| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// \brief Implements the TargetLoweringMIPS32 class, which consists almost |
| /// entirely of the lowering sequence for each high-level instruction. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "IceTargetLoweringMIPS32.h" |
| |
| #include "IceCfg.h" |
| #include "IceCfgNode.h" |
| #include "IceClFlags.h" |
| #include "IceDefs.h" |
| #include "IceELFObjectWriter.h" |
| #include "IceGlobalInits.h" |
| #include "IceInstMIPS32.h" |
| #include "IceInstVarIter.h" |
| #include "IceLiveness.h" |
| #include "IceOperand.h" |
| #include "IcePhiLoweringImpl.h" |
| #include "IceRegistersMIPS32.h" |
| #include "IceTargetLoweringMIPS32.def" |
| #include "IceUtils.h" |
| #include "llvm/Support/MathExtras.h" |
| |
| namespace MIPS32 { |
| std::unique_ptr<::Ice::TargetLowering> createTargetLowering(::Ice::Cfg *Func) { |
| return ::Ice::MIPS32::TargetMIPS32::create(Func); |
| } |
| |
| std::unique_ptr<::Ice::TargetDataLowering> |
| createTargetDataLowering(::Ice::GlobalContext *Ctx) { |
| return ::Ice::MIPS32::TargetDataMIPS32::create(Ctx); |
| } |
| |
| std::unique_ptr<::Ice::TargetHeaderLowering> |
| createTargetHeaderLowering(::Ice::GlobalContext *Ctx) { |
| return ::Ice::MIPS32::TargetHeaderMIPS32::create(Ctx); |
| } |
| |
| void staticInit(::Ice::GlobalContext *Ctx) { |
| ::Ice::MIPS32::TargetMIPS32::staticInit(Ctx); |
| } |
| |
| bool shouldBePooled(const ::Ice::Constant *C) { |
| return ::Ice::MIPS32::TargetMIPS32::shouldBePooled(C); |
| } |
| |
| ::Ice::Type getPointerType() { |
| return ::Ice::MIPS32::TargetMIPS32::getPointerType(); |
| } |
| |
| } // end of namespace MIPS32 |
| |
| namespace Ice { |
| namespace MIPS32 { |
| |
| using llvm::isInt; |
| |
| namespace { |
| |
| // The maximum number of arguments to pass in GPR registers. |
| constexpr uint32_t MIPS32_MAX_GPR_ARG = 4; |
| |
| std::array<RegNumT, MIPS32_MAX_GPR_ARG> GPRArgInitializer; |
| std::array<RegNumT, MIPS32_MAX_GPR_ARG / 2> I64ArgInitializer; |
| |
| constexpr uint32_t MIPS32_MAX_FP_ARG = 2; |
| |
| std::array<RegNumT, MIPS32_MAX_FP_ARG> FP32ArgInitializer; |
| std::array<RegNumT, MIPS32_MAX_FP_ARG> FP64ArgInitializer; |
| |
| const char *getRegClassName(RegClass C) { |
| auto ClassNum = static_cast<RegClassMIPS32>(C); |
| assert(ClassNum < RCMIPS32_NUM); |
| switch (ClassNum) { |
| default: |
| assert(C < RC_Target); |
| return regClassString(C); |
| // Add handling of new register classes below. |
| } |
| } |
| |
| // Stack alignment |
| constexpr uint32_t MIPS32_STACK_ALIGNMENT_BYTES = 16; |
| |
| // Value is in bytes. Return Value adjusted to the next highest multiple of the |
| // stack alignment required for the given type. |
| uint32_t applyStackAlignmentTy(uint32_t Value, Type Ty) { |
| size_t typeAlignInBytes = typeWidthInBytes(Ty); |
| // Vectors are stored on stack with the same alignment as that of int type |
| if (isVectorType(Ty)) |
| typeAlignInBytes = typeWidthInBytes(IceType_i64); |
| return Utils::applyAlignment(Value, typeAlignInBytes); |
| } |
| |
| // Value is in bytes. Return Value adjusted to the next highest multiple of the |
| // stack alignment. |
| uint32_t applyStackAlignment(uint32_t Value) { |
| return Utils::applyAlignment(Value, MIPS32_STACK_ALIGNMENT_BYTES); |
| } |
| |
| } // end of anonymous namespace |
| |
| TargetMIPS32::TargetMIPS32(Cfg *Func) : TargetLowering(Func) {} |
| |
| void TargetMIPS32::assignVarStackSlots(VarList &SortedSpilledVariables, |
| size_t SpillAreaPaddingBytes, |
| size_t SpillAreaSizeBytes, |
| size_t GlobalsAndSubsequentPaddingSize) { |
| const VariablesMetadata *VMetadata = Func->getVMetadata(); |
| size_t GlobalsSpaceUsed = SpillAreaPaddingBytes; |
| size_t NextStackOffset = SpillAreaPaddingBytes; |
| CfgVector<size_t> LocalsSize(Func->getNumNodes()); |
| const bool SimpleCoalescing = !callsReturnsTwice(); |
| for (Variable *Var : SortedSpilledVariables) { |
| size_t Increment = typeWidthInBytesOnStack(Var->getType()); |
| if (SimpleCoalescing && VMetadata->isTracked(Var)) { |
| if (VMetadata->isMultiBlock(Var)) { |
| GlobalsSpaceUsed += Increment; |
| NextStackOffset = GlobalsSpaceUsed; |
| } else { |
| SizeT NodeIndex = VMetadata->getLocalUseNode(Var)->getIndex(); |
| LocalsSize[NodeIndex] += Increment; |
| NextStackOffset = SpillAreaPaddingBytes + |
| GlobalsAndSubsequentPaddingSize + |
| LocalsSize[NodeIndex]; |
| } |
| } else { |
| NextStackOffset += Increment; |
| } |
| Var->setStackOffset(SpillAreaSizeBytes - NextStackOffset); |
| } |
| } |
| |
| void TargetMIPS32::staticInit(GlobalContext *Ctx) { |
| (void)Ctx; |
| RegNumT::setLimit(RegMIPS32::Reg_NUM); |
| SmallBitVector IntegerRegisters(RegMIPS32::Reg_NUM); |
| SmallBitVector I64PairRegisters(RegMIPS32::Reg_NUM); |
| SmallBitVector Float32Registers(RegMIPS32::Reg_NUM); |
| SmallBitVector Float64Registers(RegMIPS32::Reg_NUM); |
| SmallBitVector VectorRegisters(RegMIPS32::Reg_NUM); |
| SmallBitVector InvalidRegisters(RegMIPS32::Reg_NUM); |
| #define X(val, encode, name, scratch, preserved, stackptr, frameptr, isInt, \ |
| isI64Pair, isFP32, isFP64, isVec128, alias_init) \ |
| IntegerRegisters[RegMIPS32::val] = isInt; \ |
| I64PairRegisters[RegMIPS32::val] = isI64Pair; \ |
| Float32Registers[RegMIPS32::val] = isFP32; \ |
| Float64Registers[RegMIPS32::val] = isFP64; \ |
| VectorRegisters[RegMIPS32::val] = isVec128; \ |
| RegisterAliases[RegMIPS32::val].resize(RegMIPS32::Reg_NUM); \ |
| for (SizeT RegAlias : alias_init) { \ |
| assert(!RegisterAliases[RegMIPS32::val][RegAlias] && \ |
| "Duplicate alias for " #val); \ |
| RegisterAliases[RegMIPS32::val].set(RegAlias); \ |
| } \ |
| RegisterAliases[RegMIPS32::val].resize(RegMIPS32::Reg_NUM); \ |
| assert(RegisterAliases[RegMIPS32::val][RegMIPS32::val]); |
| REGMIPS32_TABLE; |
| #undef X |
| |
| // TODO(mohit.bhakkad): Change these inits once we provide argument related |
| // field in register tables |
| for (size_t i = 0; i < MIPS32_MAX_GPR_ARG; i++) |
| GPRArgInitializer[i] = RegNumT::fixme(RegMIPS32::Reg_A0 + i); |
| |
| for (size_t i = 0; i < MIPS32_MAX_GPR_ARG / 2; i++) |
| I64ArgInitializer[i] = RegNumT::fixme(RegMIPS32::Reg_A0A1 + i); |
| |
| for (size_t i = 0; i < MIPS32_MAX_FP_ARG; i++) { |
| FP32ArgInitializer[i] = RegNumT::fixme(RegMIPS32::Reg_F12 + i * 2); |
| FP64ArgInitializer[i] = RegNumT::fixme(RegMIPS32::Reg_F12F13 + i); |
| } |
| |
| TypeToRegisterSet[IceType_void] = InvalidRegisters; |
| TypeToRegisterSet[IceType_i1] = IntegerRegisters; |
| TypeToRegisterSet[IceType_i8] = IntegerRegisters; |
| TypeToRegisterSet[IceType_i16] = IntegerRegisters; |
| TypeToRegisterSet[IceType_i32] = IntegerRegisters; |
| TypeToRegisterSet[IceType_i64] = IntegerRegisters; |
| TypeToRegisterSet[IceType_f32] = Float32Registers; |
| TypeToRegisterSet[IceType_f64] = Float64Registers; |
| TypeToRegisterSet[IceType_v4i1] = VectorRegisters; |
| TypeToRegisterSet[IceType_v8i1] = VectorRegisters; |
| TypeToRegisterSet[IceType_v16i1] = VectorRegisters; |
| TypeToRegisterSet[IceType_v16i8] = VectorRegisters; |
| TypeToRegisterSet[IceType_v8i16] = VectorRegisters; |
| TypeToRegisterSet[IceType_v4i32] = VectorRegisters; |
| TypeToRegisterSet[IceType_v4f32] = VectorRegisters; |
| |
| for (size_t i = 0; i < llvm::array_lengthof(TypeToRegisterSet); ++i) |
| TypeToRegisterSetUnfiltered[i] = TypeToRegisterSet[i]; |
| |
| filterTypeToRegisterSet(Ctx, RegMIPS32::Reg_NUM, TypeToRegisterSet, |
| llvm::array_lengthof(TypeToRegisterSet), |
| RegMIPS32::getRegName, getRegClassName); |
| } |
| |
| void TargetMIPS32::unsetIfNonLeafFunc() { |
| for (CfgNode *Node : Func->getNodes()) { |
| for (Inst &Instr : Node->getInsts()) { |
| if (llvm::isa<InstCall>(&Instr)) { |
| // Unset MaybeLeafFunc if call instruction exists. |
| MaybeLeafFunc = false; |
| return; |
| } |
| } |
| } |
| } |
| |
| uint32_t TargetMIPS32::getStackAlignment() const { |
| return MIPS32_STACK_ALIGNMENT_BYTES; |
| } |
| |
| uint32_t TargetMIPS32::getCallStackArgumentsSizeBytes(const InstCall *Call) { |
| TargetMIPS32::CallingConv CC; |
| size_t OutArgsSizeBytes = 0; |
| Variable *Dest = Call->getDest(); |
| bool PartialOnStack = false; |
| if (Dest != nullptr && isVectorFloatingType(Dest->getType())) { |
| CC.discardReg(RegMIPS32::Reg_A0); |
| // Next vector is partially on stack |
| PartialOnStack = true; |
| } |
| for (SizeT i = 0, NumArgs = Call->getNumArgs(); i < NumArgs; ++i) { |
| Operand *Arg = legalizeUndef(Call->getArg(i)); |
| const Type Ty = Arg->getType(); |
| RegNumT RegNum; |
| if (CC.argInReg(Ty, i, &RegNum)) { |
| // If PartialOnStack is true and if this is a vector type then last two |
| // elements are on stack |
| if (PartialOnStack && isVectorType(Ty)) { |
| OutArgsSizeBytes = applyStackAlignmentTy(OutArgsSizeBytes, IceType_i64); |
| OutArgsSizeBytes += typeWidthInBytesOnStack(IceType_i32) * 2; |
| } |
| continue; |
| } |
| OutArgsSizeBytes = applyStackAlignmentTy(OutArgsSizeBytes, Ty); |
| OutArgsSizeBytes += typeWidthInBytesOnStack(Ty); |
| } |
| // Add size of argument save area |
| constexpr int BytesPerStackArg = 4; |
| OutArgsSizeBytes += MIPS32_MAX_GPR_ARG * BytesPerStackArg; |
| return applyStackAlignment(OutArgsSizeBytes); |
| } |
| |
| namespace { |
| inline uint64_t getConstantMemoryOrder(Operand *Opnd) { |
| if (auto *Integer = llvm::dyn_cast<ConstantInteger32>(Opnd)) |
| return Integer->getValue(); |
| return Intrinsics::MemoryOrderInvalid; |
| } |
| } // namespace |
| |
| void TargetMIPS32::genTargetHelperCallFor(Inst *Instr) { |
| constexpr bool NoTailCall = false; |
| constexpr bool IsTargetHelperCall = true; |
| Variable *Dest = Instr->getDest(); |
| const Type DestTy = Dest ? Dest->getType() : IceType_void; |
| |
| switch (Instr->getKind()) { |
| default: |
| return; |
| case Inst::Select: { |
| if (isVectorType(DestTy)) { |
| Operand *SrcT = llvm::cast<InstSelect>(Instr)->getTrueOperand(); |
| Operand *SrcF = llvm::cast<InstSelect>(Instr)->getFalseOperand(); |
| Operand *Cond = llvm::cast<InstSelect>(Instr)->getCondition(); |
| Variable *T = Func->makeVariable(DestTy); |
| auto *Undef = ConstantUndef::create(Ctx, DestTy); |
| Context.insert<InstAssign>(T, Undef); |
| auto *VarVecOn32 = llvm::cast<VariableVecOn32>(T); |
| VarVecOn32->initVecElement(Func); |
| for (SizeT I = 0; I < typeNumElements(DestTy); ++I) { |
| auto *Index = Ctx->getConstantInt32(I); |
| auto *OpC = Func->makeVariable(typeElementType(Cond->getType())); |
| Context.insert<InstExtractElement>(OpC, Cond, Index); |
| auto *OpT = Func->makeVariable(typeElementType(DestTy)); |
| Context.insert<InstExtractElement>(OpT, SrcT, Index); |
| auto *OpF = Func->makeVariable(typeElementType(DestTy)); |
| Context.insert<InstExtractElement>(OpF, SrcF, Index); |
| auto *Dst = Func->makeVariable(typeElementType(DestTy)); |
| Variable *DestT = Func->makeVariable(DestTy); |
| Context.insert<InstSelect>(Dst, OpC, OpT, OpF); |
| Context.insert<InstInsertElement>(DestT, T, Dst, Index); |
| T = DestT; |
| } |
| Context.insert<InstAssign>(Dest, T); |
| Instr->setDeleted(); |
| } |
| return; |
| } |
| case Inst::Fcmp: { |
| if (isVectorType(DestTy)) { |
| InstFcmp::FCond Cond = llvm::cast<InstFcmp>(Instr)->getCondition(); |
| Operand *Src0 = Instr->getSrc(0); |
| Operand *Src1 = Instr->getSrc(1); |
| Variable *T = Func->makeVariable(IceType_v4f32); |
| auto *Undef = ConstantUndef::create(Ctx, IceType_v4f32); |
| Context.insert<InstAssign>(T, Undef); |
