (Ice::CfgNode *Node : Func->getNodes()) {
if (Node->getInsts().empty()) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Basic block " << Index << " contains no instructions";
Error(StrBuf.str());
Node->appendInst(Ice::InstUnreachable::create(Func.get()));
}
++Index;
}
Func->computeInOutEdges();
}
void FunctionParser::reportInvalidBinaryOp(Ice::InstArithmetic::OpKind Op,
Ice::Type OpTy) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Invalid operator type for " << Ice::InstArithmetic::getOpName(Op)
<< ". Found " << OpTy;
Error(StrBuf.str());
}
void FunctionParser::ProcessRecord() {
// Note: To better separate parse/IR generation times, when IR generation is
// disabled we do the following:
// 1) Delay exiting until after we extract operands.
// 2) return before we access operands, since all operands will be a nullptr.
const NaClBitcodeRecord::RecordVector &Values = Record.GetValues();
if (InstIsTerminating) {
InstIsTerminating = false;
++CurrentBbIndex;
CurrentNode = getBasicBlock(CurrentBbIndex);
}
// The base index for relative indexing.
NaClBcIndexSize_t BaseIndex = getNextInstIndex();
switch (Record.GetCode()) {
case naclbitc::FUNC_CODE_DECLAREBLOCKS: {
// DECLAREBLOCKS: [n]
if (!isValidRecordSize(1, "count"))
return;
if (DeclaredNumberBbs > 0) {
Error("Duplicate function block count record");
return;
}
// Check for bad large sizes, since they can make ridiculous memory
// requests and hang the user for large amounts of time.
uint64_t NumBbs = Values[0];
if (NumBbs > MaxRecordsInBlock) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Function defines " << NumBbs
<< " basic blocks, which is too big for a function containing "
<< NumBytesDefiningFunction << " bytes";
Error(StrBuf.str());
NumBbs = MaxRecordsInBlock;
}
if (NumBbs == 0) {
Error("Functions must contain at least one basic block.");
NumBbs = 1;
}
DeclaredNumberBbs = NumBbs;
// Install the basic blocks, skipping bb0 which was created in the
// constructor.
for (size_t i = 1; i < NumBbs; ++i)
installNextBasicBlock();
return;
}
case naclbitc::FUNC_CODE_INST_BINOP: {
// Note: Old bitcode files may have an additional 'flags' operand, which is
// ignored.
// BINOP: [opval, opval, opcode, [flags]]
if (!isValidRecordSizeInRange(3, 4, "binop"))
return;
Ice::Operand *Op1 = getRelativeOperand(Values[0], BaseIndex);
Ice::Operand *Op2 = getRelativeOperand(Values[1], BaseIndex);
Ice::Type Type1 = Op1->getType();
Ice::Type Type2 = Op2->getType();
if (Type1 != Type2) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Binop argument types differ: " << Type1 << " and " << Type2;
Error(StrBuf.str());
appendErrorInstruction(Type1);
return;
}
Ice::InstArithmetic::OpKind Opcode;
if (!convertBinopOpcode(Values[2], Type1, Opcode)) {
appendErrorInstruction(Type1);
return;
}
CurrentNode->appendInst(Ice::InstArithmetic::create(
Func.get(), Opcode, getNextInstVar(Type1), Op1, Op2));
return;
}
case naclbitc::FUNC_CODE_INST_CAST: {
// CAST: [opval, destty, castopc]
if (!isValidRecordSize(3, "cast"))
return;
Ice::Operand *Src = getRelativeOperand(Values[0], BaseIndex);
Ice::Type CastType = Context->getSimpleTypeByID(Values[1]);
Ice::InstCast::OpKind CastKind;
if (!convertCastOpToIceOp(Values[2], Src->getType(), CastType, CastKind)) {
appendErrorInstruction(CastType);
return;
}
CurrentNode->appendInst(Ice::InstCast::create(
Func.get(), CastKind, getNextInstVar(CastType), Src));
return;
}