| auto *VarVecOn32 = llvm::cast<VariableVecOn32>(T); |
| VarVecOn32->initVecElement(Func); |
| for (SizeT I = 0; I < typeNumElements(IceType_v4f32); ++I) { |
| auto *Index = Ctx->getConstantInt32(I); |
| auto *Op0 = Func->makeVariable(IceType_f32); |
| Context.insert<InstExtractElement>(Op0, Src0, Index); |
| auto *Op1 = Func->makeVariable(IceType_f32); |
| Context.insert<InstExtractElement>(Op1, Src1, Index); |
| auto *Dst = Func->makeVariable(IceType_f32); |
| Variable *DestT = Func->makeVariable(IceType_v4f32); |
| Context.insert<InstFcmp>(Cond, Dst, Op0, Op1); |
| Context.insert<InstInsertElement>(DestT, T, Dst, Index); |
| T = DestT; |
| } |
| Context.insert<InstAssign>(Dest, T); |
| Instr->setDeleted(); |
| } |
| return; |
| } |
| case Inst::Icmp: { |
| if (isVectorType(DestTy)) { |
| InstIcmp::ICond Cond = llvm::cast<InstIcmp>(Instr)->getCondition(); |
| Operand *Src0 = Instr->getSrc(0); |
| Operand *Src1 = Instr->getSrc(1); |
| const Type SrcType = Src0->getType(); |
| Variable *T = Func->makeVariable(DestTy); |
| auto *Undef = ConstantUndef::create(Ctx, DestTy); |
| Context.insert<InstAssign>(T, Undef); |
| auto *VarVecOn32 = llvm::cast<VariableVecOn32>(T); |
| VarVecOn32->initVecElement(Func); |
| for (SizeT I = 0; I < typeNumElements(SrcType); ++I) { |
| auto *Index = Ctx->getConstantInt32(I); |
| auto *Op0 = Func->makeVariable(typeElementType(SrcType)); |
| Context.insert<InstExtractElement>(Op0, Src0, Index); |
| auto *Op1 = Func->makeVariable(typeElementType(SrcType)); |
| Context.insert<InstExtractElement>(Op1, Src1, Index); |
| auto *Dst = Func->makeVariable(typeElementType(DestTy)); |
| Variable *DestT = Func->makeVariable(DestTy); |
| Context.insert<InstIcmp>(Cond, Dst, Op0, Op1); |
| Context.insert<InstInsertElement>(DestT, T, Dst, Index); |
| T = DestT; |
| } |
| Context.insert<InstAssign>(Dest, T); |
| Instr->setDeleted(); |
| } |
| return; |
| } |
| case Inst::Arithmetic: { |
| const InstArithmetic::OpKind Op = |
| llvm::cast<InstArithmetic>(Instr)->getOp(); |
| if (isVectorType(DestTy)) { |
| scalarizeArithmetic(Op, Dest, Instr->getSrc(0), Instr->getSrc(1)); |
| Instr->setDeleted(); |
| return; |
| } |
| switch (DestTy) { |
| default: |
| return; |
| case IceType_i64: { |
| RuntimeHelper HelperID = RuntimeHelper::H_Num; |
| switch (Op) { |
| default: |
| return; |
| case InstArithmetic::Udiv: |
| HelperID = RuntimeHelper::H_udiv_i64; |
| break; |
| case InstArithmetic::Sdiv: |
| HelperID = RuntimeHelper::H_sdiv_i64; |
| break; |
| case InstArithmetic::Urem: |
| HelperID = RuntimeHelper::H_urem_i64; |
| break; |
| case InstArithmetic::Srem: |
| HelperID = RuntimeHelper::H_srem_i64; |
| break; |
| } |
| |
| if (HelperID == RuntimeHelper::H_Num) { |
| return; |
| } |
| |
| Operand *TargetHelper = Ctx->getRuntimeHelperFunc(HelperID); |
| constexpr SizeT MaxArgs = 2; |
| auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Instr->getSrc(0)); |
| Call->addArg(Instr->getSrc(1)); |
| Instr->setDeleted(); |
| return; |
| } |
| case IceType_f32: |
| case IceType_f64: { |
| if (Op != InstArithmetic::Frem) { |
| return; |
| } |
| constexpr SizeT MaxArgs = 2; |
| Operand *TargetHelper = Ctx->getRuntimeHelperFunc( |
| DestTy == IceType_f32 ? RuntimeHelper::H_frem_f32 |
| : RuntimeHelper::H_frem_f64); |
| auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Instr->getSrc(0)); |
| Call->addArg(Instr->getSrc(1)); |
| Instr->setDeleted(); |
| return; |
| } |
| } |
| llvm::report_fatal_error("Control flow should never have reached here."); |
| } |
| case Inst::Cast: { |
| Operand *Src0 = Instr->getSrc(0); |
| const Type SrcTy = Src0->getType(); |
| auto *CastInstr = llvm::cast<InstCast>(Instr); |
| const InstCast::OpKind CastKind = CastInstr->getCastKind(); |
| |
| if (isVectorType(DestTy)) { |
| Variable *T = Func->makeVariable(DestTy); |
| auto *VarVecOn32 = llvm::cast<VariableVecOn32>(T); |
| VarVecOn32->initVecElement(Func); |
| auto *Undef = ConstantUndef::create(Ctx, DestTy); |
| Context.insert<InstAssign>(T, Undef); |
| for (SizeT I = 0; I < typeNumElements(DestTy); ++I) { |
| auto *Index = Ctx->getConstantInt32(I); |
| auto *Op = Func->makeVariable(typeElementType(SrcTy)); |
| Context.insert<InstExtractElement>(Op, Src0, Index); |
| auto *Dst = Func->makeVariable(typeElementType(DestTy)); |
| Variable *DestT = Func->makeVariable(DestTy); |
| Context.insert<InstCast>(CastKind, Dst, Op); |
| Context.insert<InstInsertElement>(DestT, T, Dst, Index); |
| T = DestT; |
| } |
| Context.insert<InstAssign>(Dest, T); |
| Instr->setDeleted(); |
| return; |
| } |
| |
| switch (CastKind) { |
| default: |
| return; |
| case InstCast::Fptosi: |
| case InstCast::Fptoui: { |
| if ((DestTy != IceType_i32) && (DestTy != IceType_i64)) { |
| return; |
| } |
| const bool DestIs32 = DestTy == IceType_i32; |
| const bool DestIsSigned = CastKind == InstCast::Fptosi; |
| const bool Src0IsF32 = isFloat32Asserting32Or64(SrcTy); |
| RuntimeHelper RTHFunc = RuntimeHelper::H_Num; |
| if (DestIsSigned) { |
| if (DestIs32) { |
| return; |
| } |
| RTHFunc = Src0IsF32 ? RuntimeHelper::H_fptosi_f32_i64 |
| : RuntimeHelper::H_fptosi_f64_i64; |
| } else { |
| RTHFunc = Src0IsF32 ? (DestIs32 ? RuntimeHelper::H_fptoui_f32_i32 |
| : RuntimeHelper::H_fptoui_f32_i64) |
| : (DestIs32 ? RuntimeHelper::H_fptoui_f64_i32 |
| : RuntimeHelper::H_fptoui_f64_i64); |
| } |
| Operand *TargetHelper = Ctx->getRuntimeHelperFunc(RTHFunc); |
| static constexpr SizeT MaxArgs = 1; |
| auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Src0); |
| Instr->setDeleted(); |
| return; |
| } |
| case InstCast::Sitofp: |
| case InstCast::Uitofp: { |
| if ((SrcTy != IceType_i32) && (SrcTy != IceType_i64)) { |
| return; |
| } |
| const bool SourceIs32 = SrcTy == IceType_i32; |
| const bool SourceIsSigned = CastKind == InstCast::Sitofp; |
| const bool DestIsF32 = isFloat32Asserting32Or64(DestTy); |
| RuntimeHelper RTHFunc = RuntimeHelper::H_Num; |
| if (SourceIsSigned) { |
| if (SourceIs32) { |
| return; |
| } |
| RTHFunc = DestIsF32 ? RuntimeHelper::H_sitofp_i64_f32 |
| : RuntimeHelper::H_sitofp_i64_f64; |
| } else { |
| RTHFunc = DestIsF32 ? (SourceIs32 ? RuntimeHelper::H_uitofp_i32_f32 |
| : RuntimeHelper::H_uitofp_i64_f32) |
| : (SourceIs32 ? RuntimeHelper::H_uitofp_i32_f64 |
| : RuntimeHelper::H_uitofp_i64_f64); |
| } |
| Operand *TargetHelper = Ctx->getRuntimeHelperFunc(RTHFunc); |
| static constexpr SizeT MaxArgs = 1; |
| auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Src0); |
| Instr->setDeleted(); |
| return; |
| } |
| case InstCast::Bitcast: { |
| if (DestTy == SrcTy) { |
| return; |
| } |
| Variable *CallDest = Dest; |
| RuntimeHelper HelperID = RuntimeHelper::H_Num; |
| switch (DestTy) { |
| default: |
| return; |
| case IceType_i8: |
| assert(SrcTy == IceType_v8i1); |
| HelperID = RuntimeHelper::H_bitcast_8xi1_i8; |
| CallDest = Func->makeVariable(IceType_i32); |
| break; |
| case IceType_i16: |
| assert(SrcTy == IceType_v16i1); |
| HelperID = RuntimeHelper::H_bitcast_16xi1_i16; |
| CallDest = Func->makeVariable(IceType_i32); |
| break; |
| case IceType_v8i1: { |
| assert(SrcTy == IceType_i8); |
| HelperID = RuntimeHelper::H_bitcast_i8_8xi1; |
| Variable *Src0AsI32 = Func->makeVariable(stackSlotType()); |
| // Arguments to functions are required to be at least 32 bits wide. |
| Context.insert<InstCast>(InstCast::Zext, Src0AsI32, Src0); |
| Src0 = Src0AsI32; |
| } break; |
| case IceType_v16i1: { |
| assert(SrcTy == IceType_i16); |
| HelperID = RuntimeHelper::H_bitcast_i16_16xi1; |
| Variable *Src0AsI32 = Func->makeVariable(stackSlotType()); |
| // Arguments to functions are required to be at least 32 bits wide. |
| Context.insert<InstCast>(InstCast::Zext, Src0AsI32, Src0); |
| Src0 = Src0AsI32; |
| } break; |
| } |
| constexpr SizeT MaxSrcs = 1; |
| InstCall *Call = makeHelperCall(HelperID, CallDest, MaxSrcs); |
| Call->addArg(Src0); |
| Context.insert(Call); |
| // The PNaCl ABI disallows i8/i16 return types, so truncate the helper |
| // call result to the appropriate type as necessary. |
| if (CallDest->getType() != DestTy) |
| Context.insert<InstCast>(InstCast::Trunc, Dest, CallDest); |
| Instr->setDeleted(); |
| return; |
| } |
| case InstCast::Trunc: { |
| if (DestTy == SrcTy) { |
| return; |
| } |
| if (!isVectorType(SrcTy)) { |
| return; |
| } |
| assert(typeNumElements(DestTy) == typeNumElements(SrcTy)); |
| assert(typeElementType(DestTy) == IceType_i1); |
| assert(isVectorIntegerType(SrcTy)); |
| return; |
| } |
| case InstCast::Sext: |
| case InstCast::Zext: { |
| if (DestTy == SrcTy) { |
| return; |
| } |
| if (!isVectorType(DestTy)) { |
| return; |
| } |
| assert(typeNumElements(DestTy) == typeNumElements(SrcTy)); |
| assert(typeElementType(SrcTy) == IceType_i1); |
| assert(isVectorIntegerType(DestTy)); |
| return; |
| } |
| } |
| llvm::report_fatal_error("Control flow should never have reached here."); |
| } |
| case Inst::Intrinsic: { |
| auto *Intrinsic = llvm::cast<InstIntrinsic>(Instr); |
| Intrinsics::IntrinsicID ID = Intrinsic->getIntrinsicID(); |
| if (isVectorType(DestTy) && ID == Intrinsics::Fabs) { |
| Operand *Src0 = Intrinsic->getArg(0); |
| Intrinsics::IntrinsicInfo Info = Intrinsic->getIntrinsicInfo(); |
| |
| Variable *T = Func->makeVariable(IceType_v4f32); |
| auto *Undef = ConstantUndef::create(Ctx, IceType_v4f32); |
| Context.insert<InstAssign>(T, Undef); |
| auto *VarVecOn32 = llvm::cast<VariableVecOn32>(T); |
| VarVecOn32->initVecElement(Func); |
| |
| for (SizeT i = 0; i < typeNumElements(IceType_v4f32); ++i) { |
| auto *Index = Ctx->getConstantInt32(i); |
| auto *Op = Func->makeVariable(IceType_f32); |
| Context.insert<InstExtractElement>(Op, Src0, Index); |
| auto *Res = Func->makeVariable(IceType_f32); |
| Variable *DestT = Func->makeVariable(IceType_v4f32); |
| auto *Intrinsic = Context.insert<InstIntrinsic>(1, Res, Info); |
| Intrinsic->addArg(Op); |
| Context.insert<InstInsertElement>(DestT, T, Res, Index); |
| T = DestT; |
| } |
| |
| Context.insert<InstAssign>(Dest, T); |
| |
| Instr->setDeleted(); |
| return; |
| } |
| switch (ID) { |
| default: |
| return; |
| case Intrinsics::AtomicLoad: { |
| if (DestTy != IceType_i64) |
| return; |
| if (!Intrinsics::isMemoryOrderValid( |
| ID, getConstantMemoryOrder(Intrinsic->getArg(1)))) { |
| Func->setError("Unexpected memory ordering for AtomicLoad"); |
| return; |
| } |
| Operand *Addr = Intrinsic->getArg(0); |
| Operand *TargetHelper = Ctx->getConstantExternSym( |
| Ctx->getGlobalString("__sync_val_compare_and_swap_8")); |
| static constexpr SizeT MaxArgs = 3; |
| auto *_0 = Ctx->getConstantZero(IceType_i64); |
| auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Addr); |
| Call->addArg(_0); |
| Call->addArg(_0); |
| Context.insert<InstMIPS32Sync>(); |
| Instr->setDeleted(); |
| return; |
| } |
| case Intrinsics::AtomicStore: { |
| Operand *Val = Intrinsic->getArg(0); |
| if (Val->getType() != IceType_i64) |
| return; |
| if (!Intrinsics::isMemoryOrderValid( |
| ID, getConstantMemoryOrder(Intrinsic->getArg(2)))) { |
| Func->setError("Unexpected memory ordering for AtomicStore"); |
| return; |
| } |
| Operand *Addr = Intrinsic->getArg(1); |
| Variable *NoDest = nullptr; |
| Operand *TargetHelper = Ctx->getConstantExternSym( |
| Ctx->getGlobalString("__sync_lock_test_and_set_8")); |
| Context.insert<InstMIPS32Sync>(); |
| static constexpr SizeT MaxArgs = 2; |
| auto *Call = Context.insert<InstCall>(MaxArgs, NoDest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Addr); |
| Call->addArg(Val); |
| Context.insert<InstMIPS32Sync>(); |
| Instr->setDeleted(); |
| return; |
| } |
| case Intrinsics::AtomicCmpxchg: { |
| if (DestTy != IceType_i64) |
| return; |
| if (!Intrinsics::isMemoryOrderValid( |
| ID, getConstantMemoryOrder(Intrinsic->getArg(3)), |
| getConstantMemoryOrder(Intrinsic->getArg(4)))) { |
| Func->setError("Unexpected memory ordering for AtomicCmpxchg"); |
| return; |
| } |
| Operand *Addr = Intrinsic->getArg(0); |
| Operand *Oldval = Intrinsic->getArg(1); |
| Operand *Newval = Intrinsic->getArg(2); |
| Operand *TargetHelper = Ctx->getConstantExternSym( |
| Ctx->getGlobalString("__sync_val_compare_and_swap_8")); |
| Context.insert<InstMIPS32Sync>(); |
| static constexpr SizeT MaxArgs = 3; |
| auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Addr); |
| Call->addArg(Oldval); |
| Call->addArg(Newval); |
| Context.insert<InstMIPS32Sync>(); |
| Instr->setDeleted(); |
| return; |
| } |
| case Intrinsics::AtomicRMW: { |
| if (DestTy != IceType_i64) |
| return; |
| if (!Intrinsics::isMemoryOrderValid( |
| ID, getConstantMemoryOrder(Intrinsic->getArg(3)))) { |
| Func->setError("Unexpected memory ordering for AtomicRMW"); |
| return; |
| } |
| auto Operation = static_cast<Intrinsics::AtomicRMWOperation>( |
| llvm::cast<ConstantInteger32>(Intrinsic->getArg(0))->getValue()); |
| auto *Addr = Intrinsic->getArg(1); |
| auto *Newval = Intrinsic->getArg(2); |
| Operand *TargetHelper; |
| switch (Operation) { |
| case Intrinsics::AtomicAdd: |
| TargetHelper = Ctx->getConstantExternSym( |
| Ctx->getGlobalString("__sync_fetch_and_add_8")); |
| break; |
| case Intrinsics::AtomicSub: |
| TargetHelper = Ctx->getConstantExternSym( |
| Ctx->getGlobalString("__sync_fetch_and_sub_8")); |
| break; |
| case Intrinsics::AtomicOr: |
| TargetHelper = Ctx->getConstantExternSym( |
| Ctx->getGlobalString("__sync_fetch_and_or_8")); |
| break; |
| case Intrinsics::AtomicAnd: |
| TargetHelper = Ctx->getConstantExternSym( |
| Ctx->getGlobalString("__sync_fetch_and_and_8")); |
| break; |
| case Intrinsics::AtomicXor: |
| TargetHelper = Ctx->getConstantExternSym( |
| Ctx->getGlobalString("__sync_fetch_and_xor_8")); |
| break; |
| case Intrinsics::AtomicExchange: |
| TargetHelper = Ctx->getConstantExternSym( |
| Ctx->getGlobalString("__sync_lock_test_and_set_8")); |
| break; |
| default: |
| llvm::report_fatal_error("Unknown AtomicRMW operation"); |
| return; |
| } |
| Context.insert<InstMIPS32Sync>(); |
| static constexpr SizeT MaxArgs = 2; |
| auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Addr); |
| Call->addArg(Newval); |
| Context.insert<InstMIPS32Sync>(); |
| Instr->setDeleted(); |
| return; |
| } |
| case Intrinsics::Ctpop: { |
| Operand *Src0 = Intrinsic->getArg(0); |
| Operand *TargetHelper = |
| Ctx->getRuntimeHelperFunc(isInt32Asserting32Or64(Src0->getType()) |
| ? RuntimeHelper::H_call_ctpop_i32 |
| : RuntimeHelper::H_call_ctpop_i64); |
| static constexpr SizeT MaxArgs = 1; |
| auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Src0); |
| Instr->setDeleted(); |
| return; |
| } |
| case Intrinsics::Longjmp: { |
| static constexpr SizeT MaxArgs = 2; |
| static constexpr Variable *NoDest = nullptr; |
| Operand *TargetHelper = |
| Ctx->getRuntimeHelperFunc(RuntimeHelper::H_call_longjmp); |
| auto *Call = Context.insert<InstCall>(MaxArgs, NoDest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Intrinsic->getArg(0)); |
| Call->addArg(Intrinsic->getArg(1)); |
| Instr->setDeleted(); |
| return; |
| } |
| case Intrinsics::Memcpy: { |
| static constexpr SizeT MaxArgs = 3; |
| static constexpr Variable *NoDest = nullptr; |
| Operand *TargetHelper = |
| Ctx->getRuntimeHelperFunc(RuntimeHelper::H_call_memcpy); |
| auto *Call = Context.insert<InstCall>(MaxArgs, NoDest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Intrinsic->getArg(0)); |
| Call->addArg(Intrinsic->getArg(1)); |
| Call->addArg(Intrinsic->getArg(2)); |
| Instr->setDeleted(); |
| return; |
| } |
| case Intrinsics::Memmove: { |
| static constexpr SizeT MaxArgs = 3; |
| static constexpr Variable *NoDest = nullptr; |
| Operand *TargetHelper = |
| Ctx->getRuntimeHelperFunc(RuntimeHelper::H_call_memmove); |
| auto *Call = Context.insert<InstCall>(MaxArgs, NoDest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Intrinsic->getArg(0)); |
| Call->addArg(Intrinsic->getArg(1)); |
| Call->addArg(Intrinsic->getArg(2)); |
| Instr->setDeleted(); |
| return; |
| } |
| case Intrinsics::Memset: { |
| Operand *ValOp = Intrinsic->getArg(1); |
| assert(ValOp->getType() == IceType_i8); |
| Variable *ValExt = Func->makeVariable(stackSlotType()); |
| Context.insert<InstCast>(InstCast::Zext, ValExt, ValOp); |
| |
| static constexpr SizeT MaxArgs = 3; |
| static constexpr Variable *NoDest = nullptr; |
| Operand *TargetHelper = |
| Ctx->getRuntimeHelperFunc(RuntimeHelper::H_call_memset); |
| auto *Call = Context.insert<InstCall>(MaxArgs, NoDest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Intrinsic->getArg(0)); |
| Call->addArg(ValExt); |
| Call->addArg(Intrinsic->getArg(2)); |
| Instr->setDeleted(); |
| return; |
| } |
| case Intrinsics::Setjmp: { |
| static constexpr SizeT MaxArgs = 1; |
| Operand *TargetHelper = |
| Ctx->getRuntimeHelperFunc(RuntimeHelper::H_call_setjmp); |
| auto *Call = Context.insert<InstCall>(MaxArgs, Dest, TargetHelper, |
| NoTailCall, IsTargetHelperCall); |
| Call->addArg(Intrinsic->getArg(0)); |
| Instr->setDeleted(); |
| return; |
| } |
| } |
| llvm::report_fatal_error("Control flow should never have reached here."); |
| } |
| } |
| } |
| |
| void TargetMIPS32::findMaxStackOutArgsSize() { |
| // MinNeededOutArgsBytes should be updated if the Target ever creates a |
| // high-level InstCall that requires more stack bytes. |
| size_t MinNeededOutArgsBytes = 0; |
| if (!MaybeLeafFunc) |
| MinNeededOutArgsBytes = MIPS32_MAX_GPR_ARG * 4; |
| MaxOutArgsSizeBytes = MinNeededOutArgsBytes; |
| for (CfgNode *Node : Func->getNodes()) { |
| Context.init(Node); |
| while (!Context.atEnd()) { |
| PostIncrLoweringContext PostIncrement(Context); |
| Inst *CurInstr = iteratorToInst(Context.getCur()); |
| if (auto *Call = llvm::dyn_cast<InstCall>(CurInstr)) { |
| SizeT OutArgsSizeBytes = getCallStackArgumentsSizeBytes(Call); |
| MaxOutArgsSizeBytes = std::max(MaxOutArgsSizeBytes, OutArgsSizeBytes); |
| } |
| } |
| } |
| CurrentAllocaOffset = MaxOutArgsSizeBytes; |
| } |
| |
| void TargetMIPS32::translateO2() { |
| TimerMarker T(TimerStack::TT_O2, Func); |
| |
| // TODO(stichnot): share passes with X86? |
| // https://code.google.com/p/nativeclient/issues/detail?id=4094 |
| genTargetHelperCalls(); |
| |
| unsetIfNonLeafFunc(); |
| |
| findMaxStackOutArgsSize(); |
| |
| // Merge Alloca instructions, and lay out the stack. |
| static constexpr bool SortAndCombineAllocas = true; |
| Func->processAllocas(SortAndCombineAllocas); |
| Func->dump("After Alloca processing"); |
| |
| if (!getFlags().getEnablePhiEdgeSplit()) { |
| // Lower Phi instructions. |
| Func->placePhiLoads(); |
| if (Func->hasError()) |
| return; |
| Func->placePhiStores(); |
| if (Func->hasError()) |
| return; |
| Func->deletePhis(); |
| if (Func->hasError()) |
| return; |
| Func->dump("After Phi lowering"); |
| } |
| |
| // Address mode optimization. |
| Func->getVMetadata()->init(VMK_SingleDefs); |
| Func->doAddressOpt(); |
| |
| // Argument lowering |
| Func->doArgLowering(); |
| |
| // Target lowering. This requires liveness analysis for some parts of the |
| // lowering decisions, such as compare/branch fusing. If non-lightweight |
| // liveness analysis is used, the instructions need to be renumbered first. |
| // TODO: This renumbering should only be necessary if we're actually |
| // calculating live intervals, which we only do for register allocation. |
| Func->renumberInstructions(); |
| if (Func->hasError()) |
| return; |
| |
| // TODO: It should be sufficient to use the fastest liveness calculation, |
| // i.e. livenessLightweight(). However, for some reason that slows down the |
| // rest of the translation. Investigate. |
| Func->liveness(Liveness_Basic); |
| if (Func->hasError()) |
| return; |
| Func->dump("After MIPS32 address mode opt"); |
| |
| Func->genCode(); |
| if (Func->hasError()) |
| return; |
| Func->dump("After MIPS32 codegen"); |
| |
| // Register allocation. This requires instruction renumbering and full |
| // liveness analysis. |
| Func->renumberInstructions(); |
| if (Func->hasError()) |
| return; |
| Func->liveness(Liveness_Intervals); |
| if (Func->hasError()) |
| return; |
| // The post-codegen dump is done here, after liveness analysis and associated |
| // cleanup, to make the dump cleaner and more useful. |
| Func->dump("After initial MIPS32 codegen"); |
| // Validate the live range computations. The expensive validation call is |
| // deliberately only made when assertions are enabled. |
| assert(Func->validateLiveness()); |
| Func->getVMetadata()->init(VMK_All); |
| regAlloc(RAK_Global); |
| if (Func->hasError()) |
| return; |
| Func->dump("After linear scan regalloc"); |
| |
| if (getFlags().getEnablePhiEdgeSplit()) { |
| Func->advancedPhiLowering(); |
| Func->dump("After advanced Phi lowering"); |
| } |
| |
| // Stack frame mapping. |
| Func->genFrame(); |
| if (Func->hasError()) |
| return; |
| Func->dump("After stack frame mapping"); |
| |
| postLowerLegalization(); |
| if (Func->hasError()) |
| return; |
| Func->dump("After postLowerLegalization"); |
| |
| Func->contractEmptyNodes(); |
| Func->reorderNodes(); |
| |
| // Branch optimization. This needs to be done just before code emission. In |
| // particular, no transformations that insert or reorder CfgNodes should be |
| // done after branch optimization. We go ahead and do it before nop insertion |
| // to reduce the amount of work needed for searching for opportunities. |
| Func->doBranchOpt(); |
| Func->dump("After branch optimization"); |
| } |
| |
| void TargetMIPS32::translateOm1() { |
| TimerMarker T(TimerStack::TT_Om1, Func); |
| |
| // TODO: share passes with X86? |
| genTargetHelperCalls(); |
| |
| unsetIfNonLeafFunc(); |
| |
| findMaxStackOutArgsSize(); |
| |
| // Do not merge Alloca instructions, and lay out the stack. |
| static constexpr bool SortAndCombineAllocas = false; |
| Func->processAllocas(SortAndCombineAllocas); |
| Func->dump("After Alloca processing"); |
| |
| Func->placePhiLoads(); |
| if (Func->hasError()) |
| return; |
| Func->placePhiStores(); |
| if (Func->hasError()) |
| return; |
| Func->deletePhis(); |
| if (Func->hasError()) |
| return; |
| Func->dump("After Phi lowering"); |
| |
| Func->doArgLowering(); |
| |
| Func->genCode(); |
| if (Func->hasError()) |
| return; |
| Func->dump("After initial MIPS32 codegen"); |
| |
| regAlloc(RAK_InfOnly); |
| if (Func->hasError()) |
| return; |
| Func->dump("After regalloc of infinite-weight variables"); |
| |
| Func->genFrame(); |
| if (Func->hasError()) |
| return; |
| Func->dump("After stack frame mapping"); |
| |
| postLowerLegalization(); |
| if (Func->hasError()) |
| return; |
| Func->dump("After postLowerLegalization"); |
| } |
| |
| bool TargetMIPS32::doBranchOpt(Inst *Instr, const CfgNode *NextNode) { |
| if (auto *Br = llvm::dyn_cast<InstMIPS32Br>(Instr)) { |
| return Br->optimizeBranch(NextNode); |
| } |
| return false; |
| } |
| |
| namespace { |