case naclbitc::FUNC_CODE_INST_VSELECT: {
// VSELECT: [opval, opval, pred]
if (!isValidRecordSize(3, "select"))
return;
Ice::Operand *ThenVal = getRelativeOperand(Values[0], BaseIndex);
Ice::Operand *ElseVal = getRelativeOperand(Values[1], BaseIndex);
Ice::Operand *CondVal = getRelativeOperand(Values[2], BaseIndex);
Ice::Type ThenType = ThenVal->getType();
Ice::Type ElseType = ElseVal->getType();
if (ThenType != ElseType) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Select operands not same type. Found " << ThenType << " and "
<< ElseType;
Error(StrBuf.str());
appendErrorInstruction(ThenType);
return;
}
Ice::Type CondType = CondVal->getType();
if (isVectorType(CondType)) {
if (!isVectorType(ThenType) ||
typeElementType(CondType) != Ice::IceType_i1 ||
typeNumElements(ThenType) != typeNumElements(CondType)) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Select condition type " << CondType
<< " not allowed for values of type " << ThenType;
Error(StrBuf.str());
appendErrorInstruction(ThenType);
return;
}
} else if (CondVal->getType() != Ice::IceType_i1) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Select condition " << CondVal
<< " not type i1. Found: " << CondVal->getType();
Error(StrBuf.str());
appendErrorInstruction(ThenType);
return;
}
CurrentNode->appendInst(Ice::InstSelect::create(
Func.get(), getNextInstVar(ThenType), CondVal, ThenVal, ElseVal));
return;
}
case naclbitc::FUNC_CODE_INST_EXTRACTELT: {
// EXTRACTELT: [opval, opval]
if (!isValidRecordSize(2, "extract element"))
return;
Ice::Operand *Vec = getRelativeOperand(Values[0], BaseIndex);
Ice::Operand *Index = getRelativeOperand(Values[1], BaseIndex);
Ice::Type VecType = Vec->getType();
VectorIndexCheckValue IndexCheckValue = validateVectorIndex(Vec, Index);
if (IndexCheckValue != VectorIndexValid) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
dumpVectorIndexCheckValue(StrBuf, IndexCheckValue);
StrBuf << ": extractelement " << VecType << " " << *Vec << ", "
<< Index->getType() << " " << *Index;
Error(StrBuf.str());
appendErrorInstruction(VecType);
return;
}
CurrentNode->appendInst(Ice::InstExtractElement::create(
Func.get(), getNextInstVar(typeElementType(VecType)), Vec, Index));
return;
}
case naclbitc::FUNC_CODE_INST_INSERTELT: {
// INSERTELT: [opval, opval, opval]
if (!isValidRecordSize(3, "insert element"))
return;
Ice::Operand *Vec = getRelativeOperand(Values[0], BaseIndex);
Ice::Operand *Elt = getRelativeOperand(Values[1], BaseIndex);
Ice::Operand *Index = getRelativeOperand(Values[2], BaseIndex);
Ice::Type VecType = Vec->getType();
VectorIndexCheckValue IndexCheckValue = validateVectorIndex(Vec, Index);
if (IndexCheckValue != VectorIndexValid) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
dumpVectorIndexCheckValue(StrBuf, IndexCheckValue);
StrBuf << ": insertelement " << VecType << " " << *Vec << ", "
<< Elt->getType() << " " << *Elt << ", " << Index->getType() << " "
<< *Index;
Error(StrBuf.str());
appendErrorInstruction(Elt->getType());
return;
}
if (Ice::typeElementType(VecType) != Elt->getType()) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Insertelement: Element type "
<< Ice::typeString(Elt->getType()) << " doesn't match vector type "
<< Ice::typeString(VecType);
Error(StrBuf.str());
appendErrorInstruction(Elt->getType());
return;
}
CurrentNode->appendInst(Ice::InstInsertElement::create(
Func.get(), getNextInstVar(VecType), Vec, Elt, Index));
return;
}