| |
| const char *RegNames[RegMIPS32::Reg_NUM] = { |
| #define X(val, encode, name, scratch, preserved, stackptr, frameptr, isInt, \ |
| isI64Pair, isFP32, isFP64, isVec128, alias_init) \ |
| name, |
| REGMIPS32_TABLE |
| #undef X |
| }; |
| |
| } // end of anonymous namespace |
| |
| const char *RegMIPS32::getRegName(RegNumT RegNum) { |
| RegNum.assertIsValid(); |
| return RegNames[RegNum]; |
| } |
| |
| const char *TargetMIPS32::getRegName(RegNumT RegNum, Type Ty) const { |
| (void)Ty; |
| return RegMIPS32::getRegName(RegNum); |
| } |
| |
| Variable *TargetMIPS32::getPhysicalRegister(RegNumT RegNum, Type Ty) { |
| if (Ty == IceType_void) |
| Ty = IceType_i32; |
| if (PhysicalRegisters[Ty].empty()) |
| PhysicalRegisters[Ty].resize(RegMIPS32::Reg_NUM); |
| RegNum.assertIsValid(); |
| Variable *Reg = PhysicalRegisters[Ty][RegNum]; |
| if (Reg == nullptr) { |
| Reg = Func->makeVariable(Ty); |
| Reg->setRegNum(RegNum); |
| PhysicalRegisters[Ty][RegNum] = Reg; |
| // Specially mark a named physical register as an "argument" so that it is |
| // considered live upon function entry. Otherwise it's possible to get |
| // liveness validation errors for saving callee-save registers. |
| Func->addImplicitArg(Reg); |
| // Don't bother tracking the live range of a named physical register. |
| Reg->setIgnoreLiveness(); |
| } |
| return Reg; |
| } |
| |
| void TargetMIPS32::emitJumpTable(const Cfg *Func, |
| const InstJumpTable *JumpTable) const { |
| (void)Func; |
| (void)JumpTable; |
| UnimplementedError(getFlags()); |
| } |
| |
| /// Provide a trivial wrapper to legalize() for this common usage. |
| Variable *TargetMIPS32::legalizeToReg(Operand *From, RegNumT RegNum) { |
| return llvm::cast<Variable>(legalize(From, Legal_Reg, RegNum)); |
| } |
| |
| /// Legalize undef values to concrete values. |
| Operand *TargetMIPS32::legalizeUndef(Operand *From, RegNumT RegNum) { |
| (void)RegNum; |
| Type Ty = From->getType(); |
| if (llvm::isa<ConstantUndef>(From)) { |
| // Lower undefs to zero. Another option is to lower undefs to an |
| // uninitialized register; however, using an uninitialized register |
| // results in less predictable code. |
| // |
| // If in the future the implementation is changed to lower undef |
| // values to uninitialized registers, a FakeDef will be needed: |
| // Context.insert(InstFakeDef::create(Func, Reg)); |
| // This is in order to ensure that the live range of Reg is not |
| // overestimated. If the constant being lowered is a 64 bit value, |
| // then the result should be split and the lo and hi components will |
| // need to go in uninitialized registers. |
| if (isVectorType(Ty)) { |
| Variable *Var = makeReg(Ty, RegNum); |
| auto *Reg = llvm::cast<VariableVecOn32>(Var); |
| Reg->initVecElement(Func); |
| auto *Zero = getZero(); |
| for (Variable *Var : Reg->getContainers()) { |
| _mov(Var, Zero); |
| } |
| return Reg; |
| } |
| return Ctx->getConstantZero(Ty); |
| } |
| return From; |
| } |
| |
| Variable *TargetMIPS32::makeReg(Type Type, RegNumT RegNum) { |
| // There aren't any 64-bit integer registers for Mips32. |
| assert(Type != IceType_i64); |
| Variable *Reg = Func->makeVariable(Type); |
| if (RegNum.hasValue()) |
| Reg->setRegNum(RegNum); |
| else |
| Reg->setMustHaveReg(); |
| return Reg; |
| } |
| |
| OperandMIPS32Mem *TargetMIPS32::formMemoryOperand(Operand *Operand, Type Ty) { |
| // It may be the case that address mode optimization already creates an |
| // OperandMIPS32Mem, so in that case it wouldn't need another level of |
| // transformation. |
| if (auto *Mem = llvm::dyn_cast<OperandMIPS32Mem>(Operand)) { |
| return llvm::cast<OperandMIPS32Mem>(legalize(Mem)); |
| } |
| |
| // If we didn't do address mode optimization, then we only have a base/offset |
| // to work with. MIPS always requires a base register, so just use that to |
| // hold the operand. |
| auto *Base = llvm::cast<Variable>( |
| legalize(Operand, Legal_Reg | Legal_Rematerializable)); |
| const int32_t Offset = Base->hasStackOffset() ? Base->getStackOffset() : 0; |
| return OperandMIPS32Mem::create( |
| Func, Ty, Base, |
| llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(Offset))); |
| } |
| |
| void TargetMIPS32::emitVariable(const Variable *Var) const { |
| if (!BuildDefs::dump()) |
| return; |
| Ostream &Str = Ctx->getStrEmit(); |
| const Type FrameSPTy = IceType_i32; |
| if (Var->hasReg()) { |
| Str << '$' << getRegName(Var->getRegNum(), Var->getType()); |
| return; |
| } |
| if (Var->mustHaveReg()) { |
| llvm::report_fatal_error("Infinite-weight Variable (" + Var->getName() + |
| ") has no register assigned - function " + |
| Func->getFunctionName()); |
| } |
| const int32_t Offset = Var->getStackOffset(); |
| Str << Offset; |
| Str << "($" << getRegName(getFrameOrStackReg(), FrameSPTy); |
| Str << ")"; |
| } |
| |
| TargetMIPS32::CallingConv::CallingConv() |
| : GPRegsUsed(RegMIPS32::Reg_NUM), |
| GPRArgs(GPRArgInitializer.rbegin(), GPRArgInitializer.rend()), |
| I64Args(I64ArgInitializer.rbegin(), I64ArgInitializer.rend()), |
| VFPRegsUsed(RegMIPS32::Reg_NUM), |
| FP32Args(FP32ArgInitializer.rbegin(), FP32ArgInitializer.rend()), |
| FP64Args(FP64ArgInitializer.rbegin(), FP64ArgInitializer.rend()) {} |
| |
| // In MIPS O32 abi FP argument registers can be used only if first argument is |
| // of type float/double. UseFPRegs flag is used to care of that. Also FP arg |
| // registers can be used only for first 2 arguments, so we require argument |
| // number to make register allocation decisions. |
| bool TargetMIPS32::CallingConv::argInReg(Type Ty, uint32_t ArgNo, |
| RegNumT *Reg) { |
| if (isScalarIntegerType(Ty) || isVectorType(Ty)) |
| return argInGPR(Ty, Reg); |
| if (isScalarFloatingType(Ty)) { |
| if (ArgNo == 0) { |
| UseFPRegs = true; |
| return argInVFP(Ty, Reg); |
| } |
| if (UseFPRegs && ArgNo == 1) { |
| UseFPRegs = false; |
| return argInVFP(Ty, Reg); |
| } |
| return argInGPR(Ty, Reg); |
| } |
| llvm::report_fatal_error("argInReg: Invalid type."); |
| return false; |
| } |
| |
| bool TargetMIPS32::CallingConv::argInGPR(Type Ty, RegNumT *Reg) { |
| CfgVector<RegNumT> *Source; |
| |
| switch (Ty) { |
| default: { |
| llvm::report_fatal_error("argInGPR: Invalid type."); |
| return false; |
| } break; |
| case IceType_v4i1: |
| case IceType_v8i1: |
| case IceType_v16i1: |
| case IceType_v16i8: |
| case IceType_v8i16: |
| case IceType_v4i32: |
| case IceType_v4f32: |
| case IceType_i32: |
| case IceType_f32: { |
| Source = &GPRArgs; |
| } break; |
| case IceType_i64: |
| case IceType_f64: { |
| Source = &I64Args; |
| } break; |
| } |
| |
| discardUnavailableGPRsAndTheirAliases(Source); |
| |
| // If $4 is used for any scalar type (or returining v4f32) then the next |
| // vector type if passed in $6:$7:stack:stack |
| if (isVectorType(Ty)) { |
| alignGPR(Source); |
| } |
| |
| if (Source->empty()) { |
| GPRegsUsed.set(); |
| return false; |
| } |
| |
| *Reg = Source->back(); |
| // Note that we don't Source->pop_back() here. This is intentional. Notice how |
| // we mark all of Reg's aliases as Used. So, for the next argument, |
| // Source->back() is marked as unavailable, and it is thus implicitly popped |
| // from the stack. |
| GPRegsUsed |= RegisterAliases[*Reg]; |
| |
| // All vector arguments irrespective of their base type are passed in GP |
| // registers. First vector argument is passed in $4:$5:$6:$7 and 2nd |
| // is passed in $6:$7:stack:stack. If it is 1st argument then discard |
| // $4:$5:$6:$7 otherwise discard $6:$7 only. |
| if (isVectorType(Ty)) { |
| if (((unsigned)*Reg) == RegMIPS32::Reg_A0) { |
| GPRegsUsed |= RegisterAliases[RegMIPS32::Reg_A1]; |
| GPRegsUsed |= RegisterAliases[RegMIPS32::Reg_A2]; |
| GPRegsUsed |= RegisterAliases[RegMIPS32::Reg_A3]; |
| } else { |
| GPRegsUsed |= RegisterAliases[RegMIPS32::Reg_A3]; |
| } |
| } |
| |
| return true; |
| } |
| |
| inline void TargetMIPS32::CallingConv::discardNextGPRAndItsAliases( |
| CfgVector<RegNumT> *Regs) { |
| GPRegsUsed |= RegisterAliases[Regs->back()]; |
| Regs->pop_back(); |
| } |
| |
| inline void TargetMIPS32::CallingConv::alignGPR(CfgVector<RegNumT> *Regs) { |
| if (Regs->back() == RegMIPS32::Reg_A1 || Regs->back() == RegMIPS32::Reg_A3) |
| discardNextGPRAndItsAliases(Regs); |
| } |
| |
| // GPR are not packed when passing parameters. Thus, a function foo(i32, i64, |
| // i32) will have the first argument in a0, the second in a2-a3, and the third |
| // on the stack. To model this behavior, whenever we pop a register from Regs, |
| // we remove all of its aliases from the pool of available GPRs. This has the |
| // effect of computing the "closure" on the GPR registers. |
| void TargetMIPS32::CallingConv::discardUnavailableGPRsAndTheirAliases( |
| CfgVector<RegNumT> *Regs) { |
| while (!Regs->empty() && GPRegsUsed[Regs->back()]) { |
| discardNextGPRAndItsAliases(Regs); |
| } |
| } |
| |
| bool TargetMIPS32::CallingConv::argInVFP(Type Ty, RegNumT *Reg) { |
| CfgVector<RegNumT> *Source; |
| |
| switch (Ty) { |
| default: { |
| llvm::report_fatal_error("argInVFP: Invalid type."); |
| return false; |
| } break; |
| case IceType_f32: { |
| Source = &FP32Args; |
| } break; |
| case IceType_f64: { |
| Source = &FP64Args; |
| } break; |
| } |
| |
| discardUnavailableVFPRegsAndTheirAliases(Source); |
| |
| if (Source->empty()) { |
| VFPRegsUsed.set(); |
| return false; |
| } |
| |
| *Reg = Source->back(); |
| VFPRegsUsed |= RegisterAliases[*Reg]; |
| |
| // In MIPS O32 abi if fun arguments are (f32, i32) then one can not use reg_a0 |
| // for second argument even though it's free. f32 arg goes in reg_f12, i32 arg |
| // goes in reg_a1. Similarly if arguments are (f64, i32) second argument goes |
| // in reg_a3 and a0, a1 are not used. |
| Source = &GPRArgs; |
| // Discard one GPR reg for f32(4 bytes), two for f64(4 + 4 bytes) |
| if (Ty == IceType_f64) { |
| // In MIPS o32 abi, when we use GPR argument pairs to store F64 values, pair |
| // must be aligned at even register. Similarly when we discard GPR registers |
| // when some arguments from starting 16 bytes goes in FPR, we must take care |
| // of alignment. For example if fun args are (f32, f64, f32), for first f32 |
| // we discard a0, now for f64 argument, which will go in F14F15, we must |
| // first align GPR vector to even register by discarding a1, then discard |
| // two GPRs a2 and a3. Now last f32 argument will go on stack. |
| alignGPR(Source); |
| discardNextGPRAndItsAliases(Source); |
| } |
| discardNextGPRAndItsAliases(Source); |
| return true; |
| } |
| |
| void TargetMIPS32::CallingConv::discardUnavailableVFPRegsAndTheirAliases( |
| CfgVector<RegNumT> *Regs) { |
| while (!Regs->empty() && VFPRegsUsed[Regs->back()]) { |
| Regs->pop_back(); |
| } |
| } |
| |
| void TargetMIPS32::lowerArguments() { |
| VarList &Args = Func->getArgs(); |
| TargetMIPS32::CallingConv CC; |
| |
| // For each register argument, replace Arg in the argument list with the home |
| // register. Then generate an instruction in the prolog to copy the home |
| // register to the assigned location of Arg. |
| Context.init(Func->getEntryNode()); |
| Context.setInsertPoint(Context.getCur()); |
| |
| // v4f32 is returned through stack. $4 is setup by the caller and passed as |
| // first argument implicitly. Callee then copies the return vector at $4. |
| Variable *ImplicitRetVec = nullptr; |