case naclbitc::FUNC_CODE_INST_CMP2: {
// CMP2: [opval, opval, pred]
if (!isValidRecordSize(3, "compare"))
return;
Ice::Operand *Op1 = getRelativeOperand(Values[0], BaseIndex);
Ice::Operand *Op2 = getRelativeOperand(Values[1], BaseIndex);
Ice::Type Op1Type = Op1->getType();
Ice::Type Op2Type = Op2->getType();
Ice::Type DestType = getCompareResultType(Op1Type);
if (Op1Type != Op2Type) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Compare argument types differ: " << Op1Type << " and "
<< Op2Type;
Error(StrBuf.str());
appendErrorInstruction(DestType);
Op2 = Op1;
}
if (DestType == Ice::IceType_void) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Compare not defined for type " << Op1Type;
Error(StrBuf.str());
return;
}
Ice::Variable *Dest = getNextInstVar(DestType);
if (isIntegerType(Op1Type)) {
Ice::InstIcmp::ICond Cond;
if (!convertNaClBitcICmpOpToIce(Values[2], Cond)) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Compare record contains unknown integer predicate index: "
<< Values[2];
Error(StrBuf.str());
appendErrorInstruction(DestType);
}
CurrentNode->appendInst(
Ice::InstIcmp::create(Func.get(), Cond, Dest, Op1, Op2));
} else if (isFloatingType(Op1Type)) {
Ice::InstFcmp::FCond Cond;
if (!convertNaClBitcFCompOpToIce(Values[2], Cond)) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Compare record contains unknown float predicate index: "
<< Values[2];
Error(StrBuf.str());
appendErrorInstruction(DestType);
}
CurrentNode->appendInst(
Ice::InstFcmp::create(Func.get(), Cond, Dest, Op1, Op2));
} else {
// Not sure this can happen, but be safe.
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Compare on type not understood: " << Op1Type;
Error(StrBuf.str());
appendErrorInstruction(DestType);
return;
}
return;
}
case naclbitc::FUNC_CODE_INST_RET: {
// RET: [opval?]
InstIsTerminating = true;
if (!isValidRecordSizeInRange(0, 1, "return"))
return;
if (Values.empty()) {
CurrentNode->appendInst(Ice::InstRet::create(Func.get()));
} else {
Ice::Operand *RetVal = getRelativeOperand(Values[0], BaseIndex);
CurrentNode->appendInst(Ice::InstRet::create(Func.get(), RetVal));
}
return;
}
case naclbitc::FUNC_CODE_INST_BR: {
InstIsTerminating = true;
if (Values.size() == 1) {
// BR: [bb#]
Ice::CfgNode *Block = getBranchBasicBlock(Values[0]);
if (Block == nullptr)
return;
CurrentNode->appendInst(Ice::InstBr::create(Func.get(), Block));
} else {
// BR: [bb#, bb#, opval]
if (!isValidRecordSize(3, "branch"))
return;
Ice::Operand *Cond = getRelativeOperand(Values[2], BaseIndex);
if (Cond->getType() != Ice::IceType_i1) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Branch condition " << *Cond
<< " not i1. Found: " << Cond->getType();
Error(StrBuf.str());
return;
}
Ice::CfgNode *ThenBlock = getBranchBasicBlock(Values[0]);
Ice::CfgNode *ElseBlock = getBranchBasicBlock(Values[1]);
if (ThenBlock == nullptr || ElseBlock == nullptr)
return;
CurrentNode->appendInst(
Ice::InstBr::create(Func.get(), Cond, ThenBlock, ElseBlock));
}
return;
}
case naclbitc::FUNC_CODE_INST_SWITCH: {
// SWITCH: [Condty, Cond, BbIndex, NumCases Case ...]
// where Case = [1, 1, Value, BbIndex].
//
// Note: Unlike most instructions, we don't infer the type of Cond, but
// provide it as a separate field. There are also unnecessary data fields
// (i.e. constants 1). These were not cleaned up in PNaCl bitcode because
// the bitcode format was already frozen when the problem was noticed.