| if (isVectorFloatingType(Func->getReturnType())) { |
| ImplicitRetVec = Func->makeVariable(IceType_i32); |
| ImplicitRetVec->setName(Func, "ImplicitRet_v4f32"); |
| ImplicitRetVec->setIsArg(); |
| Args.insert(Args.begin(), ImplicitRetVec); |
| setImplicitRet(ImplicitRetVec); |
| } |
| |
| for (SizeT i = 0, E = Args.size(); i < E; ++i) { |
| Variable *Arg = Args[i]; |
| Type Ty = Arg->getType(); |
| RegNumT RegNum; |
| if (!CC.argInReg(Ty, i, &RegNum)) { |
| continue; |
| } |
| Variable *RegisterArg = Func->makeVariable(Ty); |
| if (BuildDefs::dump()) { |
| RegisterArg->setName(Func, "home_reg:" + Arg->getName()); |
| } |
| RegisterArg->setIsArg(); |
| Arg->setIsArg(false); |
| Args[i] = RegisterArg; |
| |
| if (isVectorType(Ty)) { |
| auto *RegisterArgVec = llvm::cast<VariableVecOn32>(RegisterArg); |
| RegisterArgVec->initVecElement(Func); |
| RegisterArgVec->getContainers()[0]->setRegNum( |
| RegNumT::fixme((unsigned)RegNum + 0)); |
| RegisterArgVec->getContainers()[1]->setRegNum( |
| RegNumT::fixme((unsigned)RegNum + 1)); |
| // First two elements of second vector argument are passed |
| // in $6:$7 and remaining two on stack. Do not assign register |
| // to this is second vector argument. |
| if (i == 0) { |
| RegisterArgVec->getContainers()[2]->setRegNum( |
| RegNumT::fixme((unsigned)RegNum + 2)); |
| RegisterArgVec->getContainers()[3]->setRegNum( |
| RegNumT::fixme((unsigned)RegNum + 3)); |
| } else { |
| RegisterArgVec->getContainers()[2]->setRegNum( |
| RegNumT::fixme(RegNumT())); |
| RegisterArgVec->getContainers()[3]->setRegNum( |
| RegNumT::fixme(RegNumT())); |
| } |
| } else { |
| switch (Ty) { |
| default: { |
| RegisterArg->setRegNum(RegNum); |
| } break; |
| case IceType_i64: { |
| auto *RegisterArg64 = llvm::cast<Variable64On32>(RegisterArg); |
| RegisterArg64->initHiLo(Func); |
| RegisterArg64->getLo()->setRegNum( |
| RegNumT::fixme(RegMIPS32::get64PairFirstRegNum(RegNum))); |
| RegisterArg64->getHi()->setRegNum( |
| RegNumT::fixme(RegMIPS32::get64PairSecondRegNum(RegNum))); |
| } break; |
| } |
| } |
| Context.insert<InstAssign>(Arg, RegisterArg); |
| } |
| |
| // Insert fake use of ImplicitRet_v4f32 to keep it live |
| if (ImplicitRetVec) { |
| for (CfgNode *Node : Func->getNodes()) { |
| for (Inst &Instr : Node->getInsts()) { |
| if (llvm::isa<InstRet>(&Instr)) { |
| Context.setInsertPoint(instToIterator(&Instr)); |
| Context.insert<InstFakeUse>(ImplicitRetVec); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| Type TargetMIPS32::stackSlotType() { return IceType_i32; } |
| |
| // Helper function for addProlog(). |
| // |
| // This assumes Arg is an argument passed on the stack. This sets the frame |
| // offset for Arg and updates InArgsSizeBytes according to Arg's width. For an |
| // I64 arg that has been split into Lo and Hi components, it calls itself |
| // recursively on the components, taking care to handle Lo first because of the |
| // little-endian architecture. Lastly, this function generates an instruction |
| // to copy Arg into its assigned register if applicable. |
| void TargetMIPS32::finishArgumentLowering(Variable *Arg, bool PartialOnStack, |
| Variable *FramePtr, |
| size_t BasicFrameOffset, |
| size_t *InArgsSizeBytes) { |
| const Type Ty = Arg->getType(); |
| *InArgsSizeBytes = applyStackAlignmentTy(*InArgsSizeBytes, Ty); |
| |
| // If $4 is used for any scalar type (or returining v4f32) then the next |
| // vector type if passed in $6:$7:stack:stack. Load 3nd and 4th element |
| // from agument stack. |
| if (auto *ArgVecOn32 = llvm::dyn_cast<VariableVecOn32>(Arg)) { |
| if (PartialOnStack == false) { |
| auto *Elem0 = ArgVecOn32->getContainers()[0]; |
| auto *Elem1 = ArgVecOn32->getContainers()[1]; |
| finishArgumentLowering(Elem0, PartialOnStack, FramePtr, BasicFrameOffset, |
| InArgsSizeBytes); |
| finishArgumentLowering(Elem1, PartialOnStack, FramePtr, BasicFrameOffset, |
| InArgsSizeBytes); |
| } |
| auto *Elem2 = ArgVecOn32->getContainers()[2]; |
| auto *Elem3 = ArgVecOn32->getContainers()[3]; |
| finishArgumentLowering(Elem2, PartialOnStack, FramePtr, BasicFrameOffset, |
| InArgsSizeBytes); |
| finishArgumentLowering(Elem3, PartialOnStack, FramePtr, BasicFrameOffset, |
| InArgsSizeBytes); |
| return; |
| } |
| |
| if (auto *Arg64On32 = llvm::dyn_cast<Variable64On32>(Arg)) { |
| Variable *const Lo = Arg64On32->getLo(); |
| Variable *const Hi = Arg64On32->getHi(); |
| finishArgumentLowering(Lo, PartialOnStack, FramePtr, BasicFrameOffset, |
| InArgsSizeBytes); |
| finishArgumentLowering(Hi, PartialOnStack, FramePtr, BasicFrameOffset, |
| InArgsSizeBytes); |
| return; |
| } |
| |
| assert(Ty != IceType_i64); |
| assert(!isVectorType(Ty)); |
| |
| const int32_t ArgStackOffset = BasicFrameOffset + *InArgsSizeBytes; |
| *InArgsSizeBytes += typeWidthInBytesOnStack(Ty); |
| |
| if (!Arg->hasReg()) { |
| Arg->setStackOffset(ArgStackOffset); |
| return; |
| } |
| |
| // If the argument variable has been assigned a register, we need to copy the |
| // value from the stack slot. |
| Variable *Parameter = Func->makeVariable(Ty); |
| Parameter->setMustNotHaveReg(); |
| Parameter->setStackOffset(ArgStackOffset); |
| _mov(Arg, Parameter); |
| } |
| |
| void TargetMIPS32::addProlog(CfgNode *Node) { |
| // Stack frame layout: |
| // |
| // +------------------------+ |
| // | 1. preserved registers | |
| // +------------------------+ |
| // | 2. padding | |
| // +------------------------+ |
| // | 3. global spill area | |
| // +------------------------+ |
| // | 4. padding | |
| // +------------------------+ |
| // | 5. local spill area | |
| // +------------------------+ |
| // | 6. padding | |
| // +------------------------+ |
| // | 7. allocas | |
| // +------------------------+ |
| // | 8. padding | |
| // +------------------------+ |
| // | 9. out args | |
| // +------------------------+ <--- StackPointer |
| // |
| // The following variables record the size in bytes of the given areas: |
| // * PreservedRegsSizeBytes: area 1 |
| // * SpillAreaPaddingBytes: area 2 |
| // * GlobalsSize: area 3 |
| // * GlobalsAndSubsequentPaddingSize: areas 3 - 4 |
| // * LocalsSpillAreaSize: area 5 |
| // * SpillAreaSizeBytes: areas 2 - 9 |
| // * maxOutArgsSizeBytes(): area 9 |
| |
| Context.init(Node); |
| Context.setInsertPoint(Context.getCur()); |
| |
| SmallBitVector CalleeSaves = getRegisterSet(RegSet_CalleeSave, RegSet_None); |
| RegsUsed = SmallBitVector(CalleeSaves.size()); |
| |
| VarList SortedSpilledVariables; |
| |
| size_t GlobalsSize = 0; |
| // If there is a separate locals area, this represents that area. Otherwise |
| // it counts any variable not counted by GlobalsSize. |
| SpillAreaSizeBytes = 0; |
| // If there is a separate locals area, this specifies the alignment for it. |
| uint32_t LocalsSlotsAlignmentBytes = 0; |
| // The entire spill locations area gets aligned to largest natural alignment |
| // of the variables that have a spill slot. |
| uint32_t SpillAreaAlignmentBytes = 0; |
| // For now, we don't have target-specific variables that need special |
| // treatment (no stack-slot-linked SpillVariable type). |
| std::function<bool(Variable *)> TargetVarHook = [](Variable *Var) { |
| static constexpr bool AssignStackSlot = false; |
| static constexpr bool DontAssignStackSlot = !AssignStackSlot; |
| if (llvm::isa<Variable64On32>(Var)) { |
| return DontAssignStackSlot; |
| } |
| return AssignStackSlot; |
| }; |
| |
| // Compute the list of spilled variables and bounds for GlobalsSize, etc. |
| getVarStackSlotParams(SortedSpilledVariables, RegsUsed, &GlobalsSize, |
| &SpillAreaSizeBytes, &SpillAreaAlignmentBytes, |
| &LocalsSlotsAlignmentBytes, TargetVarHook); |
| uint32_t LocalsSpillAreaSize = SpillAreaSizeBytes; |
| SpillAreaSizeBytes += GlobalsSize; |
| |
| PreservedGPRs.reserve(CalleeSaves.size()); |
| |
| // Consider FP and RA as callee-save / used as needed. |
| if (UsesFramePointer) { |
| if (RegsUsed[RegMIPS32::Reg_FP]) { |
| llvm::report_fatal_error("Frame pointer has been used."); |
| } |
| CalleeSaves[RegMIPS32::Reg_FP] = true; |
| RegsUsed[RegMIPS32::Reg_FP] = true; |
| } |
| if (!MaybeLeafFunc) { |
| CalleeSaves[RegMIPS32::Reg_RA] = true; |
| RegsUsed[RegMIPS32::Reg_RA] = true; |
| } |
| |
| // Make two passes over the used registers. The first pass records all the |
| // used registers -- and their aliases. Then, we figure out which GPR |
| // registers should be saved. |
| SmallBitVector ToPreserve(RegMIPS32::Reg_NUM); |
| for (SizeT i = 0; i < CalleeSaves.size(); ++i) { |
| if (CalleeSaves[i] && RegsUsed[i]) { |
| ToPreserve |= RegisterAliases[i]; |
| } |
| } |
| |
| uint32_t NumCallee = 0; |
| |
| // RegClasses is a tuple of |
| // |
| // <First Register in Class, Last Register in Class, Vector of Save Registers> |
| // |
| // We use this tuple to figure out which register we should save/restore |
| // during |
| // prolog/epilog. |
| using RegClassType = std::tuple<uint32_t, uint32_t, VarList *>; |
| const RegClassType RegClass = RegClassType( |
| RegMIPS32::Reg_GPR_First, RegMIPS32::Reg_FPR_Last, &PreservedGPRs); |
| const uint32_t FirstRegInClass = std::get<0>(RegClass); |
| const uint32_t LastRegInClass = std::get<1>(RegClass); |
| VarList *const PreservedRegsInClass = std::get<2>(RegClass); |
| for (uint32_t Reg = LastRegInClass; Reg > FirstRegInClass; Reg--) { |
| if (!ToPreserve[Reg]) { |
| continue; |
| } |
| ++NumCallee; |
| Variable *PhysicalRegister = getPhysicalRegister(RegNumT::fromInt(Reg)); |
| PreservedRegsSizeBytes += |
| typeWidthInBytesOnStack(PhysicalRegister->getType()); |
| PreservedRegsInClass->push_back(PhysicalRegister); |
| } |
| |
| Ctx->statsUpdateRegistersSaved(NumCallee); |
| |
| // Align the variables area. SpillAreaPaddingBytes is the size of the region |
| // after the preserved registers and before the spill areas. |
| // LocalsSlotsPaddingBytes is the amount of padding between the globals and |
| // locals area if they are separate. |
| assert(SpillAreaAlignmentBytes <= MIPS32_STACK_ALIGNMENT_BYTES); |
| (void)MIPS32_STACK_ALIGNMENT_BYTES; |
| assert(LocalsSlotsAlignmentBytes <= SpillAreaAlignmentBytes); |
| uint32_t SpillAreaPaddingBytes = 0; |
| uint32_t LocalsSlotsPaddingBytes = 0; |
| alignStackSpillAreas(PreservedRegsSizeBytes, SpillAreaAlignmentBytes, |
| GlobalsSize, LocalsSlotsAlignmentBytes, |
| &SpillAreaPaddingBytes, &LocalsSlotsPaddingBytes); |
| SpillAreaSizeBytes += SpillAreaPaddingBytes + LocalsSlotsPaddingBytes; |
| uint32_t GlobalsAndSubsequentPaddingSize = |
| GlobalsSize + LocalsSlotsPaddingBytes; |
| |
| // Adds the out args space to the stack, and align SP if necessary. |
| if (!NeedsStackAlignment) { |
| SpillAreaSizeBytes += MaxOutArgsSizeBytes * (VariableAllocaUsed ? 0 : 1); |
| } else { |
| SpillAreaSizeBytes = applyStackAlignment( |
| SpillAreaSizeBytes + |
| (VariableAllocaUsed ? VariableAllocaAlignBytes : MaxOutArgsSizeBytes)); |
| } |
| |
| // Combine fixed alloca with SpillAreaSize. |
| SpillAreaSizeBytes += FixedAllocaSizeBytes; |
| |
| TotalStackSizeBytes = |
| applyStackAlignment(PreservedRegsSizeBytes + SpillAreaSizeBytes); |
| |
| // Generate "addiu sp, sp, -TotalStackSizeBytes" |
| if (TotalStackSizeBytes) { |
| // Use the scratch register if needed to legalize the immediate. |
| Variable *SP = getPhysicalRegister(RegMIPS32::Reg_SP); |
| _addiu(SP, SP, -TotalStackSizeBytes); |
| } |
| |
| Ctx->statsUpdateFrameBytes(TotalStackSizeBytes); |