InstIsTerminating = true;
if (!isValidRecordSizeAtLeast(4, "switch"))
return;
Ice::Type CondTy = Context->getSimpleTypeByID(Values[0]);
if (!Ice::isScalarIntegerType(CondTy)) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Case condition must be non-wide integer. Found: " << CondTy;
Error(StrBuf.str());
return;
}
Ice::SizeT BitWidth = Ice::getScalarIntBitWidth(CondTy);
Ice::Operand *Cond = getRelativeOperand(Values[1], BaseIndex);
if (CondTy != Cond->getType()) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Case condition expects type " << CondTy
<< ". Found: " << Cond->getType();
Error(StrBuf.str());
return;
}
Ice::CfgNode *DefaultLabel = getBranchBasicBlock(Values[2]);
if (DefaultLabel == nullptr)
return;
uint64_t NumCasesRaw = Values[3];
if (NumCasesRaw > std::numeric_limits<uint32_t>::max()) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Too many cases specified in switch: " << NumCasesRaw;
Error(StrBuf.str());
NumCasesRaw = std::numeric_limits<uint32_t>::max();
}
uint32_t NumCases = NumCasesRaw;
// Now recognize each of the cases.
if (!isValidRecordSize(4 + NumCases * 4, "switch"))
return;
std::unique_ptr<Ice::InstSwitch> Switch(
Ice::InstSwitch::create(Func.get(), NumCases, Cond, DefaultLabel));
unsigned ValCaseIndex = 4; // index to beginning of case entry.
for (uint32_t CaseIndex = 0; CaseIndex < NumCases;
++CaseIndex, ValCaseIndex += 4) {
if (Values[ValCaseIndex] != 1 || Values[ValCaseIndex + 1] != 1) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Sequence [1, 1, value, label] expected for case entry "
<< "in switch record. (at index" << ValCaseIndex << ")";
Error(StrBuf.str());
return;
}
BitcodeInt Value(BitWidth,
NaClDecodeSignRotatedValue(Values[ValCaseIndex + 2]));
Ice::CfgNode *Label = getBranchBasicBlock(Values[ValCaseIndex + 3]);
if (Label == nullptr)
return;
Switch->addBranch(CaseIndex, Value.getSExtValue(), Label);
}
CurrentNode->appendInst(Switch.release());
return;
}
case naclbitc::FUNC_CODE_INST_UNREACHABLE: {
// UNREACHABLE: []
InstIsTerminating = true;
if (!isValidRecordSize(0, "unreachable"))
return;
CurrentNode->appendInst(Ice::InstUnreachable::create(Func.get()));
return;
}
case naclbitc::FUNC_CODE_INST_PHI: {
// PHI: [ty, val1, bb1, ..., valN, bbN] for n >= 2.
if (!isValidRecordSizeAtLeast(3, "phi"))
return;
Ice::Type Ty = Context->getSimpleTypeByID(Values[0]);
if ((Values.size() & 0x1) == 0) {
// Not an odd number of values.
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "function block phi record size not valid: " << Values.size();
Error(StrBuf.str());
appendErrorInstruction(Ty);
return;
}
if (Ty == Ice::IceType_void) {
Error("Phi record using type void not allowed");
return;
}
Ice::Variable *Dest = getNextInstVar(Ty);
Ice::InstPhi *Phi =
Ice::InstPhi::create(Func.get(), Values.size() >> 1, Dest);
for (size_t i = 1; i < Values.size(); i += 2) {
Ice::Operand *Op =
getRelativeOperand(NaClDecodeSignRotatedValue(Values[i]), BaseIndex);
if (Op->getType() != Ty) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Value " << *Op << " not type " << Ty
<< " in phi instruction. Found: " << Op->getType();
Error(StrBuf.str());
appendErrorInstruction(Ty);
return;
}
Phi->addArgument(Op, getBasicBlock(Values[i + 1]));
}
CurrentNode->appendInst(Phi);
return;
}
case naclbitc::FUNC_CODE_INST_ALLOCA: {
// ALLOCA: [Size, align]
if (!isValidRecordSize(2, "alloca"))
return;
Ice::Operand *ByteCount = getRelativeOperand(Values[0], BaseIndex);
uint32_t Alignment = Context->extractAlignment(this, "Alloca", Values[1]);
Ice::Type PtrTy = Ice::getPointerType();
if (ByteCount->getType() != Ice::IceType_i32) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Alloca on non-i32 value. Found: " << *ByteCount;
Error(StrBuf.str());
appendErrorInstruction(PtrTy);
return;
}
CurrentNode->appendInst(Ice::InstAlloca::create(
Func.get(), getNextInstVar(PtrTy), ByteCount, Alignment));
return;
}
case naclbitc::FUNC_CODE_INST_LOAD: {
// LOAD: [address, align, ty]
if (!isValidRecordSize(3, "load"))
return;
Ice::Operand *Address = getRelativeOperand(Values[0], BaseIndex);
Ice::Type Ty = Context->getSimpleTypeByID(Values[2]);
uint32_t Alignment = Context->extractAlignment(this, "Load", Values[1]);
if (!isValidPointerType(Address, "Load")) {
appendErrorInstruction(Ty);
return;
}
if (!isValidLoadStoreAlignment(Alignment, Ty, "Load")) {
appendErrorInstruction(Ty);
return;
}
CurrentNode->appendInst(Ice::InstLoad::create(
Func.get(), getNextInstVar(Ty), Address, Alignment));
return;
}
case naclbitc::FUNC_CODE_INST_STORE: {
// STORE: [address, value, align]
if (!isValidRecordSize(3, "store"))
return;
Ice::Operand *Address = getRelativeOperand(Values[0], BaseIndex);
Ice::Operand *Value = getRelativeOperand(Values[1], BaseIndex);
uint32_t Alignment = Context->extractAlignment(this, "Store", Values[2]);
if (!isValidPointerType(Address, "Store"))
return;
if (!isValidLoadStoreAlignment(Alignment, Value->getType(), "Store"))
return;
CurrentNode->appendInst(
Ice::InstStore::create(Func.get(), Value, Address, Alignment));
return;
}
case naclbitc::FUNC_CODE_INST_CALL:
case naclbitc::FUNC_CODE_INST_CALL_INDIRECT: {
// CALL: [cc, fnid, arg0, arg1...]
// CALL_INDIRECT: [cc, fn, returnty, args...]
//
// Note: The difference between CALL and CALL_INDIRECT is that CALL has a
// reference to an explicit function declaration, while the CALL_INDIRECT
// is just an address. For CALL, we can infer the return type by looking up
// the type signature associated with the function declaration. For
// CALL_INDIRECT we can only infer the type signature via argument types,
// and the corresponding return type stored in CALL_INDIRECT record.
Ice::SizeT ParamsStartIndex = 2;
if (Record.GetCode() == naclbitc::FUNC_CODE_INST_CALL) {
if (!isValidRecordSizeAtLeast(2, "call"))
return;
} else {
if (!isValidRecordSizeAtLeast(3, "call indirect"))
return;
ParamsStartIndex = 3;
}
uint32_t CalleeIndex = convertRelativeToAbsIndex(Values[1], BaseIndex);
Ice::Operand *Callee = getOperand(CalleeIndex);
// Pull out signature/return type of call (if possible).
Ice::FunctionDeclaration *Fcn = nullptr;
const Ice::FuncSigType *Signature = nullptr;
Ice::Type ReturnType = Ice::IceType_void;
const Ice::Intrinsics::FullIntrinsicInfo *IntrinsicInfo = nullptr;
if (Record.GetCode() == naclbitc::FUNC_CODE_INST_CALL) {
Fcn = Context->getFunctionByID(CalleeIndex);
Signature = &Fcn->getSignature();
ReturnType = Signature->getReturnType();
Ice::SizeT NumParams = Values.size() - ParamsStartIndex;
if (NumParams != Signature->getNumArgs()) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Call to " << printName(Fcn) << " has " << NumParams
<< " parameters. Signature expects: " << Signature->getNumArgs();
Error(StrBuf.str());
if (ReturnType != Ice::IceType_void)
setNextLocalInstIndex(nullptr);
return;
}
// Check if this direct call is to an Intrinsic (starts with "llvm.")
IntrinsicInfo = Fcn->getIntrinsicInfo(getTranslator().getContext());
if (IntrinsicInfo && IntrinsicInfo->getNumArgs() != NumParams) {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Call to " << printName(Fcn) << " has " << NumParams
<< " parameters. Intrinsic expects: " << Signature->getNumArgs();
Error(StrBuf.str());
if (ReturnType != Ice::IceType_void)