| |
| if (!PreservedGPRs.empty()) { |
| uint32_t StackOffset = TotalStackSizeBytes; |
| for (Variable *Var : *PreservedRegsInClass) { |
| Type RegType; |
| if (RegMIPS32::isFPRReg(Var->getRegNum())) |
| RegType = IceType_f32; |
| else |
| RegType = IceType_i32; |
| auto *PhysicalRegister = makeReg(RegType, Var->getRegNum()); |
| StackOffset -= typeWidthInBytesOnStack(RegType); |
| Variable *SP = getPhysicalRegister(RegMIPS32::Reg_SP); |
| OperandMIPS32Mem *MemoryLocation = OperandMIPS32Mem::create( |
| Func, RegType, SP, |
| llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(StackOffset))); |
| _sw(PhysicalRegister, MemoryLocation); |
| } |
| } |
| |
| Variable *FP = getPhysicalRegister(RegMIPS32::Reg_FP); |
| |
| // Generate "mov FP, SP" if needed. |
| if (UsesFramePointer) { |
| Variable *SP = getPhysicalRegister(RegMIPS32::Reg_SP); |
| _mov(FP, SP); |
| // Keep FP live for late-stage liveness analysis (e.g. asm-verbose mode). |
| Context.insert<InstFakeUse>(FP); |
| } |
| |
| // Fill in stack offsets for stack args, and copy args into registers for |
| // those that were register-allocated. Args are pushed right to left, so |
| // Arg[0] is closest to the stack/frame pointer. |
| const VarList &Args = Func->getArgs(); |
| size_t InArgsSizeBytes = MIPS32_MAX_GPR_ARG * 4; |
| TargetMIPS32::CallingConv CC; |
| uint32_t ArgNo = 0; |
| |
| for (Variable *Arg : Args) { |
| RegNumT DummyReg; |
| const Type Ty = Arg->getType(); |
| bool PartialOnStack; |
| // Skip arguments passed in registers. |
| if (CC.argInReg(Ty, ArgNo, &DummyReg)) { |
| // Load argument from stack: |
| // 1. If this is first vector argument and return type is v4f32. |
| // In this case $4 is used to pass stack address implicitly. |
| // 3rd and 4th element of vector argument is passed through stack. |
| // 2. If this is second vector argument. |
| if (ArgNo != 0 && isVectorType(Ty)) { |
| PartialOnStack = true; |
| finishArgumentLowering(Arg, PartialOnStack, FP, TotalStackSizeBytes, |
| &InArgsSizeBytes); |
| } |
| } else { |
| PartialOnStack = false; |
| finishArgumentLowering(Arg, PartialOnStack, FP, TotalStackSizeBytes, |
| &InArgsSizeBytes); |
| } |
| ++ArgNo; |
| } |
| |
| // Fill in stack offsets for locals. |
| assignVarStackSlots(SortedSpilledVariables, SpillAreaPaddingBytes, |
| SpillAreaSizeBytes, GlobalsAndSubsequentPaddingSize); |
| this->HasComputedFrame = true; |
| |
| if (BuildDefs::dump() && Func->isVerbose(IceV_Frame)) { |
| OstreamLocker _(Func->getContext()); |
| Ostream &Str = Func->getContext()->getStrDump(); |
| |
| Str << "Stack layout:\n"; |
| uint32_t SPAdjustmentPaddingSize = |
| SpillAreaSizeBytes - LocalsSpillAreaSize - |
| GlobalsAndSubsequentPaddingSize - SpillAreaPaddingBytes - |
| MaxOutArgsSizeBytes; |
| Str << " in-args = " << InArgsSizeBytes << " bytes\n" |
| << " preserved registers = " << PreservedRegsSizeBytes << " bytes\n" |
| << " spill area padding = " << SpillAreaPaddingBytes << " bytes\n" |
| << " globals spill area = " << GlobalsSize << " bytes\n" |
| << " globals-locals spill areas intermediate padding = " |
| << GlobalsAndSubsequentPaddingSize - GlobalsSize << " bytes\n" |
| << " locals spill area = " << LocalsSpillAreaSize << " bytes\n" |
| << " SP alignment padding = " << SPAdjustmentPaddingSize << " bytes\n"; |
| |
| Str << "Stack details:\n" |
| << " SP adjustment = " << SpillAreaSizeBytes << " bytes\n" |
| << " spill area alignment = " << SpillAreaAlignmentBytes << " bytes\n" |
| << " outgoing args size = " << MaxOutArgsSizeBytes << " bytes\n" |
| << " locals spill area alignment = " << LocalsSlotsAlignmentBytes |
| << " bytes\n" |
| << " is FP based = " << 1 << "\n"; |
| } |
| return; |
| } |
| |
| void TargetMIPS32::addEpilog(CfgNode *Node) { |
| InstList &Insts = Node->getInsts(); |
| InstList::reverse_iterator RI, E; |
| for (RI = Insts.rbegin(), E = Insts.rend(); RI != E; ++RI) { |
| if (llvm::isa<InstMIPS32Ret>(*RI)) |
| break; |
| } |
| if (RI == E) |
| return; |
| |
| // Convert the reverse_iterator position into its corresponding (forward) |
| // iterator position. |
| InstList::iterator InsertPoint = reverseToForwardIterator(RI); |
| --InsertPoint; |
| Context.init(Node); |
| Context.setInsertPoint(InsertPoint); |
| |
| Variable *SP = getPhysicalRegister(RegMIPS32::Reg_SP); |
| if (UsesFramePointer) { |
| Variable *FP = getPhysicalRegister(RegMIPS32::Reg_FP); |
| // For late-stage liveness analysis (e.g. asm-verbose mode), adding a fake |
| // use of SP before the assignment of SP=FP keeps previous SP adjustments |
| // from being dead-code eliminated. |
| Context.insert<InstFakeUse>(SP); |
| _mov(SP, FP); |
| } |
| |
| VarList::reverse_iterator RIter, END; |
| |
| if (!PreservedGPRs.empty()) { |
| uint32_t StackOffset = TotalStackSizeBytes - PreservedRegsSizeBytes; |
| for (RIter = PreservedGPRs.rbegin(), END = PreservedGPRs.rend(); |
| RIter != END; ++RIter) { |
| Type RegType; |
| if (RegMIPS32::isFPRReg((*RIter)->getRegNum())) |
| RegType = IceType_f32; |
| else |
| RegType = IceType_i32; |
| auto *PhysicalRegister = makeReg(RegType, (*RIter)->getRegNum()); |
| Variable *SP = getPhysicalRegister(RegMIPS32::Reg_SP); |
| OperandMIPS32Mem *MemoryLocation = OperandMIPS32Mem::create( |
| Func, RegType, SP, |
| llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(StackOffset))); |
| _lw(PhysicalRegister, MemoryLocation); |
| StackOffset += typeWidthInBytesOnStack(PhysicalRegister->getType()); |
| } |
| } |
| |
| if (TotalStackSizeBytes) { |
| _addiu(SP, SP, TotalStackSizeBytes); |
| } |
| } |
| |
| Variable *TargetMIPS32::PostLoweringLegalizer::newBaseRegister( |
| Variable *Base, int32_t Offset, RegNumT ScratchRegNum) { |
| // Legalize will likely need a lui/ori combination, but if the top bits are |
| // all 0 from negating the offset and subtracting, we could use that instead. |
| const bool ShouldSub = Offset != 0 && (-Offset & 0xFFFF0000) == 0; |
| Variable *ScratchReg = Target->makeReg(IceType_i32, ScratchRegNum); |
| if (ShouldSub) { |
| Target->_addi(ScratchReg, Base, -Offset); |
| } else { |
| constexpr bool SignExt = true; |
| if (!OperandMIPS32Mem::canHoldOffset(Base->getType(), SignExt, Offset)) { |
| const uint32_t UpperBits = (Offset >> 16) & 0xFFFF; |
| const uint32_t LowerBits = Offset & 0xFFFF; |
| Target->_lui(ScratchReg, Target->Ctx->getConstantInt32(UpperBits)); |
| if (LowerBits) |
| Target->_ori(ScratchReg, ScratchReg, LowerBits); |
| Target->_addu(ScratchReg, ScratchReg, Base); |
| } else { |
| Target->_addiu(ScratchReg, Base, Offset); |
| } |
| } |
| |
| return ScratchReg; |
| } |
| |
| void TargetMIPS32::PostLoweringLegalizer::legalizeMovFp( |
| InstMIPS32MovFP64ToI64 *MovInstr) { |
| Variable *Dest = MovInstr->getDest(); |
| Operand *Src = MovInstr->getSrc(0); |
| const Type SrcTy = Src->getType(); |
| |
| if (Dest != nullptr && SrcTy == IceType_f64) { |
| int32_t Offset = Dest->getStackOffset(); |
| auto *Base = Target->getPhysicalRegister(Target->getFrameOrStackReg()); |
| OperandMIPS32Mem *TAddr = OperandMIPS32Mem::create( |
| Target->Func, IceType_f32, Base, |
| llvm::cast<ConstantInteger32>(Target->Ctx->getConstantInt32(Offset))); |
| OperandMIPS32Mem *Addr = legalizeMemOperand(TAddr); |
| auto *SrcV = llvm::cast<Variable>(Src); |
| Variable *SrcR; |
| if (MovInstr->getInt64Part() == Int64_Lo) { |
| SrcR = Target->makeReg( |
| IceType_f32, RegMIPS32::get64PairFirstRegNum(SrcV->getRegNum())); |
| } else { |
| SrcR = Target->makeReg( |
| IceType_f32, RegMIPS32::get64PairSecondRegNum(SrcV->getRegNum())); |
| } |
| Target->_sw(SrcR, Addr); |
| if (MovInstr->isDestRedefined()) { |
| Target->_set_dest_redefined(); |
| } |
| MovInstr->setDeleted(); |
| return; |
| } |
| |
| llvm::report_fatal_error("legalizeMovFp: Invalid operands"); |
| } |
| |
| void TargetMIPS32::PostLoweringLegalizer::legalizeMov(InstMIPS32Mov *MovInstr) { |
| Variable *Dest = MovInstr->getDest(); |
| assert(Dest != nullptr); |
| const Type DestTy = Dest->getType(); |
| assert(DestTy != IceType_i64); |
| |
| Operand *Src = MovInstr->getSrc(0); |
| const Type SrcTy = Src->getType(); |
| (void)SrcTy; |
| assert(SrcTy != IceType_i64); |
| |
| bool Legalized = false; |
| auto *SrcR = llvm::cast<Variable>(Src); |
| if (Dest->hasReg() && SrcR->hasReg()) { |
| // This might be a GP to/from FP move generated due to argument passing. |
| // Use mtc1/mfc1 instead of mov.[s/d] if src and dst registers are of |
| // different types. |
| const bool IsDstGPR = RegMIPS32::isGPRReg(Dest->getRegNum()); |
| const bool IsSrcGPR = RegMIPS32::isGPRReg(SrcR->getRegNum()); |
| const RegNumT SRegNum = SrcR->getRegNum(); |
| const RegNumT DRegNum = Dest->getRegNum(); |
| if (IsDstGPR != IsSrcGPR) { |
| if (IsDstGPR) { |
| // Dest is GPR and SrcR is FPR. Use mfc1. |
| int32_t TypeWidth = typeWidthInBytes(DestTy); |
| if (MovInstr->getDestHi() != nullptr) |
| TypeWidth += typeWidthInBytes(MovInstr->getDestHi()->getType()); |
| if (TypeWidth == 8) { |
| // Split it into two mfc1 instructions |
| Variable *SrcGPRHi = Target->makeReg( |
| IceType_f32, RegMIPS32::get64PairFirstRegNum(SRegNum)); |
| Variable *SrcGPRLo = Target->makeReg( |
| IceType_f32, RegMIPS32::get64PairSecondRegNum(SRegNum)); |
| Variable *DstFPRHi, *DstFPRLo; |
| if (MovInstr->getDestHi() != nullptr && Dest != nullptr) { |
| DstFPRHi = Target->makeReg(IceType_i32, |
| MovInstr->getDestHi()->getRegNum()); |
| DstFPRLo = Target->makeReg(IceType_i32, Dest->getRegNum()); |
| } else { |
| DstFPRHi = Target->makeReg( |
| IceType_i32, RegMIPS32::get64PairFirstRegNum(DRegNum)); |
| DstFPRLo = Target->makeReg( |
| IceType_i32, RegMIPS32::get64PairSecondRegNum(DRegNum)); |
| } |
| Target->_mov(DstFPRHi, SrcGPRHi); |
| Target->_mov(DstFPRLo, SrcGPRLo); |
| Legalized = true; |
| } else { |
| Variable *SrcGPR = Target->makeReg(IceType_f32, SRegNum); |
| Variable *DstFPR = Target->makeReg(IceType_i32, DRegNum); |
| Target->_mov(DstFPR, SrcGPR); |
| Legalized = true; |
| } |
| } else { |
| // Dest is FPR and SrcR is GPR. Use mtc1. |
| if (typeWidthInBytes(Dest->getType()) == 8) { |
| Variable *SrcGPRHi, *SrcGPRLo; |
| // SrcR could be $zero which is i32 |
| if (SRegNum == RegMIPS32::Reg_ZERO) { |
| SrcGPRHi = Target->makeReg(IceType_i32, SRegNum); |
| SrcGPRLo = SrcGPRHi; |
| } else { |
| // Split it into two mtc1 instructions |
| if (MovInstr->getSrcSize() == 2) { |
| const auto FirstReg = |
| (llvm::cast<Variable>(MovInstr->getSrc(0)))->getRegNum(); |
| const auto SecondReg = |
| (llvm::cast<Variable>(MovInstr->getSrc(1)))->getRegNum(); |
| SrcGPRHi = Target->makeReg(IceType_i32, FirstReg); |
| SrcGPRLo = Target->makeReg(IceType_i32, SecondReg); |
| } else { |
| SrcGPRLo = Target->makeReg( |
| IceType_i32, RegMIPS32::get64PairFirstRegNum(SRegNum)); |
| SrcGPRHi = Target->makeReg( |
| IceType_i32, RegMIPS32::get64PairSecondRegNum(SRegNum)); |
| } |
| } |
| Variable *DstFPRHi = Target->makeReg( |
| IceType_f32, RegMIPS32::get64PairFirstRegNum(DRegNum)); |
| Variable *DstFPRLo = Target->makeReg( |
| IceType_f32, RegMIPS32::get64PairSecondRegNum(DRegNum)); |
| Target->_mov(DstFPRHi, SrcGPRLo); |
| Target->_mov(DstFPRLo, SrcGPRHi); |
| Legalized = true; |
| } else { |
| Variable *SrcGPR = Target->makeReg(IceType_i32, SRegNum); |
| Variable *DstFPR = Target->makeReg(IceType_f32, DRegNum); |
| Target->_mov(DstFPR, SrcGPR); |
| Legalized = true; |
| } |
| } |
| } |
| if (Legalized) { |
| if (MovInstr->isDestRedefined()) { |
| Target->_set_dest_redefined(); |
| } |
| MovInstr->setDeleted(); |
| return; |
| } |
| } |
| |
| if (!Dest->hasReg()) { |
| auto *SrcR = llvm::cast<Variable>(Src); |
| assert(SrcR->hasReg()); |
| assert(!SrcR->isRematerializable()); |
| int32_t Offset = Dest->getStackOffset(); |
| |
| // This is a _mov(Mem(), Variable), i.e., a store. |
| auto *Base = Target->getPhysicalRegister(Target->getFrameOrStackReg()); |
| |
| OperandMIPS32Mem *TAddr = OperandMIPS32Mem::create( |
| Target->Func, DestTy, Base, |
| llvm::cast<ConstantInteger32>(Target->Ctx->getConstantInt32(Offset))); |
| OperandMIPS32Mem *TAddrHi = OperandMIPS32Mem::create( |
| Target->Func, DestTy, Base, |
| llvm::cast<ConstantInteger32>( |
| Target->Ctx->getConstantInt32(Offset + 4))); |
| OperandMIPS32Mem *Addr = legalizeMemOperand(TAddr); |
| |
| // FP arguments are passed in GP reg if first argument is in GP. In this |
| // case type of the SrcR is still FP thus we need to explicitly generate sw |
| // instead of swc1. |
| const RegNumT RegNum = SrcR->getRegNum(); |
| const bool IsSrcGPReg = RegMIPS32::isGPRReg(SrcR->getRegNum()); |
| if (SrcTy == IceType_f32 && IsSrcGPReg) { |
| Variable *SrcGPR = Target->makeReg(IceType_i32, RegNum); |
| Target->_sw(SrcGPR, Addr); |
| } else if (SrcTy == IceType_f64 && IsSrcGPReg) { |
| Variable *SrcGPRHi = |
| Target->makeReg(IceType_i32, RegMIPS32::get64PairFirstRegNum(RegNum)); |
| Variable *SrcGPRLo = Target->makeReg( |
| IceType_i32, RegMIPS32::get64PairSecondRegNum(RegNum)); |
| Target->_sw(SrcGPRHi, Addr); |
| OperandMIPS32Mem *AddrHi = legalizeMemOperand(TAddrHi); |
| Target->_sw(SrcGPRLo, AddrHi); |
| } else if (DestTy == IceType_f64 && IsSrcGPReg) { |
| const auto FirstReg = |
| (llvm::cast<Variable>(MovInstr->getSrc(0)))->getRegNum(); |
| const auto SecondReg = |
| (llvm::cast<Variable>(MovInstr->getSrc(1)))->getRegNum(); |
| Variable *SrcGPRHi = Target->makeReg(IceType_i32, FirstReg); |
| Variable *SrcGPRLo = Target->makeReg(IceType_i32, SecondReg); |
| Target->_sw(SrcGPRLo, Addr); |
| OperandMIPS32Mem *AddrHi = legalizeMemOperand(TAddrHi); |
| Target->_sw(SrcGPRHi, AddrHi); |
| } else { |
| Target->_sw(SrcR, Addr); |
| } |
| |
| Target->Context.insert<InstFakeDef>(Dest); |
| Legalized = true; |
| } else if (auto *Var = llvm::dyn_cast<Variable>(Src)) { |
| if (Var->isRematerializable()) { |
| // This is equivalent to an x86 _lea(RematOffset(%esp/%ebp), Variable). |
| |
| // ExtraOffset is only needed for stack-pointer based frames as we have |
| // to account for spill storage. |
| const int32_t ExtraOffset = |
| (Var->getRegNum() == Target->getFrameOrStackReg()) |
| ? Target->getFrameFixedAllocaOffset() |
| : 0; |
| |
| const int32_t Offset = Var->getStackOffset() + ExtraOffset; |
| Variable *Base = Target->getPhysicalRegister(Var->getRegNum()); |
| Variable *T = newBaseRegister(Base, Offset, Dest->getRegNum()); |
| Target->_mov(Dest, T); |
| Legalized = true; |
| } else { |
| if (!Var->hasReg()) { |
| // This is a _mov(Variable, Mem()), i.e., a load. |
| const int32_t Offset = Var->getStackOffset(); |
| auto *Base = Target->getPhysicalRegister(Target->getFrameOrStackReg()); |
| const RegNumT RegNum = Dest->getRegNum(); |
| const bool IsDstGPReg = RegMIPS32::isGPRReg(Dest->getRegNum()); |
| // If we are moving i64 to a double using stack then the address may |
| // not be aligned to 8-byte boundary as we split i64 into Hi-Lo parts |
| // and store them individually with 4-byte alignment. Load the Hi-Lo |
| // parts in TmpReg and move them to the dest using mtc1. |
| if (DestTy == IceType_f64 && !Utils::IsAligned(Offset, 8) && |
| !IsDstGPReg) { |
| auto *Reg = Target->makeReg(IceType_i32, Target->getReservedTmpReg()); |
| const RegNumT RegNum = Dest->getRegNum(); |
| Variable *DestLo = Target->makeReg( |
| IceType_f32, RegMIPS32::get64PairFirstRegNum(RegNum)); |
| Variable *DestHi = Target->makeReg( |
| IceType_f32, RegMIPS32::get64PairSecondRegNum(RegNum)); |
| OperandMIPS32Mem *AddrLo = OperandMIPS32Mem::create( |
| Target->Func, IceType_i32, Base, |
| llvm::cast<ConstantInteger32>( |
| Target->Ctx->getConstantInt32(Offset))); |
| OperandMIPS32Mem *AddrHi = OperandMIPS32Mem::create( |
| Target->Func, IceType_i32, Base, |
| llvm::cast<ConstantInteger32>( |
| Target->Ctx->getConstantInt32(Offset + 4))); |
| Target->_lw(Reg, AddrLo); |
| Target->_mov(DestLo, Reg); |
| Target->_lw(Reg, AddrHi); |
| Target->_mov(DestHi, Reg); |
| } else { |
| OperandMIPS32Mem *TAddr = OperandMIPS32Mem::create( |
| Target->Func, DestTy, Base, |
| llvm::cast<ConstantInteger32>( |
| Target->Ctx->getConstantInt32(Offset))); |
| OperandMIPS32Mem *Addr = legalizeMemOperand(TAddr); |
| OperandMIPS32Mem *TAddrHi = OperandMIPS32Mem::create( |
| Target->Func, DestTy, Base, |
| llvm::cast<ConstantInteger32>( |
| Target->Ctx->getConstantInt32(Offset + 4))); |
| // FP arguments are passed in GP reg if first argument is in GP. |
| // In this case type of the Dest is still FP thus we need to |
| // explicitly generate lw instead of lwc1. |
| if (DestTy == IceType_f32 && IsDstGPReg) { |
| Variable *DstGPR = Target->makeReg(IceType_i32, RegNum); |
| Target->_lw(DstGPR, Addr); |
| } else if (DestTy == IceType_f64 && IsDstGPReg) { |
| Variable *DstGPRHi = Target->makeReg( |
| IceType_i32, RegMIPS32::get64PairFirstRegNum(RegNum)); |
| Variable *DstGPRLo = Target->makeReg( |
| IceType_i32, RegMIPS32::get64PairSecondRegNum(RegNum)); |
| Target->_lw(DstGPRHi, Addr); |
| OperandMIPS32Mem *AddrHi = legalizeMemOperand(TAddrHi); |
| Target->_lw(DstGPRLo, AddrHi); |
| } else if (DestTy == IceType_f64 && IsDstGPReg) { |
| const auto FirstReg = |
| (llvm::cast<Variable>(MovInstr->getSrc(0)))->getRegNum(); |
| const auto SecondReg = |
| (llvm::cast<Variable>(MovInstr->getSrc(1)))->getRegNum(); |
| Variable *DstGPRHi = Target->makeReg(IceType_i32, FirstReg); |
| Variable *DstGPRLo = Target->makeReg(IceType_i32, SecondReg); |
| Target->_lw(DstGPRLo, Addr); |
| OperandMIPS32Mem *AddrHi = legalizeMemOperand(TAddrHi); |
| Target->_lw(DstGPRHi, AddrHi); |
| } else { |
| Target->_lw(Dest, Addr); |
| } |
| } |
| Legalized = true; |
| } |
| } |
| } |
| |
| if (Legalized) { |
| if (MovInstr->isDestRedefined()) { |
| Target->_set_dest_redefined(); |
| } |
| MovInstr->setDeleted(); |
| } |
| } |
| |
| OperandMIPS32Mem * |
| TargetMIPS32::PostLoweringLegalizer::legalizeMemOperand(OperandMIPS32Mem *Mem) { |
| if (llvm::isa<ConstantRelocatable>(Mem->getOffset())) { |
| return nullptr; |
| } |
| Variable *Base = Mem->getBase(); |
| auto *Ci32 = llvm::cast<ConstantInteger32>(Mem->getOffset()); |
| int32_t Offset = Ci32->getValue(); |
| |
| if (Base->isRematerializable()) { |
| const int32_t ExtraOffset = |
| (Base->getRegNum() == Target->getFrameOrStackReg()) |
| ? Target->getFrameFixedAllocaOffset() |
| : 0; |
| Offset += Base->getStackOffset() + ExtraOffset; |
| Base = Target->getPhysicalRegister(Base->getRegNum()); |
| } |
| |
| constexpr bool SignExt = true; |
| if (!OperandMIPS32Mem::canHoldOffset(Mem->getType(), SignExt, Offset)) { |
| Base = newBaseRegister(Base, Offset, Target->getReservedTmpReg()); |
| Offset = 0; |
| } |
| |
| return OperandMIPS32Mem::create( |
| Target->Func, Mem->getType(), Base, |
| llvm::cast<ConstantInteger32>(Target->Ctx->getConstantInt32(Offset))); |
| } |
| |
| Variable *TargetMIPS32::PostLoweringLegalizer::legalizeImmediate(int32_t Imm) { |
| Variable *Reg = nullptr; |
| if (!((std::numeric_limits<int16_t>::min() <= Imm) && |
| (Imm <= std::numeric_limits<int16_t>::max()))) { |
| const uint32_t UpperBits = (Imm >> 16) & 0xFFFF; |
| const uint32_t LowerBits = Imm & 0xFFFF; |
| Variable *TReg = Target->makeReg(IceType_i32, Target->getReservedTmpReg()); |
| Reg = Target->makeReg(IceType_i32, Target->getReservedTmpReg()); |
| if (LowerBits) { |
| Target->_lui(TReg, Target->Ctx->getConstantInt32(UpperBits)); |
| Target->_ori(Reg, TReg, LowerBits); |
| } else { |
| Target->_lui(Reg, Target->Ctx->getConstantInt32(UpperBits)); |
| } |
| } |
| return Reg; |
| } |
| |
| void TargetMIPS32::postLowerLegalization() { |
| Func->dump("Before postLowerLegalization"); |
| assert(hasComputedFrame()); |
| for (CfgNode *Node : Func->getNodes()) { |
| Context.init(Node); |
| PostLoweringLegalizer Legalizer(this); |
| while (!Context.atEnd()) { |
| PostIncrLoweringContext PostIncrement(Context); |
| Inst *CurInstr = iteratorToInst(Context.getCur()); |
| const SizeT NumSrcs = CurInstr->getSrcSize(); |
| Operand *Src0 = NumSrcs < 1 ? nullptr : CurInstr->getSrc(0); |
| Operand *Src1 = NumSrcs < 2 ? nullptr : CurInstr->getSrc(1); |
| auto *Src0V = llvm::dyn_cast_or_null<Variable>(Src0); |
| auto *Src0M = llvm::dyn_cast_or_null<OperandMIPS32Mem>(Src0); |
| auto *Src1M = llvm::dyn_cast_or_null<OperandMIPS32Mem>(Src1); |
| Variable *Dst = CurInstr->getDest(); |
| if (auto *MovInstr = llvm::dyn_cast<InstMIPS32Mov>(CurInstr)) { |
| Legalizer.legalizeMov(MovInstr); |
| continue; |
| } |
| if (auto *MovInstr = llvm::dyn_cast<InstMIPS32MovFP64ToI64>(CurInstr)) { |
| Legalizer.legalizeMovFp(MovInstr); |
| continue; |
| } |
| if (llvm::isa<InstMIPS32Sw>(CurInstr)) { |
| if (auto *LegalMem = Legalizer.legalizeMemOperand(Src1M)) { |
| _sw(Src0V, LegalMem); |
| CurInstr->setDeleted(); |
| } |
| continue; |
| } |
| if (llvm::isa<InstMIPS32Swc1>(CurInstr)) { |
| if (auto *LegalMem = Legalizer.legalizeMemOperand(Src1M)) { |
| _swc1(Src0V, LegalMem); |
| CurInstr->setDeleted(); |
| } |
| continue; |
| } |
| if (llvm::isa<InstMIPS32Sdc1>(CurInstr)) { |
| if (auto *LegalMem = Legalizer.legalizeMemOperand(Src1M)) { |
| _sdc1(Src0V, LegalMem); |
| CurInstr->setDeleted(); |
| } |
| continue; |
| } |
| if (llvm::isa<InstMIPS32Lw>(CurInstr)) { |
| if (auto *LegalMem = Legalizer.legalizeMemOperand(Src0M)) { |
| _lw(Dst, LegalMem); |
| CurInstr->setDeleted(); |
| } |
| continue; |
| } |
| if (llvm::isa<InstMIPS32Lwc1>(CurInstr)) { |
| if (auto *LegalMem = Legalizer.legalizeMemOperand(Src0M)) { |
| _lwc1(Dst, LegalMem); |
| CurInstr->setDeleted(); |
| } |
| continue; |
| } |
| if (llvm::isa<InstMIPS32Ldc1>(CurInstr)) { |
| if (auto *LegalMem = Legalizer.legalizeMemOperand(Src0M)) { |
| _ldc1(Dst, LegalMem); |
| CurInstr->setDeleted(); |
| } |
| continue; |
| } |
| if (auto *AddiuInstr = llvm::dyn_cast<InstMIPS32Addiu>(CurInstr)) { |
| if (auto *LegalImm = Legalizer.legalizeImmediate( |
| static_cast<int32_t>(AddiuInstr->getImmediateValue()))) { |
| _addu(Dst, Src0V, LegalImm); |
| CurInstr->setDeleted(); |
| } |
| continue; |
| } |
| } |
| } |
| } |
| |
| Operand *TargetMIPS32::loOperand(Operand *Operand) { |
| assert(Operand->getType() == IceType_i64); |
| if (auto *Var64On32 = llvm::dyn_cast<Variable64On32>(Operand)) |
| return Var64On32->getLo(); |
| if (auto *Const = llvm::dyn_cast<ConstantInteger64>(Operand)) { |
| return Ctx->getConstantInt32(static_cast<uint32_t>(Const->getValue())); |
| } |
| if (auto *Mem = llvm::dyn_cast<OperandMIPS32Mem>(Operand)) { |
| // Conservatively disallow memory operands with side-effects (pre/post |
| // increment) in case of duplication. |
| assert(Mem->getAddrMode() == OperandMIPS32Mem::Offset); |
| return OperandMIPS32Mem::create(Func, IceType_i32, Mem->getBase(), |
| Mem->getOffset(), Mem->getAddrMode()); |
| } |
| llvm_unreachable("Unsupported operand type"); |
| return nullptr; |
| } |
| |
| Operand *TargetMIPS32::getOperandAtIndex(Operand *Operand, Type BaseType, |
| uint32_t Index) { |
| if (!isVectorType(Operand->getType())) { |
| llvm::report_fatal_error("getOperandAtIndex: Operand is not vector"); |
| return nullptr; |
| } |
| |
| if (auto *Mem = llvm::dyn_cast<OperandMIPS32Mem>(Operand)) { |
| assert(Mem->getAddrMode() == OperandMIPS32Mem::Offset); |
| Variable *Base = Mem->getBase(); |
| auto *Offset = llvm::cast<ConstantInteger32>(Mem->getOffset()); |
| assert(!Utils::WouldOverflowAdd(Offset->getValue(), 4)); |
| int32_t NextOffsetVal = |
| Offset->getValue() + (Index * typeWidthInBytes(BaseType)); |
| constexpr bool NoSignExt = false; |
| if (!OperandMIPS32Mem::canHoldOffset(BaseType, NoSignExt, NextOffsetVal)) { |
| Constant *_4 = Ctx->getConstantInt32(4); |
| Variable *NewBase = Func->makeVariable(Base->getType()); |
| lowerArithmetic( |
| InstArithmetic::create(Func, InstArithmetic::Add, NewBase, Base, _4)); |
| Base = NewBase; |
| } else { |
| Offset = |
| llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(NextOffsetVal)); |
| } |
| return OperandMIPS32Mem::create(Func, BaseType, Base, Offset, |
| Mem->getAddrMode()); |
| } |
| |
| if (auto *VarVecOn32 = llvm::dyn_cast<VariableVecOn32>(Operand)) |
| return VarVecOn32->getContainers()[Index]; |
| |
| llvm_unreachable("Unsupported operand type"); |
| return nullptr; |
| } |
| |
| Operand *TargetMIPS32::hiOperand(Operand *Operand) { |
| assert(Operand->getType() == IceType_i64); |
| if (Operand->getType() != IceType_i64) |
| return Operand; |
| if (auto *Var64On32 = llvm::dyn_cast<Variable64On32>(Operand)) |
| return Var64On32->getHi(); |
| if (auto *Const = llvm::dyn_cast<ConstantInteger64>(Operand)) { |
| return Ctx->getConstantInt32( |
| static_cast<uint32_t>(Const->getValue() >> 32)); |
| } |
| if (auto *Mem = llvm::dyn_cast<OperandMIPS32Mem>(Operand)) { |
| // Conservatively disallow memory operands with side-effects |
| // in case of duplication. |
| assert(Mem->getAddrMode() == OperandMIPS32Mem::Offset); |
| const Type SplitType = IceType_i32; |
| Variable *Base = Mem->getBase(); |
| auto *Offset = llvm::cast<ConstantInteger32>(Mem->getOffset()); |
| assert(!Utils::WouldOverflowAdd(Offset->getValue(), 4)); |
| int32_t NextOffsetVal = Offset->getValue() + 4; |
| constexpr bool SignExt = false; |
| if (!OperandMIPS32Mem::canHoldOffset(SplitType, SignExt, NextOffsetVal)) { |
| // We have to make a temp variable and add 4 to either Base or Offset. |
| // If we add 4 to Offset, this will convert a non-RegReg addressing |
| // mode into a RegReg addressing mode. Since NaCl sandboxing disallows |
| // RegReg addressing modes, prefer adding to base and replacing instead. |
| // Thus we leave the old offset alone. |
| Constant *Four = Ctx->getConstantInt32(4); |
| Variable *NewBase = Func->makeVariable(Base->getType()); |
| lowerArithmetic(InstArithmetic::create(Func, InstArithmetic::Add, NewBase, |
| Base, Four)); |
| Base = NewBase; |
| } else { |
| Offset = |
| llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(NextOffsetVal)); |
| } |
| return OperandMIPS32Mem::create(Func, SplitType, Base, Offset, |
| Mem->getAddrMode()); |
| } |
| llvm_unreachable("Unsupported operand type"); |
| return nullptr; |
| } |
| |
| SmallBitVector TargetMIPS32::getRegisterSet(RegSetMask Include, |
| RegSetMask Exclude) const { |
| SmallBitVector Registers(RegMIPS32::Reg_NUM); |
| |
| #define X(val, encode, name, scratch, preserved, stackptr, frameptr, isInt, \ |
| isI64Pair, isFP32, isFP64, isVec128, alias_init) \ |
| if (scratch && (Include & RegSet_CallerSave)) \ |
| Registers[RegMIPS32::val] = true; \ |
| if (preserved && (Include & RegSet_CalleeSave)) \ |
| Registers[RegMIPS32::val] = true; \ |
| if (stackptr && (Include & RegSet_StackPointer)) \ |
| Registers[RegMIPS32::val] = true; \ |
| if (frameptr && (Include & RegSet_FramePointer)) \ |
| Registers[RegMIPS32::val] = true; \ |
| if (scratch && (Exclude & RegSet_CallerSave)) \ |
| Registers[RegMIPS32::val] = false; \ |
| if (preserved && (Exclude & RegSet_CalleeSave)) \ |
| Registers[RegMIPS32::val] = false; \ |
| if (stackptr && (Exclude & RegSet_StackPointer)) \ |
| Registers[RegMIPS32::val] = false; \ |
| if (frameptr && (Exclude & RegSet_FramePointer)) \ |
| Registers[RegMIPS32::val] = false; |
| |
| REGMIPS32_TABLE |
| |
| #undef X |
| |
| return Registers; |
| } |
| |
| void TargetMIPS32::lowerAlloca(const InstAlloca *Instr) { |
| // Conservatively require the stack to be aligned. Some stack adjustment |
| // operations implemented below assume that the stack is aligned before the |
| // alloca. All the alloca code ensures that the stack alignment is preserved |
| // after the alloca. The stack alignment restriction can be relaxed in some |
| // cases. |
| NeedsStackAlignment = true; |
| |
| // For default align=0, set it to the real value 1, to avoid any |
| // bit-manipulation problems below. |
| const uint32_t AlignmentParam = std::max(1u, Instr->getAlignInBytes()); |
| |
| // LLVM enforces power of 2 alignment. |
| assert(llvm::isPowerOf2_32(AlignmentParam)); |
| assert(llvm::isPowerOf2_32(MIPS32_STACK_ALIGNMENT_BYTES)); |
| |
| const uint32_t Alignment = |
| std::max(AlignmentParam, MIPS32_STACK_ALIGNMENT_BYTES); |
| const bool OverAligned = Alignment > MIPS32_STACK_ALIGNMENT_BYTES; |
| const bool OptM1 = Func->getOptLevel() == Opt_m1; |
| const bool AllocaWithKnownOffset = Instr->getKnownFrameOffset(); |
| const bool UseFramePointer = |
| hasFramePointer() || OverAligned || !AllocaWithKnownOffset || OptM1; |
| |
| if (UseFramePointer) |
| setHasFramePointer(); |
| |
| Variable *SP = getPhysicalRegister(RegMIPS32::Reg_SP); |
| |
| Variable *Dest = Instr->getDest(); |
| Operand *TotalSize = Instr->getSizeInBytes(); |
| |
| if (const auto *ConstantTotalSize = |
| llvm::dyn_cast<ConstantInteger32>(TotalSize)) { |
| const uint32_t Value = |
| Utils::applyAlignment(ConstantTotalSize->getValue(), Alignment); |
| FixedAllocaSizeBytes += Value; |
| // Constant size alloca. |
| if (!UseFramePointer) { |
| // If we don't need a Frame Pointer, this alloca has a known offset to the |
| // stack pointer. We don't need adjust the stack pointer, nor assign any |
| // value to Dest, as Dest is rematerializable. |
| assert(Dest->isRematerializable()); |
| Context.insert<InstFakeDef>(Dest); |
| return; |
| } |
| |
| if (Alignment > MIPS32_STACK_ALIGNMENT_BYTES) { |
| CurrentAllocaOffset = |
| Utils::applyAlignment(CurrentAllocaOffset, Alignment); |
| } |
| auto *T = I32Reg(); |
| _addiu(T, SP, CurrentAllocaOffset); |
| _mov(Dest, T); |
| CurrentAllocaOffset += Value; |
| return; |
| |
| } else { |
| // Non-constant sizes need to be adjusted to the next highest multiple of |
| // the required alignment at runtime. |
| VariableAllocaUsed = true; |
| VariableAllocaAlignBytes = AlignmentParam; |
| Variable *AlignAmount; |
| auto *TotalSizeR = legalizeToReg(TotalSize, Legal_Reg); |
| auto *T1 = I32Reg(); |
| auto *T2 = I32Reg(); |
| auto *T3 = I32Reg(); |
| auto *T4 = I32Reg(); |
| auto *T5 = I32Reg(); |
| _addiu(T1, TotalSizeR, MIPS32_STACK_ALIGNMENT_BYTES - 1); |
| _addiu(T2, getZero(), -MIPS32_STACK_ALIGNMENT_BYTES); |
| _and(T3, T1, T2); |
| _subu(T4, SP, T3); |
| if (Instr->getAlignInBytes()) { |
| AlignAmount = |
| legalizeToReg(Ctx->getConstantInt32(-AlignmentParam), Legal_Reg); |
| _and(T5, T4, AlignAmount); |
| _mov(Dest, T5); |
| } else { |
| _mov(Dest, T4); |
| } |
| _mov(SP, Dest); |
| return; |
| } |
| } |
| |
| void TargetMIPS32::lowerInt64Arithmetic(const InstArithmetic *Instr, |
| Variable *Dest, Operand *Src0, |
| Operand *Src1) { |
| InstArithmetic::OpKind Op = Instr->getOp(); |
| auto *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
| auto *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
| Variable *Src0LoR = nullptr; |
| Variable *Src1LoR = nullptr; |
| Variable *Src0HiR = nullptr; |
| Variable *Src1HiR = nullptr; |
| |
| switch (Op) { |
| case InstArithmetic::_num: |
| llvm::report_fatal_error("Unknown arithmetic operator"); |
| return; |
| case InstArithmetic::Add: { |
| Src0LoR = legalizeToReg(loOperand(Src0)); |
| Src1LoR = legalizeToReg(loOperand(Src1)); |
| Src0HiR = legalizeToReg(hiOperand(Src0)); |
| Src1HiR = legalizeToReg(hiOperand(Src1)); |
| auto *T_Carry = I32Reg(), *T_Lo = I32Reg(), *T_Hi = I32Reg(), |
| *T_Hi2 = I32Reg(); |
| _addu(T_Lo, Src0LoR, Src1LoR); |
| _mov(DestLo, T_Lo); |
| _sltu(T_Carry, T_Lo, Src0LoR); |
| _addu(T_Hi, T_Carry, Src0HiR); |
| _addu(T_Hi2, Src1HiR, T_Hi); |
| _mov(DestHi, T_Hi2); |
| return; |
| } |
| case InstArithmetic::And: { |
| Src0LoR = legalizeToReg(loOperand(Src0)); |
| Src1LoR = legalizeToReg(loOperand(Src1)); |
| Src0HiR = legalizeToReg(hiOperand(Src0)); |
| Src1HiR = legalizeToReg(hiOperand(Src1)); |
| auto *T_Lo = I32Reg(), *T_Hi = I32Reg(); |
| _and(T_Lo, Src0LoR, Src1LoR); |
| _mov(DestLo, T_Lo); |
| _and(T_Hi, Src0HiR, Src1HiR); |
| _mov(DestHi, T_Hi); |
| return; |
| } |
| case InstArithmetic::Sub: { |
| Src0LoR = legalizeToReg(loOperand(Src0)); |
| Src1LoR = legalizeToReg(loOperand(Src1)); |
| Src0HiR = legalizeToReg(hiOperand(Src0)); |
| Src1HiR = legalizeToReg(hiOperand(Src1)); |
| auto *T_Borrow = I32Reg(), *T_Lo = I32Reg(), *T_Hi = I32Reg(), |
| *T_Hi2 = I32Reg(); |
| _subu(T_Lo, Src0LoR, Src1LoR); |
| _mov(DestLo, T_Lo); |
| _sltu(T_Borrow, Src0LoR, Src1LoR); |
| _addu(T_Hi, T_Borrow, Src1HiR); |
| _subu(T_Hi2, Src0HiR, T_Hi); |
| _mov(DestHi, T_Hi2); |
| return; |
| } |
| case InstArithmetic::Or: { |
| Src0LoR = legalizeToReg(loOperand(Src0)); |
| Src1LoR = legalizeToReg(loOperand(Src1)); |
| Src0HiR = legalizeToReg(hiOperand(Src0)); |
| Src1HiR = legalizeToReg(hiOperand(Src1)); |
| auto *T_Lo = I32Reg(), *T_Hi = I32Reg(); |
| _or(T_Lo, Src0LoR, Src1LoR); |
| _mov(DestLo, T_Lo); |
| _or(T_Hi, Src0HiR, Src1HiR); |
| _mov(DestHi, T_Hi); |
| return; |
| } |
| case InstArithmetic::Xor: { |
| Src0LoR = legalizeToReg(loOperand(Src0)); |
| Src1LoR = legalizeToReg(loOperand(Src1)); |
| Src0HiR = legalizeToReg(hiOperand(Src0)); |
| Src1HiR = legalizeToReg(hiOperand(Src1)); |
| auto *T_Lo = I32Reg(), *T_Hi = I32Reg(); |
| _xor(T_Lo, Src0LoR, Src1LoR); |
| _mov(DestLo, T_Lo); |
| _xor(T_Hi, Src0HiR, Src1HiR); |
| _mov(DestHi, T_Hi); |
| return; |
| } |
| case InstArithmetic::Mul: { |
| // TODO(rkotler): Make sure that mul has the side effect of clobbering |
| // LO, HI. Check for any other LO, HI quirkiness in this section. |
| Src0LoR = legalizeToReg(loOperand(Src0)); |
| Src1LoR = legalizeToReg(loOperand(Src1)); |
| Src0HiR = legalizeToReg(hiOperand(Src0)); |
| Src1HiR = legalizeToReg(hiOperand(Src1)); |
| auto *T_Lo = I32Reg(RegMIPS32::Reg_LO), *T_Hi = I32Reg(RegMIPS32::Reg_HI); |
| auto *T1 = I32Reg(), *T2 = I32Reg(); |
| auto *TM1 = I32Reg(), *TM2 = I32Reg(), *TM3 = I32Reg(), *TM4 = I32Reg(); |
| _multu(T_Lo, Src0LoR, Src1LoR); |
| Context.insert<InstFakeDef>(T_Hi, T_Lo); |
| _mflo(T1, T_Lo); |
| _mfhi(T2, T_Hi); |
| _mov(DestLo, T1); |
| _mul(TM1, Src0HiR, Src1LoR); |
| _mul(TM2, Src0LoR, Src1HiR); |
| _addu(TM3, TM1, T2); |
| _addu(TM4, TM3, TM2); |
| _mov(DestHi, TM4); |
| return; |
| } |
| case InstArithmetic::Shl: { |
| auto *T_Lo = I32Reg(); |
| auto *T_Hi = I32Reg(); |
| auto *T1_Lo = I32Reg(); |
| auto *T1_Hi = I32Reg(); |
| auto *T1 = I32Reg(); |
| auto *T2 = I32Reg(); |
| auto *T3 = I32Reg(); |
| auto *T4 = I32Reg(); |
| auto *T5 = I32Reg(); |
| |
| if (auto *Const = llvm::dyn_cast<ConstantInteger64>(Src1)) |